Chapter 2
A Roadmap Towards a Systems Biology
Description of Bacterial Nitrogen Fixation

Marie Lisandra Zepeda-Mendoza and Osbaldo Resendis-Antonio

2.1 Introduction

Nitrogen fixation is a fundamental natural process in which atmospheric nitrogen is
reduced to ammonia. Several types of microorganisms that live in a variety of
physiological conditions can perform nitrogen fixation. These microorganisms
include bacteria such as Rhizobium etli (Masson-Boivin et al. 2009), Klebsiella
oxytoca (Luftu-Cakmakci et al. 1981), Frankia alni (Schwmtzer and Tjepkema
1990), and cyanobacteria (Berman-Frank et al. 2003), as well as archaea such as
Methanococcus thermolithotrophicus (Belay et al. 1984) and Methanosarcina
barkeri (Bomar et al. 1985). Genome information from these microorganisms, in
combination with data from high-throughput technologies, provides valuable mate-
rial for elucidating the biological principles that characterize nitrogen fixation.
Notably, the advent of high-throughput technologies has advanced our global
understanding of the way that transcriptional regulatory and metabolic networks
work together to support this biological process. While this task may sound easy,
success is far from being a direct enterprise. The development of new paradigms is
central to understand their basic mechanics and to make practical advancements in
crop improvements. Thus, systems biology is a new field that can make notable
contributions to these goals.

The central aim of this chapter is to present a conceptual view of how a systems
biology description can be useful to construct hypotheses to improve our under-
standing of nitrogen fixation and to use the in silico modeling to perform a
systematic and quantitative analysis of this biological phenomenon. We hope that
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the present study stimulates interest in this new scientific frontier and show that
these computational methodologies can be useful to integrate information and
generate knowledge for systematically uncovering the underlying metabolic activ-
ity during bacterial nitrogen fixation in R. etli.

2.1.1 Nitrogen Fixation

Nitrogen fixation can be performed by rhizobia soil bacteria in symbiosis with
legume plants. This process has been extensively studied, and the entire genome
sequences of select Rhizobiaceae bacteria (such as Azorhizobium, Allorhizobium,
Bradyrhizobium, Mesorhizobium, Rhizobium, and Sinorhizobium) have been
reported. During nitrogen fixation, the bacteria use the nitrogenase enzyme to
transform atmospheric N, into ammonia. In addition to its crucial role in the
nitrogen cycle, there are also important agricultural and environmental reasons
for studying this process. For example, modern agriculture relies on inefficient
industrial fertilizers to maximize crop production. The use of chemical fertilizers
severely damages the environment. Large quantities of fossil fuels are needed for
nitrogenous fertilizer production and fertilizer decomposition releases highly active
greenhouse gases (Crutzen et al. 2007). Furthermore, fertilizer loss due to leaching
causes waterway eutrophication (Graham and Vance 2003). However, nitrogen
fixation can provide a clean and natural strategy for improving field crops, thereby
avoiding or reducing environmental pollution and making strides towards sustain-
able agriculture. Taken together, these aspects highlight the importance of
optimizing nitrogen input through its natural mechanisms. However, nitrogen
fixation is a highly complex biochemical process that requires active signaling
and metabolic interchanges between the plant and its symbiotic bacteria. This
biological process can be divided into three main phases, which can be briefly
explained as follows:

— Bacterial attraction: Symbiosis starts when the roots of the plant excrete pheno-
lic flavonoid compounds. Bacteria expressing NodD proteins recognize these
compounds and are attracted to the roots (Redmond et al. 1986).

— Nodule formation: Once bacteria are localized into the root, they produce strain-
specific chito-oligosaccharides, known as nod factors, which induce nodule
formation. Nodules are special plant structures that house the bacteria while
they are in symbiosis with the plant (Caetano-Anolles and Gresshoff 1991;
Ferguson et al. 2010). Then, the bacteria enter the plant through its root hairs.
This process typically occurs at the root tips, but the bacteria can also enter
through cracks in the epidermal tissue of the root. Bacterial entry causes cellular-
level ionic changes in the plant (Felle et al. 1999) and the root is deformed to
promote cortical cell divisions. Legumes have two types of nodules: determinate
and indeterminate. The host plant determines the nodule type; some physical and
biological properties are listed for each case in Table 2.1.
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Table 2.1 Characteristics of the two types of nodules

Characteristic

Indeterminate nodule

Determinate nodule

Initial cell
divisions

Nodule shape

Nodule vascular
system

Bacteroid
population

Bacteroid

Plant examples

First anticlinically in the inner cortex
and then periclinically in the
endodermis and pericycle

Cylindrical with a persistent meristem

Less branched compared to determi-
nate nodules

Heterogeneous due to continued cell
division activity

One bacteroid per symbiosome

Enlarged shape because of having
multiple genome amplification;
branched by having membrane
modifications; with low viability
(Vasse et al. 1990; Mergaert
et al. 2006)

Alfalfa (Medicago sativa), clover
(Trifolium), pea (Pisum sativum),
barrel medic (Medicago
truncatula) (Bond 1948; Libbenga
and Harkes 1973; Newcomb 1976;
Newcomb et al. 1979)

First subepidermically in the outer
cortex

Spherical, lacking a persistent
meristem

More branched compared to indeter-
minate nodules

Homogeneous, because bacterial dif-
ferentiation into bacteroids occurs
synchronously and then the
bacteroids undergo senescence

Multiple bacteroids per symbiosome

Normal rod size with normal genome
content; with high viability
(Mergaert et al. 2006)

Soybean (Glycine max), bean
(Phaseolus vulgaris), Pongamia,
Lotus japonicus (Bond 1948;
Libbenga and Harkes 1973;
Newcomb 1976; Newcomb
et al. 1979; Turgean and Bauer
1982; Calvert et al. 1984;
Gresshoff and Delves 1986; Rolfe
and Gresshoff 1988; Mathews
et al. 1989)

— Nitrogen-fixing bacteroids: The bacteria continue migrating into the plant via

infection threads until they reach the inner cortex and the nodule primordium.
The bacteria are released into an infection droplet that is excreted near the
growing tip of the infection thread. Then, in a process resembling endocytosis,
the bacteria are surrounded by a plant-derived membrane, called the
peribacteroid membrane, to form a symbiosome (Udvardi and Day 1997). Inside
the nodule, the bacteria differentiate into bacteroids. At this stage, the bacteroids
are distinctly different from the free-living form of bacteria (see Table 2.1).
Once inside the mature nodule, a bacteroid is capable of fixing atmospheric
nitrogen by maintaining an ammonia—carbon source exchange with the plant.
This nitrogen-fixing capacity is the result of global gene expression changes that
give the bacteria highly specialized metabolic activities.

The nitrogenase enzyme is responsible for atmospheric nitrogen reduction. This

enzyme is highly oxygen sensitive, but the nodule protects it by providing a
microaerobic environment. While nitrogenase performs the nitrogen reduction,
the biochemical reaction also depends on the coordinated participation of other
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metabolic pathways to produce the required substrates. In other words, the nitroge-
nase enzyme participates in an essential reaction, but many other metabolic
reactions are necessary to maintain the symbiotic nitrogen fixation. Hence, optimal
nitrogen fixation also requires active metabolite exchange between the plant and the
bacteroid. Amino acid transport between plant and bacteroid is essential to support
the nitrogen fixation process (Lodwig et al. 2003). Thus, there is evidence that
glutamate, or one of its derivatives, is provided by the plant whereas aspartate and
alanine are secreted by the bacteroid (Day et al. 2001).

2.1.2 Symbiotic Relationship Between R. etli and Phaseolus
vulgaris

It is important to clarify that symbiotic nitrogen fixation is a highly selective
interaction; i.e., all legumes do not attract all rhizobia. Therefore, the bacterium
and plant that are used to study and model nitrogen fixation must be carefully
selected. For example, several studies have focused on the interaction between
alfalfa and Sinorhizobium meliloti, which is one of the best-described interactions
in symbiotic nitrogen fixation (Jones et al. 2007). Given this plant-bacteria speci-
ficity requirement, this chapter will focus on the metabolic analysis of symbiosis
between the common bean (P. vulgaris) and R. etli.

We have chosen to focus on R. etli and P. vulgaris because of the large amount
of physiological, molecular, and genetic information available on this symbiotic
relationship. Furthermore, P. vulgaris is highly important to the agricultural market.
The common bean represents 50 % of worldwide legume consumption (McClean
et al. 2004), which is approximately 23 million tons, according to the Food and
Agriculture Organization of the United Nations (http://www.fao.org/corp/statistics/
en). In addition, P. vulgaris is a promiscuous legume because it can form nodules
with various rhizobia (R. etli, R. leguminosarum, R. propici, R. gallicum, and
R. giardini). However, R. etli is the most abundant symbiont for the wild-type
bean. Taken together, we believe that this specific interaction is an appropriate
model for studying legume—RhAizobium symbiosis with clear implications in agri-
culture technology.

2.2 Systems Biology of Bacterial Nitrogen Fixation

Nitrogen fixation involves a variety of signaling and metabolic pathways that
coexist in a complex fashion. Consequently, understanding this process requires
computational algorithms that can survey its complexity in a systematic and
coherent fashion and can also drive additional and improved experimental study
designs. While the metabolic and genetic aspects of this symbiosis have been
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studied extensively, many intermediate and late-stage events remain poorly under-
stood. Notably, the recent advent of high-throughput technologies has produced
extensive data on gene expression patterns and metabolic activities that occur
during nitrogen fixation. However, interpreting data from multiple high-throughput
technologies (e.g., fluxomics, sequencing, microarrays, protein interaction data, and
metabolomics) is not a trivial task due to the varying levels of biological description
and heterogeneity of these datasets. In this context, genome-scale computational
methods must be developed in a systems biology framework to systematically
integrate this myriad of data and construct biological hypotheses. Thus, a systems
biology framework can contribute to the achievement of three important goals
(1) data integration and interpretation, (2) computational modeling of the metabolic
phenotypes associated with nitrogen fixation, and (3) experimental assessment of
the in silico predictions. A metabolic phenotype refers to the set of metabolic
reactions that are required to support nitrogen fixation.

Systems biology has two main schemes: top-down and bottom-up. The top-down
scheme provides a descriptive data integration approach, enables genome-scale
monitoring of cellular activity, and allows the user to focus on specific areas of
interest in terms of cellular activity. The top-down approach also allows researchers
to discover patterns, referred to as emergent properties that can only be observed
when looking at the system as a whole (Bhalla and Iyengar 1999; Rodriguez-Plaza
et al. 2012). In comparison, a bottom-up scheme provides a more systemic and
quantitative analysis of the ways that specific external perturbations can affect
biological networks such as transcriptional, signaling, and metabolic networks
(Fig. 2.1).

Although these two approaches can be viewed as separate strategies, a combi-
nation of the bottom-up and top-down schemes is required to completely study a
biological system. A computational algorithm known as constraint-based modeling
has been developed for this purpose and has been successfully applied to a variety
of biological systems (Palsson 2006; Larhlimi and Bockmayr 2007, 2009;
Resendis-Antonio et al. 2007). This framework enables the observation of
genotype—phenotype relationships for a selected organism. The steps to form a
constraint-based model are as follows (see Fig. 2.2). First, an organism’s genomic
data are obtained. Next, a metabolic network is reconstructed with the use of
bioinformatic tools and literature reviews. Then, computational simulations are
conducted to predict the organism’s potential response to external perturbations.
A more detailed description of this process is provided in the following sections.

2.2.1 Metabolic Network Reconstruction

The first step in reconstructing a metabolic network is data collection. All of the
relevant information regarding the process of interest must be collected. There are
many different sources of biological information, ranging from laboratory
experiments and literature research to new high-throughput technologies. The
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Fig. 2.1 The two schemes in systems biology. The top-down scheme starts with data coming from
different sources (microarrays, DNA or RNA sequencing, mass spectrometry, etc.) to provide a
description of the cellular activity in a genomic scale. The bottom-up scheme works with
integrated data to build models and carry out in silico simulations to do predictions and guide
hypothesis testing

amount of physiological data has grown exponentially in recent years in a variety of
Rhizobiaceae; in particular high-throughput technologies have provided informa-
tion across a wide range of biological levels such as transcriptome, proteome, and
metabolome (see, for instance, Sarma and Emerich 2005, 2006; Resendis-Antonio
et al. 2011, 2012). All of this physiological information needs to be collected to
warranty a high-quality microorganism’s metabolic network reconstruction.

Once the necessary information has been collected, we can systematically
integrate the data by reconstructing a metabolic network. At this stage, we have a
set of metabolic interactions that are supported by experimental evidence, bioinfor-
matic predictions, or both. In turn, each reaction is associated with basic genome
information such as which enzyme carries out the reaction, which genes encode the
enzyme, the processed mRNA sequence, and the maximum reaction flux. However,
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Fig. 2.2 Steps of the constraint-based modeling. (a) Data gathering. Data can come from many
different sources, such as metabolomic, transcriptomic, proteomic, fuxomic, and genomic
experiments carried out in-house or stored in public databases, as well as from bioinformatic
predictions and from the literature. (b) Metabolic network reconstruction. The gathered data has to
be integrated in a coherent fashion by taking into account all the available information related to
every reaction. This integrated data constitutes the metabolic reconstruction. (¢) Mathematical
representation of the network. Once it has been reconstructed, a metabolic network is mathemati-
cally represented through an mxn matrix, called stoichiometric matrix (S), in which the m rows
are the metabolites and the n columns are the reactions. The entry value in (m,n) is the stoichio-
metric coefficient of the metabolite 7 in the reaction n, and the value is positive if the metabolite is
produced in the reaction and negative if it is consumed. (d) Simulations and experimental cross
talk. In silico simulations are made based on the model by changing some parameters of the
components to make predictions and lead future hypothesis testing experiments. Thus a retroactive
process between laboratory experiments and computational analysis is established. Some of the
most used and important simulations are flux balance analysis (FBA), flux variability analysis
(FVA), phenotypic space uniform random sampling (PhSURS), gene deletion (GD), and pheno-
typic phase-plane (PhPP)

given that our knowledge is incomplete, this metabolic reconstruction frequently
contains gaps that can limit the in silico phenotype analysis. In order to fill these
missing metabolic reactions it is also crucial to include bioinformatic predictions or
alternative computational methods (Orth and Palsson 2010). Two types of missing
metabolic reactions can be distinguished: gap and orphan reactions. The first ones
are those without experimental results confirming its presence but with the meta-
bolic context suggesting it. The second ones include all the reactions that we expect
to exist, preferably with experimental evidence suggesting it, but there is no clear
evidence to which genes they are associated (Orth and Palsson 2010). For example,
if experimental data were not available for all the enzymes in the glycolysis
pathway, the missing enzymes could be predicted based on a variety of techniques
that include the completely annotated pathway in a closely related species with
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some bioinformatics and experimental methods. Thus, bioinformatic predictions
can fill any gaps in a pathway. This data collection and gap-filling process are
fundamental to ensure a proper metabolic reconstruction that will increase the
predictive capabilities of the model.

2.2.2 Mathematical Representation of the Metabolic
Reconstruction

Once the data have been integrated into a metabolic reaction set, the reconstruction
can be mathematically represented as a m x n matrix, called the stoichiometric
matrix (S), in which each of the rows represents a metabolite and each of the
columns represents a reaction. If the metabolite m is produced in the reaction n, the
entry value of (m,n) in S is the metabolite’s stoichiometric coefficient in that
reaction. If a metabolite is consumed, its entry (m2,n) is the negative of its stoichio-
metric coefficient. As an example, we present the metabolic network reconstruction
of the glycolysis pathway. The glycolytic reactions and their corresponding
enzymes are shown in Table 2.2. The corresponding S is shown in Fig. 2.3.

The organization of the reconstructed network can also be represented
graphically. Cellular metabolism involves two sets of objects: reactions and
metabolites. Given this bipartite nature, metabolic networks can be separated into
their two components and represented as a reaction or as a metabolite graph
(Montafiez et al. 2010). In a reaction graph, each node is an enzyme that carries
out a given reaction where links connect any two nodes that share a common
metabolite. In a metabolite graph, the compounds are the nodes and any two
nodes are linked if they participate in the same reaction. An example of these
complementary representations is shown in Fig. 2.4.

The type of question asked in a study determines which graphical representation
is the most appropriate. For example, if the question is how the network metabolites
work together to optimize a biological process, then the metabolite graph should be
used (Resendis-Antonio et al. 2012). However, if the question is how the metabolic
reactions work together to optimize a biological process, then the reaction graph
should be used. Although the questions may sound similar, they have important
intrinsic differences. In the first question, the focus is solely on the metabolite and
does not involve which reaction it belongs to, i.e., the metabolite can be linked to
many different reactions. In the second scenario, the focus is on the enzyme and not
its associated metabolites.
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Table 2.2 Glycolysis metabolic pathway reconstruction

Reaction Enzyme

Glucose + ATP*~ — G6P*>~ + ADP>~ + H* Hexokinase (HK)

G6P*>~ «— F6P*~ Phosphoglucose isomerase (PGI)
F6P>~ + ATP*™ — F1,6BP*~ + ADP>™ + H* Phosphofructokinase (PFK-1)
F1,6BP*~ — DHAP*™ + G3P*~ Fructose-bisphosphate aldolase (ALDO)
DHAP?~ « G3P*~ Triosephosphate isomerase (TPI)

G3P>™ + P>~ + NAD" < 1,3BPG*™ + NADH + H*  Glyceraldehyde phosphate dehydroge-
nase (GAPDH)

1,3BPG*™ + ADP’~ « 3PG*™ + ATP*~ Phosphoglycerate kinase (PGK)
3PG*™ — 2PG*~ Phosphoglycerate mutase (PGM)
2PG*~ — PEP*~ + H,0O Enolase (ENO)
PEP’~ + ADP*~ + H" — Pyr~ + ATP*" Pyruvate kinase (PK)
— —
Glucose |-10 0000 000000O0O0O0COO0
ATP* |-100-10000001-10000 1
GeP* |1-1100000000000000
ADP¥ 1001000000-110000 -1
H* 100100001-1000000 -1
F6P % 011-10000000000000
FieBp*| 000111 00000000000
DHAP- | 00001-1-11000000000
G3P?% oooo01-111110000000
P 0OoOo0OOOOOO-110000000
NAD* ooo0oo0OO0OOOQBO-110000000
1,3BPG*| 000 000001-1-110000 0
NADH oooooo0OO0OO01-10000000
3PG* oooooo0O0OO0OO0OO0OD1T-1-1100 0
2PG* oooo0oo0OOO0QOBOBOOO1T-1-11 0
PEP* 0O0OO0OOOOOODOOODOOO1-1-1
H20 0O0OO0OOOOOOOOOOOO1-10
Pyr- 0000O0OO0BOOOOOOOODO 1
— —

Fig. 2.3 Representation of the glycolysis pathway through a stoichiometric matrix. In this figure we
have used the following notations: glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), fructose-
1,6-bisphosphate (F1,6BP), dihydroxyacetone phosphate (DHAP), glyceraldehyde-3-phosphate
(G3P), 1,3-bisphosphoglycerate (1,3BPG), 3-phosphoglycerate (3PG), 2-phosphoglycerate (2PG),
phosphoenolpyruvate (PEP), and pyruvate (Pyr). From left to right the reactions are in the same
order as shown in Table 2.2

2.2.2.1 Topological Analysis of the Genome-Scale Metabolic
Reconstruction

Graph theory can be used to perform topological studies on metabolic networks.
Thus, topological analysis is important for uncovering cellular organizational
principles and understanding its mechanisms for coordinating biological functions.
Several classic topological properties are explained below.
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Fig. 2.4 Graphical representations of a metabolic network. (a) Conventional biochemical repre-
sentation of the glycolysis pathway. This pathway can also be represented as a bipartite graph.
(b) The bipartite graph of the glycolysis pathway consists of two different sets, enzymes and
metabolites, represented by two different types of nodes. Nodes of one type can only be linked to
nodes of the other type, so here a metabolite node is linked to an enzyme node if it participates in
the reaction carried out by that enzyme. This multipartite graph can be separated into two graphs,
each one with one set of data. (¢) The reaction graph is built with the enzymes set. In this graph
each node is an enzyme and a link connects two nodes if they share any metabolite. (d) The
metabolite graph is built with the metabolites set. Here each node represents a metabolite and the
links connecting them are the metabolic reactions that transform one metabolite to another. Here
graphs (b), (¢), and (d) are undirected because they are only for the purpose of representing general
relationships, not taking into account the causality as directed networks do when the question of
the study has been defined

» Degree distribution: The degree or connectivity of a node describes its number
of nearest neighbors, i.e., its number of links. The degree values of all of the
nodes in the network form a distribution; this distribution describes the number
of nodes per degree (Newman 2003). The probability distribution of metabolic
networks can usually fit a power law, reflecting a scale-free topology (Barabasi
2009). Scale-free networks are characterized by a few components with high
connectivity (called hubs, e.g., ATP) and numerous components with low
connectivity. There is evidence that this characteristic yields network robustness
against the random loss of components (Han et al. 2004; Barabasi and Oltvai
2004; Jeong et al. 2001). However, other studies have suggested that this finding
should be carefully reviewed in biological systems (Stumpf and Porter 2012).
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e Clustering coefficient (C): The clustering coefficient describes the degree to
which the neighbors of a given node are connected to one another. In a social
context, this is similar to asking “how many of my friends are also friends?”’ The
clustering coefficient has a value between O and 1, with 1 indicating that all of
the neighbors are connected to one another (Watts and Strogatz 1998).

e Shortest path length: The shortest path length is defined as the average of the
minimum number of links (the shortest path) between every two nodes in the
network. This measure is typically very small in metabolic networks (Jeong
et al. 2000; Wagner and Fell 2001), although not all studies are in agreement
(Arita 2004).

e Module: A module is a subnetwork of nodes with high clustering coefficients
between one another. In other words, it is a set of nodes that are more closely
related to one another than to the rest of the network. Nodes that share a common
biological function are called functional modules. If there is no implicated
biological function among the nodes, they are referred to as structural modules
(Barabasi et al. 2011). However, there is evidence that functional modules can be
associated to topological modules (Resendis-Antonio et al. 2012).

2.2.3 Computational Simulations

After the metabolic network reconstruction has been mathematically represented as
S, the metabolic capabilities of the organism can be evaluated. However, before
continuing with this aim, several issues must be solved. Dynamic modeling of a
genome-scale metabolic reconstruction using ordinary differential equations (ODE)
or partial differential equations (PDE) requires specific knowledge of the associated
enzyme kinetics. The lack of specific information on metabolic reactions is a central
problem in systems biology. Thus, there is a need to develop alternative methods
that can overcome these limitations (Orth et al. 2011; Palsson 2011). In order to
overcome such limitations, some frameworks have been developed that contribute
to the exploration of the metabolic responses of a microorganism at steady-state
behavior without an exhaustive number of kinetic parameters. Constraint-based
modeling is a systemic and comprehensive systems biology approach that addresses
these issues by imposing physical, biological, and thermodynamic constraints on
the entire set of metabolic reactions under steady-state conditions (Fig. 2.5a)
(Palsson 2006; Price et al. 2004). In this approach, an organism’s metabolic
capacities are entirely defined by the properties of the stoichiometric matrix S
and the enzymatic constraints of each metabolic reaction. Thus, it is possible to
analyze the phenotypic space of an organism from its genome-scale metabolic
reconstruction.

While the constraints define and limit the metabolic responses of a microorgan-
ism, a large number of possible metabolic states still exist. Therefore, developing
computational methods to survey the properties of this space is a priority. To this
end, a variety of methods that link the metabolic activity of a network to the
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Fig. 2.5 Constraint-based modeling and in silico simulations. (a) Constraint-based modeling. Once
the S is constructed and the objective function (OF) selected, an approach to analyze the physiologi-
cal capabilities of the bacteroid during nitrogen fixation is constraint-based modeling. It works by
studying the results of in silico simulations that impose a variety of biological and thermodynamic
constraints subject to a steady-state condition. (b) Flux balance analysis (FBA). From all the space of
possible flux values (the solution space), FBA finds the steady-state flux distribution subject to mass
balance and thermodynamics constraints that maximizes an OF, in our case the bacterial nitrogen
fixation. To meet the steady-state assumption, the equality Sv = 0 is set, with v containing the flux
values of all the reactions in the network. (¢) Flux variability analysis (FVA). FVA is used when
there is more than one optimal flux distribution. It computes the minimal and maximal flux of each
reaction such that a fixed OF is produced. (d) Phenotypic space uniform random sampling.
This method is used to characterize the solution space. It samples some points of the space in a
uniform random way, thus allowing an unbiased characterization of the solution space. Some aspects
that can be studied with this unbiased method are the flux correlation between reactions and the
characterization of the size and shape of the solution space. (e) Gene deletions. Gene deletions
can be simulated by deleting from the S the reactions associated to the deleted gene product.
Theoretically speaking, it results in a reduction of the solution space. It can be used
to investigate gene dispensability and mutant phenotypes. (f) Phenotypic phase plane (PhPP).
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phenotype of a microorganism have been developed. These methods address
questions aimed at understanding genotype—phenotype relationships for a
biological process of interest. Before describing examples of these methods, two
key concepts are explained: solution space and objective function.

— Solution space: The metabolic capacities of the model organism during the
process of interest together with the enzymatic constraints of each metabolic
reaction constitute a phenotypic space called the solution space. The solution
space contains all of the possible steady-state metabolite fluxes in the
reconstructed metabolic network. Consequently, the metabolic activities
identified in different regions of the solution space can be associated with a
wide range of phenotypes proper to diverse physiological conditions, including
growth rates, metabolite production rates, and the rate of bacterial nitrogen
fixation. Mathematically speaking, to represent a cellular metabolism at a steady
state, the matrix S must be multiplied by the vector x such that the product equals
0, in other words

S-x=0

Because § is a matrix with m rows and n columns, the set of all vectors x that
satisfy this equation forms an n-dimensional solution space. It is important to
mention that the size of the solution space is constrained by the minimum and
maximum flux values assigned to each reaction, see Fig. 2.5b.

— Objective function (OF ): The objective function represents a linear combination
of the metabolite fluxes that are needed for a metabolic process to occur. In other
words, the OF is the sum of the fluxes of metabolites, each of which is multiplied
by a coefficient that indicates their weighted contribution to the metabolic
process. Mathematically speaking, this function is represented as

OF =Ty

where ¢ and v are a weight and metabolic flux vector respectively. The flux vector
contains the flux information of all the metabolites included in the reconstruction,
it indicates the flux of the metabolites participating in the OF. It is important to
select an OF that represents the specific physiological conditions in the organism
of interest. In the particular case of nitrogen fixation for R. etli, the OF can be
defined by taking into account various information sources, such as literature

A

=«
Fig. 2.5 (continued) This method characterizes the steady-state solution space projected in two or
three dimensions to divide the steady-state flux distributions into regions with similar metabolic
flux patterns and a similar OF response if certain metabolites were additionally supplied to the
network. The line of optimality corresponds to the conditions where metabolic activity is
organized in the most efficient way to maximize the OF
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reviews and metabolome data generated during the nitrogen fixation stage of
R. etli (Resendis-Antonio et al. 2012).

Now that we have described these key concepts, we explain below some of the
methods used in constraint-based modeling for exploring the phenotype capacities
of genome-scale metabolic reconstructions.

2.2.3.1 Flux Balance Analysis

Flux balance analysis (FBA) uses optimization principles to identify the metabolic
state of a microorganism and works as explained next. First, an objective function
(OF) is defined to simulate the microorganism’s physiological state in the process
of interest. In order to reduce the number of kinetic parameters required to simulate
the metabolic activity, the biological process is assumed to occur at a steady state
while maximizing the OF. Finally, the metabolic flux distribution that maximizes
the OF in the solution space is computed by linear programming (Fig. 2.5b). Thus,
by maximizing the OF, one can identify the metabolic activity along the metabolic
pathways required to produce an efficient biological process which, in our case, is
nitrogen fixation.

FBA has implicit advantages and disadvantages. On one hand, it requires a
limited number of parameters to predict the metabolic state associated with a
phenotype. Furthermore, it represents an elegant formalism for analyzing
genome-scale metabolic reconstructions while encompassing cross talk from
high-throughput technologies (Orth et al. 2010; Resendis-Antonio et al. 2012).
However, these advantages can also be seen as a drawback. Due to a lack of kinetic
parameters, FBA cannot predict metabolic concentrations and its outputs are only
valid under a steady-state assumption (Orth et al. 2010). The temporal behavior of
metabolic concentrations and fluxes can be analyzed by dynamic flux balance
analysis or genome-scale linear perturbation models (Varma and Palsson 1994;
Resendis-Antonio 2009; Jamshidi and Palsson 2008). However, these issues remain
open to further investigation in systems biology.

2.2.3.2 Flux Variability Analysis

Given the high dimensionality of the optimization problem described in
Sect. 2.2.3.1, the metabolic phenotype that maximizes the OF is usually not unique.
This result is due to redundant mechanisms underlying the metabolic network. Flux
variability analysis (FVA) is a computational tool that is useful for quantifying this
redundancy by identifying the set of metabolic phenotypes that result in an equiva-
lent maximal (or minimal) OF. This analysis is extremely important for identifying
biochemical pathways that can potentially generate the same phenotype. The results
are fundamental for a proper interpretation of the in silico outputs. From a compu-
tational point of view, FVA computes the minimal and maximal fluxes of each
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reaction for a fixed OF (Fig. 2.5¢). This analysis identifies the feasible range of flux
values for each reaction, thus representing the different metabolic phenotypes that a
microorganism can use to adapt to its environment. In other words, this method
does not identify all the optimal solutions but rather identifies the range of flux
variability that is possible within any given solution (Mahadevan and Schilling
2003).

2.2.3.3 Phenotypic Space Uniform Random Sampling

A method called phenotypic space uniform random sampling can be used to survey
the range of possible biochemical states without the bias of an OF. This analysis
enables characterization of the size and shape of the solution space and provides
information about the variety of a microorganism’s metabolic phenotype states.
The method consists of sampling the solution space in a random and uniform
manner to extract interesting information about its characteristics. For example,
pairwise correlation coefficients can be calculated between all of the metabolic
fluxes to identify the degree of correlation between each pair of reactions (Fig. 2.5d)
(Price et al. 2004).

2.2.3.4 Gene Deletions

Gene deletions can be simulated in silico by deleting the columns from § associated
with the gene or genes product of interest or, alternatively, by constraining its
corresponding upper and lower bound in the flux vector. Hence, these in silico gene
deletions result in a reduction of the solution space (Fig. 2.5¢). This type of study
can be used to investigate gene dispensability (Duarte et al. 2004), to examine the
evolution of wild-type strains towards new optimal states under selection pressures
(Fong et al. 2003), and to predict the metabolic phenotypes of mutant strains
(Resendis-Antonio et al. 2007).

2.2.3.5 Phenotypic Phase Plane

The phenotypic phase plane is a method for characterizing a projection of the
steady-state solution space in two or three dimensions. In this analysis, steady-
state flux distributions can be divided into a finite number of regions based on
similar metabolic flux patterns and shadow prices. A shadow price describes how
the OF would change if additional metabolites were supplied to the network
(Edwards et al. 2001). Thus, the regions of the plane are classified based on the
extent to which metabolite availability limits the process of interest and which
biochemical activity is the optimal to induce a specific phenotype, in this case
nitrogen fixation (Fig. 2.5f).
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2.2.4 Experimental Cross Talk

The described methods above are useful for examining a microorganism’s meta-
bolic capabilities in a given physiological state. These methods allow us to link a
cell’s metabolic activity to a specific phenotype. However, in silico predictions can
differ from experimental results due to network incompleteness introduced during
the metabolic reconstruction, an improperly defined OF, or an inaccurate descrip-
tion of the cell’s environmental conditions. Thus, an iterative, retroactive process is
needed to reconcile laboratory data and computational predictions.

Simulation results can lead to hypothesis that in order to be verified require the
design of new experiments. These experiments can provide additional data,
resulting in information that contributes to construct a more realistic computational
representation of nitrogen fixation. For instance, this approach could be used to
refine the OF definition. The corrected OF could then be used as input for compu-
tational methods, the results of which will either further confirm the metabolic
activity of previous simulations or lead to the identification of other pathways for
future research.

2.3 Systems Biology Description of R. etli and P. vulgaris
Symbiosis

A systems biology analysis of the symbiotic interactions between R. etli and
P. vulgaris was conducted for nitrogen fixation. Top-down and bottom-up
strategies were used to achieve the following goals (1) genome-scale metabolic
reconstruction and topological analysis of the R. etli, (2) constraint-based metabolic
modeling of the nitrogen-fixing bacteroid, and (3) construction of a computational
platform capable to predict the metabolic phenotype in R. et/i and compare between
our computational predictions and the experimental results.

2.3.1 Metabolic Reconstruction of R. etli

The metabolic reconstruction of R. etli for simulating the symbiotic interaction with
P. vulgaris was based on the integration of several levels of biological data. This
information came from various papers reported in the literature and data obtained
from high-throughput technologies. This latter source including proteomic,
transcriptomic, and metabolomic experiments (Resendis-Antonio et al. 2007,
2011, 2012). In addition other information sources were used, including the
R. etli genome annotation from KEGG (Kyoto Encyclopedia of Genes and
Genomes) and available scientific literature (e.g., biochemical textbooks and pre-
vious reports). In total, the current version of the R. e#/i metabolic reconstruction,
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identified as iOR450, consists of 450 genes, 405 reactions, and 377 metabolites.
Although R. etli contains approximately 7,000 genes and thus 450 genes may sound
too small to be representative of its genome, this reconstruction is based on well-
curated and reliable experimental data.

Functional classification of these 450 genes revealed metabolic pathways with
an important role in nitrogen fixation, including glycolysis, the TCA cycle, the
pentose phosphate pathway, oxidative phosphorylation, amino acid production,
glycogen and poly-f-hydroxybutyrate (PHB) biosynthesis, nitrogen reduction,
secretion systems, and fatty acid metabolism. This version of the reconstruction is
the basic platform for expansion and improvement in future versions. For instance,
a significant number of the identified proteins are related to transport (e.g., the
transport of small molecules), thus reflecting extensive metabolic cross talk
between the plant and the bacteroid (Resendis-Antonio et al. 2007, 2011, 2012).
Our metabolic reconstruction will include this physiological information and these
processes will be experimentally verified. Currently, this reconstruction is a corner-
stone in exploring the metabolic capacities of R. etli when facing different environ-
mental conditions.

The graphical representation of the network provides information to elucidate
how the metabolite organization within the network supports bacterial nitrogen
fixation. For instance, structural modules were identified based on a purely topo-
logical criterion to elucidate their relationship with R. etli’s biological functions
(Ravasz et al. 2002; Resendis-Antonio et al. 2005). Hence, based on a topological
criterion (defined as the inverse square of the minimal path length between every
pair of nodes), there were reported nine topological modules whose metabolic
composition fell into three main groups: nucleic acids, peptides, and lipids. Nota-
bly, the functional composition of these modules and the quantitative metabolome
data have contributed to establish hypotheses of how the production of metabolites
is required for sustaining an optimal nitrogen fixation (Resendis-Antonio
et al. 2012). This kind of analysis is an adequate scheme to survey the basic
organizational principles by which a biological process can happen in nature.
Thus, by correlating the metabolites of modules with the high-throughput data, it
was observed that the concentrations of most of the metabolites in each nodule
upregulate their concentration during nitrogen fixation compared to the free-living
bacteria. This finding supports the idea that a coherent functional biological activity
is required at a functional level (Hartwell et al. 1999; Resendis-Antonio et al. 2005,
2012).

2.3.2 Constraint-Based Modeling and Simulation Results

Once the metabolic reconstruction was complete, a constraint-based model allowed
us to explore the metabolic capacities of the network for R. etli. To this end, first we
have constructed an appropriate OF for mimicking the metabolic activity during
nitrogen fixation. This function was defined based on data from literature review



44 M.L. Zepeda-Mendoza and O. Resendis-Antonio

and high-throughput experiments, specially taking into account the following
information:

» Plant-bacteroid exchange of certain amino acids may be a general mechanism in
rhizobia (Prell and Poole 2006).

« Sixteen ATP molecules are required to reduce one N, molecule into two
ammonium molecules, which are subsequently exported to the plant (Patriarca
et al. 2002; Lodwig and Poole 2003).

* Glycogen and PHB accumulate during nitrogen fixation and serve as carbon
storage (Bergersen and Turner 1990; Lodwig et al. 2005; Sarma and Emerich
2006; Trainer and Charles 2006).

¢ Mutations in the biosynthesis of branched chain amino acids, such as L-valine,
produce defective nodule formations (De las Nieves Peltzer et al. 2008), which
indicates that this metabolite is an essential component. At a similar level, we
considered that L-histidine is a central compound in nitrogen fixation (Dixon and
Kahn 2004). In agreement with this experimental findings, both amino acids
where included in the OF.

* Metabolome experiments have identified new metabolites with statistically
significant changes during bacteroid activity compared to free-living bacteria.
In order to give a better constraint-based analysis, there has been suggested that
these metabolites can be used to define a more complete OF. These metabolites
include CMP, 3-phospho-p-glycerate, and 2-oxoglutarate (Resendis-Antonio
et al. 2012).

By integrating these findings, an OF representing the metabolic flux of key
metabolites in nitrogen fixation was defined as follows:

ZF* = glycogen + hist[c] + lys[c] 4 phblc] + val[c] + alafe] + asp[e] + nh4][e]
+ mal(c] + trp[c] + arg[c] + cit[c] + cmp[c] + fum|c] 4 3pg|c] + akg]c]

where glycogen, histidine, lysine, polyhydroxybutyrate, valine, alanine, aspartate,
and ammonium are denoted as glycogen, hist[c], lys, phb[c], val[c], ala[e], asp[e],
and nh4[e], respectively. Similarly, mal, trp, arg, cit, cmp, fum, 3 pg, and akg
denote malate, tryptophan, arginine, citrate, CMP, fumarate, 3-phospho-p-
glycerate, and 2-oxoglutarate, respectively. All these metabolites are required to
support an effective symbiotic nitrogen fixation, and the location of the metabolites
is represented by [c] or [e] for cytoplasmic or external compounds, respectively.
Once the OF was defined, a series of studies and simulations were performed to
explore, characterize, and predict bacteroid metabolic phenotypes.

Thus, FBA was performed to examine the metabolic fluxes associated with
nitrogen fixation. With the FBA results and based on the gene products associated
with these reactions, one can predict the set of essential genes for carrying out
nitrogen fixation. Furthermore, FVA was used to characterize the core metabolic
activity within the set of alternative solutions. The reactions with zero range in flux
variability were selected as part of central metabolism in bacterial nitrogen fixation.
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The experimental data had to be related to the computational results to biologi-
cally support the model; consequently the agreement between the computational
interpretations and the experimental data must be quantified to make this compari-
son. To this end, a consistency coefficient has been defined as the fraction of genes
and enzymes that FBA predicted as active compared to those that were detected by
transcriptome and proteome technologies. Based on this parameter, the consistency
coefficients for the simulation of nitrogen fixation were reported to be 0.61 for
genes and 0.71 for enzymes. To ensure the quality of the reconstruction and
evaluate the coherence of the computational simulations, we proceed to assess the
capacity of the model to predict physiological knowledge when gene deletion
occurs (see Fig. 2.5¢). To evaluate capacity of the model to predict physiological
behaviors after gene silencing, in silico gene deletion analysis was performed on the
genes encoding PHB synthase, glycogen synthase, arginine deiminase,
myo-inositol dehydrogenase, pyruvate carboxylase, citric acid cycle enzymes,
PEP carboxykinase, bisphosphate aldolase, and nitrogenase. These simulations
were in qualitative agreement with the experimental counterpart in a variety of
Rhizobiaceae (Resendis-Antonio et al. 2007, 2010, 2012).

On the other hand, the robustness of the topological structure of metabolic
network (e.g., its functional modules) was explored by changing its external
environment, specifically the uptake rates of succinate and inositol. The effects of
these changes were evaluated by constructing a phenotypic phase plane. Then, a
subset of 20 points, corresponding to select uptake rate conditions within the
metabolic phase plane, was subjected to FBA. The metabolic subnetworks were
graphically represented based on the FBA results. The topological variations
between these subnetworks were defined by the fraction of overlapping metabolites.
This study concluded that the metabolic profile required for optimizing nitrogen
fixation does not significantly change for a wide range of succinate or inositol
uptake rates. This finding suggests that the metabolic network supporting nitrogen
fixation is robust to environmental changes (Resendis-Antonio et al. 2012).

2.3.3 Comparative Analysis of Simulations and
Experimental Data

A detailed comparison between the in silico simulation results and the high-
throughput data highlighted several important aspects of bacterial nitrogen fixation;
such processes are described in Table 2.3. Overall, in this chapter we support that a
systems biology approach enable the reconstruction and comprehensive analysis of
R. etli metabolism during symbiosis with P. vulgaris, providing a systematic
framework to reach a broader view of this important interaction. The current
metabolic description can be improved by continually assessing the discrepancies
between the computational results and the experimental data, whereas its



46

M.L. Zepeda-Mendoza and O. Resendis-Antonio

Table 2.3 Comparison of the computational and experimental results

Biological process

Computational results

Experimental results

Entner—Doudoroff
and pentose
phosphate
pathways

Nitrogen fixation
enzymes

Nucleotides
metabolism

Oxidative
phosphorylation

TCA cycle

Gluconeogenesis
pathway

Ammonium
assimilation

PHB and glycogen
accumulation

Besides gluconeogenesis, the exis-
tence of a fueling pathway based
on pentoses is predicted in the
bacteroid

As expected, if viewing this finding as
a positive control for the OF, these
enzymes were predicted by the
model to be central in the nitrogen
fixation

Some enzymes of the purine and the
pyrimidine pathways actively par-
ticipate for an optimal nitrogen
fixation

Nonzero fluxes through oxidative
phosphorylation and removal of all
cytochrome oxidase reactions
result in total loss of nitrogen
fixation

The model predicts incomplete use of
the TCA cycle

The model concluded that the gluco-
neogenesis pathway is active in
nitrogen fixation

FBA predicted that there is no activity
in the ammonium assimilation
pathway during symbiosis

Simulations of deletion of PHB
synthase predict that symbiotic
nitrogen fixation increases

Metabolome experiments detected
metabolites of the pentose
phosphate and the
Entner—Doudoroff pathways
(Resendis-Antonio et al. 2012)

As expected, the nif and nifx genes
and coded proteins that are
involved in nitrogen fixation
were identified by the
microarrays and the proteome
experiments

Several of the enzymes that par-
ticipate in the purine and
pyrimidine pathways were
identified in the proteome data
(Resendis-Antonio et al. 2011)

The essentiality of respiration for
nitrogen fixation has been pre-
viously reported (Lodwig and
Poole 2003; Batut and Boistard
1994)

Experiments are not always able to
detect all the TCA cycle
enzymes. Besides, mutants in
the TCA cycle in B. japonicus
are still able to fix nitrogen,
suggesting that a complete set
of TCA cycle enzymes is not
required for fixation (Lodwig
and Poole 2003; Green and
Emerich 1997)

It is known for R. etli that the glu-
coneogenesis pathway is active
in nitrogen fixation (Lodwig
and Poole 2003). This finding
was also identified in the pro-
teome experiment (Resendis-
Antonio et al. 2011)

Ammonium assimilation is not
observed during nitrogen fixa-
tion and an increase in ammo-
nium assimilation negatively
affects nodulation (Mendoza
et al. 1995)

In R. etli PHB synthase deletion
causes increase in nitrogen fix-
ation (Cevallos et al. 1996). A
similar result is observed upon
glycogen synthase deletion in
R. tropici (Marroqui

(continued)
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Table 2.3 (continued)

Biological process ~ Computational results Experimental results

et al. 2001). Furthermore, it has
been suggested that inhibition
of one of the polymers results
in accumulation of the other
(Cevallos et al. 1996)
Arginine deiminase Arginine deiminase deletion predicts a Nitrogen fixation is reduced upon

pathway decrease in symbiotic nitrogen arginine deiminase deletion
fixation (D’Hooghe et al. 1997)
Myo-inositol cata-  The model predicts that the activity of Mutation of myo-inositol dehy-
bolic pathway the enzyme increases nitrogen fix- drogenase in Sinorhizobium
ation and that its deletion decreases fredii increases nitrogen fixa-
the fixation activity tion (Jiang et al. 2001).

Besides, myo-inositol, 2-
dehydrogenase proteins were
detected in R. etli (Resendis-
Antonio et al. 2011)

Fatty acids Analysis of the functional modules Fatty acid metabolism can play a
metabolism suggests that the fatty acids are significant role in nitrogen fix-
important for nitrogen fixation ation in R. etli (Resendis-
(Resendis-Antonio et al. 2012) Antonio et al. 2011). An

explanation could be that it can
supply a variety of precursors
to the bacteroid, such as
components of the rhizobial
membrane, lipopolysac-
charides, and coenzymes
required in signal transduction

agreements can lead to the design of new experiments (Resendis-Antonio
et al. 2012).

2.4 Conclusion

High-throughput technologies provide valuable data for describing the global
landscape of cellular activity. However, these techniques do not have the full
capacity for describing and predicting the integrated functions of biological pro-
cesses. Using a systems biology approach, we were able to construct a proper
computational framework that serves as a guide for integrating various types of
“-omics” data (Palsson 2006, 2011). With this computational framework, we could
describe and predict metabolic activities, as well as design experiments that explore
genotype—phenotype relationships involved in nitrogen fixation. The combination
of experimental data and computational modeling advances our understanding of
the main metabolic mechanisms that support bacterial nitrogen fixation. This
achievement will undoubtedly have important effects in developing sustainable
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agricultural programs by optimizing cost-effective crop improvements and ulti-
mately diminishing the pollution effects of chemical fertilizers.
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