
Chapter 2
Evolution Strategies

Prior to introducing the particular algorithms in Sect. 2.2, the more general founda-
tions of evolution strategies are introduced in Sect. 2.1. To start with, the definition
of an optimization task as used throughout this book is given in Sect. 2.1.1.
Following [58], Sect. 2.1.2 presents a discussion of evolution strategy metaheuristics
as a special case of evolutionary algorithms. In particular, the components of such
a metaheuristic—namely recombination, mutation, evaluation and selection—are
described in a general way. Due to the particular importance1 of the mutation
operator for evolution strategies (in R

n), it is discussed in quite some detail in
Sect. 2.1.3.

2.1 Introduction

2.1.1 Optimization

Evolution strategies are particularly well suited (and developed) for nonlinear
optimization tasks, which are defined as follows (see e.g. [17], Sect. 18.2.1.1):

f .x/ D minŠ for x 2 R
n where (2.1)

gi .x/ � 0; i 2 I D f1; : : : ; mg; hj .x/ D 0; j 2 J D f1; : : : ; rg; (2.2)

1This statement, however, is not meant to support the myth mentioned explicitly by Rudolph [58]:
“Since early theoretical publications mainly analyzed simple ES without recombination, somehow
the myth arose that ES put more emphasis on mutation than on recombination: This is a fatal
misconception! Recombination has been an important ingredient of ES from the early beginning
and this is still valid today.”
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and the set

M D fx 2 R
n W gi .x/ � 0;8i 2 I; hj .x/ D 0;8j 2 J g (2.3)

is called the set of feasible points and it defines the search space of the optimization
problem. A point x� 2 R

n is called a global minimum, if

f � D f .x�/ � f .x/ for all x 2M (2.4)

Conversely, it is called a local minimum if the above inequality only holds for x
within an �-environment U�.x/ �M .

Formulating an optimization problem as a minimization task is equivalent to
searching for a maximum or for a given target value, since maximization of f can be
replaced by minimization of�f and a target value Nf can be attained by minimizing
�. Nf ; f / with an arbitrary distance measure2 �.

In this definition of an optimization task it is completely sufficient if the
codomain is completely ordered, so that the inequality in Eq. 2.4 can be applied.
Throughout this book, we will always deal with the codomain R only. Moreover,
we will not explicitly deal with the handling of constraints (e.g., as defined by
Eq. 2.2), and refer the interested reader to Sect. 2.3 where literature references point
to state-of-the-art techniques in constraint handling. A special case of constraints
are so-called box constraints, as defined below:

g1.x/ D l� x � 0 where l D .l1; : : : ; ln/T 2 R
n

g2.x/ D x � u � 0 where u D .u1; : : : ; un/T 2 R
n (2.5)

Vectors l and u are called lower and upper bounds, respectively. Box constraints
restrict the search space to the hyperrectangle Œl1; u1� � : : : � Œln; un� and are taken
into account for the implementation of algorithms described in this book.

In the field of evolutionary algorithms, the vector x is often called the decision
vector (and its parameters decision parameters), and its objective function value
f .x/ is also called the fitness value.

2.1.2 Evolution Strategies as a Specialization of Evolutionary
Algorithms

Following [8] and [58], evolution strategies are described here as a specialization
of evolutionary algorithms. The general framework of an evolutionary algorithm is
presented in Algorithm 2.1. During initialization, the first generation, consisting of

2See Sect. 12.2.1 in [17] for the definition of a distance measure.
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Algorithm 2.1 General outline of an evolutionary algorithm
Initialization
repeat

Recombination
Mutation
Evaluation
Selection

until Termination criterion fulfilled

one or more individuals, is created, and the fitness of its individuals is evaluated.
After initialization, the so-called evolution loop is entered, which consists of the
operators recombination, mutation, evaluation and selection. Recombination creates
new individuals, also called offspring, from the parent population. Two major
types of recombination, dominant and intermediate recombination, are typically
distinguished: In dominant recombination, a property of a parent individual is
inherited by the offspring, i.e., this property dominates the corresponding property
of the other individuals. For intermediate recombination, the properties of all
individuals are taken into account, such that, e.g., in the simplest case, their mean
value is used.

The mutation operator provides the main source of variation of offspring in an
evolution strategy. Based on sampling random variables, properties of individuals
are modified. The newly created individuals are then evaluated, i.e., their fitness
values are calculated. Based on these fitness values, selection identifies a subset of
individuals which form the new population which is used in the next iteration of the
evolution loop. The loop is terminated based on a termination criterion set by the
user, such as reaching a maximum number of evaluations, reaching a target fitness
value, or stagnation of the search process.

According to [58], evolution strategies as a specific instantiation of evolutionary
algorithms are characterized by the following four properties:

• Selection of individuals for recombination is unbiased.
• Selection is a deterministic process.
• Mutation operators are parameterized and therefore they can change their

properties during optimization.
• Individuals consist of decision parameters as well as strategy parameters.3

The generic framework of an evolutionary algorithm then specializes into a
.�=�; �; �/-ES,4 as described in detail in Algorithm 2.2. Recombination and muta-
tion are summarized here under the term variation. In addition to the description

3In the case of the (1C1)-ES the strategy parameters may be assigned to the algorithm itself instead
of the individual, because only one set of strategy parameters is needed. This also holds for any
strategy parameters which are not needed on the individual level (for example the covariance matrix
of the CMA-ES).
4Algorithm 3 in [58].
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Algorithm 2.2 .�=�; �; �/-ES
Initialization of P .0/ with � individuals
8p 2 P .0/ W p:‰:Age 1, p:f  f .p:x/

t  0

repeat
Q.t/  ;
for i D 1! � do

Sample � parents p1; : : : ; p� 2 P .t/ uniformly at random
q Variation.p1; : : : ; p�; ‰V /

q:‰:Age 0, q:f  f .q:x/

Q.t/  Q.t/ [ fqg
end for
P .tC1/  Selection of the � best individuals from Q.t/ [ fp 2 P .t/ W p:‰:Age < �g
Update ‰V

8p 2 P .tC1/ W p:‰:Age p:‰:AgeC 1

t  t C 1

until Termination criterion fulfilled

given in [58] (Algorithm 3), the variation operator of a .�=�; �; �/-ES is defined
here by means of a parameter set ‰V , and the evaluation operator is explicitly
mentioned. A population at generation t � 0 is denoted P .t/ and is a set of
individuals. An individual p 2 P .t/ is a tuple .x; ‰/ for x 2 M � R

n, with M

as in Eq. 2.3. The sets ‰ and ‰V are arbitrary finite sets representing the strategy
parameters. Since these parameters are modified internally during execution of the
algorithm, they are called endogenous strategy parameters. The number of parent
individuals is denoted as �, the number of offspring individuals as �, and � denotes
the number of parents taken into account for generating a single offspring by means
of recombination. For these parameters, �; �; � 2 N and � � � holds.

� 2 N[f1g represents the largest age which can be reached by any individual in
the population. In contrast to endogenous parameters, �; �; � und � are to be set by
the user of the algorithm, such that they are called exogenous strategy parameters.

The setting of � has a direct impact on the selection operator. Usually, either
� D 1 (one generation maximum lifetime) or � D 1 (infinite maximum lifetime)
is used. The former case is also called comma-selection, the latter plus-selection.
Using the standard notation of evolution strategies, this is expressed as .�=�; �/-ES
and .�=�C�/-ES, so that � is not explicitly stated any more. Using � <1 requires
the condition � � � to hold.

2.1.3 Mutation in R
n

2.1.3.1 The Multivariate Normal Distribution

In [58], three guiding principles for the design of mutation operators are introduced,
namely:



2.1 Introduction 11

• Any point of the search space needs to be attainable with probability strictly
larger than zero by means of a finite number of applications of mutation.

• Mutation should be unbiased, which can be achieved by using a maximum
entropy distribution.5

• The operator is parameterized, such that the extent of variation can be controlled.

In R
n, these requirements are fulfilled by a multivariate normal distribution.

An n-dimensional random vector X is multivariate normally distributed with
expectation Nx 2 R

n and positive definite6 covariance matrix C 2 R
n�n if its

probability density function is defined according to:

fX.x/ D 1

.2�/
n
2 .det C/

1
2

exp

�
�1

2
.x � Nx/T C�1.x � Nx/

�
(2.6)

(see p. 86 in [28]). In short notation, this is typically written as X � N.Nx; C/,
where N.Nx; C/ denotes the multivariate normal distribution in its general form. In
mathematical equations, N.Nx; C/ is sometimes used like a vector, meaning a vector
which is actually sampled according to the distribution given. In other words, instead
of writing x0 D x C X where X � N.0; C/, it is also possible to simply write
x0 D xCN.0; C/.

Due to the positive definiteness of the covariance matrix C, the following
eigendecomposition exists (Theorem 1a in [58]):

C D BD2BT (2.7)

Here, B denotes an orthogonal matrix,7 the columns of which are the eigenvectors
of C. In [29], N.Nx; C/ is reduced to the distribution N.0; I/ by means of the
eigendecomposition given in Eq. 2.7, according to:

N.Nx; C/ � NxC BDN.0; I/ (2.8)

In the field of evolution strategies, the three special cases N.0; I/, N.0; diag.ı2//

and N.0; C/ are used for the definition of the most common algorithms. Figure 2.1
provides a sketch of the corresponding mutation ellipsoids, i.e., isolines of the
probability density functions, embedded in a hypothetical two-dimensional fitness
function.

The simplest case of generating the mutation x0 from x is based on using B D I
and D D 	I with a global step size ı 2 R

C for matrices B and D as used in Eq. 2.8.

5The normal distribution achieves maximum entropy among the distributions on the real domain.
(See [64] for more details.)
6A symmetric matrix A 2 R

n�n is positive definite iff xT Ax > 0 for all x 2 R
n n f0g [17].

7For an orthogonal matrix A, AAT D AT AD I holds.
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Fig. 2.1 Mutation ellipsoids representing N.0; I/, N.0; diag.ı2// and N.0; C/ (from left to right)

x0 D xC ı �N.0; I/ (2.9)

This corresponds with spheres with individual radii defined by ı, as indicated in the
left part of Fig. 2.1. This case of an offspring distribution is called isotropic.

To turn the spheres into anisotropic ellipsoids with main axes parallel to
the coordinate axes, as shown in the middle of Fig. 2.1, matrix D in Eq. 2.8 must
be turned into a diagonal matrix ı D .ı1; : : : ; ın/T 2 R

n with different entries on
the main diagonal. As in the previous case, B is a diagonal matrix:

x0 D xC Idiag.ı/N.0; I/

D xCN.0; diag.ı2// (2.10)

The length ratios of the main axes of the mutation ellipsoids depend on the
ratios between corresponding components of the vector ı. A rotation of mutation
hyperellipsoids with respect to the coordinate axes, as shown in the rightmost part
of Fig. 2.1, is achieved by using a covariance matrix C with off-diagonal entries
different from zero. This case is denoted by the term correlated mutation. In contrast
with the two previous cases, the matrix B is not just an identity matrix:

x0 D xC Bdiag.ı/N.0; I/

D xC BN.0; diag.ı2//

D xCN.0; C/ (2.11)

The choice of one of the three cases explained above has a direct impact on
the complexity of the endogenous parameters controlling the multivariate normal
distribution. In general, if n denotes the dimensionality of the search space, the
number of endogenous strategy parameters in case of Eq. 2.9 is O.1/, i.e., constant.
In case of 2.10 a vector of size O.n/ of endogenous parameters is required,
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and adaptation of an arbitrary covariance matrix, i.e., a symmetric n � n-matrix,
according to Eq. 2.11, requires O.n2/ endogenous parameters.

For defining algorithm DR3 in Sect. 2.2.1 and for all algorithms based on the
CMA-ES, the so-called line distribution [31] is of special interest: For u 2 R

n, the
distribution N.0; uuT / is a multivariate normal distribution with the variance kuk2
in the direction of the vector u. It is the normal distribution with highest probability
of generating u.

2.1.3.2 Relationship Between Covariance Matrix and Hessian

In the previous section, using a multivariate normal distribution was motivated by
certain requirements which should hold for the mutation operator. In this section,
we will clarify why it is useful to use an arbitrary covariance matrix, as in Eq. 2.11,
for adaptation.

Any differentiable function f W Rn ! R can be approximated by a Taylor series
expansion in the vicinity of a position8 Qx 2 R

n. Cutting off the Taylor series after
the quadratic term, the following approximation is obtained:

f .x/ 	 f .Qx/C .x � Qx/Trf .Qx/C 1

2
.x� Qx/Tr2f .Qx/.x � Qx/ (2.12)

Here,rf .Qx/ denotes the gradient, andr2f .Qx/ is the symmetric, positive definite
Hessian, denoted by H in the following. For a quadratic function f , the Taylor
series expansion is exact, and H contains information about the shape of the isolines
of f . In general, these are ellipsoids, as shown in the rightmost part of Fig. 2.1.
Hansen describes the relationship between the Hessian H and the covariance matrix
C of a distribution N.0; C/ informally [29]. It is argued that using C D H�1 for
optimizing a quadratic function is equivalent to using C D I for optimizing an
isotropic function, such as the sphere function f .x/ D 1

2
xxT .

In other words: Adapting an arbitrary covariance matrix simplifies the opti-
mization by transforming the objective function into an isotropic function. A more
formal description of this topic can be found in Rudolph’s work, e.g., in the section
Advanced Adaptation Techniques in R

n in [58], and also in [55].

2.2 Algorithms

This section contains descriptions of the key variants of evolution strategies in
chronological order of their publication. On a high level, we differentiate between
the two main Sects. 2.2.1 and 2.2.2, with the first one corresponding with the time
frame 1964 until 1996.

8See Sect. 6.2.2.3 in [17].
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This first Sect. 2.2.1 describes five main algorithms, namely, the (1C1)-ES as the
historically first version of an evolution strategy and the .�; �/-MSC-ES (in [58]
also called CORR-ES) as the first evolution strategy which adapts an arbitrary
covariance matrix (see Sect. 2.1.3 for an explanation). The first derandomized
algorithm variants, DR1, DR2, and DR3, complete this selection of older variants of
evolution strategies. Their choice is motivated by the fact that they are derandom-
ization steps towards the CMA-ES (see also [63]).

The second main Sect. 2.2.2 describes modern evolution strategies, a term which
is used in this book to denote the CMA-ES and algorithms based on it. This
distinction might seem somewhat arbitrary, but in fact the development of the
CMA-ES defined a turning point in the history of evolution strategies, for two main
reasons: First, the CMA-ES is the first algorithm which adapts a covariance matrix
in a completely derandomized way. Second, the CMA-ES is seen by many authors
as the state of the art in evolution strategies (e.g., [6,13,15,26,35,58,63], and [66]).

2.2.1 From the (1C1)-ES to the CMA-ES

2.2.1.1 (1C1)-ES

The foundation of the first evolution strategy was laid in the 1960s at the Technical
University of Berlin by three students, namely Hans-Paul Schwefel, Ingo Rechen-
berg, and Peter Bienert. As described in [8] or [58], standard methods for solving
black-box optimization problems, such as gradient-based methods (see [44]), were
not able to deliver satisfactory solution quality for certain optimization problems
in engineering applications. Inspired by lectures about biological evolution, they
aimed at developing a solution method based on principles of variation and
selection. In its first version, a very simple evolution loop without any endogenous
parameters was used [59]. This algorithm generates a single offspring x0 D x C
.N1.0; 	/; : : : ; Nn.0; 	//T D xC	 �N.0; I/ from a single parent individual x 2 R

n.
If the offspring performs better than its parent (in terms of fitness), it becomes the
new parent. Otherwise, the parent remains. The standard deviation 	 of the normal
distribution was a fixed scalar value.

According to [53], by pure luck the value of 	 was chosen in a way that made
this first approach towards a (1C1)-ES successful. Only later on, the necessary step
size adaptation was added to the algorithm [52]. Based on two fitness functions,
the so-called corridor model9 and the so-called sphere model,10 a theoretical result

9The rectangular corridor model according to [8]: f1.x/ D c0 C c1 � x1 if the constraints gj .x/ W
xj � b with b 2 R

C for j 2 f2; : : : ; ng are fulfilled, f1.x/ D1 otherwise.
10The sphere model according to [8]: f2.x/ D c0 C c1 �PiD1

n .xi � x�
i /2.
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Algorithm 2.3 (1C1)-ES
P0  fxg

  f .x/

pS  0

initialize archive A for storing successful mutations
t  0

repeat
t  t C 1

x0  xC 	 � N.0; I/

0 f .x0/

if 
0 < 
 then
x x0


  
0

store success in A

else
store failure in A

end if
Pt  fxg
if t mod n D 0 then

get #successes and #failures from at most 10n entries in A

pS D #successes
#successesC#failures

	 0 
8<
:

	 � c if pS < 1=5

	=c if pS > 1=5

	 if pS D 1=5
end if
	  	 0

until termination criterion fulfilled

was derived for introducing step size adaptation: Maximum convergence velocity
(i.e., speed of progress of the optimization) is achieved when about 1/5 of all
mutations are successful, i.e., improvements over their parent.11 This insight led
to the development of the so-called 1/5-success rule for step size adaptation. If
about 1/5 of all mutations are successful, the step size is optimal and no adaptation
is required. If the success rate falls below 1/5, the step size needs to be reduced.
If it grows above 1/5, the step size needs to be increased. To obtain the new
step size 	 0 D 	 � cf�1;1g, the previous 	 is decreased or increased, respectively,
by multiplication or division by 0:817 � c � 1. The recommended value of
c D 0:817 was derived by Schwefel according to theoretical arguments about step
size adaptation speed [61]. The step size adaptation according to the above rule is
applied each n iterations of the algorithm, and the success rate pS is measured over
a sliding window of the last 10 � n mutations [8]. The pseudocode of the (1C1)-ES
according to [8] is shown in Algorithm 2.3.

11The exact values are 0:184 and 0:2025 for the corridor and sphere models, respectively [8].
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2.2.1.2 .�; �/-MSC-ES

The .�; �/-MSC-ES12 was the very first evolution strategy capable of adapting
an arbitrary covariance matrix. The algorithm was developed by Schwefel [62]
and is also called .�; �/-CORR-ES [58]. In this strategy, the covariance matrix is
obtained as a product of n.n�1/=2 rotation matrices, where a single rotation matrix
Rij for a rotation angle ˛ between axis i and axis j , with i; j 2 f1; : : : ; ng and
i ¤ j , is given by an identity matrix, extended by the entries R.i; i/ D R.j; j / D
cos ˛ij and R.i; j / D �R.j; i/ D � sin ˛ij.

Indeed, this method is able to generate arbitrary correlated mutations, as proven
by Rudolph [55]. In the framework of the .�; �/-MSC-ES, endogenous strategy
parameters are modified by means of the so-called self-adaptation principle. For
self-adaptation, an individual consists not only of the decision parameters x, but also
contains an additional vector 	 2 R

nC of step sizes and a vector ˛ 2 .��; ��n.n�1/=2

of rotation angles. The underlying idea of mutative step size adaptation is based
on the assumption of individuals with good settings of strategy parameters to
generate good offspring, such that the good strategy parameters survive selection.
Recombination of decision parameters and endogenous strategy parameters is
performed through global intermediary recombination, i.e., by averaging all of the
� parents. Concerning the exogenous strategy parameters, the local and global
learning rates � and � 0 need to be set. Following [8], after Schwefel [61], the settings
� D 1p

2
p

n
and � 0 D 1

2
p

n
are recommended, depending only on the problem

dimensionality n. Pseudocode of the .�; �/-MSC-ES is provided in Algorithm 2.4.
Concerning the population sizes, we are using � D 15 and � D 7 � � D 105

throughout this book, close to the recommendations in [63].

2.2.1.3 DR1

The .�; �/-MSC-ES as described in the previous section is based on mutative
self-adaptation for step sizes ı 2 R

nC. However, as Ostermeier et al. [47]
claim, self-adaptation of individual step sizes is not possible in the case of small
population sizes, and they identify two key reasons: First, a successful mutation of
the decision parameters is not necessarily caused by a good step size, but can also
be due to an advantageous instantiation of the normally distributed random vector
(i.e., a lucky sample). Second, there is a conflict between the goals of maintaining a
large variance of step sizes within one generation and avoiding too large fluctuations
of step sizes between successive generations. The first derandomized evolution
strategy, abbreviated DR1,13 solves the first problem by using the length of the most
successful mutation step within one generation (i.e., the one that yielded the best

12MSC is an abbreviation of mutative self-adaptation of covariances.
13In the original publication it is called .1; �/-ES with derandomized mutative step size.
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Algorithm 2.4 .�; �/-MSC-ES
initialize population
P .0/  f.x1; 	1; ˛1/; : : : ; .x�; 	�; ˛�/g
t  0

repeat
t  t C 1

// recombination
Nx 1

�

P�
iD1 xi

N	  1
�

P�
iD1 	i

N̨  1
�

P�
iD1 ˛i

for i D 1! � do
// mutation
� � 0 �N.0; 1/

	i  N	 � exp .�C � �N.0; I//
˛i  N̨ C ˇ �N.0; I/
C Qn�1

iD1

Qn
jDiC1 Rij

xi  NxC C � 	i �N.0; I/
// evaluation

i  f .xi /

end for
// selection
P .t/ are the � best .xi ; 	i ; ˛i / from 1 � i � �

until termination criterion fulfilled

offspring) for controlling step size adaptation [47]. The second problem is solved
by using a factor 
 2 f 5

7
; 7

5
g to provide sufficient variance of step sizes within one

generation, and to dampen14 this factor by applying an exponent ˇ with 0 < ˇ < 1

for step size adaptation, to reduce undesired fluctuations [47]. An offspring x0 of a
parent x is then generated as follows:

x0 D xC 
 � ı ˝ z where z D N.0; I/

Adaptation of step sizes ı is based on the most successful z (i.e., the normally
distributed vector sample which generated the best offspring during this generation),
which is first transformed as follows:


z D
�

exp
�
jz1j �

p
2=�

�
; : : : ; exp

�
jznj �

p
2=�

��T

Combined with the exponents ˇ and ˇscal 2 R for damping the adaptation, as
well as 
 and 
z of the best mutation, the new step sizes ı0 are obtained as follows:

ı0 D .
/ˇ � .
z/
ˇscal ˝ ı

14This way, adapting the step size by a factor 
 requires at least 1=ˇ > 1 generations.
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Algorithm 2.5 DR1
initialize x, ı .1; : : : ; 1/T

t  0

repeat
t  t C 1

for i D 1! � do
zi  N.0; I/
xi  xC 
i � ı˝ zi where P.
i D 5

7
/ D P.
i D 7

5
/ D 1

2


i  f .xi /

end for
sel i with best value of 
i

x xsel


zsel D
�
exp

�jzsel1 j �
p

2=�
�
; : : : ; exp

�jzseln j �
p

2=�
��T

ı .
sel/
ˇ
�

zsel

�ˇscal ˝ ı

until termination criterion fulfilled

Pseudocode of the DR1 evolution strategy is given in Algorithm 2.5. Concerning
the offspring population size �, a constant setting of � D 10, independently of
dimensionality n, was used in [47]. The DR1 algorithm is based on a single parent
individual (� D 1), and sometimes also denoted as .1; 10/-DR1-ES. Ostermeier
et al.[47] recommends for the exponents ˇ and ˇscal the following values:

ˇ D
p

1=n

ˇscal D 1=n

2.2.1.4 DR2

The DR2 evolution strategy15 represents the next step of derandomization for
evolution strategies [48]. The creation of an offspring by mutation is parameterized
by a global step size ı and local step sizes ıscal 2 R

n:

x0 D xC ı � ıscal ˝ z where z D N.0; I/

As in DR1, adaptation of step sizes is based on the most successful z. However, in
addition to information about the most successful mutation of the current generation,
the most successful mutation steps of previous generations are also taken into
account, thereby accumulating information over generations. The accumulation
takes place in a vector � 2 R

n, using a factor c 2 .0; 1� to control the weight of
previous generations in contrast to the current one:

�0 D .1 � c/ � � C c � zsel (2.13)

15In the original paper, the algorithm is called .1; �/-ES with derandomized mutative step size
control using accumulated information.
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Algorithm 2.6 DR2
initialize x, � 0, ı 1, ıscal .1; : : : ; 1/T

t  0

repeat
t  t C 1

for i D 1! � do
zi  N.0; I/
xi  xC ı � ıscal ˝ zi


i  f .xi /

end for
sel i with best value of 
i

�0 .1� c/ � �C c � zsel

ı0  ı �
�

exp

�
k�0k

p
n�
p

c
2�c

� 1C 1
5n

��ˇ

ı0
scal  ıscal ˝

�
j�0

i jp
c

2�c

C 7
20

�ˇscal

x xsel

� �0

ı ı0

ıscal  ı0
scal

until termination criterion fulfilled

Adaptation of step sizes ı and ıscal is then based on the updated mutation path �0:

ı0 D ı �
 

exp

 
k�0kp
n
p

c
2�c

� 1C 1

5n

!!ˇ

ı0scali
D ıscali �

 
j�0i jp

c
2�c

C 7

20

!ˇscal

8i 2 f1; : : : ; ng

Standard settings for the exponents ˇ and ˇscal as well as the parameter c are as
follows:

ˇ D
p

1=n

ˇscal D 1=n

c D
p

1=n

The pseudocode of the DR2 evolution strategy is given in Algorithm 2.6.

2.2.1.5 DR3

The DR3 evolution strategy [33], also called .1; �/-GSA-ES (generating set adap-
tation), is able to generate mutations according to an arbitrary multivariate normal
distribution, corresponding to the adaptation of an arbitrary covariance matrix
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according to Eq. 2.11. This process is not based on implicitly using a covariance
matrix, but on transforming an isotropic random vector z D N.0; I/ into a correlated
random vector y by multiplication with a matrix16 B D .b1; : : : ; bm/ 2 R

n�m.
As described in Sect. 2.1.3, this can be interpreted as superposition of multiple

line distributions. For the number m of column vectors, n2 � m � 2n2 holds, with
a smaller value of m providing a faster adaptation and a larger value of m a more
accurate adaptation. Like in DR1, for variation of the global step size ı 2 R a factor

 2 f 2

3
; 3

2
g with P.
i D 2=3/ D P.
i D 3=2/ D 1=2 is used. To guarantee an

approximately constant length of the column vectors in B, y is adapted by using a
factor cm. Based on its parents x, an offspring is then created as follows:

x0 D xC ı � 
 � y where y D cm � BN.0; I/

The adaptation of endogenous strategy parameters is based on the selected ysel

and 
sel. The column vectors of matrix B are updated according to:

b01 D .1 � c/ � b1 C c � .cu
selysel/

b0iC1 D bi 8i 2 f1; : : : ; m � 1g

Like with the previous versions of derandomized evolution strategies, the global
step size ı is adapted based on the selected 
sel, by using a damping exponent ˇ:

ı0 D ı � .
sel/
ˇ

For the exogenous parameters, the standard settings are given in [33] as follows:

c D
p

1=n

ˇ D p
1=n

m D 3

2
n2

cm D .1=
p

m/.1C 1=m/

cu D
p

.2 � c/=c

� D 10

The corresponding pseudocode of the DR3 evolution strategy is provided in
Algorithm 2.7.

16The column vectors of the matrix B form a so-called generating set, which motivates the
terminology generating set adaptation.
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Algorithm 2.7 DR3
initialize x, ı, B .0; N .0; .1=n/I// 2 R

n�m

t  0

repeat
t  t C 1

for i D 1! � do
zi  N.0; I/ where zi 2 R

m

yi  cm � Bzi

xi  xC ı � 
i � yi where P.
i D 2=3/ D P.
i D 3=2/ D 1=2


i  f .xi /

end for
sel i with best value of 
i

b .1� c/ � b1 C c � .cu
selysel/

ı0  ı � .
sel/
ˇ

B0  .b; b1; : : : ; bm�1/

x xsel, ı ı0 and B B0

until termination criterion fulfilled

2.2.2 Modern Evolution Strategies

2.2.2.1 .�W ; �/-CMA-ES

Algorithms DR1, DR2 and DR3, as described in Sect. 2.2.1, are derandomized
evolution strategies in the sense of adapting endogenous strategy parameters
depending on the selected mutation vector. This has also been called the first level
of derandomization [63]. In addition, the second level of derandomization aims at
the following goals [63]:

• Increase the probability of generating the same mutation step again.
• Provide a direct control mechanism for the rate of change of strategy parameters.
• Keep the strategy parameters unchanged in case of random selection.

The so-called CMA-ES, as introduced in [31], meets these goals by means of
two techniques, namely the covariance matrix adaptation, CMA and the cumulative
step size adaptation, CSA, for adapting a global step size. The description of
a CMA-ES as provided in [31] is focused on explaining these two techniques,
and recombination in case of � > 1 is not discussed at all. Therefore, we
will discuss the CMA-ES in this section as a .�W ; �/-CMA-ES with weighted
intermediary recombination, as described in [29] and [32].17 Using the notation for
evolution strategies as introduced in Sect. 2.1.2, the algorithm ought to be denoted
more precisely as .�=�W ; �/-CMA-ES, with index W denoting the weighted
recombination. However, the simplified notation is motivated by arguing that the
notation �=�W suggests two different numbers (� and �W ), although it is � in

17According to [32], the suggestion to use weighted recombination within the CMA-ES is due to
Ingo Rechenberg, based on personal communication in 1998.
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both cases. Here, we adopt the simplified notation, and denote the CMA-ES with
weighted recombination as .�W ; �/-CMA-ES.

Based on a parent x, an offspring x0 is then generated as follows:

x0 D xC 	BDz where z D N.0; I/

Matrices B and D result from an eigendecomposition of the covariance matrix C
according to Eq. 2.7, and 	 2 R denotes the global step size. After generating and
evaluating an offspring population of size � according to this mutation operator, the
� best individuals of the offspring population are selected and undergo weighted
intermediary recombination.

Weighted intermediary recombination is a generalization of classical global
intermediary recombination. Weighted intermediary recombination is based on
using � weights w1 � w2 � : : : � w� with

P�
iD1 wi D 1 for generating the

new parent hxi and the best mutation step hyi as weighted averages:

hxi D
�X

iD1

wi xi W�

hyi D
�X

iD1

wi BDzi W�

For adapting the strategy parameters, the so-called variance effective selection
mass �eff is required:

�eff D
 

�X
iD1

w2
i

!�1

According to [29], 1 � �eff � � holds, and for identical weights wi D 1
�

(8i 2 f1; : : : ; �g): �eff D �. In analogy with Eq. 2.13 for DR2, the strategy
parameter adaptation techniques, CMA and CSA, use so-called evolution paths
for accumulating strategy parameter information across several generations. The
.�W ; �/-CMA-ES uses two evolution paths, pc for the adaptation of the covariance
matrix and p	 for global step size adaptation. The evolution paths are updated as
follows:

p0c D .1 � cc/ � pc C h	

q
cc.2 � cc/�eff hyi

p0	 D .1 � c	 / � p	 C
q

c	 .2 � c	 /�eff BD�1BT hyi

For updating pc , the function h	 is used, which is defined according to:

h	 D
8<
:

1 if kp	 kp
1�.1�c	 /2.tC1/

<
�

7
5
C 2

nC1

�
E.kN.0; I/k/

0 otherwise
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The purpose of h	 is to avoid an update of pc to take information of the
current generation t into account, when kpck becomes too large. The expectation
E.kN.0; I/k/ of the length of a multivariate, normally distributed vector of dimen-
sionality n, can be approximated (based on the gamma function18) as follows:

E.kN.0; I/k/ D p2�.
nC 1

2
/=�.

n

2
/ 	 pn

�
1 � 1

4n
C 1

21n2

�

The covariance matrix adaptation is performed according to the equation below:

C0 D .1 � cl � c�/CC cl .pcpT
c C ı.h	 /C/C c�

�X
iD1

wi yi W�yT
i W� (2.14)

The first term in the summation represents the contribution of the previous
covariance matrix. The second term is called the rank-one-update and takes the
information accumulated in the evolution path pc into account. The third term, the
so-called rank-�-update, was introduced with the extension of the CMA-ES for
population sizes with � > 1 [46]. The global step size 	 is updated according to:

	 0 D 	 � exp

�
c	

d	

� kp	k
E.kN.0; I/k/ � 1

��

For the exogenous strategy parameters of the .�W ; �/-CMA-ES, the following
standard settings are defined in [29]:

� D 4C b3 ln nc

� D b�
2
c

wi D
ln . �C1

2
/� ln iP�

jD1 ln . �C1
2

/� ln j
for i 2 f1; : : : ; �g

c	 D �eff C 2

nC �eff C 5

d	 D 1C 2 max

 
0;

r
�eff � 1

nC 1

!
C c	

cc D 4C �eff =n

nC 4C 2�eff =n

18See [17]: �.n/D R1

0 xn�1 exp.�x/ dx.
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Algorithm 2.8 .�W ; �/-CMA-ES
initialize hxi
pc  0
p	  0
C I
t  0

repeat
t  t C 1

B and D eigendecomposition of C
for i D 1! � do

zi  N.0; I/
yi  BDzi

xi  hxi C 	yk

fi  f .xi /

end for
hyi  P�

iD1 wi yiW�

hxi  hxi C 	hyi DP�
iD1 wi xiW�

p	  .1� c	 /p	 Cpc	 .2� c	 /�eff BD�1BT hyi
	  	 � exp

�
c	

d	

�
kp	 k

EkN.0;I/k � 1
��

pc  .1� cc/pc C h	

p
cc.2� cc/�eff hyi

C .1� c1 � c�/CC c1.pcpT
c C ı.h	 /C/C c�

P�
iD1 wi yiW�yT

iW�

until termination criterion fulfilled

c1 D 2�
nC 13

10

�2 C �eff

c� D min

�
1 � c1; ˛�

�eff � 2C 1=�eff

.nC 2/2 C ˛��eff =2

�
with ˛� D 2

Putting it all together, the pseudocode of the .�W ; �/-CMA-ES is given in
Algorithm 2.8.

2.2.2.2 LS-CMA-ES

The LS-CMA-ES [6] is a .1; �/-ES implementing the idea to adapt the covariance
matrix C based on the inverse Hessian H�1. The Hessian itself is estimated by
solving the appropriate least squares estimation problem. Based on Theorem 5 in
[55], it is known that this requires at least m � 1

2

�
n2 C 3nC 4

�
tuples .x; f .x//. To

achieve this, the algorithm saves all tuples .x; f .x// in an archive A. Based on the
Taylor series expansion (Eq. 2.12), the least squares estimation problem is defined
through the following minimization task:

min
g2Rn;H2Rn�n

mX
kD1

�
f .xk/� f .x0/� .xk � x0/

T g � 1

2
.xk � x0/

T H.xk � x0/

�2

(2.15)
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The result of minimizing 2.15 provides estimators Og for the gradient and OH for
the Hessian.

Since the Taylor series expansion up to the quadratic term provides only an
approximation of the true fitness landscape at x0, we are also interested in obtaining
an error measure Q. Og; OH/ of the estimate for deciding whether OH�1 can be used for
covariance matrix adaptation. The following error measure is used for this purpose:

Q. Og; OH/ D 1

m

mX
kD1

 
f .xk/� f .x0/� .xk � x0/

T Og � 1
2
.xk � x0/

T OH.xk � x0/

f .xk/ � f .x0/ � .xk � x0/T Og

!2

(2.16)

Unfortunately, solving Eq. 2.15 and inverting OH by means of numerical methods
requires algorithms with time complexity O.n6/, so that, especially for large n, an
execution of these steps in each generation is not affordable. To solve this problem,
the LS-CMA-ES provides two different working modes, denoted LS and CMA, for
adapting the covariance matrix.

In mode LS, an approximation of H is performed only each nupd generations.19 If
the error Q falls below a required threshold Qt , the covariance matrix C D 1

2
OH�1 is

used by the algorithm and remains unchanged until a new update after another nupd

generations is performed.
If Q is bigger than the threshold value Qt , the LS-CMA-ES switches into mode

CMA. Before explaining this mode, the creation of an offspring x0 from the parent
hxi is defined below:

x0 D hxi C 	dN.0; C/ where d D exp.�N.0; 1//

In addition to the covariance matrix C, a global step size 	 is used, which is
updated by mutative step size adaptation. If b denotes the index of the best offspring,
the global step size is changed according to 	 0 D 	 � db . Adapting the covariance
matrix C is based on a rank-one update (i.e., the second term in Eq. 2.14) by using
an evolution path pc :

p0c D .1 � cc/ � pc C
p

.cc.2 � cc//

	
.xb � hxi/

C0 D .1 � ccov/ � CC ccovpc.pc/T

The evolution path pc is also updated when operating in mode LS, to make sure C
is updated based on up-to-date information when the algorithm switches into mode
CMA.

The pseudocode of the LS-CMA-ES is given in Algorithm 2.9, and the exoge-
nous strategy parameters are set as follows:

19With the additional condition for A to consist of at least m D n2 tuples.
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� D 10

� D 1p
n

nupd D 100

Qt D 10�3

cc D 4

nC 4

ccov D 2

.nCp2/2

2.2.2.3 LR-CMA-ES

The LR-CMA-ES (local restart) extends the .�W ; �/-CMA-ES by introducing
restarts [4]. The strategy introduces five criteria for identifying stagnation of the
optimization process and, in case of stagnation, starts a new run of the .�W ; �/-
CMA-ES. Each run of the .�W ; �/-CMA-ES initializes the starting point of the
search and the strategy parameters anew, so that the runs are independent of each
other. For defining the termination criteria, the tolerance values Tx D 	10�12 and
Tf D 10�12 are used. Any other exogenous parameters are the same as in the
.�W ; �/-CMA-ES.

The first termination criterion, called equalfunvalhist, is satisfied if either the
best fitness values f .x1W�/ of the last d10C 30n=�e generations are identical or the
difference between their maximum and minimum values is smaller than Tx .

The second criterion, TolX, is satisfied if the components of the vector v D 	pc

are all smaller than Tx, i.e., vi < Tx 8i 2 f1; : : : ; ng.
The third criterion, noeffectaxis, takes changes with respect to the main coor-

dinate axes induced by C into account. These are given by the eigenvectors ui and
eigenvalues �i , i 2 f1; : : : ; ng, of C, and they are found (normalized) in the columns
of matrix B and the main diagonal elements of D. The termination criterion does not
check all main axes at once, but in generation t it takes the axis i D t mod n into
account. It is satisfied when 	

10

p
�iui 	 0.

The fourth criterion, noeffectcoord, analyzes changes with respect to the coordi-
nate axes. It is satisfied if 	

5
Ci;i 	 0 8i 2 f1; : : : ; ng.

Finally, the criterion conditioncov checks whether the condition number of the
matrix C, cond.C/ D max.f�1;:::;�ng/

min.f�1;:::;�ng/ exceeds 1014.
The pseudocode of the LR-CMA-ES, as shown in Algorithm 2.10, consists

of a simple outer loop managing the restarts of the .�W ; �/-CMA-ES. The local
termination criteria are exactly the five criteria introduced above for discovering
stagnation. In contrast, the global termination criterion is the same as used in
previous sections, see Sect. 2.1.2.
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Algorithm 2.9 LS-CMA-ES
initialize hxi, 	

C I
Archive A ;
pc  0
mode LS
t  0

repeat
t  t C 1

B and D eigendecomposition of C
for i D 1! � do

di  exp .�N.0; 1//

xi  hxi C 	 � di BDN.0; I/
fi  f .xi /

A A[ f.xi ; fi /g
end for
b index of best offspring
	  	 � db

pc  .1� cc/pc C
p

cc .2�cc/

	
.hxi � xb/

if mode = LS then
C unchanged

else if mode = CMA then
C .1� ccov/CC ccovpcpT

c

end if
if t modulo nupd D 0 then

Obtain Og and OH based on the last n2 tuples of A by solving Equation 2.15 where x0 D hxi.
Obtain Q.Og; OH/ from Equation 2.16
if Q.Og; OH/ < Qt then

mode LS

C 
�

1
2
OH
��1

else
mode CMA

end if
end if
hxi  xb

until termination criterion fulfilled

Algorithm 2.10 LR-CMA-ES
repeat

execute .�W ; �/-CMA-ES (Algorithm 2.8) using the local termination criteria
until global termination criterion satisfied

2.2.2.4 IPOP-CMA-ES

The IPOP-CMA-ES [5] is an extension of the LR-CMA-ES as described in the
previous section. Whenever a run of the .�W ; �/-CMA-ES is terminated due to a
local termination criterion (as introduced for LR-CMA-ES), the population size is
increased by a factor � for the next run of the .�W ; �/-CMA-ES. This strategy is
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Algorithm 2.11 IPOP-CMA-ES
repeat

execute .�W ; �/-CMA-ES (Algorithm 2.8) using the local termination criteria
� � � �
� � � �

until global termination criterion satisfied

motivated by empirical investigations of the behavior of the .�W ; �/-CMA-ES with
different population sizes for multimodal test functions [30]. As these investigations
clarified, the global convergence properties of the algorithm improve with increasing
population size. The corresponding pseudocode is given in Algorithm 2.11. When
using non-integer values for �, the new number of parents � and offspring � are
obtained by rounding. For �, the interval

�
3
2
; 5
	

is identified as a reasonable range,
and the default value � D 2 is recommended.

2.2.2.5 (1C1)-Cholesky-CMA-ES

The (1C1)-Cholesky-CMA-ES [38] introduces a method for adapting the covari-
ance matrix C implicitly, without using an eigendecomposition of C. Consequently,
the approach reduces the computational complexity within each generation from
O.n3/ to O.n2/.

The algorithm is based on the so-called Cholesky decomposition20 of the
covariance matrix, C D AAT . As proven in [38], an update of the Cholesky
factors A is possible without explicit knowledge of the covariance matrix C. The
corresponding lemma and theorem are stated here without proof. The lemma states

that, for any vector v 2 R
n and & D 1

kvk2
�p

1C kvk2 � 1
�

, the following equation

holds:

IC vvT D �IC &vvT
� �

IC &vvT
�

This lemma is required for the proof of the following theorem:

Theorem 2.2.1. Let C 2 R
n be a symmetric, positive definite matrix with Cholesky

decomposition C D AAT . Let C0 D ˛CC ˇvvT be an update of C with v; z 2 R
n,

v D Az and ˛; ˇ 2 R
C. The updated Cholesky factor A0 of C0 is then given by

A0 D p˛AC
p

˛

kzk2
�q

1C ˇ

˛
kzk2 � 1

�
.Az/ zT .

Based on a parent individual x, an offspring x0 is then created according to:

x0 D xC 	Az with z D N.0; I/

20Compare Sect. 19.2.1.2 in [17].
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Using Theorem 2.2.1, the Cholesky factor A is adapted as follows:

A0 D caAC ca

kzk2
 s

1C .1 � c2
a/kzk2

c2
a

� 1

!
AzzT ;

with a constant exogenous strategy parameter ca. The adaptation above is applied if
the value of a measure Nps (explained in the following) is smaller than a threshold
value pt .

The adaptation of the global step size ı is in some ways similar to the 1/5-
success rule of the (1C1)-ES (see Sect. 2.2.1). If the offspring is better than the
parent, �s D 1 in the equation below, otherwise, �s D 0. These success indicators
are accumulated across generations by using a learning rate cp , resulting in an
accumulated success rate Nps:

Nps D .1� cp/ Nps C cp�s

Using this measure and its target value pt
s for the success rate, the global step

size 	 is updated as follows:

	 0 D 	 � exp

�
1

d

�
Nps � pt

s

1 � pt
s

.1� Nps/

��

The pseudocode is given in Algorithm 2.12, and the default settings of the
exogenous strategy parameters are:

pt
s D

2

11

pt D 11

25

ca D
r

1 � 2

n2 C 6

cp D 1

12

d D 1C 1

n

2.2.2.6 Active-CMA-ES

The .�W ; �/-CMA-ES uses weighted recombination of the � best offspring to
generate a new point in the search space. As shown by Rudolph [57], the con-
vergence velocity of an evolution strategy can be further increased by also taking
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Algorithm 2.12 (1C1)-Cholesky-CMA-ES
initialize x, 	

A I
Nps  pt

s

repeat
z N.0; I/
x0  xC 	Az
if f .x0/ � f .x/ then

�s  1

else
�s  0

end if
Nps  .1� cp/ Nps C cp�s

	  	 � exp
�

1
d

�
Nps � pt

s

1�pt
s
.1� Nps/

��
if f .x0/ � f .x/ then

x x0

if Nps � pt then

A caAC ca

kzk2

 r
1C .1�c2

a/kzk2

c2
a

� 1

!
AzzT

end if
end if

until termination criterion satisfied

the worst offspring into account for recombination, however, with negative weights.
The Active-CMA-ES [40] is based on this idea,21 however, it is not used during the
process of recombination,22 but exclusively for adapting the covariance matrix.
Therefore, the corresponding extension of the .�W ; �/-CMA-ES mainly consists
of changing the covariance matrix adaptation method, modifying Eq. 2.14 of the
.�W ; �/-CMA-ES within the Active-CMA-ES into:

C0 D C .1 � cc/CC ccpcpT
c C ˇZ where

Z D BD

0
@ 1

�

�X
kD1

zkW�zT
kW� �

1

�

�X
kD���C1

zkW�zT
kW�

1
A .BD/T

In addition, the exogenous parameter cc is now modified to cc D 2

.nCp2/2
.

The parameter ˇ has been tuned by means of an empirical investigation, which
is described in detail in [39]. Its setting of ˇ D 4��2

.nC12/2C4�
reflects a compromise

between the conflicting goals of achieving a large convergence velocity on the one

21The term active is motivated by the fact that specifically the bad offspring individuals play an
active role, although they would normally not be taken into account after selection has been applied.
22This is explicitly avoided due to the occurrence of numerical instabilities for certain objective
functions; see [40].
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Algorithm 2.13 Active-CMA-ES
initialize hxi
pc  0
p	  0
C I
t  0

repeat
t  t C 1

B and D from eigendecomposition of C
for i D 1! � do

zi  N.0; I/
yi  BDzi

xi  hxi C 	yk

fi  f .xi /

end for
hyi  P�

iD1 wi yiW�

hxi  hxi C 	hyi DP�
iD1 wi xiW�

p	  .1� c	 /p	 Cpc	 .2� c	 /�eff BD�1BT hyi
	  	 � exp

�
c	

d	

�
kp	 k

EkN.0;I/k � 1
��

pc  .1� cc/pc C h	

p
cc.2� cc/�eff hyi

Z BD
�

1
�

P�

kD1 zkW�zT
kW� � 1

�

P�
kD���C1 zkW�zT

kW�

�
.BD/T

C .1� cc/CC ccpcpT
c C ˇZ

until termination criterion satisfied

hand and ensuring that C remains positive definite, to drive the evolution strategy
into a robust working regime. The pseudocode is provided in Algorithm 2.13, and
the default settings of the exogenous strategy parameters are, except for cc and ˇ,
identical to those used in the .�W ; �/-CMA-ES.

2.2.2.7 .�,�/-CMSA-ES

The .�,�/-CMSA-ES [13], more precisely denoted the .�=�I ; �/-CMA-	-SA-ES,
reintroduces self-adaptation of the global step size 	 , just like in the .�; �/-MSC-
ES, into the algorithm. This approach is motivated by the fact that reintroducing
self-adaptation decreases the number of exegenous strategy parameters to two,23

consequently providing a simplification of the .�W ; �/-CMA-ES, which requires
five exogenous strategy parameters. Offspring individuals xi and their step sizes
	i , i 2 f1; : : : ; �g, are created based on the parent x, the global step size 	 , and
the matrices B and D (from an eigendecomposition of the covariance matrix C), as
follows:

23Population sizes � and � are not counted.
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	i D 	 � exp .�N.0; 1//

si D BDN.0; I/

zi D 	i � si

xi D xC zi

Recombination is based on identical weights 1=�, resulting in averaging the �

best offspring. It is applied to the vectors zi W�, si W�, and step sizes 	i W�, for i 2
f1; : : : ; �g, and results in the vectors hzi, hsi and the new global step size 	 . The
new parent x0 is then obtained as x0 D xC hzi. Vector hsi is required for adapting
the covariance matrix C, and its update uses the learning rate �C by proceeding as
follows:

C0 D
�

1 � 1

�C

�
CC 1

�C

hsihsiT (2.17)

The default settings of the exogenous strategy parameters are:

� D max
�j n

10

k
; 2
�

� D 4�

� D 1p
2n

�C D 1C n.nC 1/

2�

The pseudocode of the corresponding .�,�/-CMSA-ES is given in Algorithm 2.14.

2.2.2.8 sep-CMA-ES

The sep-CMA-ES [54] is a variation of the .�W ; �/-CMA-ES which reduces space
and time complexity to reach O.n/, i.e., linear in n. This is achieved by using,
instead of an arbitrary covariance matrix, just a diagonal matrix D as in Eq. 2.10.
Consequently, this kind of evolution strategy is not able anymore to generate
correlated mutations, in return for the advantage of saving the computationally
intensive eigendecomposition of the covariance matrix C. D can then be obtained
from C by taking the square roots of the main diagonal elements of C. The
covariance matrix is adapted according to the following update rule:

C0 D .1 � ccov/CC 1

�eff
ccovpc.pc/T C ccov

�
1 � 1

�eff

� �X
iD1

wi Dzi W�.Dzi W�/T
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Algorithm 2.14 .�,�/-CMSA-ES
initialize x, 	

C I
h	i  	

repeat
B and D from eigendecomposition of C
for i D 1! � do

	i  h	i exp �N.0; 1/

si  BDN.0; I/
zi  	i � si

yi  xC zi

fi  f .yi /

end for
hzi  average of the best � zi ; i 2 f1; : : : ; �g
hsi  average of the best � si ; i 2 f1; : : : ; �g
h	i  average of the best � 	i ; i 2 f1; : : : ; �g
x xC hzi
C 

�
1� 1

�C

�
CC 1

�C
hssT i

until termination criterion satisfied

Due to the reduced complexity of the covariance matrix, the learning rate ccov

can be increased to accelerate the adaptation process. The learning rate ccov is then
set as follows:

ccov D nC 2

3

�
1

�eff

2

.nCp2/2
C .1 � 1

�eff
/ min

�
1;

2�eff � 1

.nC 2/2 C �eff

��

All other settings of the sep-CMA-ES are identical to those used within the
.�W ; �/-CMA-ES. The resulting pseudocode of the sep-CMA-ES is shown in
Algorithm 2.15.

2.2.2.9 .1 C
;
�s

m/-ES

The .1C
;
�s

m/-ES [16] introduces the two new concepts of mirrored sampling
and sequential selection. These two mutually independent concepts change the
algorithmic processes of offspring creation and their selection, and thus they do
not establish a complete evolution strategy. The concept of mirrored sampling can
be used within a .1 C �/-ES as well as a .1; �/-ES. The application of sequential
selection is only possible in the case of a plus-strategy, explaining also the use of
the notation C

;
. Furthermore, the indices s and m of � represent the algorithmic

concepts of sequential selection (s) and mirrored sampling (m), respectively.
The idea of mirrored sampling is to generate part of the offspring in a derandom-

ized way by generating for a mutation vector z not only the offspring xC z, but also
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Algorithm 2.15 sep-CMA-ES
initialize hxi
C I
D I
p	  0
pc  0
t  0

repeat
t  t C 1

for i D 1! � do
zi  N.0; I/
xi  hxi C 	Dzi

end for
hxi  P�

iD1 wi xiW�

hzi  P�
iD1 wi ziW�

p	  .1� c	 /p	 Cpc	 .2� c	 /
p

�eff hzi
if kp	 kp

1�.1�c	 /2t
<
�

7
5
C 2

nC1

�
E.kN.0; I/k/ then

H	  1

else
H	  0

end if
pc  .1� cc/pc CH	

p
cc.2� cc/

p
�eff Dhzi

C .1� ccov/CC ccov
�eff

pcpT
c C cc

�
1� 1

�eff

�P�
iD1 wi DziW� .DziW�/T

	  	 exp
�

c	

d	

�
kp	 k

E.kN.0;I/k � 1
��

D D diag
�p

C1;1; : : : ;
p

Cn;n

�
until termination criterion satisfied

the additional offspring x�z. These two offspring are obviously symmetrical24 with
respect to x. As a potential application, mentioned in [3], mirrored sampling can
increase the robustness of the Evolutionary Gradient Search algorithm and increase
convergence velocity in the sphere model. Theoretical convergence rates for variants
of the .1C

;
�s

m/-ES have been derived; see [16] for the corresponding results.
Sequential selection can be used to reduce the number of function evaluations.

It is applied within a .1C �/-ES by sequentially executing the steps mutation and
evaluation for single offspring individuals, rather than generating all � offspring first
and then evaluating their fitness. In sequential selection, as soon as an offspring has
a better fitness than the parent, the offspring can replace the parent, and no more
offspring need to be generated and evaluated. In this way, up to � � 1 function
evaluations can potentially be saved at each generation.

The two concepts can be used independently of each other, or in combination.
As explained before, the .1C

;
�s

m/-ES does not constitute a complete evolution
strategy, but rather a method for generating the parent hxi0 for the next generation
based on the previous parent hxi and a method mutationOffset, which generates a

24Instead of the term symmetrical, this is called mirrored in the context of this strategy.
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Algorithm 2.16 (1C
;
�s

m)-ES

Input: search point hxi and a method mutationOffset
Output: new search point hxi0

i  0

j  0

while i < � do
i  i C 1

j  j C 1

if (mirrored sampling) ^ (j modulo 2 D 0) then
xi  hxi � zi

else
zi  mutationOffset()
xi  hxi C zi

end if
if (sequential selection) ^ (f .xi / < f .hxi/) then

j  0

break
end if

end while
hxi0 argmin .ff .x1/; : : : ; f .xi /g/

mutation step and is determined by the underlying evolution strategy. The approach
is summarized in pseudocode in Algorithm 2.16.

2.2.2.10 xNES

The xNES algorithm (exponential natural evolution strategies) [26] is a .1; �/-ES
which adapts its endogenous strategy parameters by using the so-called natural
gradient (see [1]). The idea was implemented for the first time in the context of NES
(natural evolution strategies) [71] and was then developed further by introducing the
eNES (efficient natural evolution strategies)25 [66].

In the following, the underlying ideas of the xNES are briefly summarized,
without giving detailed descriptions of the underlying concepts, such as, e.g., the
Fisher information matrix. These fundamentals can be found in the original work of
Glasmachers et al. and the corresponding references, see [26].

This family of evolution strategy algorithms also relies on the multivariate normal
distribution N.hxi; C/ for generating correlated mutations of the current search
point hxi. Similar to the .1 C 1/-Cholesky-CMA-ES (see Sect. 2.2.2.5), rather
than working with the covariance matrix C explicitly, a Cholesky factor A with
C D AAT is used. The current search point and the covariance matrix are combined
to form the tuple � D .hxi; C/, representing the quantities subject to adaptation
within an xNES. Rewriting the probability density function of a normal distribution

25In [26] the eNES are called exact natural evolution strategies.
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as a function of the current search point hxi and the Cholesky factor A, its probability
density N.hxi; C/ turns into:

p .xj�/ D 1�p
2�
�n

det A
� exp

�
�1

2



A�1 � .x � hxi/

2
�

Given the distribution described by � , the expectation J.�/ of the fitness
becomes:

J.�/ D E.f .x/j�/ D
Z

f .x/p.xj�/dx

The gradient of the expectation J.�/, r� J.�/, can be calculated by using the
so-called log-likelihood trick according to

r� J.�/ D
Z

.f .x/r log .p.xj�/// p.xj�/dx;

which can be approximated by Monte Carlo estimation based on the offspring
individuals xi , i 2 f1; : : : ; �g:

r� J.�/ 	 1

�

�X
iD1

f .xi /r log .p.xj�//:

For calculating the term r log .p.xj�//, we refer to [67]. Combining this with
the Fisher information matrix (FIM) F 2 R

N�N , where N D nC n.nC 1/=2, the
natural gradient G is obtained as:

G D F�1r� J.�/

Use of G is motivated by the fact that it is invariant with respect to linear
transformations, so that the gradient converges in a correlated search space pretty
much like in an isotropic one.

The NES suffer from the disadvantage of their impracticable computational
complexity of O.n6/, caused by the explicit calculation of the FIM and its inversion.
In contrast, the xNES do not require an explicit calculation of the FIM anymore.
Based on using a so-called exponential parameterization (see Sect. 4.1 in [26]) a
transformation of � into natural coordinates (see Sect. 4.2 in [26]) is applied. Using
step size ı and Cholesky factor B, an offspring x is then generated from the parent
hxi according to:

x D hxi C ıBz where z D N.0; I/ (2.18)
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Similar to weighted recombination, the xNES uses so-called utility values ui .
This approach is also called fitness shaping in the context of an xNES. Using the
rank i given by the fitness values, utility values are calculated as follows:

ui D max
�
0; log

�
�

2
C 1

�� log.i/
�

P�
jD1 max

�
0; log

��

2
C 1

� � log.i/
� � 1

�

Using the mutation vectors zi from Eq. 2.18, the gradients GM for the covariance
matrix and Gı for the current search point are defined by:

GM D 1

2

�X
iD1

ui

�
zizT

i � I
�

Gı D
�X

iD1

uizi

For calculating the gradients, all � offspring individuals are taken into account,
i.e., a selection in the classical sense is not applied. Using those gradients and the
learning rates �x , �	 and �B , the new search point hxi0, the new step sizes 	 0, and
the new Cholesky factor B0 are calculated:

hxi0 D hxi C �x �Gı

	 0 D 	 � exp

 
�	

2n
� tr
 

�X
iD1

ui �
�
zi zT

i � I
�!!

B0 D B � exp
��B

2
�GM

�

Here, the exponential function of a matrix A is defined by exp.A/ D P1
nD0

An

nŠ
,

see [26].
The resulting pseudocode of the xNES is given in Algorithm 2.17. The default

parameters of the exogenous strategy parameters are as follows:

� D 4C b3 log.n/c
�x D 1

�	 D 3

5
� 3C log.n/

n
p

n

�B D �	
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Algorithm 2.17 xNES
initialize hxi
B I
	  d

pj det Bj
for i D 1! � do

ui  max .0;log. �
2 C1/�log.i//P�

j D1 max .0;log. �
2 C1/�log.i//

� 1
�

end for
repeat

for i D 1! � do
zi  N.0; I/
xi  hxi C 	Bzi

end for
sort f.zi ; xi /g by f .xi /

Gı  P�
iD1 ui � zi

GM  P�
iD1 ui � �zi zT

i � I
�

G	  tr.GM /=n

GB  GM �G	 � I
hxi  hxi C �x � 	B �Gı

	  	 � exp
�
G	 � �	

2

�
B B � exp

�
GB � �B

2

�
until termination criterion satisfied

2.2.2.11 (1C1)-Active-CMA-ES

Extending the (1C1)-Cholesky-CMA-ES with the idea of the Active-CMA-ES
to take information of unsuccessful offspring into account for covariance matrix
adaptation consequently leads to the development of a hybrid, the (1C1)-Active-
CMA-ES [2]. Instead of using an explicit covariance matrix C D AAT , the
(1C1)-Active-CMA-ES works directly with the Cholesky factor A and its inverse
A�1. The update of A has been defined previously, based on Theorem 2.2.1. In order
to use A�1, an extended version of this theorem is required, which we state below
(without proof, see [2]):

Theorem 2.2.2. Let C 2 R
n�n be a symmetric, positive definite matrix with

Cholesky decomposition C D AAT , and let C0 D ˛C C ˇvvT be an update
transformation of C where v 2 R

n n f0g, ˛ 2 R
C and ˇ 2 R. Let w D A�1v

with ˛ C ˇkwk2 > 0 and let C0 D A0A0T be the Cholesky decomposition of
the updated matrix C0. Then, the Cholesky factor A0 and its inverse A0�1 are

obtained as follows: A0 D p˛A C
p

˛

kwk2
�q

1C ˇ

˛
kwk2 � 1

�
AwwT and A0�1 D

1p
˛

A�1 � 1p
˛kwk2

�
1 � 1p

1Cˇkwk2=˛

�
wwT A�1.

The offspring x0 is generated from its parent x according to:

x0 D xC 	Az where z D N.0; I/
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As for the (1C1)-Cholesky-CMA-ES, the success rate ps , i.e., the fraction of
successful mutations, is updated by taking the learning rate cp into account:

p0s D
(

.1 � cp/ps C cp if f .x0/ � f .x/

.1 � cp/ps if f .x0/ > f .x/

Based on the success rate ps , a damping parameter d 2 R
C and the target success

rate pt , the global step size 	 is updated as follows:

	 0 D 	 � exp

�
1

d

ps � pt

1 � pt

�

The algorithm uses pt D 2
11

which makes the update similar to the 1/5-success rule
update mechanism of the (1C1)-ES.

If the offspring performs better than its parent, a positive Cholesky update is
applied. In contrast to the (1C1)-Cholesky-CMA-ES, which uses the mutation step
z for this update, the (1C1)-Active-CMA-ES relies on a search path s, accumulating
successful mutation steps with a learning rate c and updating s as follows:

s0 D .1 � c/sCpc.2 � c/Az

With a constant cCc > 0 and the vector w D A�1s, the positive update of matrices
A and A�1 can now be defined according to Theorem 2.2.2:

A0 D aAC b.Aw/wT and (2.19)

A�10 D 1

a
A�10 � b

a2 C abkwk2 w.wT A�1/ where (2.20)

a D
q

1 � cCc and

b D
p

1 � cCc
kwk2

 s
1C cCc

1 � cCc
kwk2 � 1

!

In the case of an Active-CMA-ES, the � � � worst individuals are used for the
negative update of the covariance matrix, and these individuals can be called the
“especially bad” individuals. In the case of the corresponding (1C1)-strategy, as
introduced here, this definition is not applicable. Instead, the (1C1)-Active-CMA-
ES stores past function evaluations and defines an individual to be “especially bad”,
if its fitness value is worse than the fitness of its k-th predecessor. For an “especially
bad” offspring, a negative update according to Eqs. 2.19 and 2.20 is performed,
using modified values of the coefficients a and b. In contrast to the positive update,
rather than the transformed search path w D A�1s the vector z is used for the
negative update:
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a D p
1C c�c

b D
p

1C c�c
kzk2

 s
1 � c�c

1 � c�c
kzk2 � 1

!

To ensure a positive definite covariance matrix, 1 � c�
c

1Cc�
c
kzk2 > 0 needs to

hold for the constant c�c . Moreover, the convergence behavior of the algorithm
can become unstable if the value of 1 � c�

c

1Cc�
c
kzk2 is very close to zero. As a

countermeasure, in case of 1 � c�
c

1Cc�
c
kzk2 < 1=2, the value of c�c is provided with

an upper bound of 1=.2kzk2/.
The default settings of the exogenous parameters are:

d D 1C n=2

c D 2=.nC 2/

cp D 1=12

pt D 2=11

cCc D
2

n2 C 6

c�c D
2

5.n8=5 C 1/

The pseudocode of the (1C1)-Active-CMA-ES is given in Algorithm 2.18.

2.2.2.12 (�=�W ; �iid C �m)-ES

The (�=�W ; �iidC�m)-ES [7] is based on extending the idea of mirrored sampling,
as described in Sect. 2.2.2.9 for a .1C

;
�s

m/-ES, for the case � > 1. The offspring
population size is given by the number of samples �iid (independent, identically
distributed samples from the mutation distribution) and the number of offspring,
�m (�m � �iid), which are also subject to mirroring. Using mirrored sampling in
combination with weighted recombination and cumulative step size adaptation (see
Sect. 2.2.2.1) introduces a bias with respect to the step size, i.e., the step size is more
than desirably reduced, thus potentially causing a premature stagnation effect for
the algorithm. To avoid this issue, the concept of pairwise selection is introduced,
i.e., it is made sure that recombination will not involve an offspring individual and
its mirrored version at the same time, but either one or the other.

The (�=�W ; �iid C �m)-ES introduces two different versions of mirroring,
namely random mirroring and selective mirroring. In the case of random mirroring,
denoted by (�=�W ; �iid C �rand

m )-ES, the �m offspring subject to mirroring are
randomly selected out of the total number of offspring, �iid. In the case of selective
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Algorithm 2.18 (1C1)-Active-CMA-ES
initialize x, 	 , A I, A�1  I, h 0 2 R

k

t  0

repeat
t  t C 1

z N.0; I/
y xC 	Az
if t > k then

hi  hiC1 8i 2 f1; : : : ; k � 1g
hk  f .y/

else
ht  f .y/

end if
if f .y/ � f .x/ then

x y
ps  .1� cp/ps C cp

s .1� c/sCpc.2� c/Az
w A�1s

a 
q

1� c
C
c

b 
p

1�c
C
c

kwk2

�r
1C c

C
c

1�c
C
c
kwk2 � 1

�

A aAC b .Aw/ wT

A�1  1
a

A�1 � b
a2CabCkwk2 w

�
wT A�1

�
else

ps  .1� cp/ps

if h0 < f .y/ then
a p1C c�

c

b a
kzk2

�q
1� c�

c

1Cc�
c
kzk2 � 1

�
A aAC b .Aw/ wT

A�1  1
a

A�1 � b
a2CabCkwk2 w

�
wT A�1

�
end if

end if
	  	 exp

�
1
d

ps�pt

1�pt

�
until termination criterion satisfied

mirroring, denoted by (�=�W ; �iid C �sel
m )-ES, the �iid offspring are first sorted by

fitness and the �m worst individuals undergo mirroring. This approach is motivated
by considering that, in a convex objective function topology, mirroring the best
offspring cannot yield any further improvement, such that it will be advantageous to
mirror the worst individuals. Moreover, since bad offspring in the case of a .�W ; �/-
ES are often generated by applying too-large mutation steps, selective mirroring
itself will also favor large mutation steps [7]. To counteract this undesired bias,
the resample length approach changes the length of the mirrored mutation step by
additionally using a second, newly sampled mutation vector z0. The mirrored version
xm of the offspring x D hxi C 	z is then created according to xm D hxi � 	 kz

0k
kzk z.

Like for the .1C
;
�s

m/-ES, theoretical results for the convergence velocity on the
sphere model have been derived, see [7]. In particular, it has been shown that, for
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Algorithm 2.19 (�=�W ; �iid C �m)-ES
initialize hxi, 	

r  0

repeat
i  0

while i < �iid do
r  r C 1

i  i C 1

xi  hxi C 	N.0; I/
end while
if selective mirroring then

x1; : : : ; x�iid D argsort
�
f .x1/; : : : ; f .x�iid /

�
end if
while i < �iid C �m do

i  i C 1

if resample length then
r  r C 1

xi  hxi � 	kN.0;I/k
kxi��m �hxij

�
xi��m � hxi

�
else

xi  hxi �
�
xi��m � hxi

�
end if

end while
x1; : : : ; x�iid D argsort.f .x1/; : : : ; f .x�iid��m /;

min ff .x�iid��mC1/; f .x�iidC1/g; : : : ;

min ff .x�iid /; f .x�iidC�m /g/
	  updateStepSize.	; x1; : : : ; x�iid ; hxi/
hxi  hxi CP�

iD1 wi .xi � hxi/
until termination criterion satisfied

the sphere model, maximum convergence velocity is achieved for a setting of r D
�m=�iid 	 0:1886, which can serve as a guideline for the fraction of offspring
individuals which should be mirrored.

The pseudocode as given in Algorithm 2.19 is based on using a method
updateStepSize26 to update the step size 	 , and weights wi 8i 2 f1; : : : ; �g, such
that

P�
iD1 wi D 1.

2.2.2.13 SPO-CMA-ES

The SPO-CMA-ES [70] is essentially a restart-version of the .�W ; �/-CMA-ES. It
is based on using sequential parameter optimization (SPO) [11] to optimize the
exogenous parameters of an evolution strategy. SPO uses methods of design of
experiments (DoE) and design and analysis of computer experiments (DACE).27

26The aforementioned techniques self-adaptation (see Sect. 2.2.1.2) or cumulative step size
adaptation (see Sect. 2.2.2.1) are suitable.
27See [70] for literature references on these topics as well as the Kriging modeling method.
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Concerning the exogenous parameters subject to sequential parameter optimiza-
tion, the number of offspring individuals28 � 2 f�def ; : : : ; 1;000g, the initial step
size 	init 2 Œ1; 5� and the so-called selection pressure �=� 2 Œ1:5; 2:5� are identified.

The pseudocode of the SPO-CMA-ES is provided in Algorithm 2.20, and the
approach is explained in the following by discussing the various methods used
in the algorithm. To begin with, using latin hypercube sampling (LHS) [68] an
initial design of experiments for the exogenous parameters is created. In the next
step (runDesign), independent runs of the .�W ; �/-CMA-ES are executed, using
the parameter sets of the DoE plan. The results, i.e., the best evaluated individual
with its fitness value, of each run is collected in the set Y . This initial phase of the
algorithm is called the exploration phase.

The next phase, called the exploitation phase, is repeated until the predefined
budget of function evaluations is reached. Using a function aggregateRuns, a
performance measure y is calculated for every run configuration in Y . Based on
these performance measure values as outputs and the corresponding parameter sets
according to the experimental plan, a Kriging model29 M is trained in the method
fitModel. This Kriging model M is then used by the method modelOptimization
to identify a new design point, e.g., by running an optimization on the Kriging
model and using the resulting point. The new design point d is then added to the
experimental plan D, and the loop is executed again. Default settings are not given
for the size of the initial experimental plan, Ninit, nor for the split of the number of
function evaluations between the two phases of the algorithm [70]. Rather, the user
of the algorithm can fix them, depending on the optimization task at hand. In the
case of noisy objective functions, the method runDesign can execute more than the
one run, in order to use, e.g., the averages as an estimation of the true fitness value.

2.3 Further Aspects of ES

So far, we have described the ES algorithms as single-criterion optimizers with
R

n as search domain and without handling of constraints. The next three sections
give summarized overviews and literature references for further aspects of ES,
namely constraint handling, binary and integer search spaces, and multiobjective
optimization.

28For �def the standard setting of a .�W ; �/-CMA-ES with �def D 4C b3 log nc is used.
29In principal, any modeling technique can be used to establish the relationship between the
exogenous parameters and the performance measure.
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Algorithm 2.20 SPO-CMA-ES
Input: box constraints l; u 2 R

n and size Ninit of the initial design
Output: final model M and best design point d�

i  0, D ;
di  LHS.l; u; Ninit/

Y  runDesign.di /

D D [ di

while function evaluation budget not exhausted do
i  i C 1

y  aggregateRuns.Y /

M fitModel.D; y/

di  modelOptimization.M/

Y  Y [ runDesign.di /

D D [ di

end while
d�  dk with the best yk 2 fy0; : : : ; yi g

2.3.1 Constraint Handling

In Sect. 2.1.1 we defined the optimization problem used throughout this book with
equality and inequality constraints as in Eq. 2.2. There are many techniques for
handling constraints ranging from simple penalty methods to more complex ones
like hybrid methods involving Lagrangian multipliers. Coello gives an overview
[18] of constraint-handling techniques to be used with Evolutionary Algorithms
but some of these methods may be applied to ES as well. A review by Kramer
[42] specializes in constraint-handling methods dedicated to ES and presents the
four techniques penalty methods, a multiobjective bioinspired approach, coordinate
alignment techniques, and metamodeling of constraints.

2.3.2 Beyond Real-Valued Search Spaces

There are many optimization problems where the search domain is not constrained
to the real domain. Especially decision problems30 use categorical search spaces,
in most cases binary search spaces, i.e., x 2 f0; 1gn, as the simplest categorical
search space. Another search space of practical use is the integer search space
representable as a subset of Z. Originally, Genetic Algorithms (see [27] or [25] for
a comprehensive introduction) were designed to handle binary search spaces, but
there are approaches to incorporate those search spaces into ES. In Sect. 2.1.3 we
named three guidelines to choose a distribution to be used for mutation. Rudolph
[56] introduces a mutation operator for integer search spaces using the difference

30For example the NP-hard Traveling Salesman Problem.
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of two geometrical distributions. Each discrete variable of a categorical search
space is assigned a probability whether to mutate or not. The new value of the
discrete variable is drawn uniformly from all possible values. The MI-ES (mixed-
integer evolution strategies) [43] solve optimization problems which are mixed
in their search domain, i.e. the search domain is a composition of real, integer
and categorical search spaces. They use the aformentioned mutation approaches
together with self-adaptation for the endogenous parameters. An overview of other
approaches for handling mixed search spaces is given by Li [43].

2.3.3 Multiobjective Optimization

In single-objective optimization fitness values can be ordered to decide whether one
solution is better than another. In multiobjective optimization, where fitness values
are represented as vectors, such a strict ordering does not exist anymore. Solutions
are partially ordered and based on the partial order solutions can be either dominated
or non-dominated by other solutions. Hence there is not a single optimum to be
found but a set of solutions which is called the Pareto set or Pareto front. For
a detailed description of these concepts see [20]. Algorithms for multiobjective
optimization have to measure how well a Pareto front is approximated. The most
common measures for this task are the crowding distance and the hypervolume
contribution. The former is used for example by NSGA-II [21] the latter by SMS-
EMOA [12].
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