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Efficient Discriminative K-SVD for Facial
Expression Recognition

Weifeng Liu, Caifeng Song and Yanjiang Wang

Abstract Dictionary learning has attracted growing intention for its prominent
performance in many computer vision applications including facial expression
recognition (FER). Discriminative K-SVD (D-KSVD) is one of conventional
dictionary learning methods, which can effectively unify dictionary learning and
classifier. However, the computation is huge when applying D-KSVD directly on
Gabor features which has high dimension. To tackle this problem, we employ
random projection on Gabor features and then put the reduced features into
D-KSVD schema to obtain sparse representation and dictionary. To evaluate the
performance, we implement the proposed method for FER on JAFFE database. We
also employ support vector machine (SVM) on the sparse codes for FER.
Experimental results show that the computation is reduced a lot with little per-
formance lost.

Keywords Facial expression recognition � Sparse representation � K-SVD �
Discriminative K-SVD � Random projection � Gabor

2.1 Introduction

In recent years, many new technical methods have been exploited for face rec-
ognition and facial expression recognition [1–4]. Sparse representation based
classification has been performed well in facial expression recognition which
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exploits sparse coding to approximate an input expression image by a sparse linear
combination of samples from an over-complete dictionary. In particular, dictionary
leaning, which aims to learn a small dictionary including few atoms from huge
amounts of original information, has achieved many successful applications
including audio and vision data processing [5, 6], image analysis [7–9] and cer-
tainly facial expression recognition [10]. And K-SVD [11] is state-of-the-art
dictionary learning method.

Discriminative K-SVD algorithm [12, 13] extends basic K-SVD algorithm by
incorporating the linear classifier into K-SVD algorithm and finally unifies the
representation power and discriminate ability to train the dictionary and classifier
simultaneously. D-KSVD algorithm has been proven effective and efficiency in
image classification. In [10], Liu etc. utilize D-KSVD algorithm working on Gabor
feature in facial expression recognition which significantly boosts the perfor-
mance. However, the high dimension of facial features will cost a lot of learning
time.

On the other hand, random projection (RP) [14, 15] can project original high-
dimensional data onto a low-dimensional subspace using a random matrix. And
Johnson–Lindenstrauss (JL) lemma [16] identifies that RP can preserve the dis-
tance between two points. In this paper, we introduce random projection as a
preprocessing for feature selection and then incorporate the reduced dimensional
feature into D-KSVD framework. As a result, the proposed method can effectively
reduce the computation and then save the training time significantly with only a
little lost of performance. Finally, we carefully construct the experiments on
JAFFE dataset [25]. Experimental results demonstrate the superiority of the pro-
posed method.

We also employ SVM on the sparse codes for FER. The verified experiments
achieved the approximate results with D-KSVD algorithm.

The rest of this paper is arranged as follows. Section 2.2 introduces discrimi-
nate K-SVD algorithm in detail. Section 2.3 describes the method of random
projection. Section 2.4 presents the experiment result and analysis. Finally, we
conclude with discussion in Sect. 2.5.

2.2 Discriminative K-SVD for Facial Expression
Recognition

2.2.1 Sparse Representation of Facial Expression Images

The basic idea of sparse representation [2–4] is using the over-complete dictionary
to replace the traditional orthogonal basis and then finding the best linear com-
bination of several atoms to represent a signal. Figure 2.1 shows the decomposi-
tion of a facial expression image using sparse representation.
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As showed in Fig. 2.1, an expression can be decomposed as the linear com-
bination of the expressions in dictionary. The coefficient corresponds to the weight
of each facial expression images in dictionary.

The mathematical model can be represented as:

y ¼ DX: ð2:1Þ

X indicates the sparse coefficients. According to compressive sensing theory
[17], the problem can be transformed to solve the minimum l1-norm problem as.

min jjXjj1 s:t: y ¼ AX 2 Rm: ð2:2Þ

Various algorithm including L1-magic, OMP algorithm [18] etc. can be used to
solve (2). Define di Xð Þ as the coefficients of the ith class. The minimum error can
be as the criteria to judge the belongings of this expression.

min n ¼ jjy� Ddi Xð Þjj2 ð2:3Þ

2.2.2 Discriminative K-SVD Algorithm

Discriminative K-SVD [7, 12, 13] is the extension of K-SVD combining the
representation power of K-SVD and discriminate ability of linear classifier.

K-SVD algorithm [11] tackles the drawbacks of sparse representation through
learning a small-scale dictionary from the given training samples and preserving
the representation power of the original dictionary. The algorithm can be achieved
by the followed problem.

min jj
D;X

Y � DXjj22 s:t: jjXjj0 � T ð2:4Þ

where Y denote the training samples and T is a fixed sparsity factor. The algorithm
works well in image denosing and reconstruction. But it is restricted in image
classification without considering discrimination ability.

Fig. 2.1 The decomposition schematic of facial expression
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A linear predictive classifier will introduced to make the dictionary optimal for
classification. The linear classifier Q X;W ; að Þ ¼ WT X þ a can be replaced by the
followed optimal problem:

W ; a½ � ¼ arg min
W ;a

jjQ�WT X � ajj2 þ rjjW jj2 ð2:5Þ

Set a ¼ 0. An objective function for learning a dictionary with representation
power and classification ability can be defined as the following optimal problem:

min
D;W ;X

jjY � DXjj2 þ bjjQ�WT Xjj2 þ rjjW jj2 s:t: jjXjj0� T ð2:6Þ

In order to learn the dictionary D and W simultaneously, drop the regularization
penalty term rjjW jj2 and convert the problem into the following equation:

min
D;W ;X

jj Y
ffiffiffi

b
p

Q

� �

� D
ffiffiffi

b
p

W

� �

Xjj2 s:t: Xk k0� T ð2:7Þ

where Q is label information. Set b ¼ 1, (2.7) can be converted to:

min jj~Y �
X

~di~xijj ¼ min
~dk ;~xk

jj ~Y �
X

k 6¼i
~di~xi

� �

� ~dk~xkjjF ¼ min
~dk ;~xk

jj~Ek � ~dk~xkjjF

ð2:8Þ

where ~Y ¼ Y
Q

� �

; ~D ¼ D
W

� �

; ~dk indicate the kth atom of the dictionary ~D and

~xk is the corresponded coefficient.
At testing phrase, the label of the test image can be obtained through the

product between linear classifier W and the sparse coefficient a.

label ¼ W � a ð2:9Þ

The maximum of label can be viewed as the class of the test image.

2.3 Random Projection

There exist many dimensionality reduction algorithms [19–22] which project the
data into a reduced subspace to reinforce the discriminate capability. RP (random
projection) [14, 15] has been applied widely in dimension reduction. The principle
of RP is very simple and easy to implement. The central idea is aroused by
Johnson-Linderstrauss lemma [16]: Given an image matrix C which contains
N points in d-dimensional vector space, the matrix can be projected to a lower-
dimensional space while the distance between two points is preserved.

~Ck�N ¼ Rk�d � Cd�N ð2:10Þ
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The transformed matrix R has many formats. In this paper, we select the sparse
projection matrix proposed by Achlioptas [23].

R rij ¼ z
� �

¼
1=6 z ¼

ffiffiffi

3
p

2=3 z ¼ 0
1=6 z ¼ �

ffiffiffi

3
p

8

<

:

ð2:11Þ

This distribution reduces the computational time to calculate R � C. Random
vectors are sufficiently approximate to orthogonal [24], so we can use the sparse
random matrix directly.

The proposed efficient D-KSVD based on random projection for facial
expression recognition can be described in table:

The proposed efficient D-KSVD algorithm for FER

Input: The training facial images and test facial image
Output: The label of the test facial images
Step 1 Extract the feature of facial expression images
Step 2 Reduce the dimension of the feature using random projection
Step 3 Learn the dictionary D and classifier W adopting D-KSVD algorithm
Step 4 Find the sparse coefficients a of the test sample y exploit OMP algorithm
Step 5 The label of test sample can be obtained finally.
Step 6 The coefficient X of step 3 and a of step 5 as the training sample and testing samples

separately would be sent to SVM for classifying

2.4 Experimental Results and Analysis

A series of experiments of discriminative K-SVD with RP are performed on the
JAFFE database [25]. JAFFE database contains 213 expression images in total
including seven classes of expressions (Angry, Disgust, Fear, Happy, Sad, Surprise
and Neutral) of ten Japanese women, which each expression has two to four
images.

We use the cropped and normalized face expression images of 120*96 pixels.
The images are split into two groups which one contains 70 images as test sample,
and the others as training sample.

2.4.1 Experiments Analysis of Efficient D-KSVD Algorithm

The role of feature [26] is not neglected and various features have been applied in
facial expression recognition. Three features including gray-scale feature, LBP
feature [27] and Gabor feature [28] have been selected. The original dimensions
are 11520, 512, 11520*4 for gray feature, LBP and Gabor feature respectively.
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Then the experiments based on discriminative K-SVD perform on the features
respectively in different reduced dimensions using random projection. Each image
can be separately projected into eighty-dimensions, sixty-dimensions, fifty-
dimensions, thirty-dimensions, twenty-dimensions, ten-dimensions and five-
dimensions. At last, the contrast of the recognition results between the original
data and dimensionality reduction data is given as shown in Fig. 2.2a–c. While the
comparison of training time is presented in Fig. 2.2d.

From Fig 2.2a–c, it can be seen that the recognition rates remain comparable
until the dimension reduced to ten dimensional. On the other hand, in (d),
the training time is decreased significantly after dimensional reduction. In addition,
the performance is not only determined by the classifier, but also the extracted
feature. The recognition results of D-KSVD algorithm with Gabor feature per-
forms best in the three features.

As showed in (c), On the whole, fixing the number of atoms, the results keep
steady until the dimension drops to a lower number such as five dimensions. On
the other hand, fixing the dimensions, the results show a rising trend with the
number of atoms increasing, but it will remain unchanged basically when the
atoms reaches a certain number.
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Fig. 2.2 Contrasts of performance and training time between original data and the data after
dimensional reduction a Gray feature, b LBP feature, c Gabor feature, d Contrasts of training
time
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2.4.2 Verification Experiments Using SVM

The training coefficient X and the testing coefficient a as the training feature and
the testing feature separately would be classified using SVM algorithm. The
classified accuracy would be presented in Fig. 2.3.

As shown from the table, the performance using SVM is in line with that using
D-KSVD algorithm. The overall trend is declined with the reduction of dimen-
sions. However, the accuracy after dimension reduction still remains unchanged
basically if the reasonable and appropriate dimension is selected.

2.5 Conclusion and Future Work

An efficient discriminative K-SVD algorithm for dictionary learning is proposed
for facial expression recognition. Particularly, dimensionality reduction uses ran-
dom projection acted on a series of features (gray, LBP, Gabor) which are
extracted from the facial expression images. Then the features after dimensionality
reduction are used to train the small-size dictionary and classification simulta-
neously. Finally, the dictionary and classification are implemented for facial
expression recognition system. Experimental results demonstrate that the training
time can be greatly reduced with little performance lost after dimension reduction
using RP.
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