
Chapter 9
Gauss–Kuzmin Statistics

It turns out that the frequency of a positive integer k in a continued fraction for
almost all real numbers is equal to

1

ln 2
ln

(
1 + 1

k(k + 2)

)
,

i.e., for a general real x we have 42 % of 1, 17 % of 2, 9 % of 3, etc. This distribution
is traditionally called the Gauss–Kuzmin distribution. The statistics of the elements
in continued fractions first appeared in the letters of K.F. Gauss to P.S. Laplace at
the beginning of the nineteenth century (see [63]). The first proof with additional
estimates was developed by R.O. Kuzmin in [121] in 1928 (see also [122]), and a
little later, another proof with new estimates was given by P. Lévy in [131]. Further
investigations in this directions were made by E. Wirsing in [209].

In this chapter we describe two strategies to study distributions of elements in
continued fractions. A classical approach to the Gauss–Kuzmin distribution is based
on the ergodicity of the Gauss map. The second approach is related to the geometry
of continued fractions and its projective invariance. It is interesting to note that the
frequencies of elements has an unexpected interpretation in terms of cross-ratios
(see Remark 9.31). Unfortunately, the classical approach does not have a general-
ization to the case of multidimensional sails, since it is not clear what map is the
multidimensional analogue of the Gauss map. We avoid this problem by using a
geometric approach to define and investigate multidimensional statistical questions
for multidimensional sails. We describe the multidimensional case in Chap. 19.

In the first five sections of this chapter we discuss the classical ergodic approach
to the Gauss–Kuzmin distribution. In Sect. 9.1 we give some basic notions and defi-
nitions of ergodic theory. Further, in Sects. 9.2 and 9.3, we present a measure related
to continued fractions and the Gauss map. We prove the pointwise Gauss–Kuzmin
theorem and formulate the original Gauss–Kuzmin theorem in Sects. 9.4 and 9.5
respectively.

In the last five sections we study the statistic of edges of geometric one-
dimensional continued fractions. After a brief discussion of cross-ratios (Sect. 9.6)
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we define a structure of a smooth manifold on the set of geometric continued frac-
tions CF1 in Sect. 9.7. Further, in Sect. 9.8, we define the Möbius measure on CF1
which is invariant under the group PGL(R,2) acting on CF1; we write the Möbius
form explicitly in Sect. 9.9. Finally, in Sect. 9.10, we define related frequencies of
edges of continued fractions and show that they coincide with the Gauss–Kuzmin
statistics of the elements of continued fractions.

9.1 Some Information from Ergodic Theory

Let X be a set, Σ a σ -algebra on X, and μ a measure on the elements of Σ . The
collection (X,Σ,μ) is called a measure space. If μ(X) = 1, the measure space is
called a probability measure space.

Given a transformation T of a set X to itself, for any μ-integrable function f on
X one can define the time average for f at the point x to be

lim
n→∞

1

n

n−1∑
k=0

f
(
T kx

)
.

The space average If is

If = 1

μ(X)

∫
f dμ.

The space average always exists. The time average does not exist for all x. Neverthe-
less, in the case in which we are interested, it exists for almost all x. We formulate
the related theorem after one important definition.

Definition 9.1 Let (X,Σ,μ) be a measure space. A transformation T : X → X is
measure-preserving if it is measurable and

μ
(
T −1(A)

) = μ(A)

for every set A of Σ .

For measure-preserving transformations we have the following theorem.

Theorem 9.2 (Birkhoff’s Pointwise Ergodic Theorem) Consider an arbitrary mea-
sure space (X,Σ,μ) and a measure preserving transformation T on X. Let f be a
μ-integrable function on X. Then the time average converges almost everywhere to
an invariant function f .

Definition 9.3 Consider a probability measure space (X,Σ,μ). A measure-
preserving transformation T on X is ergodic if for every X′ ∈ Σ satisfying
T −1(X′) = X′, either μ(X′) = 0 or μ(X′) = 1.
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Theorem 9.4 (Birkhoff–Khinchin’s Ergodic Theorem) Consider a probability
measure space (X,Σ,μ) and a measure preserving transformation T . Suppose
that T is ergodic. Then the values of the time average function are equal to the
space average (i.e., f (x) = If ) almost everywhere.

9.2 The Measure Space Related to Continued Fractions

In this section we define a measure space that is closely related to distributions of
the elements of continued fractions. For this measure we formulate a statement on
the density of points for measurable subsets, which we use in the essential way in
the proofs below.

9.2.1 Definition of the Measure Space Related to Continued
Fractions

Consider the measure space of the segment I = {x | 0 ≤ x < 1} with the Borel σ -
algebra Σ and the measure μ̂ defined on a measurable set S as

μ̂(S) = 1

ln 2

∫
S

dx

1 + x
.

The coefficient 1/ ln 2 is taken such that the measure of the segment I equals 1.

9.2.2 Theorems on Density Points of Measurable Subsets

We start with a classical theorem on Lebesgue measure space. Denote by B(x, ε)

the standard ball of radius ε centered at x.

Theorem 9.5 (Lebesgue density) Let λ be the n-dimensional Lebesgue measure
on R

n. If A ⊂ R
n is a Borel measurable set, then almost every point x ∈ A is a

Lebesgue density point:

lim
ε→0

λ(A ∩ B(x, ε))

λ(B(x, ε))
= 1.

Here “almost every point” means “except for a subset of zero measure”.
The measure μ̂ is equivalent to the one-dimensional Lebesgue measure λ on the

segment [0,1] (for more information on measure theory, see [137]). Hence we have
a similar statement in the case of the measure space (X,Σ, μ̂).
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Fig. 9.1 The Gauss map

Corollary 9.6 (μ̂-density) Let X = [0,1] and let μ̂ be as above. If A ⊂ X is a μ̂-
measurable set with positive measure μ̂(A), then almost every point in A satisfies

lim
ε→0

μ̂(A ∩ B(x, ε))

μ̂(B(x, ε))
= 1.

9.3 On the Gauss Map

Let us introduce a transformation whose ergodic properties will form the basis for
the proof of the Gauss–Kuzmin theorem.

9.3.1 The Gauss Map and Corresponding Invariant Measure

We consider the measure space (X,Σ, μ̂) defined in the previous section. Define
the Gauss map T of a segment [0,1] to itself as follows:

T (x) = {1/x},
where {r} denotes the fractional part r − 	r
 (see Fig. 9.1).

Proposition 9.7 The Gauss map T is measure-preserving for the measure space
(X,Σ, μ̂).

We start with the following lemma.

Lemma 9.8 Let x = [0;a1 : a2 : · · · ]. Then

T −1(x) = {[0; k : a1 : a2 : · · · ]|k ∈ Z+
} =

{
1

x + k

∣∣∣k ∈ Z+
}
.
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Proof The first equality follows directly from the fact that

T
([0;b1 : b2 : · · · ]) = [0;b2 : b3 · · · ]

and the fact that every real number has a unique regular continued fraction expansion
with the last element not equal to 1.

The second equality is straightforward. �

Proof of Proposition 9.7 Consider a measurable set S. From Lemma 9.8 it follows
that

μ̂
(
T −1(S)

) = 1

ln 2

∫
T −1(S)

dx

1 + x

= 1

ln 2

∞∑
k=1

(∫
T −1(S)∩[1/(k+1),1/k]

dx

1 + x

)
.

Notice that on each open (i.e., without the boundary points) segment ]1/k,

1/(k + 1)[ the operator T is in one-to-one correspondence with the open segment
]0,1[. Let us denote the inverse function to T on the segment ]1/k,1/(k + 1)[ by
T −1

(k) . Therefore,

T

(
T −1(S) ∩

[
1

k + 1
,

1

k

])
= T

(
T −1

(k) (S)
) = S,

and we can apply the rule of differentiation of a composite function. From
Lemma 9.8 we know, that

T −1
(k)

(x) = 1

x + k
.

Then we have

∫
T −1(S)∩[1/(k+1),1/k]

dx

1 + x
=

∫
T −1

(k)
(S)

dx

1 + x
=

∫
T (T −1

(k)
(S))

dT −1
(k) (x)

1 + T −1
(k) (x)

=
∫

S

−d(1/(x + k))

1 + 1/(x + k)
=

∫
S

dx

(x + k)(x + k + 1)

(the negative sign is taken, since the map T −1
(k) : x → 1

x+k
changes the orientation).

So we have

μ̂
(
T −1(S)

) = 1

ln 2

∞∑
k=1

∫
S

dx

(x + k)(x + k + 1)
.
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Since the integrated functions are nonnegative, we can change the order of the sum-
mation and the integration operations. We get

μ̂
(
T −1(S)

) = 1

ln 2

∫
S

( ∞∑
k=1

1

(x + k)(x + k + 1)

)
dx

= 1

ln 2

∫
S

( ∞∑
k=1

(
1

x + k
− 1

x + k + 1

))
dx = 1

ln 2

∫
S

dx

x + 1
= μ̂(S).

So for every measurable set S we have

μ̂
(
T −1(S)

) = μ̂(S).

Therefore, the Gauss map T preserves the measure μ̂. �

Remark 9.9 (On the Euler–Mascheroni constant) By definition, the Euler–
Mascheroni constant (traditionally denoted by γ ) is the following infinite sum

γ = lim
n→∞

(
n∑

k=1

1

k
− lnn

)
.

It was first studied by L. Euler in 1734. It is not known whether γ is irrational. It
turns out that the Euler–Mascheroni constant can be expressed as an integral of the
Gauss map with respect to Lebesgue measure:

γ = 1 −
∫ 1

0
T (x)dx.

9.3.2 An Example of an Invariant Set for the Gauss Map

Let us consider one example of a measurable set that is invariant under the Gauss
map.

Denote by Ψ the set of all irrational numbers in the segment [0,1] whose con-
tinued fractions contain only finitely many 1’s. It is clear that

T −1(Ψ ) = Ψ,

since the operation T −1 shifts elements of continued fractions by one and inserts
the first element.

Proposition 9.10 The set Ψ is measurable (i.e., Ψ ∈ Σ ).

Proof Denote by Υn the set of all irrational numbers that contain the element 1
exactly at place n. Notice that

Υ1 = [1/2,1],
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and therefore, it is measurable. Hence for every n the set

Υn+1 = T n(Υ1)

is measurable.
Denote by Ψ0 the set of all irrational numbers that do not contain an element ‘1’.

Since

Ψ0 = X \
∞⋃

n=1

Υn,

the set Ψ0 is also measurable. Then

T −n(Ψ0)

is measurable for any positive integer n. Hence

Ψ =
∞⋃

n=1

T −n(Ψ0)

is measurable. �

We will prove later that the Gauss map is ergodic, and therefore, Ψ is either of
zero measure or full measure in X.

9.3.3 Ergodicity of the Gauss Map

In this subsection we prove the ergodicity of the Gauss map.

Proposition 9.11 The Gauss map is ergodic.

Before proving Proposition 9.11 we introduce some supplementary notation and
prove two lemmas.

For a sequence of positive integers (a1, . . . , an) denote by I(a1,...,an) the segment
with endpoints [0;a1 : · · · : an−1 : an] and [0;a1 : · · · : an−1 : an + 1]. It is clear that
the map

T n : I(a1,...,an) → [0,1]
is one-to-one on the segment I(a1,...,an), and the inverse to T n is

T −1
(a1,...,an) : x → [0;a1 : · · · : an : 1/x].

In terms of k-convergents pk/qk = [0;a1 : · · · : ak], the expression for T −1
(a1,...,an)(x)

is as follows (see Proposition 1.13):
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T −1
(a1,...,an)(x) = pn/x + pn−1

qn/x + qn−1
= pn + pn−1x

qn + qn−1x
.

Lemma 9.12 The measure of a segment I(a1,...,an) satisfies the following inequality:

μ̂(I(a1,...,an)) <
1

ln 2(qn + qn−1)(pn + qn)
.

Proof We have

μ̂(I(a1,...,an)) = 1

ln 2

∫
I(a1,...,an)

dx

1 + x
= 1

ln 2

∣∣∣∣
∫ [0;a1:···:an:1]

[0;a1:···:an]
dx

1 + x

∣∣∣∣

= 1

ln 2

∣∣∣∣ln
((

1 + pn + pn−1

qn + qn−1

)/(
1 + pn

qn

))∣∣∣∣
= 1

ln 2

∣∣∣∣ln
(

1 + 1

(qn + qn−1)(pn + qn)

)∣∣∣∣
<

1

ln 2(qn + qn−1)(pn + qn)
.

The last inequality follows from the concavity of the natural logarithm function. �

Lemma 9.13 For any invariant set S of positive measure and any interval I(a1,...,an),

μ̂(S ∩ I(a1,...,an)) ≥ ln 2

2
μ̂(S)μ̂(I(a1,...,an)).

Proof Since the map T is surjective, we also have

T (S) = S.

Let μ̂(S) = c > 0. Let us prove that c = 1. We have

1

ln 2

∫
S∩I(a1,...,an)

dx

1 + x
= 1

ln 2

∫
S

d

(
pn + pn−1x

qn + qn−1x

)/(
1 + pn + pn−1x

qn + qn−1x

)

= 1

ln 2

∫
S

dx

(qn + qn−1x)(qn + qn−1x + pn + pn−1x)

≥ 1

ln 2 · qn(qn + qn−1 + pn + pn−1)

∫
S

dx

1 + x

= 1

qn(qn + qn−1 + pn + pn−1)
μ̂(S)

≥ 1

(qn + qn−1)(2pn + 2qn)
μ̂(S) ≥ ln 2

2
μ̂(S)μ̂(I(a1,...,an)).

The last inequality follows from Lemma 9.12. �
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Proof of Proposition 9.11 Let S be a measurable subset of the unit interval such that
T −1(S) = S. Suppose also μ̂(S) > 0.

For any irrational number y = [0;a1 : a2 : · · · ], from Lemma 9.13 we have

μ̂(X \ S) ∩ B(y, μ̂(I(a1,...,an)))

μ̂(B(y, μ̂(I(a1,...,an))))
≤ 1 − ln 2

2

μ̂(S)μ̂(I(a1,...,an))

μ̂(B(y, μ̂(I(a1,...,an))))
= 1 − ln 2

4
μ̂(S).

Hence y is not a μ̂-density point of X \ S. Therefore, by Corollary 9.6 almost every
point of [0,1] \Q is not in X \ S, and therefore, it is in S. Hence

μ̂(S) ≥ μ̂
([0,1] \Q) = 1

Hence μ̂(S) = 1, concluding the proof of ergodicity of T . �

9.4 Pointwise Gauss–Kuzmin Theorem

Consider x in the segment [0,1]. Let the regular continued fraction for x be [0;a1 :
· · · : an] (odd or infinite). For a positive integer k, set

P̂n,k(x) = #(k, n)

n
,

where #(k, n) is the number of integer elements ai equal to k for i = 1, . . . , n. Define

P̂k(x) = lim
n→∞ P̂n,k(x).

Theorem 9.14 For every positive integer k and almost every x (i.e., in the comple-
ment of a set of zero measure) the following holds:

P̂k(x) = 1

ln 2
ln

(
1 + 1

k(k + 2)

)
.

We consider this theorem a pointwise Gauss–Kuzmin theorem. To prove this
pointwise Gauss–Kuzmin theorem we use Birkhoff’s ergodic theorems.

Proof of Theorem 9.14 Consider a subset S ∈ I . Let χS be the characteristic func-
tion of S, i.e.,

χS(x) =
{

1, if x ∈ S,

0, otherwise.

Then

P̂n,k(x) = 1

n

n−1∑
s=0

χ]1/(k+1),1/k]
(
T sx

)
.
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Hence, by Birkhoff’s pointwise ergodic theorem, the limit P̂k(x) exists almost ev-
erywhere. Since the transformation T is ergodic, we apply the Birkhoff–Khinchin
ergodic theorem and get

P̂k(x) =
∫ 1

0
χ]1/(k+1),1/k]dμ̂ = 1

ln 2

∫ 1/k

1/(k+1)

dx

1 + x
= 1

ln 2
ln

(
1 + 1

k(k + 2)

)
. �

9.5 Original Gauss–Kuzmin Theorem

Let α be some irrational number between zero and one, and let [0;a1 : a2 : a3 : · · · ]
be its regular continued fraction.

Let mn(x) denote the measure of the set of real numbers α contained in the
segment [0,1] such that T n(α) < x (here T is the Gauss map). In his letters to
P.S. Laplace C.F. Gauss formulated without proofs the following theorem.

Theorem 9.15 (Gauss–Kuzmin) For 0 ≤ x ≤ 1 the following holds:

lim
n→∞mn(x) = ln(1 + x)

ln 2
.

This theorem is technically complicated. For the proof we refer to the original
manuscripts of R.O. Kuzmin [121] and [122] (see also A.Ya. Khinchin [105]).

Denote by Pn(k), for an arbitrary integer k > 0, the measure of the set of all real
numbers α of the segment [0,1] such that each of them has the number k at the nth
position. The limit limn→∞ Pn(k) is called the frequency of k for regular continued
fractions and is denoted by P(k).

Corollary 9.16 For every positive integer k, the following holds:

P(k) = 1

ln 2
ln

(
1 + 1

k(k + 2)

)
.

Proof Notice that Pn(k) = mn(
1
k
) − mn(

1
k+1 ). Now the statement of the corollary

follows from the Gauss–Kuzmin theorem. �

9.6 Cross-Ratio in Projective Geometry

In this section we switch to the multidimensional case for a while in order to give
some definitions that are similar to the one-dimensional case (we will use these later,
in Chap. 19).
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9.6.1 Projective Linear Group

The projective linear group (or the group of projective transformations) is the quo-
tient group

PGL(R, n) = GL(R, n)/Z(R, n),

where Z(R, n) is the one-dimensional subgroup of all nonzero scalar transforma-
tions of Rn. The group PGL(R, n) acts on the equivalence classes of vectors in R

n

with respect to Z(R, n). We have

R
n/Z(R, n) = RP n−1.

Consider the affine part Rn−1 ⊂ RP n−1. The stabilizer for the affine part is exactly
the group Aff(R, n − 1).

9.6.2 Cross-Ratio, Infinitesimal Cross-Ratio

Consider an arbitrary line in R
n−1 with a Euclidean coordinate on it.

Definition 9.17 Consider a 4-tuple of points on a line with coordinates z1, z2, z3,
and z4. The value

(z1 − z3)(z2 − z4)

(z2 − z3)(z1 − z4)

is called the cross-ratio of the 4-tuple.

It is clear that the cross-ratio does not depend on the choice of the Euclidean coor-
dinate on the line, and therefore, it a function on the space of ordered 4-tuples of
distinct points in a line.

As we have already noted above, the space R
n−1 can be considered an affine

chart Rn−1 ⊂ RP n−1. Hence the action of PGL(R, n) is well defined on the closure
of Rn−1 (which is actually RP n−1). The projective transformations take planes to
planes and, in particular, lines to lines. So it is natural to ask what happens to the
cross-ratios of four points on a line.

Proposition 9.18 The cross-ratio of four points is an invariant of projective trans-
formations of Rn.

We are interested in the infinitesimal cross-ratio, which is the following 2-form:

dxdy

(x − y)2
.
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Notice that in the denominator we have

(x − y)2 = lim
ε→0

(
x − (y + εdy)

)·((x + εdx) − y
)
.

Corollary 9.19 The infinitesimal cross-ratio is an invariant of projective transfor-
mations of Rn−1.

Proof The density of the infinitesimal cross-ratio coincides with the asymptotic co-
efficient at ε2 of the cross-ratios of 4-tuples of points:

x, y, x + εdx, y + εdy,

as ε tends to 0. Therefore, the infinitesimal cross-ratio is a projective invariant. �

9.7 Smooth Manifold of Geometric Continued Fractions

Denote the set of all geometric continued fractions by CF1. Consider an arbitrary
element of CF1. It is a continued fraction defined by an (unordered) pair of nonpar-
allel lines (�1, �2) passing through integer points.

Denote the sets of all ordered collections of two independent and dependent
straight lines by FCF1 and Δ1 respectively. We say that FCF1 is a space of geo-
metric framed continued fractions. We have

FCF1 = (
RP 1 ×RP 1) \ Δ1 = T 2 \ Δ1 and CF1 = FCF1/(Z/2Z),

where Z/2Z is the group transposing the lines in geometric continued fractions.
Note that FCF1 is a 2-fold covering of CF1. We call the map of “forgetting” the
order in the ordered collections the natural projection of the manifold FCF1 to the
manifold CF1 and denote it by p (i.e., p : FCF1 → CF1).

Notice that FCF1 is homeomorphic to the annulus and CF1 is homeomorphic to
the Möbius band.

9.8 Möbius Measure on the Manifolds of Continued Fractions

The group PGL(2,R) of transformations of RP 1 takes the set of all straight lines
passing through the origin in the plane into itself. Hence, PGL(2,R) naturally acts
on CF1 and FCF1. It is clear that the action of PGL(2,R) is transitive, i.e., it takes
any (framed) continued fraction to any other. Notice that a stabilizer of any geomet-
ric continued fraction is one-dimensional.

Definition 9.20 A form on the manifold CF1 (respectively FCF1) is said to be a
Möbius form if it is invariant under the action of PGL(2,R).
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Remark 9.21 The name for the invariant forms comes from theory of energies of
knots and graphs in low dimensional topology, where these forms are used as den-
sities for Möbius energies that are invariant under the group of Möbius transforma-
tions in R

3 (we refer the interested reader to the book by J. O’Hara [150]).

Proposition 9.22 All Möbius forms of the manifolds CF1 and FCF1 are propor-
tional.

Proof Transitivity of the action of PGL(2,R) implies that all Möbius forms of the
manifolds CF1 and FCF1 are proportional. �

Let ω be some volume form of the manifold M . Denote by μω a measure of the
manifold M that for every open measurable set S contained in the same piecewise
connected component of M is defined by the equality

μω(S) =
∣∣∣∣
∫

S

ω

∣∣∣∣.
Definition 9.23 A measure μ of the manifold CF1 (FCF1) is said to be a Möbius
measure if there exists a Möbius form ω of CF1 (FCF1) such that μ = μω.

From Proposition 9.22 we have the following.

Corollary 9.24 Any two Möbius measures are proportional.

Remark 9.25 The projection p takes the Möbius measures of the manifold FCF1
to the Möbius measures of the manifold CF1. This establishes an isomorphism
between the spaces of Möbius measures for CF1 and FCF1. Since the manifold
of framed continued fractions possesses simpler chart systems, all formulas of the
work are given for the case of the framed continued fraction manifold. To calculate
a measure of some set F of the unframed continued fraction manifold, one should:
take p−1(F ); calculate the Möbius measure of the obtained set of the manifold of
framed continued fractions, and divide the result by 2.

9.9 Explicit Formulas for the Möbius Form

Let us write down Möbius forms of the framed one-dimensional continued fraction
manifold FCF1 explicitly in special charts.

Consider a vector space R
2 equipped with standard metrics on it. Letting l be

an arbitrary straight line in R
2 that does not pass through the origin, choose some

Euclidean coordinates OlXl on it. Denote by FCF1,l a chart of the manifold FCF1
that consists of all ordered pairs of straight lines both intersecting l. Let us associate
to any point of FCF1,l (i.e. to a collection of two straight lines) coordinates (xl, yl),
where xl and yl are the coordinates on l for the intersections of l with the first and
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the second straight lines of the collection respectively. Denote by |v|l the Euclidean
length of a vector v in the coordinates OlXlYl of the chart FCF1,l . Note that the
chart FCF1,l is the space R×R minus its diagonal.

Consider the following form in the chart FCF1,l :

ωl(xl, yl) = dxl ∧ dyl

|xl − yl |2l
.

Proposition 9.26 The measure μωl
coincides with the restriction of some Möbius

measures to FCF1,l .

Proof Notice that the form ωl(xl, yl) coincides with the infinitesimal cross-ratio on
the line l. Hence it is invariant under projective transformations of l (on an every-
where dense subset) in the chart FCF1,l . Therefore, the measure μωl

coincides with
the restriction of some Möbius measures to FCF1,l . �

Corollary 9.27 A restriction of an arbitrary Möbius measure to the chart FCF1,l is
proportional to μωl

.

Proof The statement follows from the proportionality of any two Möbius mea-
sures. �

Consider now the manifold FCF1 as a set of ordered pairs of distinct points on
a circle R/πZ (this circle is a one-dimensional projective space obtained from the
unit circle by identifying antipodal points). The doubled angular coordinate ϕ of the
circle R/πZ induced by the coordinate x of the straight line R naturally defines the
coordinates (ϕ1, ϕ2) of the manifold FCF1.

Proposition 9.28 The form ωl(xl, yl) is extendible to some form ω1 of FCF1. In
coordinates (ϕ1, ϕ2), the form ω1 can be written as follows:

ω1 = 1

4
cot2

(
ϕ1 − ϕ2

2

)
dϕ1 ∧ dϕ2.

The proof of Proposition 9.28 is left as an exercise for the reader.

9.10 Relative Frequencies of Edges of One-Dimensional
Continued Fractions

Without loss of generality, in this section we consider only the Möbius form ω1 of
Proposition 9.28. Denote the natural projection of the form μω1 to the manifold of
one-dimensional continued fractions CF1 by μ1.

Consider an arbitrary segment F with vertices at integer points. Denote by
CF1(F ) the set of continued fractions that contain the segment F as an edge.
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Fig. 9.2 Rays defining a
continued fraction should lie
in the domain shaded in gray

Definition 9.29 The quantity μ1(CF1(F )) is called the relative frequency of the
edge F .

Note that the relative frequencies of edges of the same integer-linear type are
equivalent. Every edge of a one-dimensional continued fraction is at unit integer
distance from the origin. Thus, the integer-linear type of a segment is defined by its
integer length (the number of inner integer points plus unity). Denote the relative
frequency of the edge of integer length k by μ1(

′′k′′).

Proposition 9.30 For every positive integer k, the following holds:

μ1
(′′k′′) = ln

(
1 + 1

k(k + 2)

)
.

Proof Consider a particular representative of an integer-linear type of a length-k
segment: the segment with vertices (0,1) and (k,1). The one-dimensional continued
fraction contains the segment as an edge if and only if one of the straight lines
defining the fraction intersects the interval with vertices (−1,1) and (0,1) while
the other straight line intersects the interval with vertices (k,1) and (k + 1,1) (see
Fig. 9.2).

For the straight line l defined by the equation y = 1, we calculate the Möbius
measure of the Cartesian product of the described pair of intervals. By the last sec-
tion it follows that this quantity coincides with the relative frequency μ1(

′′k′′). So,

μ1
(′′k′′) =

∫ 0

−1

∫ k+1

k

dxldyl

(xl − yl)2
=

∫ k+1

k

(
1

yl

− 1

yl + 1

)
dyl

= ln

(
(k + 1)(k + 1)

k(k + 2)

)
= ln

(
1 + 1

k(k + 2)

)
.

This proves the proposition. �

Remark 9.31 Note that the argument of the logarithm (k+1)(k+1)
k(k+2)

is the cross-ratio
of points (−1,1), (0,1), (k,1), and (k + 1,1).

Corollary 9.32 The relative frequency μ1(
′′k′′), up to the factor

ln 2 =
∫ 0

−1

∫ +∞

1

dxldyl

(xl − yl)2
,

coincides with the Gauss–Kuzmin frequency P(k).
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9.11 Exercises

Exercise 9.1

(a) Prove that the measure

μ(S) = 1

ln 2

∫
S

dx

1 + x

is a probability measure on the segment [0,1], i.e., μ([0,1]) = 1.
(b) Find μ([a, b]) for 0 ≤ a < b ≤ 1, where μ is as above.

Exercise 9.2 Ergodicity of the doubling map. Consider the space (S1,Σ,λ), where
X is the unit circle, Σ is the Borel σ -algebra, and λ is the Lebesgue measure. Con-
sider the doubling map T : S1 → S1 such that

T (ϕ) = 2ϕ.

Prove that T is measure-preserving and ergodic.

Exercise 9.3 Define the frequencies of subsequences in continued fractions. What
is the frequency of the sequence (1,2,3)?

Exercise 9.4 Prove the μ̂-density theorem from the Lebesgue density theorem.

Exercise 9.5 Recall that Ψ0 is the subset irrational numbers in [0,1] whose contin-
ued fractions do not contain 1 as an element. Prove by elementary means (without
using ergodic theorems) that

μ̂(Ψ0) = 0.

Exercise 9.6 Prove the projective invariance of the cross-ratio.

Exercise 9.7 Prove that any two triples of points on a line are projectively equiva-
lent. Find a criterion for two 4-tuples of points on a line to be projectively equivalent.

Exercise 9.8 Prove that

(a) RP 1 is homeomorphic to a circle;
(b) FCF1 is homeomorphic to an annulus;
(c) CF1 is homeomorphic to the Möbius band.

Exercise 9.9 Prove Proposition 9.28.
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