
Chapter 2
Strong Law of Large Numbers and Monte Carlo
Methods

Abstract The principles of Monte Carlo methods based on the Strong Law of Large
Numbers (SLLN) are detailed. A number of examples are described, some of which
correspond to concrete problems in important application fields. This is followed by
the discussion and description of various algorithms of simulation, first for uniform
random variables, then using these for general random variables. Eventually, the
more advanced topic of martingale theory is introduced, and the SLLN is proved
using a backward martingale technique and the Kolmogorov zero-one law.

2.1 Strong Law of Large Numbers, Examples of Monte Carlo
Methods

The fundamental result for the numerical probability field is the Strong Law of Large
Numbers, which will be proved at the end of the chapter.

2.1.1 Strong Law of Large Numbers, Almost Sure Convergence

A fundamental convergence result will now be stated.

Theorem 2.1 (Strong Law of Large Numbers) Let (ξ (�), � ≥ 1) be a sequence of
independent and identically distributed random variables with values in R

d . Assume
that

E
∣
∣ξ (1)

∣
∣ < ∞. (2.1)

For N ≥ 1, denote the empirical mean of (ξ (1), . . . , ξ (N)) by

ŜN := 1

N

N
∑

�=1

ξ (�).

Then, the Strong Law of Large Numbers holds true:

lim
N→∞ ŜN = E

(

ξ (1)
)

, P-a.s. (2.2)
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14 2 Strong Law of Large Numbers and Monte Carlo Methods

Remark 2.1 The Strong Law of Large Numbers admits a reciprocal statement,
which we admit: if E|ξ (1)| = ∞ then the sequence (ŜN ,N ≥ 1) diverges P-a.s.

The Strong Law of Large Numbers can be stated as follows: the sequence of
empirical means (ŜN (ω),N ≥ 1) converges to E(ξ (1)) almost surely in ω. This is a
particular case of almost sure convergence, the definition of which we now recall.

Definition 2.1 A property is said to hold almost surely (a.s.) if it holds except on an
event of probability zero. The notation P-a.s. is used to stress the underlying proba-
bility measure. In particular, a sequence (ξN , N ≥ 0) of random variables converges
almost surely to a random variable ξ defined on the same probability space if

P

(

ω ∈ Ω : lim
N→∞ ξN(ω) = ξ(ω)

)

= 1.

The Strong Law of Large Numbers is at the core of the following Monte Carlo
method. Let γ be some quantity which must be approximated numerically. Assume
that there exists a function f and a family (X(1), . . . ,X(N)) of independent and
identically distributed random variables, which are easy to simulate on computers1

and satisfy

Ef
(

X(1)
) = γ. (2.3)

Then, except on an event of probability zero, γ can be approximated as follows.

Algorithm (Monte Carlo method) Draw a sample (X(1)(ω), . . . ,X(N)(ω)), and ap-
proximate γ by the empirical mean:

γ � ŜN (ω) := 1

N

N
∑

�=1

f
(

X(�)(ω)
)

.

This is a “good” approximation as soon as N is chosen “large enough”. However
the SLLN does not make precise the convergence rate of ŜN . Rigorously proving
the SLLN and finding its precise convergence rate is one of our main goals in this
chapter and the next one.

To summarize: the Monte Carlo methods in this book consist in:

• exhibiting a probabilistic representation of γ of the type (2.3) such that the
probability distribution of X(1) can efficiently be simulated,

• and then applying the Strong Law of Large Numbers in order to approximate γ .

1This means that there exists a low complexity algorithm for generating sequences of independent
samples from their common probability distribution.
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Versions of the Strong Law of Large Numbers, under various sets of hypotheses
can be proved in many ways. In particular, it is unnecessary to assume that the
random variables ξ (�) are independent or identically distributed.

We will prove Theorem 2.1 in Sect. 2.3. We choose to use martingale techniques
because this family of processes plays an important role in the sequel.

In the rest of this section we present some examples of Monte Carlo methods.

2.1.2 Buffon’s Needle

Divide the two-dimensional space into vertical strips whose width is 1 cm. Throw at
random a needle whose length is also 1 cm. What is the probability that the needle
intersects one of the vertical lines?

To answer this question, one needs to make precise the probabilistic model. For
instance, we define the random throwing of the needle as follows: the distance X

of the center of the needle to the next line at its left side is a random variable with
uniform distribution on [0,1], and the angle θ between the needle and the horizontal
axis is a random variable with uniform distribution on [−π

2 , π
2 ] which is indepen-

dent of X. The needle intersects a vertical line if

X(ω) ∈
[

0,
1

2
cos

(

θ(ω)
)
]

∪
[

1 − 1

2
cos

(

θ(ω)
)

,1

]

.

An easy calculation then shows that the desired probability is 2
π

.
In 1850, an astronomer from Zürich, R. Wolf, approximated π by the Monte

Carlo method using 5000 samples: he set ξ (�)(ω) = 1 when the needle intersected a
vertical line at the sample �, computed the average

2 × 5000

ξ (1) + · · · + ξ (5000)
,

and obtained 3.1596 as an approximation.

2.1.3 Neutron Transport Simulations

Consider a bounded continuous map λ from R
d × R

d to R+ (in neutron transport
theory this map is called a scattering diffusion cross-section). In addition, for any
(x, y) in R

d ×R
d a continuous probability density πx,y on R

d is given.
The random time evolution of the position of a neutron is described by the solu-

tion (Xt ) of the differential equation

dXt

dt
= Yt , (X0, Y0) = (x, y), (2.4)
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where the velocity (Yt ) is a pure jump process in the following sense: for any ω, the
map t → Yt (ω) is piecewise constant and right continuous; the jump times of (Yt )

and the jump amplitudes are random. For any integer n and pair (x, y), the value of
(Yt ) at the nth jump is a random variable with probability density πx,y , where (x, y)

is the state of (Xt , Yt ) at the time immediately preceding this jump; in other words,
for any bounded continuous function f , if Sn is the nth jump time, the conditional
expectation of f (YSn) knowing that the state of (Xt , Yt ) immediately before Sn is
(x, y), is equal to

∫

Rd

f (z)πx,y(z) dz.

Denote by Tn the time interval between Sn and Sn+1, that is, Tn := Sn+1 − Sn.
Knowing that the state of (Xt , Yt ) at time Sn is (x′, y′), the distribution function of
the random variable Tn is

Fx′,y′
(t) = 1 − exp

(

−
∫ t

0
λ
(

X
x′,y′
s , y′)ds

)

,

where X
x′,y′
s solves (2.4) with X

x′,y′
0 = x′ and Ys = y′ for any s. Note that the

function Fx′,y′
is independent of n. In addition, for any i ≥ 0, the random variables

Ti and YSi+1 are independent.
The stochastic process (Xt , Yt ) is constructed by recursively solving (2.4) on

each time interval [Sn,Sn+1[ with Yt = YSn . The pair (Xt , Yt ) is a homogeneous
Markov process, and called a transport process. When λ and π do not depend on
the space variable x, (Yt ) is called a pure jump process and describes the motion of
particles in a homogeneous environment.

To simplify the notation we now limit ourselves to the case d = 1. Let g be
a function from R

2 to R. Suppose that there exists a function u(t, x, y) of class
C ∞(R+ ×R

2), bounded with bounded derivatives of all orders, and such that

∂u

∂t
(t, x, y) = y

∂u

∂x
(t, x, y) − λ(x, y)u(t, x, y) + λ(x, y)

∫

R

u(t, x, z)πx,y(z) dz,

t > 0, x ∈ R, y ∈R, (2.5)

u(0, x, y) = g(x, y).

One can show that

u(t, x, y) = Ex,yg(Xt , Yt ), (2.6)

where Ex,y denotes the conditional expectation knowing that the position and ve-
locity at time 0 respectively are x and y.

The Monte Carlo method to approximate u(t, x, y) consists in simulating large
number of trajectories of the process (Xt , Yt ). The above construction of the process
provides an algorithm of simulation of each trajectory.

This topic will be further developed in Sect. 6.3.4.
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2.1.4 Stochastic Numerical Methods for Partial Differential
Equations

The probabilistic representation (2.6) for the integro-differential equation (2.5) al-
lowed us to construct a Monte Carlo method. This methodology can be extended
to numerous linear and non-linear partial differential equations, provided that their
solutions satisfy representations of the type

u(t, x) = EΨ
(

Z(t, x)
)

,

where (Z(t, x)) is a family of suitable random variables.
Let us give an elementary example. Let ν be a strictly positive number and u(t, x)

be the solution of the heat equation

∂u

∂t
(t, x) = νΔu(t, x), ∀(t, x) ∈]0, T ] ×R

d ,

whose initial condition u(0, ·) = u0(·) is assumed, say, to be continuous and
bounded. By using the analytical expression of the Gaussian density of Wt one
readily checks that

∀(t, x) ∈ [0, T ] ×R
d, u(t, x) = Eu0(x + √

2νWt),

where (Wt ) is an R
d valued standard Brownian motion (thus, for any t , the compo-

nents of the random vector Wt are independent and Gaussian, have zero mean and
variance equal to t ). Therefore one can approximate u(t, x) by

1

N

N
∑

�=1

u0
(

x + √
2νtξ (�)(ω)

)

,

where the {ξ (�)} are R
d valued independent Gaussian vectors with zero mean and

unit covariance matrix.
The linear parabolic partial differential equations related to European option

prices in classical diffusion models are examples of equations whose solutions ad-
mit probabilistic representations. However these representations, which are called
Feynman–Kac’s formulas, involve processes which are much more complex than
Brownian motions, that is, the solutions of stochastic differential equations (see
Chap. 7).

Another example is the Poisson equation in R
d

Lu(x) := div
(

a(x)∇u(x)
) = f (x),

where a(x) is a real-valued function. This equation arises in various fields, e.g., in
Geophysics and in Molecular Dynamics. When the function a(x) is smooth, under
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suitable other hypotheses, one can prove the following equality which is analogous
to (2.6):

u(x) =
∫ ∞

0
Ex

(

f (Xt ) −
∫

f (ξ)μ(dξ)

)

dt, (2.7)

where (Xt ) is the solution to a certain stochastic differential equation, Ex denotes
the conditional expectation knowing that X0 is equal to x, and μ is the limit proba-
bility law, when t tends to infinity, of the law of Xt . The stochastic numerical method
combines the standard Monte Carlo method and long time simulations of (Xt ): this
leads to important numerical difficulties which are current subjects of research.

In addition, one often needs to consider discontinuous functions a(x). For exam-
ple, in Geophysics, the discontinuities of a(x) reflect the soil heterogeneity. In such
cases, the formula (2.7) does not involve the solution of a classical stochastic dif-
ferential equation and, when the state space is multi-dimensional, the construction
of easy-to-simulate processes (Xt ) satisfying (2.7) is being investigated by many
authors.

Stochastic numerical methods are being developed for various Partial Differential
Equations, including non-linear ones such as Boltzmann equations, Vlasov equa-
tions, Navier–Stokes equations, Burgers equation, variational inequalities, etc. This
difficult subject is out of the scope of this monograph.

We conclude this subsection by emphasizing three advantages of the numerical
resolution of partial differential equations by stochastic methods: it not only allows
one to solve problems in large dimension, but also:

• Monte Carlo methods allow to compute solutions whose gradient is locally very
large: whereas deterministic methods require thin grids in the areas where the
gradient of the solution is large, stochastic particles methods are grid-free and
concentrate the simulated particles, and therefore the numerical information, in
these areas.

• Most often, Monte Carlo methods are simpler and faster to code than determin-
istic methods, and the computer programs for stochastic numerical methods are
easier to modify and adapt.

• Monte Carlo methods are naturally propitious for parallel or grid computing.

2.2 Simulation Algorithms for Simple Probability Distributions

Before introducing the more advanced material necessary for the proof of the SLLN,
we pursue the subject of stochastic simulation, which will play a key role in the
actual implementation of the Monte Carlo methods developed in the sequel.

We describe various methods to simulate samples, first from the uniform distri-
bution on [0,1], and then from classical probability distributions on R or Rd .

For more insight in this topic, we recommend for instance the books of De-
vroye [10] and Asmussen and Glynn [4].
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2.2.1 Uniform Distributions

The following theorem, which has many variants (see, e.g., Kuipers and Nieder-
reiter [29]) allows one to produce sequences (un) on [0,1] which are uniformly
distributed in the following sense:

∀0 ≤ a ≤ b ≤ 1, lim
N→∞

1

N

N
∑

j=1

1(a,b)(uj ) = b − a.

Theorem 2.2 Let θ be a positive irrational number. The sequence

un = nθ (mod 1)

is dense everywhere in [0,1] and is uniformly distributed in [0,1].

The sequences (un) in the above theorem have poor statistical properties: in par-
ticular, two consecutive terms in the sequence are strongly correlated. In addition,
irrational numbers cannot be represented exactly in computers.

Many algorithms have been designed to generate sequences of “pseudo-random”
numbers with statistical properties close to those of sequences of samples of in-
dependent and uniformly distributed random variables. The most frequently used
pseudo-random number generators are congruential methods.

Algorithm (Congruential method) Chose a triple (a,m,v0) of integers, and com-
pute inductively the successive samples uk from the formula

vk = avk−1 = akv0 (mod m), uk = vk

m
.

In practice, often m = 2α is chosen, where α is the number of bits of the com-
puter: then the congruence calculation reduces to truncating a bit sequence. The
following simple statement indicates relevant choices of the parameters in order to
maximize the periodicity of the method.2

Proposition 2.1 If m ≥ 2α and α ≥ 4, then the period of the congruential method
is less than m

4 , and this upper bound is attained when v0 is odd and a = 3 (mod 8)

or a = 5 (mod 8).

The preceding choices do not suffice to generate sequences with good statistical
properties, that is, which statistically behave as sequences of independent samples
from the uniform distribution. An example of a poor generator is

vn+1 = (

216 + 3
)

vn

(

mod 232).

2This result is originally due to M. Greenberger, “Notes on a new pseudo-random number genera-
tor”, J. Assoc. Comput. Mach. 8, 163–167 (1961).
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For a survey on random number generators and a discussion on statistical tests is-
sues, see, e.g., L’Ecuyer [33] or Gentle [19] and references therein. For theoretical
issues, we refer to Niederreiter [40].

Initialization of the Samples

Monte Carlo simulations require very long sampling sequences. The root v0 of the
generator must be chosen once only, before the very first trial.

Given a root, a good generator will produce a sampling sequence with good sta-
tistical properties; however, two different sequences issued from different roots may
be correlated.

We do not recommend the use of automatic initializations, e.g., by means of the
computer internal clock. Being able to choose the same root in several runs of a
simulation program may be useful to correct programming errors.

A Natural Question

Under which conditions is a simulation method of the uniform distribution satisfy-
ing? This is a critical issue without a universal answer.

In practice, one tests the uniform distribution hypothesis and the independence
hypothesis of sampling sequences by using classical statistical procedures such as
the Kolmogorov–Smirnov test, the χ2 test, etc.

For an extended discussion on this subject and for analyses of efficient statistical
tests, see Asmussen and Glynn [4], L’Ecuyer and Hellekaleke [34] and L’Ecuyer
and Simard [35], for example.

Modern generators are often non-linear: for a survey on this issue, see for in-
stance Niederreiter and Shparlinski [41].

2.2.2 Discrete Distributions

A probability distribution on a discrete set {x1, x2, . . .} is given by the corresponding
probability weights p1,p2, . . . , and a random variable X has this distribution if

P(X = x1) = p1, P(X = x2) = p2, . . . .

Such a random variable X can be simulated by the following procedure:

Algorithm (Discrete distribution) To obtain a sample x from a discrete distribution
giving weight pi to xi for i ≥ 1: draw a sample u from the uniform distribution
on [0,1], and set x = xn for the n ≥ 1 satisfying

∑n−1
i=1 pi < u ≤ ∑n

i=1 pi .
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2.2.3 Gaussian Distributions

There are various simulation methods for the standard N (0,1) Gaussian distribu-
tion, with density 1√

2π
e−x2/2 on R.

An approximate simulation method uses the Central Limit Theorem, which will
be recalled in Chap. 3:

Algorithm (Gaussian distribution, approximate) To obtain an approximate sample
x of the N (0,1) distribution, draw N independent samples u1, . . . , uN of the uni-
form distribution on [0,1], and compute

x =
√

12

N

(
N

∑

i=1

ui − N

2

)

.

In practice, the choice N = 12 is often made: empirical studies show that the
corresponding sampling sequences have satisfying statistical properties, and the pre-
ceding formula simplifies into

∑12
i=1 ui − 6.

The Box–Muller Method

This is an exact simulation technique, which moreover seems more efficient than
the preceding algorithm in terms of computational time.

Two independent samples of the N (0,1) Gaussian distribution are obtained by
using the following result (due to Wiener):

Proposition 2.2 Let U and V be independent random variables uniformly dis-
tributed on [0,1]. Then the random variables X and Y defined by

X = √−2 logU sin(2πV ), Y = √−2 logU cos(2πV ),

have a N (0,1) Gaussian distribution and are independent.

From this we deduce the following simulation algorithm.

Algorithm (Gaussian distribution, Box–Muller) To obtain two independent sam-
ples x and y from the N (0,1) Gaussian distribution: draw two independent sam-
ples u and v from the uniform distribution on [0,1], and compute

x = √−2 logu sin(2πv), y = √−2 logu cos(2πv).

In order to simulate a random variable X with N (m,σ 2) Gaussian distribution,
observe that if Y is a N (0,1) Gaussian variable then X := σY + m has the ap-
propriate distribution. More generally, the following allows to simulate a Gaussian
random vector X = (X1, . . . ,Xd) with mean vector m and covariance matrix C.
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Algorithm (Gaussian vector distribution) To obtain a sample x from the N (m,C)

distribution, where m is in R
d and C is a symmetric non-negative d × d matrix:

compute

σ := (σij )1≤i,j≤d =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σi1 := Ci1√
C11

, 1 ≤ i ≤ d,

σii := √
Cii − ∑i−1

j=1 |Cij |2, 1 < i ≤ d,

σij := Cij −∑j−1
k=1 σikσjk

σjj
, 1 < j < i ≤ d,

σij := 0, i < j ≤ d,

draw a vector of independent samples y = (y1, . . . , yd) from the N (0,1) Gaussian
distribution, and compute x = σy + m.

2.2.4 Cumulative Distribution Function Inversion, Exponential
Distributions

Monte Carlo methods for neutron transport partial differential equations, network
models, neurons firing train models, etc., require to sample the exponential distribu-
tion E (λ) with parameter λ > 0, with density λe−λx1{x≥0} on R (actually, R+).

This issue will be seen to be crucial in the sequel, and we will solve it using a
general result for simulation of real random variables: the cumulative distribution
function inversion method.

Definition 2.2 The cumulative distribution function (c.d.f.) of a probability distri-
bution P on R, or of a real random variable X with distribution P , is the function

F : x ∈ R 
→ F(x) = P
(

(−∞, x]) = P(X ≤ x).

The (left-continuous) inverse of a c.d.f. F is the function

F← : u ∈ [0,1] 
→ F←(u) = inf
{

y ∈R : F(y) ≥ u
}

.

Note that if F is a bijection then F← = F−1, and that the c.d.f. F characterizes
the probability distribution P .

Theorem 2.3 Let P be a probability distribution on R with c.d.f. F , and F← be
its inverse. If U is a uniformly random variable on [0,1], then the random variable
X := F←(U) has c.d.f. F and hence distribution P .

Exercise 2.1 Prove this result.

An important application of the c.d.f. inversion method is the simulation of ex-
ponential E (λ) random variables.
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Algorithm (Exponential distribution) To obtain a sample x from the E (λ) expo-
nential distribution, λ > 0: draw a sample u from the uniform distribution on [0,1],
and compute

x = −1

λ
log(u).

Another similar application is for Cauchy random variables.

Algorithm (Cauchy distribution) To obtain a sample x from the Cauchy distribu-
tion with density function σ

π(x2+σ 2)
on R, for σ > 0: draw a sample u from the

uniform distribution on [0,1], and compute x = σ tan(πu).

The actual implementation of the c.d.f. inversion method requires an explicit
representation of the function F← (i.e., of F−1 when F is a bijection).

In practice, an alternative procedure consists in the numerical resolution of the
equation F(x) = u for any sampled value u of U , but the numerical cost may be
high. The Newton–Raphson method is an example of this procedure.

Algorithm (Newton–Raphson method) To obtain a sample x from a strictly posi-
tive density f on R, with c.d.f. F(·) = ∫ ·

0 f (y)dy: draw a sample u from the uni-
form distribution on [0,1], set x0 = u, compute

xk+1 = xk − F(xk) − u

f (xk)
, k ≥ 0

up to the step � at which |x�+1 − x�| is less than a prescribed threshold, and set
x = x�+1.

2.2.5 Rejection Method

The rejection method is often used to simulate a random vector with density f on
R

d . It consists in choosing a density g on R
d such that:

• the random vectors with density g are easy to simulate (for instance, g is a Gaus-
sian density),

• there exists ε > 0 such that h(x) := ε
f (x)
g(x)

≤ 1 for all x.

Then we proceed as follows.

Algorithm (Rejection method) To obtain a sample x from the density f :

• draw independent samples y from the density g and u from the uniform distribu-
tion on [0,1], then

• – if u ≤ h(y) := ε
f (y)
g(y)

, accept the sample y for x (i.e., set x = y)
– else, reject it and start over again,

(repeat until successful).
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Note that a random number of rejections occur before a sample is accepted. This
number of trials depends on the sampling sequence and on the chosen density g.
This observation is important in practice: the rejection method is efficient if the
acceptation rate is high.

The justification of the rejection method, and the control on the number of itera-
tions, is based on what follows.

Proposition 2.3 Let the random variables Y1, Y2, . . . have density g and U1,U2, . . .

be uniform on [0,1], and all be independent. Let the rank and value of the first
accepted sample be given by the random variables

M := inf

{

k ≥ 1 : Uk ≤ ε
f (Y )

g(Y )

}

, X := YM.

Then M is a.s. finite, P(M = k) = ε(1 − ε)k−1 for k ≥ 1 (geometric distribution),
and X has density f and is independent of M . In particular E(M) = 1/ε.

Proof By definition, for any k ≥ 2 and open set A in R
d ,

P(M = k,YM ∈ A) = P(M = k,Yk ∈ A)

=
k−1
∏

�=1

P

(

U� > ε
f (Y�)

g(Y�)

)

P

(

Uk ≤ ε
f (Yk)

g(Yk)
, Yk ∈ A

)

and, since f is a probability density,

P

(

U1 ≤ ε
f (Y )

g(Y )

)

=
∫

ε
f (y)

g(y)
g(y) dy = ε

∫

f (y)dy = ε.

Therefore, for all k ≥ 1,

P(M = k,YM ∈ A) = (1 − ε)k−1ε

∫

A

f (y)

g(y)
g(y) dy = ε(1 − ε)k−1

∫

A

f (y)dy.

Choosing A = Ω leads to the distribution of M and shows that M is a.s. finite; in
addition, the product form of the right-hand side shows that M and YM are indepen-
dent. Finally, we also deduce

P(YM = A) =
∫

A

f (y)dy,

which shows that YM has density f . �

The preceding result and its proof can easily be extended, for instance as in the
following proposition.
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Proposition 2.4 Let (S,S ) be a measurable space. Let ν and μ be two probability
measures on this space. Suppose that μ is absolutely continuous w.r.t. ν and

∃ε > 0, h(x) := ε
dμ

dν
(x) ≤ 1, ν-a.s.

Let (Yn, In) be a sequence of independent and identically distributed random vari-
ables taking values in S × {0,1}. Suppose that the common probability distribution
of the Yi is ν and that

P(I1 = 1 |Y1) = h(Y1), a.s.

Set

M := inf{k ≥ 1 : Ik = 1}, X := YM.

Then M is a.s. finite, E(M) < ∞, and the probability distribution of X is μ.

2.3 Discrete-Time Martingales, Proof of the SLLN

In this section we introduce the important notion of martingale processes, which
plays a key role in the sequel. We then prove the Strong Law of Large Numbers
using a technique which relies on the convergence of a backward martingale.

Our presentation is inspired by Jacod and Protter [24]. For a rigorous construc-
tion of the abstract conditional expectation and a systematic study of discrete-time
martingales, an excellent reference book is Williams [47].

2.3.1 Reminders on Conditional Expectation

A probability space (Ω,F ,P) is given. Let X be an integrable R
n-valued random

variable:

X ∈ L1(Ω,F ,P;Rn
)

.

For a sub-σ -field G of F , the conditional expectation E(X |G ) of X knowing G
is defined as (a representative of) the class of random variables in L1(Ω,G ,P;Rn)

satisfying the characteristic property

E
(

E(X |G )Z
) = E(XZ), ∀Z ∈ L∞(Ω,G ,P;R), (2.8)

where it is in fact enough to consider all Z of the form 1A for A in G .
It can be proved that any two random variables in this class are equal except on a

null probability set. The fact that statements involving conditional expectations hold
true P-a.s. is often left implicit.
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If Y is an R
k-valued random variable, the conditional expectation of X knowing

Y is defined by

E(X |Y) := E
(

X |σ(Y )
) ∈ L1(Ω,σ(Y ),P;Rn

)

,

where σ(Y ) is the σ -field generated by Y , constituted of all events {Y ∈ A} for sets
A in B(Rk). Doob’s lemma shows that any σ(Y )-measurable random variable is of
the form f (Y ) for some Borel function f . Therefore, E(X |Y) can be characterized
as the P-a.s. unique integrable random variable of the form f (Y ) for some Borel
function f satisfying

E
(

f (Y )g(Y )
) = E

(

Xg(Y )
)

for every real bounded Borel function g.

One can then set E(X |Y = y) := f (y). Note that all suitable functions f are
identical except on sets A such that P(Y ∈ A) = 0. As expected, if P(Y = y) �= 0
then

E(X |Y = y) = E(X1{Y=y})
P(Y = y)

.

If A ∈ F then P(A |G ) and P(A |Y) and P(A |Y = y) are respectively used as
notations for E(1A |G ) and E(1A |Y) and E(1A |Y = y).

We now recall some important properties of conditional expectation, which hold
P-a.s. Let G and H be two sub-σ -fields of F .

• Most properties of expectation carry over to conditional expectation: linearity,
positivity, Jensen’s and Hölder inequalities, monotone and dominated conver-
gence, Fatou’s lemma, etc.

• One may “take out what is known”: if Y is a G -measurable random variable such
that XY is integrable, then

E(XY |G ) = YE(X |G ). (2.9)

• The “tower property” holds:

if G ⊂ H then E
(

E(X |H ) |G ) = E(X |G ). (2.10)

In particular E(E(X |H )) = E(X) (take G = {∅,Ω}).
• Knowing facts independent of our purpose does not help:

if H is independent of σ(X,G ), then E
(

X |σ(G ,H )
) = E(X |G ), (2.11)

where σ(X,G ) [resp. σ(G ,H )] denotes the smallest σ -field containing σ(X)

and G [resp. G and H ].

Exercise 2.2 Prove the statements in this subsection using the characteristic prop-
erty of conditional expectation (2.8).
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2.3.2 Martingales and Sub-martingales, Backward Martingales

Definition 2.3 Let (Fn, n ∈ N) be a filtration, i.e., a collection of sub-σ -fields of
F such that Fn ⊂ Fn+1 for all n. Let (Mn,n ∈N) be a discrete-time process which
is (Fn)-adapted and integrable, i.e., such that Mn ∈ L1(Ω,Fn,P) for all n.

Then, the process (Mn,n ∈N) is called a martingale if

Mn = E(Mn+1 |Fn), P-a.s., (2.12)

and a sub-martingale if

Mn ≤ E(Mn+1 |Fn), P-a.s. (2.13)

The related notion of super-martingale is obtained by changing the sense of the
inequality, so that (Mn,n ∈N) is a super-martingale if and only if (−Mn,n ∈ N) is a
sub-martingale. Note that (Mn,n ∈ N) is a martingale if and only if it is both a sub-
martingale and a super-martingale. Therefore, we concentrate on sub-martingales
for most statements, except to make explicit some reinforcements for martingales.

Exercise 2.3 Let (Mn,n ∈ N) be a sub-martingale [resp. a martingale], and φ be an
increasing convex function [resp. a convex function] such that E|φ(Mn)| < ∞ for
every n. Prove that (φ(Mn),n ∈ N) is again a sub-martingale.

One often needs to consider martingales and sub-martingales at random times,
such as the first time at which the process hits a given threshold. Certain specific
random times, called stopping times, have very useful properties.

Definition 2.4 A random variable T taking values in N∪ {+∞} is a stopping time
for the filtration (Fn) if {T ≤ n} ∈ Fn for every n in N.

If T is a stopping time, then FT is defined as the σ -field constituted of all events
A in F∞ := σ(∪n∈NFn) such that A ∩ {T ≤ n} ∈ Fn for every n in N.

Our next result generalizes the sub-martingale property.

Theorem 2.4 (Optional sampling) Let (Mn,n ∈ N) be a sub-martingale. If S and T

are two stopping times satisfying S(ω) ≤ T (ω) ≤ K , ω-a.s., for some deterministic
integer K , then

E(MS) ≤ E(MT |FS), E(MS) ≤ E(MT ).

Proof Observe that

MS =
K

∑

j=0

Mj1{S=j}1{T ≥j}.
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Since {T ≥ K + 1} = ∅, expressing Mj1{T ≥j} as a telescopic sum yields

MS =
K

∑

j=0

K
∑

k=j

(Mk1{T ≥k} − Mk+11{T ≥k+1})1{S=j}

=
K

∑

j=0

K
∑

k=j

Mk1{T =k}1{S=j} +
K

∑

j=0

K
∑

k=j

(Mk − Mk+1)1{T ≥k+1}1{S=j}.

Moreover,

K
∑

j=0

K
∑

k=j

Mk1{T =k}1{S=j} = MT

K
∑

j=0

K
∑

k=j

1{T =k}1{S=j} = MT

and hence

MS = MT +
K

∑

j=0

K
∑

k=j

(Mk − Mk+1)1{T ≥k+1}1{S=j}.

Now, if A is in FS then

(MS − MT )1A =
K

∑

j=0

K
∑

k=j

(Mk − Mk+1)1{T ≥k+1}1{S=j}∩A.

Definition 2.4 implies that {T ≥ k + 1} = {T ≤ k}c ∈ Fk and

{S = j} ∩ A = {S ≤ j} ∩ A − {S ≤ j − 1} ∩ A ∈ Fj ⊂ Fk

so that taking expectations, (2.13) yields

E
(

(MS − MT )1A

) =
K

∑

j=0

K
∑

k=j

E
(

(Mk − Mk+1)1{T ≥k+1}1{S=j}∩A

) ≤ 0.

Since A is arbitrary, the characteristic property (2.8) allows to conclude the first
inequality. The second follows by taking A = Ω . �

Definition 2.5 Let real numbers a < b be fixed. For n ≥ 1, the number of upcross-
ings of [a, b] between times 0 and n by a sequence of real numbers (Mk, k ∈N) is
defined as

Un := max{j ≥ 0 : Tj ≤ n}
where the (Tj )j≥0 are recursively defined as follows: T0 = 0 and

τj+1 = inf{k ≥ Tj : Mk ≤ a}, Tj+1 = inf{k > τj+1 : Mk ≥ b}.
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Theorem 2.5 In the framework of Definition 2.5, if (Mk, k ∈N) is a sub-martingale,
then

E(Un) ≤ 1

b − a
E

(

(Mn − a)+
)

.

Proof Set Yn := (Mn − a)+. As τn+1 > n, one has Yτn+1∧n = Yn, which can be
expressed as the telescopic sum

Yn = Yτ1∧n +
n

∑

i=1

(Yτi+1∧n − Yτi∧n)

= Yτ1∧n +
n

∑

i=1

(Yτi+1∧n − YTi∧n) +
n

∑

i=1

(YTi∧n − Yτi∧n).

Observe that

Yτ1∧n ≥ 0,

n
∑

i=1

(YTi∧n − Yτi∧n) ≥ (b − a)Un,

and thus

Yn ≥
n

∑

i=1

(Yτi+1∧n − YTi∧n) + (b − a)Un.

The result of Question 2 of Exercise 2.3 applied to the increasing convex function
φ(x) = (x − a)+ yields that (Yn,n ∈N) is a sub-martingale. Taking expectations
and applying Theorem 2.4 to the stopping times Ti ∧ n ≤ τi+1 ∧ n then yields that

E(Yn) ≥ (b − a)E(Un),

from which the result follows. �

The notion of filtration expresses the practical fact that information is increasing
with time: the σ -fields satisfy Fn ⊂ Fn+1. In the proof of Theorem 2.1, we will
consider the σ -fields σ(ŜN , ŜN+1, . . .), which decrease w.r.t. time N ≥ 1, but how-
ever define a filtration when time is run backwards. We thus are led to introduce the
following definition.

Definition 2.6 Let (G−N,N ≥ 1) be a family of sub-σ -fields satisfying

G−(N+1) ⊂ G−N, N ≥ 1. (2.14)

A process (M−N,N ≥ 1) is a (G−N)-backward martingale if the M−N are inte-
grable, G−N -measurable, and

M−(N+1) = E(M−N |G−(N+1)), P-a.s.
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Theorem 2.5 can then be easily adapted as follows. We leave the details as an
exercise for the interested reader.

Theorem 2.6 Let (G−N,N ≥ 1) be a family of sub-σ -fields satisfying (2.14), and
(M−N,N ≥ 1) be a (G−N)-backward martingale. Let a < b be fixed, and for N ≥ 1
let U−N denote the number of upcrossings of the interval [a, b] between times 0 and
N − 1 by the sequence

(M̄k, k ∈ N) = (M−N, . . . ,M−1,M−1, . . .)

(see Definition 2.5). Then

E(U−N) ≤ 1

b − a
E

(

(M−1 − a)+
)

.

2.3.3 Proof of the Strong Law of Large Numbers

Now, Theorem 2.1 will be proved. Recall that (ξ (�), � ≥ 1) is a sequence of inde-
pendent identically distributed random variables such that E|ξ (1)| < ∞, and that
ŜN := 1

N

∑N
�=1 ξ (�) for N ≥ 1.

Step 1

The key idea consists in considering

G−N := σ(ŜN , ŜN+1, . . .), N ≥ 1,

which clearly satisfies (2.14), and observing that (ŜN ,N ≥ 1) = (M−N,N ≥ 1) for
an appropriately defined (G−N)-backward martingale (M−N,N ≥ 1).

Indeed, from (2.10) it follows that

M−N := E
(

ξ (1) |G−N

)

(2.15)

defines a (G−N)-backward martingale (M−N,N ≥ 1). In addition, by symmetry,

∀1 ≤ � ≤ N, M−N = E
(

ξ (�) |G−N

)

,

and therefore, since ŜN is G−N measurable,

M−N = 1

N

N
∑

�=1

E
(

ξ (�) |G−N

) = E(ŜN |G−N) = ŜN .

Note that in particular M−1 = ξ (1).
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Step 2

We prove that backward martingales such as (M−N,N ≥ 1) converge a.s. to an in-
tegrable random variable M−∞.

Fix a < b and use the notation of Theorem 2.6. For every ω in Ω , the increas-
ing sequence (U−N(ω),N ≥ 1) has a limit U−∞(ω) in R ∪ {∞}. The monotone
convergence theorem and Theorem 2.6 yield

E(U−∞) = lim
N→∞E(U−N) ≤ 1

b − a
E

(

(M−1 − a)+
)

< ∞.

Thus the random variable U−∞ is finite a.s., and the sequence (M−N,N ≥ 1) almost
surely crosses [a, b] a finite number of times, which implies that

P

(

lim inf
N→∞ M−N < a < b < lim sup

N→∞
M−N

)

= 0.

This being true for all rational a < b, necessarily

P

(

lim inf
N→∞ M−N < lim sup

N→∞
M−N

)

= 0

and thus, in R∪ {−∞,∞},
lim

N→∞M−N = M−∞ := lim inf
N→∞ M−N, P-a.s.

Using (2.15) and (2.10) yields

E
(|M−N |) = E

(∣
∣E

(

ξ (1) |G−N

)∣
∣
) ≤ E

(

E
(∣
∣ξ (1)

∣
∣ |G−N

)) = E
(∣
∣ξ (1)

∣
∣
)

and Fatou’s lemma yields

E
(|M−∞|) ≤ lim inf

N→∞ E
(|M−N |) ≤ E

(∣
∣ξ (1)

∣
∣
)

< ∞.

Step 3

We show that backward martingales such as (M−N,N ≥ 1) converge in L1(Ω).
This readily follows from a.s. convergence and (2.15) and classic uniform inte-

grability results (see Problem 2.3), but we will prove it using less advanced notions.
For any N ≥ 1 and C ∈R+, it holds that

E
(|M−∞ − M−N |) ≤ E

(|M−∞ − M−N |1{|M−N |≤C}
)

+E
((|M−∞| + |M−N |)1{|M−N |>C}

)

.

In view of (2.15), (2.9) and (2.10),
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|M−N |1{|M−N |>C} = ∣
∣E

(

ξ (1) |G−N

)

1{|M−N |>C}
∣
∣ = ∣

∣E
(

ξ (1)1{|M−N |>C} |G−N

)∣
∣

≤ E
(∣
∣ξ (1)

∣
∣1{|M−N |>C} |G−N

)

and hence

E
(|M−N |1{|M−N |>C}

) ≤ E
(

E
(∣
∣ξ (1)

∣
∣1{|M−N |>C} |G−N

)) = E
(∣
∣ξ (1)

∣
∣1{|M−N |>C}

)

.

Thus, for Y := |M−∞| + |ξ (1)| it holds that

E
(|M−∞ − M−N |) ≤ E

(|M−∞ − M−N |1{|M−N |≤C}
) +E(Y1{|M−N |>C}). (2.16)

Since M−∞ is integrable, by the Dominated Convergence Theorem,

lim
N→∞E

(|M−∞ − M−N |1{|M−N |≤C}
) = 0.

In addition, for any B ∈ R+,

E(Y1{|M−N |>C}) ≤ E(Y1{Y>B}) + BP
(|M−N | > C

)

and by dominated convergence, since Y is integrable, for any ε > 0 one can choose
B and then C large enough to have

E(Y1{Y>B}) < ε, BP
(|M−∞| > C

)

< ε,

and moreover

lim
N→∞BP

(|M−N | > C
) = BP

(|M−∞| > C
)

< ε.

Since ε > 0 is arbitrarily chosen, (2.16) and the results that follow it yield

lim
N→∞E

(|M−∞ − M−N |) = 0.

Note that this L1(Ω) convergence and E(M−N) = E(E(ξ (1) |G−N)) = E(ξ (1)),
see (2.15) and (2.10), yield that

E(M−∞) = lim
N→∞E(M−N) = E

(

ξ (1)
)

. (2.17)

Step 4

For every k ≥ 1,

M−∞ = lim
N→∞ ŜN := lim

N→∞
ξ (1) + · · · + ξ (N)

N
= lim

N→∞
ξ (k) + · · · + ξ (N)

N
, P-a.s.,

so that M−∞ is measurable w.r.t. the tail σ -field
⋂

k≥1 σ(ξ (k), ξ (k+1), . . .).
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We admit the following classic result, which is an ingredient in most proofs of
the Strong Law of Large Numbers (see, e.g., Williams [47] for a proof using mar-
tingales).

Theorem 2.7 (Kolmogorov zero-one law) Let (ξ (�), � ≥ 1) be a sequence of inde-
pendent random variables, and T := ⋂

k≥1 σ(ξ (k), ξ (k+1), . . .) be its tail σ -field.
Then, any T -measurable random variable is a.s. constant.

Applying this theorem to M−∞ yields that this random variable is a.s. constant.
It must then be a.s. equal to its expectation E(ξ (1)), see (2.17).

This concludes the proof of the SLLN.

2.4 Problems

2.1 (A Poisson Distribution Simulation Method) Recall that the Laplace transform
of a non-negative random variable X, or of its law P

X , is given by E(e−θX) =
∫

e−θx
P

X(dx) for all θ ≥ 0 such that the expectation is finite.

1. Compute the Laplace transform of the distribution function of the exponential
probability law with parameter λ > 0.

2. Let (Xk, k ≥ 1) be a family of independent random variables with the same ex-
ponential probability distribution with parameter λ > 0. Set

SN :=
N

∑

i=1

Xk.

Compute the Laplace transform of the distribution function of SN . Deduce that
the probability density function of SN is

pN(x) := λN

(N − 1)!x
N−1e−λx1x≥0.

3. Let M be the smallest integer N such that SN+1 > λ. Show that this random
variable has a Poisson distribution.

4. Propose a simulation method of the Poisson distribution which requires samples
only of the uniform distribution on [0,1].

2.2 (Lyapunov Exponent of Linear Random Recursive Sequences) Let a and b be
two real numbers. Let 1 > h > 0 be a time discretization step. For any integer p set

X̄h
p+1(x) =

(

1 + b
√

hGp+1 +
(

a + b2

2

)

h

)

X̄h
p(x),

where the Gp are mutually independent and centered Gaussian random variables
with unit variance, and where X̄h

0 (x) = x a.s.
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1. Check that the functions | log(|x|)| exp(−x2) and (log(|x|))2 exp(−x2) are inte-
grable over R.

Hint: Use that (log(x))2 is the derivative of x(log(x))2 − 2x log(x) + 2x.
2. Show that

∃λ̄h ∈R for all x ∈ R
d − {0}, λ̄h = lim

N−→+∞
1

Nh
log |X̄h

N(x)|, a.s.

3. Show that, for all x in R− {0},

∃Ch ∈R,
1

N2
E

[

log |X̄h
N(x)|]2

< Ch for all N ∈N− {0}.

Problem 2.3 shows that the preceding inequality implies

∀x ∈R− {0}, λ̄h = lim
N−→+∞

1

Nh
E log

∣
∣X̄h

N(x)
∣
∣.

Deduce from this result that

λ̄h = 1

h
E log

∣
∣
∣
∣
1 + b

√
hG1 +

(

a + b2

2

)

h

∣
∣
∣
∣

for all h small enough and all N .
4. Let

Y := b
√

hG1 +
(

a + b2

2

)

h.

Prove that

E log |1 + Y | = E

[

Y − Y 2

2
+ Y 3

3

]

+E

[

1|Y |<1

(

log(1 + Y) − Y + Y 2

2
− Y 3

3

)]

+E

[

1|Y |≥1

(

log |1 + Y | − Y + Y 2

2
− Y 3

3

)]

.

Deduce that λ̄h = a + O(h).

2.3 (Uniformly Integrable Random Variables (�)) Consider a sequence (Xn) of ran-
dom variables with finite expectations which are uniformly integrable, that is,

lim
C→∞ sup

n≥0
E

[|Xn|1|Xn|≥C

] = 0. (2.18)

1. Show that (2.18) is equivalent to the conjunction of the two following ones:

sup
n

(

E|Xn|
)

< ∞, (2.19)

∀ε > 0, ∃δ(ε), ∀A ∈ F , P(A) ≤ δ(ε) ⇒ sup
n

E
(|Xn|1A

)

< ε. (2.20)
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2. Let (Xn) be a uniformly integrable sequence, and let X be an integrable random
variable. Show that the sequence (|Xn − X|) is uniformly integrable.

Hint: Observe that |Xn − X| ≤ |Xn| + |X|, and apply the preceding question.
3. Now assume in addition that (Xn) has an almost sure limit X. Show that

E|X| < ∞.

Hint: Start with observing that

E
(|Xn|

) = E
(|Xn|1|Xn|≤C

) +E
(|Xn|1|Xn|≥C

); (2.21)

then use Fatou’s lemma and Lebesgue’s Dominated Convergence Theorem.
4. Deduce from Questions 1 and 2 that

lim
n→∞E|Xn − X| = 0. (2.22)

Hint: Observe that, for all positive ε,

E|Xn − X| ≤ E
[|Xn − X|1|Xn−X|≥ε

] + ε.

5. Write an alternative proof to Step 3 in Sect. 2.3.3 for

lim
N→∞E

(|M−∞ − M−N |) = 0.

Hint: Show that supn≥0 E(Xn)
2 < ∞ implies uniform integrability.
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