Chapter 2
Electromagnetic Wave Propagation
Fundamentals

2.1 Maxwell’s Equations

Here we give a brief summary of the features of the theory that are needed to
understand the formation, emission and propagation of electromagnetic waves,
in the CGS system. The quantities are the electric field intensity E, the electric
displacement D, the magnetic field intensity H, the magnetic induction B, and the
electric current density J. The electric charge density is designated by p.

The relations of the five vector fields and one scalar field which are required
to (properly) describe the electromagnetic phenomena are given by Maxwell’s
equations. These are conveniently divided into several groups. Some of the field
components are related by the properties of the medium in which they exist. These
are the so-called material equations

J—oF exY
D=c¢E (2.2)
B=pH (2.3)

o, ¢ and p are scalar functions that are almost constant in most materials. For the
Gaussian CGS system the values of ¢ and p are unity (= 1) in vacuum, while (2.1)
is the differential form of Ohm’s law, where o is the specific conductivity.

Maxwell’s equations proper can now be further divided into two groups: The first
group involves only the spatial structure of the fields
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26 2 Electromagnetic Wave Propagation Fundamentals

while the second group includes time derivatives

1.
VxE =—B (2.6)

C
4 1.
VxH="TyJg4+-D
C C

2.7

Taking the divergence of (2.7) the left side of the resulting equation is found to
be equal to zero (see Appendix A). If we use (2.4), we obtain

V-J+p=0] : (2.8)

that is, charge density and current obey a continuity equation. This leads to the
conservation of energy including electromagnetic radiation under the Poynting
Vector:

|S|=i|ExH| ; (2.9)
41

2.2 Plane Waves in Nonconducting Media

Consider a homogeneous, nonconducting medium (o = 0) that is free of currents
and charges. In rectangular coordinates each vector component u of E and H obeys
the homogeneous wave equation

Viu— %u =0/ , (2.10)
where
¢
v = N (2.11)
is a constant with the dimension of velocity. For the vacuum this becomes
v=c. (2.12)

When Kohlrausch and Weber in 1856 obtained this result experimentally, it
became one of the basic facts used by Maxwell when he developed his electro-
magnetic theory predicting the existence of electromagnetic waves. Eventually this
prediction was confirmed experimentally by Hertz.
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Equation (2.10) is a homogeneous linear partial differential equation of second
order. The complete family of solutions forms a wide and sometimes rather
complicated group. No attempt will be made here to discuss general solutions, rather
we will restrict our presentation to the properties of the harmonic waves.

u = uye' FEeD (2.13)

is a solution of (2.10) if the wave number k obeys the relation

="uw (2.14)

This can be confirmed by the substitution of (2.13) into (2.10). If we set
¢ = kx + ot (2.15)

where ¢ is the phase of the wave, we see that points of constant phase move with
the phase velocity

=< |, (2.16)

w
NGE

vV =

This gives a physical meaning to the constant v appearing in (2.10). Introducing
the index of refraction n as the ratio of ¢ to v this becomes

c c
= _ = =—kl| . 2.17
n=- JER - (2.17)

For plane electromagnetic waves, each component of £ and H will have
solutions (2.13) but with an amplitude, u, that generally is complex. The use of
(2.13) permits us to introduce some important simplifications. For a traveling plane
wave

A(x,t) = Ag e koD Ao, k,w = const., (2.18)
A=—iwA, (2.19)

A =—-0’4, (2.20)
V-A=ik-A, (2.21)
VA = —k*A. (2.22)

The E and H fields of an electromagnetic wave are not only solutions of the
wave equation (2.10), but these also must obey Maxwell’s equations. Because of
the decoupling of the two fields in the wave equation, this produces some additional
constraints.
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In order to investigate the properties of plane waves as simply as possible, we
arrange the rectangular coordinate system such that the wave propagates in the
positive z direction. A wave is considered to be plane if the surfaces of constant
phase form planes z = const. Thus all components of the E and the H field will be
independent of x and y for fixed z; that is,

JE F OE
=0, —*t=0, = =0,
0x 0x 0x
2.23
OE, IE, dE. (2.23)
= 0 s —_— 0 s _— O s
dy dy dy

and a similar set of equations for H. But according to Maxwell’s equations (2.4)
and (2.5) with p = 0 and ¢ = const.

dE 8& dE, —0 and oH, 8& 0H, _o.
0x ay dz ax ay 0z
Because of (2.23) this results in
E H.
I =0 and 9H, =0/ . (2.24)
0z 0z

From the remaining Maxwell’s equations (2.6) and (2.7) we similarly obtain

-=0 d O
= ant =
ot ot

o . (2.25)

Therefore both the longitudinal components E, and H, must be constant both in
space and time. Since such a constant field is of no significance here, we require that

|E.=0, H.=0| (2.26)

that is, the plane electromagnetic wave in a nonconducting medium is fransverse
The remaining components have the form of traveling harmonic waves (as given
by (2.13)). The only components of (2.6) and (2.7) which differ from zero are

oE . M 0H, 0H, i oE,
dz ¢ ot dz ¢ o’

and (2.27)
E, W oH, 0H, g 0E,

9z ¢ ot 9z ¢ ot
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Applying the relations (2.19) and (2.21) for plane harmonic waves, we find

JdE, . uwo- iow
=ikE,=—-—H,=—H,,
0z 1B c c 7
o (2.28)
ke, =EH =2y
0z ¢ c
resulting in
ck ck
E-H=FH.+E,H =——E.E,+ —E,E, =0,
wp wp
E-H=0] . (2.29)

E and H are thus always perpendicular; together with the wave vector k, these
form an orthogonal system. For the ratio of their absolute values, (2.28) and (2.14)
result in

E
|| = || % . (2.30)

The unit of this intrinsic impedance of the medium in which the wave propagates
is the Ohm (Q). In a vacuum it has the value

Zy=376.73Q. (2.31)

Finally, the energy flux of the Poynting vector of this wave is of interest. We find

1S =< [ g2, (2.32)
A\ u

and S points in the direction of the propagation vector k. The (time averaged)
energy density, U, of the wave is then

1
U:S—(eE-E*JrMH-H*). (2.33)
/4

In using (2.30) we find that (2.33) becomes

v=_"F? (2.34)
4

The time averaged Poynting vector is often used as a measure of the intensity of the
wave; its direction represents the direction of the wave propagation.
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2.3 Wave Packets and the Group Velocity

A monochromatic plane wave
u(x,t) = A et e (2.35)

propagates with the phase velocity
0]
=—, 2.36
V=g (2.36)

If this velocity is the same for a whole range of frequencies, then a wave packet
formed by the superposition of these waves will propagate with the same velocity.
In general, however, the propagation velocity, v, will depend on the wave number k.
Then such wave packets have some new and interesting properties. A wave with an
arbitrary shape can be formed by superposing simple harmonic waves

u(x,t) = A(k) et®=eD g | (2.37)

=]

where A(k) is the amplitude of the wave with the wave number k. The angular
frequency of these waves will be different for different k; this distribution is

w = wk) (2.38)

and it will be referred to as the dispersion equation of the waves. If A(k) is a fairly
sharply peaked function around some k¢, only waves with wave numbers not too
different from k( will contribute to (2.37), and quite often a linear approximation
for (2.38)

d
wk) = wo + d—: (k — ko) (2.39)

0

will be sufficient. The symbol after the derivative indicates that it will be evaluated
at k = ko. Substituting this into (2.37) we can extract all factors that do not depend
on k from the integral, obtaining
t)] dk .
0

u(x,t)z\/lz_ﬂexp[i(%loko—wo)t]_/ A(k)exp[ik(x— %
(2.40)
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According to (2.37), at the time ¢ = 0 the wave packet has the shape

u(x,0) = A(k) et* dk .

=]

Therefore the integral in (2.40) is u(x’,0), where x’ = x t. The entire

expression is

dw
- E’o

- wo) z} . (2.41)
0

The exponential in (2.41) has a purely imaginary argument and therefore is only a
phase factor. Therefore, the wave packet travels undistorted in shape except for an
overall phase factor with the group velocity

d
) = S —
u(x,t) u(x P

w dw
t,0 ilko —
0 )p[(‘) dk

_da)

This is strictly true if the angular frequency is a linear function of k. If (k) is more
general, the group velocity depends on wave number, and the form of the wave
packet (made up of waves with a finite range of wave numbers) will be distorted in
time. That is, the pulse will disperse.

Whether phase velocity (2.36) or group velocity (2.42), is larger depends on the
properties of the medium in which the wave propagates. Writing (2.36) as

w=kv,
one finds
do A (2.43)
— =V, =V —. .
ak e dk
Recalling the definition of the index of refraction (2.17)
c
n=-—
v
and that the wavelength is given by
21
A=—, 2.44
A (2.44)

we see that normal dispersion dn/dA < O in the medium corresponds to
dv/dk < 0. In a medium with normal dispersion therefore v, < wv. Only for
anomalous dispersion will we have vy > v.
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Energy and information are usually propagated with the group velocity. The
situation is, however, fairly complicated if propagation in dispersive media is
considered. Details can be found in Sommerfeld (1959).

2.4 Plane Waves in Conducting Media

In Sect. 2.2 the propagation properties of plane harmonic waves in a nonconducting
(o0 = 0) medium have been investigated. Now this assumption will be dropped
so that ¢ # 0, but we still restrict the investigation to strictly harmonic waves
propagating in the direction of increasing x

E(x,1) = Eg el®0 (2.45)

Both E and k are complex constants. Making use of (2.19)—(2.22), we have

[kz—(i—ﬁ‘w2+i4”‘zf“’)“5} —o| . (2.46)

If these equations are to be valid for arbitrary E or H (of the form (2.45)) the
square bracket must be zero, so that the dispersion equation becomes

2 4
K= (1 n iﬂ) . (2.47)
C we

The wave number k thus is indeed a complex number. Writing

k=a+ib, (2.48)
we find
v | (22 4 (2.49)
a=Jep— |= — )
MC Ew
b @ |\ LI, (4 T (2.50)
= Jep— | = — ) - .
c |2 Ew

and the field therefore can be written

E(x,t) = Eo e ¥ gllax—on (2.51)
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Thus the real part of the conductivity gives rise to an exponential damping of
the wave. If (2.51) is written using the index of refraction » and the absorption
coefficient k,

w . n
E(x,t) = Egexp (—; n/cx) exp[lw (zx—t)] , (2.52)
we obtain
1 470 \? (2.53)
nk = Jep \ > + ( co )

=
Il
5
=
N =
_I_
—
N
h
)
~
[} %)
_|_

(2.54)

2.5 The Dispersion Measure of a Tenuous Plasma

The simplest model for a dissipative medium is that of a tenuous plasma where free
electrons and ions are uniformly distributed so that the total space charge density is
zero. This model was first given by Drude to explain the propagation of ultraviolet
light in a transparent medium, but this model was later applied to the propagation of
transverse electromagnetic radio waves in a tenuous plasma.

The free electrons are accelerated by the electric field intensity; their equation of
motion is

meV = mei = —e Eg e 1" (2.55)
with the solution
y=—C Eyeio=_i-° E. (2.56)
1Me @ Me W

Equation (2.56) describes the motion of the electrons. Moving electrons, however,
carry a current, whose density is

Ne?

E =oE. (2.57)

Me @

J =—Zeva =—Nev=1
o
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This expression explains why the ions can be neglected in this investigation. Due
to their large mass (m; ~ 2 x 10° m,), the induced ion velocity (2.56) is smaller
than that of the electrons by the same factor, and since the charge of the ions is the
same as that of the electrons, the ion current (2.57) will be smaller than the electron
current by the same factor.

According to (2.57) the conductivity of the plasma is purely imaginary:

~ Né?
o=1i ) (2.58)
Me @
Inserting this into (2.47) we obtain, for a thin medium with ¢ ~ 1 and p ~ 1
2 2
2 _ @ @p
where
, 4mNeé?
w, = (2.60)
me

is the square of the plasma frequency. It gives a measure of the mobility of the
electron gas. Inserting numerical values we obtain

% _go97.] N 2.61)
kHz cm™3 )

if we convert (2.60) to frequencies by v = w/2m. For w > wp, k is real, and we
obtain from (2.36)

v (2.62)

w2

D
1a)2

for the phase velocity v and so v > ¢ for w > wp. For the group velocity it follows
from (2.42)

do 1
Vo = — = s
£ dk dk/dw
so that
wz
vy =cyf1— aTZ (2.63)
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and vy < ¢ forw > wy,. Both v and v, thus depend on the frequency w. For w = wy,
v = 0; thus for waves with a frequency lower than w,, no wave propagation in the
plasma is possible. The frequency dependence of v and v, are in the opposite sense;
taking (2.62) and (2.63) together the relation

vy = c? (2.64)

is obtained.
For some applications the index of refraction is a useful quantity. According to
(2.17) and (2.59) it is

n=/1--L1 . (2.65)

Electromagnetic pulses propagate with the group velocity. This varies with
frequency so that there is a dispersion in the pulse propagation in a plasma. This
fact took on a fundamental importance when the radio pulsars were detected in 1967.
The arrival time of pulsar pulses depends on the frequency: The lower the observing
frequency, the later the pulse arrives. This behavior can easily be explained in terms
of wave propagation in a tenuous plasma, as the following discussion shows.

The plasma frequency of the interstellar medium (ISM) is much lower
than the observing frequency. For example, in the diffuse ISM, N is typically
1073-10"" em™3, so vp is in the range 2.85-0.285kHz; however, the observing
frequency must be v > 10 MHz in order to propagate through the ionosphere of the
earth. This is a reason for low frequency satellites or an antenna on the Moon. For
Uy, WE can use a series expansion of (2.63)

L_1f 1% (2.66)
vy ¢ 22 '

with high precision. A pulse emitted by a pulsar at the distance L therefore will be
received after a delay

L L L
d/ 1 1 /vy\2 1 e 1
= | —~- 1+=-(-2) )dl=- 1 —N() | dl
B /vg c/(+2<v)) c/(+27rmev2 ())
0 0 0
2 1 L
e
= — [ N() dl. 2.67
B 27'rcme 2/ NO ( )
0

The difference between the pulse arrival times measured at two frequencies v; and
v, therefore is given by
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Fig. 2.1 Dispersion measure, DM, for pulsars at different galactic latitudes (adapted from
B. Klein, unpublished)
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The quantity fOL N(I)dl is the column-density of the electrons in the intervening
space between pulsar and observer. Since distances in astronomy are measured in
parsecs (1 pc = 3.085677 x 10'8 cm), it has become customary to measure N (/) in
cm ™3 but d/ in pc. The integral is referred to as the dispersion measure (Fig.2.1)

L
v [ () o) 2.69)
cm pc
0

and therefore we find

At [ DM 1 1
5 134x10 [ } s 2.70)
(MHZ) (MHZ)
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or

@=4.148x109[ DM} L _ 12 . (2.71)
us ( )

em= el ()" (it

Since both the time delay Atp and the observing frequencies v; and v, can be
measured with high precision, a very accurate value of DM for a given pulsar can
be determined from

DM W A 1 L
—— =2.410x 10 s — S} (2.72)
cm™— pc s (va-) (+%)

MHz MHz

Provided the distance L to the pulsar is known, this gives a good estimate of the
average electron density between observer and pulsar. However since L is usually
known only very approximately, only approximate values for N can be obtained in
this way. Quite often the opposite procedure is used: From reasonable guesses for
N, a measured DM provides information on the unknown distance L to the pulsar.

Dispersion in the ISM, combined with a finite pulse width, sets a limit to the fine
structure one can resolve in a pulse. The frequency dependence of the pulse arrival
time is tp from (2.67). This gives a condition for the bandwidth b needed to resolve
a feature in a time 7.

() 2 ey el B e

cm—3 pc

Since the pulses will have a finite width in both time and frequency, a differential
form of (2.73) will give a limit to the maximum bandwidth that can be used at a
given frequency and DM if a time resolution 7 is wanted. This will be rediscussed
in the context of pulsar back ends.

Problems

1. There is a proposal to transmit messages to mobile telephones in large U.S. cities
from a transmitter hanging below a balloon at an altitude of 40 km. Suppose the city
in question has a diameter of 40 km. What is the solid angle to be illuminated?
Suppose mobile telephones require an electric field strength, E, of 200UV per
meter. If one uses S = E? /R with R = 50, 2, what is the E field at the transmitter?
How much power must be transmitted? At what distance from the transmitter would
the microwave radiation reach the danger level, 10 mW cm™2?
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Fig. 2.2 Pulse arrival times at frequencies from 1.24 to 1.5 GHz. The data were taken with the
CSIRO Parkes 64-m antenna by Andrew Lyne. The source is the pulsar B1356-60. The coherently
summed pulse shown at the botfom has a period of 128 ms. The dispersion measure, DM, is
295 cm 3 pc

2. Radiation from an astronomical source at a distance of 1.88kpc, (= 7.1 x
10?! cm) has a flux density of 10°Jy over a frequency band of 600Hz. If it is
isotropic, what is the power radiated? Suppose the source size is 1 mas (see (1.34)).
What is the value of Tg?

3. Suppose that vppase = W What is vgroup? Evaluate both of these
quantities for Ay = % Ac.

4. There is a 1D wave packet. At time ¢ = 0, the amplitudes are distributed as
a(k) = ag exp(—k?/(Ak)?), where ay and Ak are constant. From the use of Fourier
transform relations in Appendix A, determine the product of the width of the wave
packet, Ak, and the width in time, At.

5. Repeat problem 7 with a(k) = ag exp(—(k — ko)?/(Ak)?). Repeat for a(k) =
ap for k| < k < ky, otherwise a(k) = 0.

6. Assume that pulsars emit narrow periodic pulses at all frequencies simultane-
ously. Use (2.67) to show that a narrow pulse (width of order ~107°s) will traverse
the radio spectrum at a rate, in MHz s™!, of b = 1.2 x 107* (DM)~! v [MHz]*.
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7. (a) Show that using a receiver bandwidth B will lead to the smearing of a very
narrow pulse, which passes through the ISM with dispersion measure DM, to a
width At = 8.3 x 103 DM [v [(MHz)] 3 B's.

(b) Show that the ionosphere (electron column density 10'2cm™2, referred to as
1 TEC) has little influence on the pulse shape at 100 MHz.

8. (a) Show that the smearing At, in milli seconds, of a short pulse is (202/ VMHy)®
DM ms per MHz of receiver bandwidth.

(b) If a pulsar is at a distance of Skpc, and the average electron density is
0.05cm™3, find the smearing at 400 MHz. Repeat for 800 MHz.

9. Suppose you would like to detect a pulsar located at the center of our Galaxy.
The pulsar may be behind a cloud of ionized gas of size 10 pc, and electron density
10° cm™3. Calculate the dispersion measure, DM. What is the bandwidth limit if the
observing frequency is 1 GHz, and the pulsar frequency is 30 Hz?

10. A typical value for DM is 30 cm ™ pc, which is equivalent to an electron column
density of 10%° cm™2. For frequencies of 400 and 1,000 MHz, use (2.71) to predict
how much a pulse will be delayed relative to a pulse at an infinitely high frequency.

11. To resolve a pulse feature with a width of 0.1 us at a received frequency of
1,000MHz and DM = 30cm™ pc, what is the maximum receiver bandwidth?

12. In Fig.2.2, about 10 % of the pulse width is 10 ms. What bandwidth is needed
to resolve this pulse for a DM = 295 cm ™3 pc?
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