Chapter 2
Measurement, Estimation and Prediction

Abstract Measurement is commonly taken for granted in statistical work but, in the
fields where missing observations occur, it is often the main objective. This is
because the quantities to be ‘measured’ turn out to be represented by the parameters
or random variables of a statistical model. Measurement then becomes a matter of
predicting the values of random variables or of estimating the parameters of a
distribution. When the unobserved variables are latent and, possibly indeterminate
in number, the key idea is to determine their conditional distribution given what has
been observed. This is essentially a routine matter involving the manipulation of
probability functions. However, it is necessary to make clear what has to be defined
and what are the constraints imposed by the logic of probability theory. This is
important because much controversy, for example in relation to factor scores, has
resulted from a failure to appreciate this point. We also introduce the one-parameter
exponential family of distributions. This achieves a substantial simplification
without incurring a serious loss of generality. In fact, it permits a considerable
degree of unification of existing models and the development of new ones.
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2.1 Measurement

In psychometrics and related branches of Science there is much discussion of
measurement. In psychometrics, for example, there is the classical measurement
model which supposes that what we observe differs from what we seek to measure
by an ‘error’. There is no comparable theory of measurement in Statistics where
the term measurement is used in less specific ways. It is important, therefore, to be
clear about how the general term ‘measurement’ is linked to the standard statistical
procedures.
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Measurement is commonly defined as the assignment of numbers to objects in
such a way that the numbers are related in ways which reflect the relationship
between the objects. In one of the simplest cases, the length of objects, rods say, is
reflected in the numbers which measure length. So if two rods of the same length
are put end to end, the measure length of the combination will be twice that of each
individual rod. It is not immediately obvious how this relates to statistical theory.
The objects with which we deal in a statistical model are either parameters or
random variables. The former are treated as fixed and the latter as varying in a way
that can be described by a probability distribution. In Statistics the process of
assigning numbers to parameters is known as estimation and the corresponding
procedure for random variables is prediction. In statistical language, then, mea-
surement is achieved by estimating unknown parameters or by providing predic-
tors for random variables.

In the last chapter we saw that the unobserved variables in our models, the ys,
could be regarded either as parameters or as random variables. We shall therefore
need to consider the estimation and prediction problems to which these give rise.

2.2 Estimation

With one exception, the estimation problems posed by our models for unobserved
variables are standard and straightforward and therefore require no special dis-
cussion. Thus, in the notation introduced in Sect. 1.1, if the ys are to be regarded as
parameters they are no different from the 0s and can, in principle at least, be
estimated by standard methods. The important exception occurs with latent vari-
able models where the number of ys may be proportional to the sample size. The
asymptotic theory which is used to support the method of maximum likelihood in
such cases, for example, requires the sample size to go to infinity with the number
of parameters remaining fixed. In particular, this difficulty arises with the Rasch
model which we shall look at in more detail in Chap. 4.

2.3 Prediction

All that we can know about the random variables in a statistical model is contained
in their distribution conditional on all else that is known at the time the prediction
has to be made. Any prediction for a random variable, based on a single number,
will then be some measure of location of that distribution—often the mean. The
key step, which lies behind all subsequent analysis, is then the determination of the
relevant conditional distribution. In the remainder of this chapter we shall there-
fore set out the theory which is common to all of the models mentioned in Chap. 1
and which will be worked out in more detail in the following chapters.
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2.4 Some Basic Distributional Results

All of the diverse procedures we shall meet share the same basic structure. There
are two classes of variable to be distinguished: the observed, denoted by x and the
unobserved variables, denoted by y. The model, whatever the particular applica-
tion, specifies the joint probability distribution of x and y but any inference has to
be based on x alone since that is all that we can observe. The relationship between
the two joint distributions is

fx) = [f(x, y)dy (2.1)

where the integral is over the range space of y and which, for reasons stated in
Chapter 1, we have assumed y to be continuous. For the moment, any unknown
parameters on which the distributions depend are to be understood, even though
they are not made explicit. It is clear that further progress depends upon being able
to specify the link between x and y and then this must be added to the specification.
Equation (2.1) may place some restrictions on what models are possible. If, for
example, we factorise the joint distribution as f(x, y) = f(x)f(y|x), the factor f(x)
can be taken outside the integral where it cancels with the same factor on the left
hand side. This produces the trivial and otherwise obvious result that the condi-
tional distribution of y given x must integrate to one. A more interesting case arises
if we make the alternative factorisation f(x, y) = f(y)f(x]y), for then we have

f) = [fO)f (xly)dy (2.2)

It is clear from this equation that, though it does place some restrictions on the
choice of the two distributions within the integral, the latter are not uniquely
determined by Eq. (2.2). Once one member of the pair {f(y), f(x|y)} is specified
the other is determined by Eq. (2.2). Thus, in general, there will be infinitely many
such pairs satisfying Eq. (2.2). This representation, and the associated equations,
will form the starting point of almost every chapter. We shall illustrate the inde-
terminacy by a simple example in Chap. 3.

There is one important example of the situation we have described which is of
considerable generality and widespread application, especially to latent variable
models. This arises when the xs are assumed to be mutually independent, given
y. That is, we suppose that

fely) = [ AGly) 23)
and we let
fxily) = F(x:)G(ou)exp(aix;) (2.4)
with

o; = 0;(0) + o (D)yr + o (2)y2 + ... + o (m)ym (2.5)
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The probability function in Eq. (2.4) is known as the one-parameter exponential
family. The family includes both continuous and discrete distributions—among
which are the normal, Poisson, gamma distributions and many others. The
parameter o; is known as the canonical parameter and we have supposed in Eq.
(2.5) that it is a linear function of the unobserved variables. First, under these
assumptions, we start from the conditional distribution of y given x, given by

fxy)

flx)

_ SOy
JrO)f(xly)dy

Next we substitute from Eq. (2.4) into Eq. (2.3) and then use the expression
given by Eq. (2.6). If we look first at the parts which depend on the xs we note that
the factor [] y(x;) occurs in both numerator and denominator of Eq. (2.6) and thus
cancels. In the remainder, xs only occur in the sums ) a;x;. So if we substitute the
expression for o; from Eq. (2.5) the sum becomes Zj yiXj where X; = > x;oi(i). It

flylx) =
(2.6)

is clear, therefore, that the distribution of y given x depends on the xs only through
the m linear functions {X;}.

As we shall see later, this result has important practical implications. It supports
the widespread empirical practice of choosing linear functions of the variables as
indicators of an underlying latent variable. Furthermore, it delineates the cir-
cumstances under which such a practice may be justified. A fuller account of these
manipulations will be found in Bartholomew et al. (2011),
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