
Chapter 2

A Roadmap Towards a Systems Biology

Description of Bacterial Nitrogen Fixation

Marie Lisandra Zepeda-Mendoza and Osbaldo Resendis-Antonio

2.1 Introduction

Nitrogen fixation is a fundamental natural process in which atmospheric nitrogen is

reduced to ammonia. Several types of microorganisms that live in a variety of

physiological conditions can perform nitrogen fixation. These microorganisms

include bacteria such as Rhizobium etli (Masson-Boivin et al. 2009), Klebsiella
oxytoca (Luftu-Cakmakci et al. 1981), Frankia alni (Schwmtzer and Tjepkema

1990), and cyanobacteria (Berman-Frank et al. 2003), as well as archaea such as

Methanococcus thermolithotrophicus (Belay et al. 1984) and Methanosarcina
barkeri (Bomar et al. 1985). Genome information from these microorganisms, in

combination with data from high-throughput technologies, provides valuable mate-

rial for elucidating the biological principles that characterize nitrogen fixation.

Notably, the advent of high-throughput technologies has advanced our global

understanding of the way that transcriptional regulatory and metabolic networks

work together to support this biological process. While this task may sound easy,

success is far from being a direct enterprise. The development of new paradigms is

central to understand their basic mechanics and to make practical advancements in

crop improvements. Thus, systems biology is a new field that can make notable

contributions to these goals.

The central aim of this chapter is to present a conceptual view of how a systems

biology description can be useful to construct hypotheses to improve our under-

standing of nitrogen fixation and to use the in silico modeling to perform a

systematic and quantitative analysis of this biological phenomenon. We hope that
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the present study stimulates interest in this new scientific frontier and show that

these computational methodologies can be useful to integrate information and

generate knowledge for systematically uncovering the underlying metabolic activ-

ity during bacterial nitrogen fixation in R. etli.

2.1.1 Nitrogen Fixation

Nitrogen fixation can be performed by rhizobia soil bacteria in symbiosis with

legume plants. This process has been extensively studied, and the entire genome

sequences of select Rhizobiaceae bacteria (such as Azorhizobium, Allorhizobium,
Bradyrhizobium, Mesorhizobium, Rhizobium, and Sinorhizobium) have been

reported. During nitrogen fixation, the bacteria use the nitrogenase enzyme to

transform atmospheric N2 into ammonia. In addition to its crucial role in the

nitrogen cycle, there are also important agricultural and environmental reasons

for studying this process. For example, modern agriculture relies on inefficient

industrial fertilizers to maximize crop production. The use of chemical fertilizers

severely damages the environment. Large quantities of fossil fuels are needed for

nitrogenous fertilizer production and fertilizer decomposition releases highly active

greenhouse gases (Crutzen et al. 2007). Furthermore, fertilizer loss due to leaching

causes waterway eutrophication (Graham and Vance 2003). However, nitrogen

fixation can provide a clean and natural strategy for improving field crops, thereby

avoiding or reducing environmental pollution and making strides towards sustain-

able agriculture. Taken together, these aspects highlight the importance of

optimizing nitrogen input through its natural mechanisms. However, nitrogen

fixation is a highly complex biochemical process that requires active signaling

and metabolic interchanges between the plant and its symbiotic bacteria. This

biological process can be divided into three main phases, which can be briefly

explained as follows:

– Bacterial attraction: Symbiosis starts when the roots of the plant excrete pheno-

lic flavonoid compounds. Bacteria expressing NodD proteins recognize these

compounds and are attracted to the roots (Redmond et al. 1986).

– Nodule formation: Once bacteria are localized into the root, they produce strain-
specific chito-oligosaccharides, known as nod factors, which induce nodule

formation. Nodules are special plant structures that house the bacteria while

they are in symbiosis with the plant (Caetano-Anolles and Gresshoff 1991;

Ferguson et al. 2010). Then, the bacteria enter the plant through its root hairs.

This process typically occurs at the root tips, but the bacteria can also enter

through cracks in the epidermal tissue of the root. Bacterial entry causes cellular-

level ionic changes in the plant (Felle et al. 1999) and the root is deformed to

promote cortical cell divisions. Legumes have two types of nodules: determinate

and indeterminate. The host plant determines the nodule type; some physical and

biological properties are listed for each case in Table 2.1.
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– Nitrogen-fixing bacteroids: The bacteria continue migrating into the plant via

infection threads until they reach the inner cortex and the nodule primordium.

The bacteria are released into an infection droplet that is excreted near the

growing tip of the infection thread. Then, in a process resembling endocytosis,

the bacteria are surrounded by a plant-derived membrane, called the

peribacteroid membrane, to form a symbiosome (Udvardi and Day 1997). Inside

the nodule, the bacteria differentiate into bacteroids. At this stage, the bacteroids

are distinctly different from the free-living form of bacteria (see Table 2.1).

Once inside the mature nodule, a bacteroid is capable of fixing atmospheric

nitrogen by maintaining an ammonia–carbon source exchange with the plant.

This nitrogen-fixing capacity is the result of global gene expression changes that

give the bacteria highly specialized metabolic activities.

The nitrogenase enzyme is responsible for atmospheric nitrogen reduction. This

enzyme is highly oxygen sensitive, but the nodule protects it by providing a

microaerobic environment. While nitrogenase performs the nitrogen reduction,

the biochemical reaction also depends on the coordinated participation of other

Table 2.1 Characteristics of the two types of nodules

Characteristic Indeterminate nodule Determinate nodule

Initial cell

divisions

First anticlinically in the inner cortex

and then periclinically in the

endodermis and pericycle

First subepidermically in the outer

cortex

Nodule shape Cylindrical with a persistent meristem Spherical, lacking a persistent

meristem

Nodule vascular

system

Less branched compared to determi-

nate nodules

More branched compared to indeter-

minate nodules

Bacteroid

population

Heterogeneous due to continued cell

division activity

One bacteroid per symbiosome

Homogeneous, because bacterial dif-

ferentiation into bacteroids occurs

synchronously and then the

bacteroids undergo senescence

Multiple bacteroids per symbiosome

Bacteroid Enlarged shape because of having

multiple genome amplification;

branched by having membrane

modifications; with low viability

(Vasse et al. 1990; Mergaert

et al. 2006)

Normal rod size with normal genome

content; with high viability

(Mergaert et al. 2006)

Plant examples Alfalfa (Medicago sativa), clover
(Trifolium), pea (Pisum sativum),
barrel medic (Medicago
truncatula) (Bond 1948; Libbenga

and Harkes 1973; Newcomb 1976;

Newcomb et al. 1979)

Soybean (Glycine max), bean
(Phaseolus vulgaris), Pongamia,
Lotus japonicus (Bond 1948;

Libbenga and Harkes 1973;

Newcomb 1976; Newcomb

et al. 1979; Turgean and Bauer

1982; Calvert et al. 1984;

Gresshoff and Delves 1986; Rolfe

and Gresshoff 1988; Mathews

et al. 1989)
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metabolic pathways to produce the required substrates. In other words, the nitroge-

nase enzyme participates in an essential reaction, but many other metabolic

reactions are necessary to maintain the symbiotic nitrogen fixation. Hence, optimal

nitrogen fixation also requires active metabolite exchange between the plant and the

bacteroid. Amino acid transport between plant and bacteroid is essential to support

the nitrogen fixation process (Lodwig et al. 2003). Thus, there is evidence that

glutamate, or one of its derivatives, is provided by the plant whereas aspartate and

alanine are secreted by the bacteroid (Day et al. 2001).

2.1.2 Symbiotic Relationship Between R. etli and Phaseolus

vulgaris

It is important to clarify that symbiotic nitrogen fixation is a highly selective

interaction; i.e., all legumes do not attract all rhizobia. Therefore, the bacterium

and plant that are used to study and model nitrogen fixation must be carefully

selected. For example, several studies have focused on the interaction between

alfalfa and Sinorhizobium meliloti, which is one of the best-described interactions

in symbiotic nitrogen fixation (Jones et al. 2007). Given this plant–bacteria speci-

ficity requirement, this chapter will focus on the metabolic analysis of symbiosis

between the common bean (P. vulgaris) and R. etli.
We have chosen to focus on R. etli and P. vulgaris because of the large amount

of physiological, molecular, and genetic information available on this symbiotic

relationship. Furthermore, P. vulgaris is highly important to the agricultural market.

The common bean represents 50 % of worldwide legume consumption (McClean

et al. 2004), which is approximately 23 million tons, according to the Food and

Agriculture Organization of the United Nations (http://www.fao.org/corp/statistics/

en). In addition, P. vulgaris is a promiscuous legume because it can form nodules

with various rhizobia (R. etli, R. leguminosarum, R. propici, R. gallicum, and
R. giardini). However, R. etli is the most abundant symbiont for the wild-type

bean. Taken together, we believe that this specific interaction is an appropriate

model for studying legume–Rhizobium symbiosis with clear implications in agri-

culture technology.

2.2 Systems Biology of Bacterial Nitrogen Fixation

Nitrogen fixation involves a variety of signaling and metabolic pathways that

coexist in a complex fashion. Consequently, understanding this process requires

computational algorithms that can survey its complexity in a systematic and

coherent fashion and can also drive additional and improved experimental study

designs. While the metabolic and genetic aspects of this symbiosis have been
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studied extensively, many intermediate and late-stage events remain poorly under-

stood. Notably, the recent advent of high-throughput technologies has produced

extensive data on gene expression patterns and metabolic activities that occur

during nitrogen fixation. However, interpreting data from multiple high-throughput

technologies (e.g., fluxomics, sequencing, microarrays, protein interaction data, and

metabolomics) is not a trivial task due to the varying levels of biological description

and heterogeneity of these datasets. In this context, genome-scale computational

methods must be developed in a systems biology framework to systematically

integrate this myriad of data and construct biological hypotheses. Thus, a systems

biology framework can contribute to the achievement of three important goals

(1) data integration and interpretation, (2) computational modeling of the metabolic

phenotypes associated with nitrogen fixation, and (3) experimental assessment of

the in silico predictions. A metabolic phenotype refers to the set of metabolic

reactions that are required to support nitrogen fixation.

Systems biology has two main schemes: top-down and bottom-up. The top-down

scheme provides a descriptive data integration approach, enables genome-scale

monitoring of cellular activity, and allows the user to focus on specific areas of

interest in terms of cellular activity. The top-down approach also allows researchers

to discover patterns, referred to as emergent properties that can only be observed

when looking at the system as a whole (Bhalla and Iyengar 1999; Rodriguez-Plaza

et al. 2012). In comparison, a bottom-up scheme provides a more systemic and

quantitative analysis of the ways that specific external perturbations can affect

biological networks such as transcriptional, signaling, and metabolic networks

(Fig. 2.1).

Although these two approaches can be viewed as separate strategies, a combi-

nation of the bottom-up and top-down schemes is required to completely study a

biological system. A computational algorithm known as constraint-based modeling

has been developed for this purpose and has been successfully applied to a variety

of biological systems (Palsson 2006; Larhlimi and Bockmayr 2007, 2009;

Resendis-Antonio et al. 2007). This framework enables the observation of

genotype–phenotype relationships for a selected organism. The steps to form a

constraint-based model are as follows (see Fig. 2.2). First, an organism’s genomic

data are obtained. Next, a metabolic network is reconstructed with the use of

bioinformatic tools and literature reviews. Then, computational simulations are

conducted to predict the organism’s potential response to external perturbations.

A more detailed description of this process is provided in the following sections.

2.2.1 Metabolic Network Reconstruction

The first step in reconstructing a metabolic network is data collection. All of the

relevant information regarding the process of interest must be collected. There are

many different sources of biological information, ranging from laboratory

experiments and literature research to new high-throughput technologies. The
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amount of physiological data has grown exponentially in recent years in a variety of

Rhizobiaceae; in particular high-throughput technologies have provided informa-

tion across a wide range of biological levels such as transcriptome, proteome, and

metabolome (see, for instance, Sarma and Emerich 2005, 2006; Resendis-Antonio

et al. 2011, 2012). All of this physiological information needs to be collected to

warranty a high-quality microorganism’s metabolic network reconstruction.

Once the necessary information has been collected, we can systematically

integrate the data by reconstructing a metabolic network. At this stage, we have a

set of metabolic interactions that are supported by experimental evidence, bioinfor-

matic predictions, or both. In turn, each reaction is associated with basic genome

information such as which enzyme carries out the reaction, which genes encode the

enzyme, the processed mRNA sequence, and the maximum reaction flux. However,

Fig. 2.1 The two schemes in systems biology. The top-down scheme starts with data coming from

different sources (microarrays, DNA or RNA sequencing, mass spectrometry, etc.) to provide a

description of the cellular activity in a genomic scale. The bottom-up scheme works with

integrated data to build models and carry out in silico simulations to do predictions and guide

hypothesis testing
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given that our knowledge is incomplete, this metabolic reconstruction frequently

contains gaps that can limit the in silico phenotype analysis. In order to fill these

missing metabolic reactions it is also crucial to include bioinformatic predictions or

alternative computational methods (Orth and Palsson 2010). Two types of missing

metabolic reactions can be distinguished: gap and orphan reactions. The first ones

are those without experimental results confirming its presence but with the meta-

bolic context suggesting it. The second ones include all the reactions that we expect

to exist, preferably with experimental evidence suggesting it, but there is no clear

evidence to which genes they are associated (Orth and Palsson 2010). For example,

if experimental data were not available for all the enzymes in the glycolysis

pathway, the missing enzymes could be predicted based on a variety of techniques

that include the completely annotated pathway in a closely related species with

Fig. 2.2 Steps of the constraint-based modeling. (a) Data gathering. Data can come from many

different sources, such as metabolomic, transcriptomic, proteomic, fuxomic, and genomic

experiments carried out in-house or stored in public databases, as well as from bioinformatic

predictions and from the literature. (b)Metabolic network reconstruction. The gathered data has to
be integrated in a coherent fashion by taking into account all the available information related to

every reaction. This integrated data constitutes the metabolic reconstruction. (c) Mathematical
representation of the network. Once it has been reconstructed, a metabolic network is mathemati-

cally represented through an m�n matrix, called stoichiometric matrix (S), in which the m rows

are the metabolites and the n columns are the reactions. The entry value in (m,n) is the stoichio-
metric coefficient of the metabolite m in the reaction n, and the value is positive if the metabolite is

produced in the reaction and negative if it is consumed. (d) Simulations and experimental cross
talk. In silico simulations are made based on the model by changing some parameters of the

components to make predictions and lead future hypothesis testing experiments. Thus a retroactive

process between laboratory experiments and computational analysis is established. Some of the

most used and important simulations are flux balance analysis (FBA), flux variability analysis

(FVA), phenotypic space uniform random sampling (PhSURS), gene deletion (GD), and pheno-

typic phase-plane (PhPP)
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some bioinformatics and experimental methods. Thus, bioinformatic predictions

can fill any gaps in a pathway. This data collection and gap-filling process are

fundamental to ensure a proper metabolic reconstruction that will increase the

predictive capabilities of the model.

2.2.2 Mathematical Representation of the Metabolic
Reconstruction

Once the data have been integrated into a metabolic reaction set, the reconstruction

can be mathematically represented as a m� n matrix, called the stoichiometric

matrix ðSÞ , in which each of the rows represents a metabolite and each of the

columns represents a reaction. If the metabolite m is produced in the reaction n, the
entry value of (m,n) in S is the metabolite’s stoichiometric coefficient in that

reaction. If a metabolite is consumed, its entry (m,n) is the negative of its stoichio-
metric coefficient. As an example, we present the metabolic network reconstruction

of the glycolysis pathway. The glycolytic reactions and their corresponding

enzymes are shown in Table 2.2. The corresponding S is shown in Fig. 2.3.

The organization of the reconstructed network can also be represented

graphically. Cellular metabolism involves two sets of objects: reactions and

metabolites. Given this bipartite nature, metabolic networks can be separated into

their two components and represented as a reaction or as a metabolite graph

(Montañez et al. 2010). In a reaction graph, each node is an enzyme that carries

out a given reaction where links connect any two nodes that share a common

metabolite. In a metabolite graph, the compounds are the nodes and any two

nodes are linked if they participate in the same reaction. An example of these

complementary representations is shown in Fig. 2.4.

The type of question asked in a study determines which graphical representation

is the most appropriate. For example, if the question is how the network metabolites

work together to optimize a biological process, then the metabolite graph should be

used (Resendis-Antonio et al. 2012). However, if the question is how the metabolic

reactions work together to optimize a biological process, then the reaction graph

should be used. Although the questions may sound similar, they have important

intrinsic differences. In the first question, the focus is solely on the metabolite and

does not involve which reaction it belongs to, i.e., the metabolite can be linked to

many different reactions. In the second scenario, the focus is on the enzyme and not

its associated metabolites.
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2.2.2.1 Topological Analysis of the Genome-Scale Metabolic

Reconstruction

Graph theory can be used to perform topological studies on metabolic networks.

Thus, topological analysis is important for uncovering cellular organizational

principles and understanding its mechanisms for coordinating biological functions.

Several classic topological properties are explained below.

Table 2.2 Glycolysis metabolic pathway reconstruction

Reaction Enzyme

Glucose + ATP4� ! G6P2� + ADP3� + H+ Hexokinase (HK)

G6P2� $ F6P2� Phosphoglucose isomerase (PGI)

F6P2� + ATP4� ! F1,6BP4� + ADP3� + H+ Phosphofructokinase (PFK-1)

F1,6BP4� $ DHAP2� + G3P2� Fructose-bisphosphate aldolase (ALDO)

DHAP2� $ G3P2� Triosephosphate isomerase (TPI)

G3P2� + Pi
2� + NAD+ $ 1,3BPG4� + NADH + H+ Glyceraldehyde phosphate dehydroge-

nase (GAPDH)

1,3BPG4� + ADP3� $ 3PG3� + ATP4� Phosphoglycerate kinase (PGK)

3PG3� $ 2PG3� Phosphoglycerate mutase (PGM)

2PG3� $ PEP3� + H2O Enolase (ENO)

PEP3� + ADP3� + H+ ! Pyr� + ATP4� Pyruvate kinase (PK)

Fig. 2.3 Representation of the glycolysis pathway through a stoichiometric matrix. In this figure we

have used the following notations: glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), fructose-

1,6-bisphosphate (F1,6BP), dihydroxyacetone phosphate (DHAP), glyceraldehyde-3-phosphate

(G3P), 1,3-bisphosphoglycerate (1,3BPG), 3-phosphoglycerate (3PG), 2-phosphoglycerate (2PG),

phosphoenolpyruvate (PEP), and pyruvate (Pyr). From left to right the reactions are in the same

order as shown in Table 2.2

2 A Roadmap Towards a Systems Biology Description of Bacterial Nitrogen Fixation 35



• Degree distribution: The degree or connectivity of a node describes its number

of nearest neighbors, i.e., its number of links. The degree values of all of the

nodes in the network form a distribution; this distribution describes the number

of nodes per degree (Newman 2003). The probability distribution of metabolic

networks can usually fit a power law, reflecting a scale-free topology (Barabasi

2009). Scale-free networks are characterized by a few components with high

connectivity (called hubs, e.g., ATP) and numerous components with low

connectivity. There is evidence that this characteristic yields network robustness

against the random loss of components (Han et al. 2004; Barabasi and Oltvai

2004; Jeong et al. 2001). However, other studies have suggested that this finding

should be carefully reviewed in biological systems (Stumpf and Porter 2012).

Fig. 2.4 Graphical representations of a metabolic network. (a) Conventional biochemical repre-

sentation of the glycolysis pathway. This pathway can also be represented as a bipartite graph.

(b) The bipartite graph of the glycolysis pathway consists of two different sets, enzymes and

metabolites, represented by two different types of nodes. Nodes of one type can only be linked to

nodes of the other type, so here a metabolite node is linked to an enzyme node if it participates in

the reaction carried out by that enzyme. This multipartite graph can be separated into two graphs,

each one with one set of data. (c) The reaction graph is built with the enzymes set. In this graph

each node is an enzyme and a link connects two nodes if they share any metabolite. (d) The

metabolite graph is built with the metabolites set. Here each node represents a metabolite and the

links connecting them are the metabolic reactions that transform one metabolite to another. Here

graphs (b), (c), and (d) are undirected because they are only for the purpose of representing general

relationships, not taking into account the causality as directed networks do when the question of

the study has been defined
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• Clustering coefficient (C): The clustering coefficient describes the degree to

which the neighbors of a given node are connected to one another. In a social

context, this is similar to asking “how many of my friends are also friends?” The

clustering coefficient has a value between 0 and 1, with 1 indicating that all of

the neighbors are connected to one another (Watts and Strogatz 1998).

• Shortest path length: The shortest path length is defined as the average of the

minimum number of links (the shortest path) between every two nodes in the

network. This measure is typically very small in metabolic networks (Jeong

et al. 2000; Wagner and Fell 2001), although not all studies are in agreement

(Arita 2004).

• Module: A module is a subnetwork of nodes with high clustering coefficients

between one another. In other words, it is a set of nodes that are more closely

related to one another than to the rest of the network. Nodes that share a common

biological function are called functional modules. If there is no implicated

biological function among the nodes, they are referred to as structural modules

(Barabasi et al. 2011). However, there is evidence that functional modules can be

associated to topological modules (Resendis-Antonio et al. 2012).

2.2.3 Computational Simulations

After the metabolic network reconstruction has been mathematically represented as

S, the metabolic capabilities of the organism can be evaluated. However, before

continuing with this aim, several issues must be solved. Dynamic modeling of a

genome-scale metabolic reconstruction using ordinary differential equations (ODE)

or partial differential equations (PDE) requires specific knowledge of the associated

enzyme kinetics. The lack of specific information on metabolic reactions is a central

problem in systems biology. Thus, there is a need to develop alternative methods

that can overcome these limitations (Orth et al. 2011; Palsson 2011). In order to

overcome such limitations, some frameworks have been developed that contribute

to the exploration of the metabolic responses of a microorganism at steady-state

behavior without an exhaustive number of kinetic parameters. Constraint-based

modeling is a systemic and comprehensive systems biology approach that addresses

these issues by imposing physical, biological, and thermodynamic constraints on

the entire set of metabolic reactions under steady-state conditions (Fig. 2.5a)

(Palsson 2006; Price et al. 2004). In this approach, an organism’s metabolic

capacities are entirely defined by the properties of the stoichiometric matrix S
and the enzymatic constraints of each metabolic reaction. Thus, it is possible to

analyze the phenotypic space of an organism from its genome-scale metabolic

reconstruction.

While the constraints define and limit the metabolic responses of a microorgan-

ism, a large number of possible metabolic states still exist. Therefore, developing

computational methods to survey the properties of this space is a priority. To this

end, a variety of methods that link the metabolic activity of a network to the
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Fig. 2.5 Constraint-based modeling and in silico simulations. (a) Constraint-based modeling.Once
the S is constructed and the objective function (OF) selected, an approach to analyze the physiologi-

cal capabilities of the bacteroid during nitrogen fixation is constraint-based modeling. It works by

studying the results of in silico simulations that impose a variety of biological and thermodynamic

constraints subject to a steady-state condition. (b) Flux balance analysis (FBA). From all the space of

possible flux values (the solution space), FBA finds the steady-state flux distribution subject to mass

balance and thermodynamics constraints that maximizes an OF, in our case the bacterial nitrogen

fixation. To meet the steady-state assumption, the equality Sv ¼ 0 is set, with v containing the flux

values of all the reactions in the network. (c) Flux variability analysis (FVA). FVA is used when

there is more than one optimal flux distribution. It computes the minimal and maximal flux of each

reaction such that a fixed OF is produced. (d) Phenotypic space uniform random sampling.
This method is used to characterize the solution space. It samples some points of the space in a

uniform randomway, thus allowing an unbiased characterization of the solution space. Some aspects

that can be studied with this unbiased method are the flux correlation between reactions and the

characterization of the size and shape of the solution space. (e) Gene deletions. Gene deletions

can be simulated by deleting from the S the reactions associated to the deleted gene product.

Theoretically speaking, it results in a reduction of the solution space. It can be used

to investigate gene dispensability and mutant phenotypes. (f) Phenotypic phase plane (PhPP).
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phenotype of a microorganism have been developed. These methods address

questions aimed at understanding genotype–phenotype relationships for a

biological process of interest. Before describing examples of these methods, two

key concepts are explained: solution space and objective function.

– Solution space: The metabolic capacities of the model organism during the

process of interest together with the enzymatic constraints of each metabolic

reaction constitute a phenotypic space called the solution space. The solution

space contains all of the possible steady-state metabolite fluxes in the

reconstructed metabolic network. Consequently, the metabolic activities

identified in different regions of the solution space can be associated with a

wide range of phenotypes proper to diverse physiological conditions, including

growth rates, metabolite production rates, and the rate of bacterial nitrogen

fixation. Mathematically speaking, to represent a cellular metabolism at a steady

state, the matrix Smust be multiplied by the vector x such that the product equals
0, in other words

S � x ¼ 0

Because S is a matrix with m rows and n columns, the set of all vectors x that
satisfy this equation forms an n-dimensional solution space. It is important to

mention that the size of the solution space is constrained by the minimum and

maximum flux values assigned to each reaction, see Fig. 2.5b.

– Objective function (OF): The objective function represents a linear combination

of the metabolite fluxes that are needed for a metabolic process to occur. In other

words, the OF is the sum of the fluxes of metabolites, each of which is multiplied

by a coefficient that indicates their weighted contribution to the metabolic

process. Mathematically speaking, this function is represented as

OF ¼ cT � v

where c and v are a weight and metabolic flux vector respectively. The flux vector

contains the flux information of all the metabolites included in the reconstruction,

it indicates the flux of the metabolites participating in the OF. It is important to

select an OF that represents the specific physiological conditions in the organism

of interest. In the particular case of nitrogen fixation for R. etli, the OF can be

defined by taking into account various information sources, such as literature

�

Fig. 2.5 (continued) This method characterizes the steady-state solution space projected in two or

three dimensions to divide the steady-state flux distributions into regions with similar metabolic

flux patterns and a similar OF response if certain metabolites were additionally supplied to the

network. The line of optimality corresponds to the conditions where metabolic activity is

organized in the most efficient way to maximize the OF
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reviews and metabolome data generated during the nitrogen fixation stage of

R. etli (Resendis-Antonio et al. 2012).

Now that we have described these key concepts, we explain below some of the

methods used in constraint-based modeling for exploring the phenotype capacities

of genome-scale metabolic reconstructions.

2.2.3.1 Flux Balance Analysis

Flux balance analysis (FBA) uses optimization principles to identify the metabolic

state of a microorganism and works as explained next. First, an objective function

(OF) is defined to simulate the microorganism’s physiological state in the process

of interest. In order to reduce the number of kinetic parameters required to simulate

the metabolic activity, the biological process is assumed to occur at a steady state

while maximizing the OF. Finally, the metabolic flux distribution that maximizes

the OF in the solution space is computed by linear programming (Fig. 2.5b). Thus,

by maximizing the OF, one can identify the metabolic activity along the metabolic

pathways required to produce an efficient biological process which, in our case, is

nitrogen fixation.

FBA has implicit advantages and disadvantages. On one hand, it requires a

limited number of parameters to predict the metabolic state associated with a

phenotype. Furthermore, it represents an elegant formalism for analyzing

genome-scale metabolic reconstructions while encompassing cross talk from

high-throughput technologies (Orth et al. 2010; Resendis-Antonio et al. 2012).

However, these advantages can also be seen as a drawback. Due to a lack of kinetic

parameters, FBA cannot predict metabolic concentrations and its outputs are only

valid under a steady-state assumption (Orth et al. 2010). The temporal behavior of

metabolic concentrations and fluxes can be analyzed by dynamic flux balance

analysis or genome-scale linear perturbation models (Varma and Palsson 1994;

Resendis-Antonio 2009; Jamshidi and Palsson 2008). However, these issues remain

open to further investigation in systems biology.

2.2.3.2 Flux Variability Analysis

Given the high dimensionality of the optimization problem described in

Sect. 2.2.3.1, the metabolic phenotype that maximizes the OF is usually not unique.

This result is due to redundant mechanisms underlying the metabolic network. Flux

variability analysis (FVA) is a computational tool that is useful for quantifying this

redundancy by identifying the set of metabolic phenotypes that result in an equiva-

lent maximal (or minimal) OF. This analysis is extremely important for identifying

biochemical pathways that can potentially generate the same phenotype. The results

are fundamental for a proper interpretation of the in silico outputs. From a compu-

tational point of view, FVA computes the minimal and maximal fluxes of each
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reaction for a fixed OF (Fig. 2.5c). This analysis identifies the feasible range of flux

values for each reaction, thus representing the different metabolic phenotypes that a

microorganism can use to adapt to its environment. In other words, this method

does not identify all the optimal solutions but rather identifies the range of flux

variability that is possible within any given solution (Mahadevan and Schilling

2003).

2.2.3.3 Phenotypic Space Uniform Random Sampling

A method called phenotypic space uniform random sampling can be used to survey

the range of possible biochemical states without the bias of an OF. This analysis

enables characterization of the size and shape of the solution space and provides

information about the variety of a microorganism’s metabolic phenotype states.

The method consists of sampling the solution space in a random and uniform

manner to extract interesting information about its characteristics. For example,

pairwise correlation coefficients can be calculated between all of the metabolic

fluxes to identify the degree of correlation between each pair of reactions (Fig. 2.5d)

(Price et al. 2004).

2.2.3.4 Gene Deletions

Gene deletions can be simulated in silico by deleting the columns from S associated
with the gene or genes product of interest or, alternatively, by constraining its

corresponding upper and lower bound in the flux vector. Hence, these in silico gene

deletions result in a reduction of the solution space (Fig. 2.5e). This type of study

can be used to investigate gene dispensability (Duarte et al. 2004), to examine the

evolution of wild-type strains towards new optimal states under selection pressures

(Fong et al. 2003), and to predict the metabolic phenotypes of mutant strains

(Resendis-Antonio et al. 2007).

2.2.3.5 Phenotypic Phase Plane

The phenotypic phase plane is a method for characterizing a projection of the

steady-state solution space in two or three dimensions. In this analysis, steady-

state flux distributions can be divided into a finite number of regions based on

similar metabolic flux patterns and shadow prices. A shadow price describes how

the OF would change if additional metabolites were supplied to the network

(Edwards et al. 2001). Thus, the regions of the plane are classified based on the

extent to which metabolite availability limits the process of interest and which

biochemical activity is the optimal to induce a specific phenotype, in this case

nitrogen fixation (Fig. 2.5f).
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2.2.4 Experimental Cross Talk

The described methods above are useful for examining a microorganism’s meta-

bolic capabilities in a given physiological state. These methods allow us to link a

cell’s metabolic activity to a specific phenotype. However, in silico predictions can

differ from experimental results due to network incompleteness introduced during

the metabolic reconstruction, an improperly defined OF, or an inaccurate descrip-

tion of the cell’s environmental conditions. Thus, an iterative, retroactive process is

needed to reconcile laboratory data and computational predictions.

Simulation results can lead to hypothesis that in order to be verified require the

design of new experiments. These experiments can provide additional data,

resulting in information that contributes to construct a more realistic computational

representation of nitrogen fixation. For instance, this approach could be used to

refine the OF definition. The corrected OF could then be used as input for compu-

tational methods, the results of which will either further confirm the metabolic

activity of previous simulations or lead to the identification of other pathways for

future research.

2.3 Systems Biology Description of R. etli and P. vulgaris
Symbiosis

A systems biology analysis of the symbiotic interactions between R. etli and

P. vulgaris was conducted for nitrogen fixation. Top-down and bottom-up

strategies were used to achieve the following goals (1) genome-scale metabolic

reconstruction and topological analysis of the R. etli, (2) constraint-based metabolic

modeling of the nitrogen-fixing bacteroid, and (3) construction of a computational

platform capable to predict the metabolic phenotype in R. etli and compare between

our computational predictions and the experimental results.

2.3.1 Metabolic Reconstruction of R. etli

The metabolic reconstruction of R. etli for simulating the symbiotic interaction with

P. vulgaris was based on the integration of several levels of biological data. This

information came from various papers reported in the literature and data obtained

from high-throughput technologies. This latter source including proteomic,

transcriptomic, and metabolomic experiments (Resendis-Antonio et al. 2007,

2011, 2012). In addition other information sources were used, including the

R. etli genome annotation from KEGG (Kyoto Encyclopedia of Genes and

Genomes) and available scientific literature (e.g., biochemical textbooks and pre-

vious reports). In total, the current version of the R. etli metabolic reconstruction,
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identified as iOR450, consists of 450 genes, 405 reactions, and 377 metabolites.

Although R. etli contains approximately 7,000 genes and thus 450 genes may sound

too small to be representative of its genome, this reconstruction is based on well-

curated and reliable experimental data.

Functional classification of these 450 genes revealed metabolic pathways with

an important role in nitrogen fixation, including glycolysis, the TCA cycle, the

pentose phosphate pathway, oxidative phosphorylation, amino acid production,

glycogen and poly-β-hydroxybutyrate (PHB) biosynthesis, nitrogen reduction,

secretion systems, and fatty acid metabolism. This version of the reconstruction is

the basic platform for expansion and improvement in future versions. For instance,

a significant number of the identified proteins are related to transport (e.g., the

transport of small molecules), thus reflecting extensive metabolic cross talk

between the plant and the bacteroid (Resendis-Antonio et al. 2007, 2011, 2012).

Our metabolic reconstruction will include this physiological information and these

processes will be experimentally verified. Currently, this reconstruction is a corner-

stone in exploring the metabolic capacities of R. etli when facing different environ-
mental conditions.

The graphical representation of the network provides information to elucidate

how the metabolite organization within the network supports bacterial nitrogen

fixation. For instance, structural modules were identified based on a purely topo-

logical criterion to elucidate their relationship with R. etli’s biological functions

(Ravasz et al. 2002; Resendis-Antonio et al. 2005). Hence, based on a topological

criterion (defined as the inverse square of the minimal path length between every

pair of nodes), there were reported nine topological modules whose metabolic

composition fell into three main groups: nucleic acids, peptides, and lipids. Nota-

bly, the functional composition of these modules and the quantitative metabolome

data have contributed to establish hypotheses of how the production of metabolites

is required for sustaining an optimal nitrogen fixation (Resendis-Antonio

et al. 2012). This kind of analysis is an adequate scheme to survey the basic

organizational principles by which a biological process can happen in nature.

Thus, by correlating the metabolites of modules with the high-throughput data, it

was observed that the concentrations of most of the metabolites in each nodule

upregulate their concentration during nitrogen fixation compared to the free-living

bacteria. This finding supports the idea that a coherent functional biological activity

is required at a functional level (Hartwell et al. 1999; Resendis-Antonio et al. 2005,

2012).

2.3.2 Constraint-Based Modeling and Simulation Results

Once the metabolic reconstruction was complete, a constraint-based model allowed

us to explore the metabolic capacities of the network for R. etli. To this end, first we
have constructed an appropriate OF for mimicking the metabolic activity during

nitrogen fixation. This function was defined based on data from literature review
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and high-throughput experiments, specially taking into account the following

information:

• Plant–bacteroid exchange of certain amino acids may be a general mechanism in

rhizobia (Prell and Poole 2006).

• Sixteen ATP molecules are required to reduce one N2 molecule into two

ammonium molecules, which are subsequently exported to the plant (Patriarca

et al. 2002; Lodwig and Poole 2003).

• Glycogen and PHB accumulate during nitrogen fixation and serve as carbon

storage (Bergersen and Turner 1990; Lodwig et al. 2005; Sarma and Emerich

2006; Trainer and Charles 2006).

• Mutations in the biosynthesis of branched chain amino acids, such as L-valine,

produce defective nodule formations (De las Nieves Peltzer et al. 2008), which

indicates that this metabolite is an essential component. At a similar level, we

considered that L-histidine is a central compound in nitrogen fixation (Dixon and

Kahn 2004). In agreement with this experimental findings, both amino acids

where included in the OF.

• Metabolome experiments have identified new metabolites with statistically

significant changes during bacteroid activity compared to free-living bacteria.

In order to give a better constraint-based analysis, there has been suggested that

these metabolites can be used to define a more complete OF. These metabolites

include CMP, 3-phospho-D-glycerate, and 2-oxoglutarate (Resendis-Antonio

et al. 2012).

By integrating these findings, an OF representing the metabolic flux of key

metabolites in nitrogen fixation was defined as follows:

ZFix ¼ glycogenþ hist½c� þ lys½c� þ phb½c� þ val½c� þ ala½e� þ asp½e� þ nh4½e�
þmal½c� þ trp½c� þ arg½c� þ cit½c� þ cmp½c� þ fum½c� þ 3pg½c� þ akg½c�

where glycogen, histidine, lysine, polyhydroxybutyrate, valine, alanine, aspartate,

and ammonium are denoted as glycogen, hist[c], lys, phb[c], val[c], ala[e], asp[e],

and nh4[e], respectively. Similarly, mal, trp, arg, cit, cmp, fum, 3 pg, and akg

denote malate, tryptophan, arginine, citrate, CMP, fumarate, 3-phospho-D-

glycerate, and 2-oxoglutarate, respectively. All these metabolites are required to

support an effective symbiotic nitrogen fixation, and the location of the metabolites

is represented by [c] or [e] for cytoplasmic or external compounds, respectively.

Once the OF was defined, a series of studies and simulations were performed to

explore, characterize, and predict bacteroid metabolic phenotypes.

Thus, FBA was performed to examine the metabolic fluxes associated with

nitrogen fixation. With the FBA results and based on the gene products associated

with these reactions, one can predict the set of essential genes for carrying out

nitrogen fixation. Furthermore, FVA was used to characterize the core metabolic

activity within the set of alternative solutions. The reactions with zero range in flux

variability were selected as part of central metabolism in bacterial nitrogen fixation.

44 M.L. Zepeda-Mendoza and O. Resendis-Antonio



The experimental data had to be related to the computational results to biologi-

cally support the model; consequently the agreement between the computational

interpretations and the experimental data must be quantified to make this compari-

son. To this end, a consistency coefficient has been defined as the fraction of genes

and enzymes that FBA predicted as active compared to those that were detected by

transcriptome and proteome technologies. Based on this parameter, the consistency

coefficients for the simulation of nitrogen fixation were reported to be 0.61 for

genes and 0.71 for enzymes. To ensure the quality of the reconstruction and

evaluate the coherence of the computational simulations, we proceed to assess the

capacity of the model to predict physiological knowledge when gene deletion

occurs (see Fig. 2.5e). To evaluate capacity of the model to predict physiological

behaviors after gene silencing, in silico gene deletion analysis was performed on the

genes encoding PHB synthase, glycogen synthase, arginine deiminase,

myo-inositol dehydrogenase, pyruvate carboxylase, citric acid cycle enzymes,

PEP carboxykinase, bisphosphate aldolase, and nitrogenase. These simulations

were in qualitative agreement with the experimental counterpart in a variety of

Rhizobiaceae (Resendis-Antonio et al. 2007, 2010, 2012).

On the other hand, the robustness of the topological structure of metabolic

network (e.g., its functional modules) was explored by changing its external

environment, specifically the uptake rates of succinate and inositol. The effects of

these changes were evaluated by constructing a phenotypic phase plane. Then, a

subset of 20 points, corresponding to select uptake rate conditions within the

metabolic phase plane, was subjected to FBA. The metabolic subnetworks were

graphically represented based on the FBA results. The topological variations

between these subnetworks were defined by the fraction of overlapping metabolites.

This study concluded that the metabolic profile required for optimizing nitrogen

fixation does not significantly change for a wide range of succinate or inositol

uptake rates. This finding suggests that the metabolic network supporting nitrogen

fixation is robust to environmental changes (Resendis-Antonio et al. 2012).

2.3.3 Comparative Analysis of Simulations and
Experimental Data

A detailed comparison between the in silico simulation results and the high-

throughput data highlighted several important aspects of bacterial nitrogen fixation;

such processes are described in Table 2.3. Overall, in this chapter we support that a

systems biology approach enable the reconstruction and comprehensive analysis of

R. etli metabolism during symbiosis with P. vulgaris, providing a systematic

framework to reach a broader view of this important interaction. The current

metabolic description can be improved by continually assessing the discrepancies

between the computational results and the experimental data, whereas its
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Table 2.3 Comparison of the computational and experimental results

Biological process Computational results Experimental results

Entner–Doudoroff

and pentose

phosphate

pathways

Besides gluconeogenesis, the exis-

tence of a fueling pathway based

on pentoses is predicted in the

bacteroid

Metabolome experiments detected

metabolites of the pentose

phosphate and the

Entner–Doudoroff pathways

(Resendis-Antonio et al. 2012)

Nitrogen fixation

enzymes

As expected, if viewing this finding as

a positive control for the OF, these

enzymes were predicted by the

model to be central in the nitrogen

fixation

As expected, the nif and nifx genes
and coded proteins that are

involved in nitrogen fixation

were identified by the

microarrays and the proteome

experiments

Nucleotides

metabolism

Some enzymes of the purine and the

pyrimidine pathways actively par-

ticipate for an optimal nitrogen

fixation

Several of the enzymes that par-

ticipate in the purine and

pyrimidine pathways were

identified in the proteome data

(Resendis-Antonio et al. 2011)

Oxidative

phosphorylation

Nonzero fluxes through oxidative

phosphorylation and removal of all

cytochrome oxidase reactions

result in total loss of nitrogen

fixation

The essentiality of respiration for

nitrogen fixation has been pre-

viously reported (Lodwig and

Poole 2003; Batut and Boistard

1994)

TCA cycle The model predicts incomplete use of

the TCA cycle

Experiments are not always able to

detect all the TCA cycle

enzymes. Besides, mutants in

the TCA cycle in B. japonicus
are still able to fix nitrogen,

suggesting that a complete set

of TCA cycle enzymes is not

required for fixation (Lodwig

and Poole 2003; Green and

Emerich 1997)

Gluconeogenesis

pathway

The model concluded that the gluco-

neogenesis pathway is active in

nitrogen fixation

It is known for R. etli that the glu-
coneogenesis pathway is active

in nitrogen fixation (Lodwig

and Poole 2003). This finding

was also identified in the pro-

teome experiment (Resendis-

Antonio et al. 2011)

Ammonium

assimilation

FBA predicted that there is no activity

in the ammonium assimilation

pathway during symbiosis

Ammonium assimilation is not

observed during nitrogen fixa-

tion and an increase in ammo-

nium assimilation negatively

affects nodulation (Mendoza

et al. 1995)

PHB and glycogen

accumulation

Simulations of deletion of PHB

synthase predict that symbiotic

nitrogen fixation increases

In R. etli PHB synthase deletion

causes increase in nitrogen fix-

ation (Cevallos et al. 1996). A

similar result is observed upon

glycogen synthase deletion in

R. tropici (Marroqui

(continued)
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agreements can lead to the design of new experiments (Resendis-Antonio

et al. 2012).

2.4 Conclusion

High-throughput technologies provide valuable data for describing the global

landscape of cellular activity. However, these techniques do not have the full

capacity for describing and predicting the integrated functions of biological pro-

cesses. Using a systems biology approach, we were able to construct a proper

computational framework that serves as a guide for integrating various types of

“-omics” data (Palsson 2006, 2011). With this computational framework, we could

describe and predict metabolic activities, as well as design experiments that explore

genotype–phenotype relationships involved in nitrogen fixation. The combination

of experimental data and computational modeling advances our understanding of

the main metabolic mechanisms that support bacterial nitrogen fixation. This

achievement will undoubtedly have important effects in developing sustainable

Table 2.3 (continued)

Biological process Computational results Experimental results

et al. 2001). Furthermore, it has

been suggested that inhibition

of one of the polymers results

in accumulation of the other

(Cevallos et al. 1996)

Arginine deiminase

pathway

Arginine deiminase deletion predicts a

decrease in symbiotic nitrogen

fixation

Nitrogen fixation is reduced upon

arginine deiminase deletion

(D’Hooghe et al. 1997)

Myo-inositol cata-

bolic pathway

The model predicts that the activity of

the enzyme increases nitrogen fix-

ation and that its deletion decreases

the fixation activity

Mutation of myo-inositol dehy-

drogenase in Sinorhizobium
fredii increases nitrogen fixa-

tion (Jiang et al. 2001).

Besides, myo-inositol, 2-

dehydrogenase proteins were

detected in R. etli (Resendis-
Antonio et al. 2011)

Fatty acids

metabolism

Analysis of the functional modules

suggests that the fatty acids are

important for nitrogen fixation

(Resendis-Antonio et al. 2012)

Fatty acid metabolism can play a

significant role in nitrogen fix-

ation in R. etli (Resendis-
Antonio et al. 2011). An

explanation could be that it can

supply a variety of precursors

to the bacteroid, such as

components of the rhizobial

membrane, lipopolysac-

charides, and coenzymes

required in signal transduction
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agricultural programs by optimizing cost-effective crop improvements and ulti-

mately diminishing the pollution effects of chemical fertilizers.
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