Chapter 2
Evolution Strategies

Prior to introducing the particular algorithms in Sect. 2.2, the more general founda-
tions of evolution strategies are introduced in Sect. 2.1. To start with, the definition
of an optimization task as used throughout this book is given in Sect.2.1.1.
Following [58], Sect. 2.1.2 presents a discussion of evolution strategy metaheuristics
as a special case of evolutionary algorithms. In particular, the components of such
a metaheuristic—namely recombination, mutation, evaluation and selection—are
described in a general way. Due to the particular importance' of the mutation
operator for evolution strategies (in R"), it is discussed in quite some detail in
Sect.2.1.3.

2.1 Introduction

2.1.1 Optimization

Evolution strategies are particularly well suited (and developed) for nonlinear
optimization tasks, which are defined as follows (see e.g. [17], Sect. 18.2.1.1):

f(x) = min! for x € R" where (2.1)

gix)<0,iel={1,....m}h;j(x)=0,j eJ ={1,...,r}, 2.2)

IThis statement, however, is not meant to support the myth mentioned explicitly by Rudolph [58]:
“Since early theoretical publications mainly analyzed simple ES without recombination, somehow
the myth arose that ES put more emphasis on mutation than on recombination: This is a fatal
misconception! Recombination has been an important ingredient of ES from the early beginning
and this is still valid today.”
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8 2 Evolution Strategies

and the set
M={xeR":g((x)<0,Viel hj(x)=0,VjelJ} (2.3)

is called the set of feasible points and it defines the search space of the optimization
problem. A point x* € R” is called a global minimum, if

f*=f(x*) < f(x)forallx e M (2.4)

Conversely, it is called a local minimum if the above inequality only holds for x
within an e-environment U(,) € M.

Formulating an optimization problem as a minimization task is equivalent to
searching for a maximum or for a given target value, since maximization of f can be
replaced by minimization of — f* and a target value f can be attained by minimizing
o(f, f) with an arbitrary distance measure? p.

In this definition of an optimization task it is completely sufficient if the
codomain is completely ordered, so that the inequality in Eq.2.4 can be applied.
Throughout this book, we will always deal with the codomain R only. Moreover,
we will not explicitly deal with the handling of constraints (e.g., as defined by
Eq.2.2), and refer the interested reader to Sect. 2.3 where literature references point
to state-of-the-art techniques in constraint handling. A special case of constraints
are so-called box constraints, as defined below:

gix) =1—x<0wherel = (I1,....1,)] eR"

2(X) =x—u<O0whereu= (u1,...,u,) €R" (2.5)

Vectors 1 and u are called lower and upper bounds, respectively. Box constraints
restrict the search space to the hyperrectangle [/;, u;] x ... x [[,, u,] and are taken
into account for the implementation of algorithms described in this book.

In the field of evolutionary algorithms, the vector x is often called the decision
vector (and its parameters decision parameters), and its objective function value
f(x) is also called the fitness value.

2.1.2 Evolution Strategies as a Specialization of Evolutionary
Algorithms

Following [8] and [58], evolution strategies are described here as a specialization
of evolutionary algorithms. The general framework of an evolutionary algorithm is
presented in Algorithm 2.1. During initialization, the first generation, consisting of

2See Sect. 12.2.1 in [17] for the definition of a distance measure.
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Algorithm 2.1 General outline of an evolutionary algorithm

Initialization
repeat
Recombination
Mutation
Evaluation
Selection
until Termination criterion fulfilled

one or more individuals, is created, and the fitness of its individuals is evaluated.
After initialization, the so-called evolution loop is entered, which consists of the
operators recombination, mutation, evaluation and selection. Recombination creates
new individuals, also called offspring, from the parent population. Two major
types of recombination, dominant and intermediate recombination, are typically
distinguished: In dominant recombination, a property of a parent individual is
inherited by the offspring, i.e., this property dominates the corresponding property
of the other individuals. For intermediate recombination, the properties of all
individuals are taken into account, such that, e.g., in the simplest case, their mean
value is used.

The mutation operator provides the main source of variation of offspring in an
evolution strategy. Based on sampling random variables, properties of individuals
are modified. The newly created individuals are then evaluated, i.e., their fitness
values are calculated. Based on these fitness values, selection identifies a subset of
individuals which form the new population which is used in the next iteration of the
evolution loop. The loop is terminated based on a termination criterion set by the
user, such as reaching a maximum number of evaluations, reaching a target fitness
value, or stagnation of the search process.

According to [58], evolution strategies as a specific instantiation of evolutionary
algorithms are characterized by the following four properties:

» Selection of individuals for recombination is unbiased.

* Selection is a deterministic process.

e Mutation operators are parameterized and therefore they can change their
properties during optimization.

+ Individuals consist of decision parameters as well as strategy parameters.’
The generic framework of an evolutionary algorithm then specializes into a

(/p. k., L)-ES,* as described in detail in Algorithm 2.2. Recombination and muta-
tion are summarized here under the term variation. In addition to the description

31n the case of the (1+1)-ES the strategy parameters may be assigned to the algorithm itself instead
of the individual, because only one set of strategy parameters is needed. This also holds for any
strategy parameters which are not needed on the individual level (for example the covariance matrix
of the CMA-ES).

4 Algorithm 3 in [58].
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Algorithm 2.2 (i1/p, ., A)-ES

Initialization of P© with y individuals
VpePO:pWAge < 1,p.f <« f(px)

t <0
repeat
Q(l) Py
fori =1— Ado
Sample p parents py, ..., p, € P® uniformly at random
q < Variation(py, ..., p,, ¥y)
q.V.Age < 0,q.f < f(g.x)
00« QW U{q}
end for
P+ < Selection of the y best individuals from Q© U {p € P® : p.W.Age < «}
Update ¥y
Vpe Pth: p W Age < p.W.Age + 1
t<t+1

until Termination criterion fulfilled

given in [58] (Algorithm 3), the variation operator of a (u/p, k, A)-ES is defined
here by means of a parameter set Wy, and the evaluation operator is explicitly
mentioned. A population at generation ¢ > 0 is denoted P and is a set of
individuals. An individual p € PO s a tuple (x, V) forx ¢ M C R”, with M
as in Eq.2.3. The sets W and Wy are arbitrary finite sets representing the strategy
parameters. Since these parameters are modified internally during execution of the
algorithm, they are called endogenous strategy parameters. The number of parent
individuals is denoted as yu, the number of offspring individuals as A, and p denotes
the number of parents taken into account for generating a single offspring by means
of recombination. For these parameters, i, p, A € N and p < p holds.

k € NU{oo} represents the largest age which can be reached by any individual in
the population. In contrast to endogenous parameters, i, p, A und k are to be set by
the user of the algorithm, such that they are called exogenous strategy parameters.

The setting of « has a direct impact on the selection operator. Usually, either
k = 1 (one generation maximum lifetime) or x = oo (infinite maximum lifetime)
is used. The former case is also called comma-selection, the latter plus-selection.
Using the standard notation of evolution strategies, this is expressed as (u/p, A)-ES
and (u/p+ A)-ES, so that k is not explicitly stated any more. Using k < oo requires
the condition A > w to hold.

2.1.3 Mutation in R"

2.1.3.1 The Multivariate Normal Distribution

In [58], three guiding principles for the design of mutation operators are introduced,
namely:
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* Any point of the search space needs to be attainable with probability strictly
larger than zero by means of a finite number of applications of mutation.

e Mutation should be unbiased, which can be achieved by using a maximum
entropy distribution.’

» The operator is parameterized, such that the extent of variation can be controlled.

In R”, these requirements are fulfilled by a multivariate normal distribution.
An n-dimensional random vector X is multivariate normally distributed with
expectation X € R” and positive definite® covariance matrix C € R"™" if its
probability density function is defined according to:

fx(x) = p (—%(x —x7Cc'(x— i)) (2.6)

(2m)2(detC)2
(see p. 86 in [28]). In short notation, this is typically written as X ~ N(x, C),
where N (x, C) denotes the multivariate normal distribution in its general form. In
mathematical equations, N (x, C) is sometimes used like a vector, meaning a vector
which is actually sampled according to the distribution given. In other words, instead
of writing X' = x + X where X ~ N(0,C), it is also possible to simply write
x' =x+ N(0,C).

Due to the positive definiteness of the covariance matrix C, the following
eigendecomposition exists (Theorem 1a in [58]):

C = BD’B’ (2.7)

Here, B denotes an orthogonal matrix,” the columns of which are the eigenvectors
of C. In [29], N(x,C) is reduced to the distribution N(0,I) by means of the
eigendecomposition given in Eq. 2.7, according to:

N(X,C) ~ X + BDN(0.1) (2.8)

In the field of evolution strategies, the three special cases N(0,I), N(0, diag(8?))
and N (0, C) are used for the definition of the most common algorithms. Figure 2.1
provides a sketch of the corresponding mutation ellipsoids, i.e., isolines of the
probability density functions, embedded in a hypothetical two-dimensional fitness
function.

The simplest case of generating the mutation x’ from x is based on using B = I
and D = oI with a global step size § € R for matrices B and D as used in Eq. 2.8.

3The normal distribution achieves maximum entropy among the distributions on the real domain.
(See [64] for more details.)

6 A symmetric matrix A € R">" is positive definite iff x” Ax > 0 for all x € R" \ {0} [17].
For an orthogonal matrix A, AAT = ATA = I holds.
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@ Line of equal probability density to place an offspring in a fitness landscape

Fig. 2.1 Mutation ellipsoids representing N (0, I), N (0, diag(§2)) and N (0, C) (from left to right)

X =x+8-N(©,I) 2.9)

This corresponds with spheres with individual radii defined by §, as indicated in the
left part of Fig. 2.1. This case of an offspring distribution is called isotropic.

To turn the spheres into anisotropic ellipsoids with main axes parallel to
the coordinate axes, as shown in the middle of Fig. 2.1, matrix D in Eq.2.8 must
be turned into a diagonal matrix § = (6y,..., 8,)T € R" with different entries on
the main diagonal. As in the previous case, B is a diagonal matrix:

x' = x + Idiag(8§) N(0,1)
= x 4 N(0, diag(§?)) (2.10)

The length ratios of the main axes of the mutation ellipsoids depend on the
ratios between corresponding components of the vector §. A rotation of mutation
hyperellipsoids with respect to the coordinate axes, as shown in the rightmost part
of Fig.2.1, is achieved by using a covariance matrix C with off-diagonal entries
different from zero. This case is denoted by the term correlated mutation. In contrast
with the two previous cases, the matrix B is not just an identity matrix:

x' = x + Bdiag(§) N(0,1)
= x + BN(0, diag(§2))
x4 NO.O) 2.11)

The choice of one of the three cases explained above has a direct impact on
the complexity of the endogenous parameters controlling the multivariate normal
distribution. In general, if n denotes the dimensionality of the search space, the
number of endogenous strategy parameters in case of Eq.2.9 is O(1), i.e., constant.
In case of 2.10 a vector of size O(n) of endogenous parameters is required,
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and adaptation of an arbitrary covariance matrix, i.e., a symmetric # X n-matrix,
according to Eq.2.11, requires O(n?) endogenous parameters.

For defining algorithm DR3 in Sect.2.2.1 and for all algorithms based on the
CMA-ES, the so-called line distribution [31] is of special interest: For u € R”, the
distribution N (0, uu’) is a multivariate normal distribution with the variance ||ul|?
in the direction of the vector u. It is the normal distribution with highest probability
of generating u.

2.1.3.2 Relationship Between Covariance Matrix and Hessian

In the previous section, using a multivariate normal distribution was motivated by
certain requirements which should hold for the mutation operator. In this section,
we will clarify why it is useful to use an arbitrary covariance matrix, as in Eq. 2.11,
for adaptation.

Any differentiable function f : R” — R can be approximated by a Taylor series
expansion in the vicinity of a position® X € R”. Cutting off the Taylor series after
the quadratic term, the following approximation is obtained:

[~ f®)+x-0)TV &)+ %(X —0)'VfR)(x-%) (2.12)

Here, V f(X) denotes the gradient, and V? f(X) is the symmetric, positive definite
Hessian, denoted by H in the following. For a quadratic function f, the Taylor
series expansion is exact, and H contains information about the shape of the isolines
of f. In general, these are ellipsoids, as shown in the rightmost part of Fig.2.1.
Hansen describes the relationship between the Hessian H and the covariance matrix
C of a distribution N (0, C) informally [29]. It is argued that using C = H™! for
optimizing a quadratic function is equivalent to using C = I for optimizing an
isotropic function, such as the sphere function f(x) = %XXT.

In other words: Adapting an arbitrary covariance matrix simplifies the opti-
mization by transforming the objective function into an isotropic function. A more
formal description of this topic can be found in Rudolph’s work, e.g., in the section
Advanced Adaptation Techniques in R" in [58], and also in [55].

2.2 Algorithms

This section contains descriptions of the key variants of evolution strategies in
chronological order of their publication. On a high level, we differentiate between
the two main Sects. 2.2.1 and 2.2.2, with the first one corresponding with the time
frame 1964 until 1996.

8See Sect. 6.2.2.3in [17].
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This first Sect. 2.2.1 describes five main algorithms, namely, the (1+1)-ES as the
historically first version of an evolution strategy and the (u, A)-MSC-ES (in [58]
also called CORR-ES) as the first evolution strategy which adapts an arbitrary
covariance matrix (see Sect.2.1.3 for an explanation). The first derandomized
algorithm variants, DR1, DR2, and DR3, complete this selection of older variants of
evolution strategies. Their choice is motivated by the fact that they are derandom-
ization steps towards the CMA-ES (see also [63]).

The second main Sect. 2.2.2 describes modern evolution strategies, a term which
is used in this book to denote the CMA-ES and algorithms based on it. This
distinction might seem somewhat arbitrary, but in fact the development of the
CMA-ES defined a turning point in the history of evolution strategies, for two main
reasons: First, the CMA-ES is the first algorithm which adapts a covariance matrix
in a completely derandomized way. Second, the CMA-ES is seen by many authors
as the state of the art in evolution strategies (e.g., [6,13,15,26,35,58,63], and [66]).

2.2.1 Fromthe (1+1)-ES to the CMA-ES

22.1.1 (1+1)-ES

The foundation of the first evolution strategy was laid in the 1960s at the Technical
University of Berlin by three students, namely Hans-Paul Schwefel, Ingo Rechen-
berg, and Peter Bienert. As described in [8] or [58], standard methods for solving
black-box optimization problems, such as gradient-based methods (see [44]), were
not able to deliver satisfactory solution quality for certain optimization problems
in engineering applications. Inspired by lectures about biological evolution, they
aimed at developing a solution method based on principles of variation and
selection. In its first version, a very simple evolution loop without any endogenous
parameters was used [59]. This algorithm generates a single offspring X' = x +
(N1(0,0),...,N,(0,0))" = x+0-N(0,I) from a single parent individual x € R".
If the offspring performs better than its parent (in terms of fitness), it becomes the
new parent. Otherwise, the parent remains. The standard deviation o of the normal
distribution was a fixed scalar value.

According to [53], by pure luck the value of o was chosen in a way that made
this first approach towards a (14-1)-ES successful. Only later on, the necessary step
size adaptation was added to the algorithm [52]. Based on two fitness functions,
the so-called corridor model® and the so-called sphere model,!? a theoretical result

9The rectangular corridor model according to [8]: fi(x) = ¢y + ¢; - x; if the constraints g;(x) :
x; <bwithh € RT for j €{2,..., n} are fulfilled, f1(x) = oo otherwise.
10The sphere model according to [8]: f>(X) = ¢ + ¢ - Z;l=l(x[ — x5
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Algorithm 2.3 (1+1)-ES
PO < {X}
¢ < f(x)
ps <0
initialize archive A for storing successful mutations
t<0
repeat
t<t+1
X < x+0-N(0,1)
¢ < f(x)
if ¢’ < ¢ then
X < x
¢ ¢
store success in A
else
store failure in A
end if
P, < {x}
ift mod n = 0 then
get #successes and #failures from at most 10n entries in A
o-cifps <1/5
o' < §o/cif ps > 1/5
oif ps =1/5

end if
o <o
until termination criterion fulfilled

was derived for introducing step size adaptation: Maximum convergence velocity
(i-e., speed of progress of the optimization) is achieved when about 1/5 of all
mutations are successful, i.e., improvements over their parent.'! This insight led
to the development of the so-called 1/5-success rule for step size adaptation. If
about 1/5 of all mutations are successful, the step size is optimal and no adaptation
is required. If the success rate falls below 1/5, the step size needs to be reduced.
If it grows above 1/5, the step size needs to be increased. To obtain the new
step size 0/ = o - ¢t71'U| the previous o is decreased or increased, respectively,
by multiplication or division by 0.817 < ¢ < 1. The recommended value of
¢ = 0.817 was derived by Schwefel according to theoretical arguments about step
size adaptation speed [61]. The step size adaptation according to the above rule is
applied each n iterations of the algorithm, and the success rate pgs is measured over
a sliding window of the last 10 - n mutations [8]. The pseudocode of the (1+1)-ES
according to [8] is shown in Algorithm 2.3.

'"The exact values are 0.184 and 0.2025 for the corridor and sphere models, respectively [8].
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2212 (u,A)-MSC-ES

The (1, 1)-MSC-ES'? was the very first evolution strategy capable of adapting
an arbitrary covariance matrix. The algorithm was developed by Schwefel [62]
and is also called (u, A)-CORR-ES [58]. In this strategy, the covariance matrix is
obtained as a product of n(n — 1) /2 rotation matrices, where a single rotation matrix
Rj; for a rotation angle o between axis i and axis j, with i, j € {1,...,n} and
i # j,is given by an identity matrix, extended by the entries R(i,i) = R(j, j) =
cosayj and R(i, j) = —R(j,i) = —sinay.

Indeed, this method is able to generate arbitrary correlated mutations, as proven
by Rudolph [55]. In the framework of the (1, A)-MSC-ES, endogenous strategy
parameters are modified by means of the so-called self-adaptation principle. For
self-adaptation, an individual consists not only of the decision parameters x, but also
contains an additional vector o € ", of step sizes and a vector & € (—7, 7r]"" =D/
of rotation angles. The underlying idea of mutative step size adaptation is based
on the assumption of individuals with good settings of strategy parameters to
generate good offspring, such that the good strategy parameters survive selection.
Recombination of decision parameters and endogenous strategy parameters is
performed through global intermediary recombination, i.e., by averaging all of the
1 parents. Concerning the exogenous strategy parameters, the local and global
learning rates t and 7’ need to be set. Following [8], after Schwefel [61], the settings

L ﬁﬁ are recommended, depending only on the problem

T = and T =

N2/
dimensionality n. Pseudocode of the (i, A)-MSC-ES is provided in Algorithm 2.4.
Concerning the population sizes, we are using 4 = 15and A = 7-pu = 105
throughout this book, close to the recommendations in [63].

2.2.1.3 DR1

The (u,A)-MSC-ES as described in the previous section is based on mutative
self-adaptation for step sizes § € R’.. However, as Ostermeier et al. [47]
claim, self-adaptation of individual step sizes is not possible in the case of small
population sizes, and they identify two key reasons: First, a successful mutation of
the decision parameters is not necessarily caused by a good step size, but can also
be due to an advantageous instantiation of the normally distributed random vector
(i.e., a lucky sample). Second, there is a conflict between the goals of maintaining a
large variance of step sizes within one generation and avoiding too large fluctuations
of step sizes between successive generations. The first derandomized evolution
strategy, abbreviated DR1,'? solves the first problem by using the length of the most
successful mutation step within one generation (i.e., the one that yielded the best

I2MSC is an abbreviation of mutative self-adaptation of covariances.

131n the original publication it is called (1, A)-ES with derandomized mutative step size.



2.2 Algorithms 17

Algorithm 2.4 (1, 1)-MSC-ES
initialize population
PO «— {(xi,01,01), ..., (X, 0, 0)}
t<0
repeat
t<—t+1
// recombination
X <« lll Z;l=1 X;
0 <« t Zfl=l o
o <~ ﬁ Zfl=l o
fori =1—> Ado
// mutation
n< 1t -N(,1)
o <o -exp(n+1-N(0,1)
a <—a+B-NO]I
C <« H::: H;l'=i+l Rj
X; (—)_(+C'O'[ N(O,I)
// evaluation
i < f(xi)
end for
// selection
P® are the p1 best (x;,0;,0;) from1 <i <A
until termination criterion fulfilled

offspring) for controlling step size adaptation [47]. The second problem is solved
by using a factor £ € {%, %} to provide sufficient variance of step sizes within one
generation, and to dampen'# this factor by applying an exponent 8 with 0 < 8 < 1
for step size adaptation, to reduce undesired fluctuations [47]. An offspring x” of a
parent X is then generated as follows:

X =x+£&-8§®@zwherez = N(0,])
Adaptation of step sizes § is based on the most successful z (i.e., the normally

distributed vector sample which generated the best offspring during this generation),
which is first transformed as follows:

& = (exp (1a11 = V277).....exp (Iaal = v2/) )

Combined with the exponents 8 and B, € R for damping the adaptation, as
well as € and &, of the best mutation, the new step sizes §’ are obtained as follows:

§=®" € e

14This way, adapting the step size by a factor £ requires at least 1/8 > 1 generations.
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Algorithm 2.5 DR1

initialize x, § <— (1,..., )T
t <0
repeat
t<—t+1
fori =1— Ado
z; < N(0,1)
X < x+& 8@z where P(5 = 3) = P(§ = 1) =
i < f(xi)
end for
sel <— i with best value of ¢;
X < Xel

‘i:z,wl = (CXP (|Zse11| - V2/7T), ..., eXp (lzsel,,| — 4/2/]-[))7‘

8 — )’ (E,)" @
until termination criterion fulfilled

1
2

Pseudocode of the DR1 evolution strategy is given in Algorithm 2.5. Concerning
the offspring population size A, a constant setting of A = 10, independently of
dimensionality 7, was used in [47]. The DR1 algorithm is based on a single parent
individual (4 = 1), and sometimes also denoted as (1, 10)-DR1-ES. Ostermeier
et al.[47] recommends for the exponents 8 and B, the following values:

B=+1/n
ﬂscal = l/l’l

2.2.14 DR2

The DR2 evolution strategy'> represents the next step of derandomization for
evolution strategies [48]. The creation of an offspring by mutation is parameterized
by a global step size § and local step sizes 8., € R":

X =x+8 84 zwherez = N(0,I)

Asin DRI, adaptation of step sizes is based on the most successful z. However, in
addition to information about the most successful mutation of the current generation,
the most successful mutation steps of previous generations are also taken into
account, thereby accumulating information over generations. The accumulation
takes place in a vector { € R”", using a factor ¢ € (0, 1] to control the weight of
previous generations in contrast to the current one:

{'=(0—-c)-§+c 2w (2.13)

5Tn the original paper, the algorithm is called (1, A)-ES with derandomized mutative step size
control using accumulated information.
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Algorithm 2.6 DR2

initialize X, & <= 0,8 < 1, 85es < (1,..., D)7
t <0
repeat
t<—t+1
fori =1— Ado
z; < N(0,1)
Xi < X+ 885 ®z
i < f(xi)
end for
sel <— i with best value of ¢;
C/(_(I_C)'C+C'Zsel

, s
8’<—5'(6Xp(\[“c”r _1+$))
naf 75

Bscal
525,1[ <~ chal ® ( lgi + %)

2—c¢

X < Xgo/
<&
§<« &
Sscal <~ S:vw]
until termination criterion fulfilled

Adaptation of step sizes § and 8 is then based on the updated mutation path ¢':

1 Y
) :8~(exp(—ﬁ\/g—l+§))

ﬁsml
; 7
écali :Sﬂlali.( |Cl| +_) Viell,...,n}

/3= 20

Standard settings for the exponents B and B,., as well as the parameter ¢ are as
follows:

B=+1/n
ﬂscal: l/l’l
c=+/1/n

The pseudocode of the DR2 evolution strategy is given in Algorithm 2.6.

2.2.1.5 DR3

The DR3 evolution strategy [33], also called (1, 1)-GSA-ES (generating set adap-
tation), is able to generate mutations according to an arbitrary multivariate normal
distribution, corresponding to the adaptation of an arbitrary covariance matrix
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according to Eq.2.11. This process is not based on implicitly using a covariance
matrix, but on transforming an isotropic random vectorz = N (0, I) into a correlated
random vector y by multiplication with a matrix'® B = (by,....,b,) € R"™™.

As described in Sect. 2.1.3, this can be interpreted as superposition of multiple
line distributions. For the number m of column vectors, n2 < m < 2n? holds, with
a smaller value of m providing a faster adaptation and a larger value of m a more
accurate adaptation. Like in DR1, for variation of the global step size § € R a factor
£ € (3.3} with P(§ = 2/3) = P(&§ = 3/2) = 1/2is used. To guarantee an
approximately constant length of the column vectors in B, y is adapted by using a
factor ¢,,. Based on its parents X, an offspring is then created as follows:

X =x+§-£-ywherey = ¢, -BN(0,I)

The adaptation of endogenous strategy parameters is based on the selected yj,;
and &;.;. The column vectors of matrix B are updated according to:

/1 = (1 _C) 'bl +c- (Cugselyxel)
b, =b; Vie{l....m—1}

Like with the previous versions of derandomized evolution strategies, the global
step size § is adapted based on the selected &, by using a damping exponent §:

§ =35 ()’

For the exogenous parameters, the standard settings are given in [33] as follows:

c=+/1/n

B=+1/n
3

m= =—n?
2

en = (1//m)(1 + 1/m)
= J2-oe

A =10

The corresponding pseudocode of the DR3 evolution strategy is provided in
Algorithm 2.7.

16The column vectors of the matrix B form a so-called generating set, which motivates the
terminology generating set adaptation.
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Algorithm 2.7 DR3

initialize x, §, B <— (0, N (0, (1/n)I)) € R"*™
t <0
repeat
t<—t+1
fori =1—> Ado
z; < N(0,I) where z; € R”
Yi < ¢ Bz
X; < X+ 68-& -y, where P(§ =2/3) = P& =3/2)=1/2
i < f(x)
end for
sel <— i with best value of ¢;
b <« (1 - C) : bl +c- (Cuésely,sel)
§ 8- (&)’
B’ < (b,by,....b,—))
X < X, 6 < 8 and B < B’
until termination criterion fulfilled

2.2.2 Modern Evolution Strategies

2221 (uw,A)-CMA-ES

Algorithms DR1, DR2 and DR3, as described in Sect.2.2.1, are derandomized
evolution strategies in the sense of adapting endogenous strategy parameters
depending on the selected mutation vector. This has also been called the first level
of derandomization [63]. In addition, the second level of derandomization aims at
the following goals [63]:

* Increase the probability of generating the same mutation step again.
* Provide a direct control mechanism for the rate of change of strategy parameters.
* Keep the strategy parameters unchanged in case of random selection.

The so-called CMA-ES, as introduced in [31], meets these goals by means of
two techniques, namely the covariance matrix adaptation, CMA and the cumulative
step size adaptation, CSA, for adapting a global step size. The description of
a CMA-ES as provided in [31] is focused on explaining these two techniques,
and recombination in case of u > 1 is not discussed at all. Therefore, we
will discuss the CMA-ES in this section as a (uw,A)-CMA-ES with weighted
intermediary recombination, as described in [29] and [32].!7 Using the notation for
evolution strategies as introduced in Sect. 2.1.2, the algorithm ought to be denoted
more precisely as (u/uw, A)-CMA-ES, with index W denoting the weighted
recombination. However, the simplified notation is motivated by arguing that the
notation u/uy suggests two different numbers (i and ), although it is p in

17 According to [32], the suggestion to use weighted recombination within the CMA-ES is due to
Ingo Rechenberg, based on personal communication in 1998.



22 2 Evolution Strategies

both cases. Here, we adopt the simplified notation, and denote the CMA-ES with
weighted recombination as (uy , A)-CMA-ES.
Based on a parent x, an offspring x’ is then generated as follows:

X' = x + o0BDz where z = N(0,1)

Matrices B and D result from an eigendecomposition of the covariance matrix C
according to Eq.2.7, and 0 € R denotes the global step size. After generating and
evaluating an offspring population of size A according to this mutation operator, the
1 best individuals of the offspring population are selected and undergo weighted
intermediary recombination.

Weighted intermediary recombination is a generalization of classical global
intermediary recombination. Weighted intermediary recombination is based on
using j weights wi > wy > ... > w, with Y '_, w; = 1 for generating the
new parent (x) and the best mutation step (y) as weighted averages:

"
(x) = Z WiX:\

i=1

n
(y) = Z w;BDz; .,

i=1

For adapting the strategy parameters, the so-called variance effective selection

mass [Ley is required:
“ —1

i=1

According to [29], 1 < . < p holds, and for identical weights w; = ﬁ

(Vi e {1,...,u}) g = p. In analogy with Eq.2.13 for DR2, the strategy
parameter adaptation techniques, CMA and CSA, use so-called evolution paths
for accumulating strategy parameter information across several generations. The
(uw, A)-CMA-ES uses two evolution paths, p. for the adaptation of the covariance
matrix and p, for global step size adaptation. The evolution paths are updated as

follows:
Pe = (1= co) - Pe + o yfec(2 = ) pegr (¥)
P, = (1= ¢o)Po + /¢ (2 — ¢o) pteyBD'B (y)

For updating p,, the function 4, is used, which is defined according to:

1 o 7 2
o =

0 otherwise
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The purpose of h, is to avoid an update of p. to take information of the
current generation ¢ into account, when ||p.| becomes too large. The expectation
E(|IN(0,T)|]) of the length of a multivariate, normally distributed vector of dimen-
sionality n, can be approximated (based on the gamma function'®) as follows:

n+1 n 1 1
E(INQ.DI) = V2r(“2=)/ T () ~ ﬁ(l -Ly M)

The covariance matrix adaptation is performed according to the equation below:

"
C' = (I—ca—c)CHa®ep! +8(h)C) +cu Yy wiyiayly, — (2.14)

i=1

The first term in the summation represents the contribution of the previous
covariance matrix. The second term is called the rank-one-update and takes the
information accumulated in the evolution path p, into account. The third term, the
so-called rank-p-update, was introduced with the extension of the CMA-ES for
population sizes with ;> 1 [46]. The global step size o is updated according to:

oo (2 (el 1))
d, \E(IN©.D])

For the exogenous strategy parameters of the (uw, A)-CMA-ES, the following
standard settings are defined in [29]:

A=4+|3Inn|
A
n = LEJ

ln(%)—lni )
= Z’.L lln(ﬁ)—lnj fori e {1,...,u}
j= 2

i

S n+ g +5
off — 1
d,,=1+2max<0, “ﬂ—)—l-ca
n+1
. 4+ peg/n

n4+4+2up/n

8See [17]: T'(n) = fooo x"exp(—x) dx.
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Algorithm 2.8 (uw, 1)-CMA-ES
initialize (x)
p. <0
po <0
C<«1
t <0
repeat
t<t+1
B and D <« eigendecomposition of C
fori =1— Ado
z; < N(0,1)
y; < BDz;
x; < (x) + oyi
Ji < f(&xi)
end for
{y) < Zf:l WiYi:a
(x) < (x) +o{y) = 20_ wixin
Po < (1 —¢o)ps + /co (2 — Ca)ﬂeﬁ'BD_lBT {y)
o <—0-exp(;—‘; (ﬁll[\% — 1))
pc < (1— Cc)p( + hofec(2— Cc)ﬂejf
C<—(1- CH)C + CI(P( .+ S(h )C) + Cu Zl 1 WiYi: Ayy "

until termination criterion fulﬁlled

2
(n+ %)2 + Hef

¢, = min (1

c1 =

Heff — 2+ 1/“677
C1,0y >
( + 2) + Olulueff/z

) with @), = 2

Putting it all together, the pseudocode of the (uw,A)-CMA-ES is given in
Algorithm 2.8.

2.2.2.2 LS-CMA-ES

The LS-CMA-ES [6] is a (1, 1)-ES implementing the idea to adapt the covariance
matrix C based on the inverse Hessian H™!. The Hessian itself is estimated by
solving the appropriate least squares estimation problem. Based on Theorem 5 in
[55], it is known that this requires at least m > 3 (n* 4 3n + 4) tuples (x, f(x)). To
achieve this, the algorithm saves all tuples (x, f(x)) in an archive A. Based on the
Taylor series expansion (Eq.2.12), the least squares estimation problem is defined
through the following minimization task:

2
Z (f(xk) = 00 = (5 =0 = 5 5 x0) R x))
2.15)

min
geR? HeRm>n
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The result of minimizing 2.15 provides estimators g for the gradient and H for
the Hessian.

Since the Taylor series expansion up to the quadratic term provides only an
approximation of the true fitness landscape at X, we are also interested in obtaining
an error measure Q (g, H) of the estimate for deciding whether H™! can be used for
covariance matrix adaptation. The following error measure is used for this purpose:

Q@m:ifzﬂm—ﬂm—m—w%—ﬁwﬂwnm—mz
’ m — J (i) = f(x0) — (xkc —%0)" 8
(2.16)

Unfortunately, solving Eq. 2.15 and inverting H by means of numerical methods
requires algorithms with time complexity O(n°), so that, especially for large 7, an
execution of these steps in each generation is not affordable. To solve this problem,
the LS-CMA-ES provides two different working modes, denoted LS and CMA, for
adapting the covariance matrix.

In mode LS, an approximation of H is performed only each 7,4 generations.'? If
the error Q falls below a required threshold Q;, the covariance matrix C = %I:I_1 is
used by the algorithm and remains unchanged until a new update after another 7,4
generations is performed.

If Q is bigger than the threshold value Q;, the LS-CMA-ES switches into mode
CMA. Before explaining this mode, the creation of an offspring x’ from the parent
(x) is defined below:

x = (x) + 0dN(0,C) where d = exp(tN(0, 1))

In addition to the covariance matrix C, a global step size o is used, which is
updated by mutative step size adaptation. If b denotes the index of the best offspring,
the global step size is changed according to 6’ = o - dj,. Adapting the covariance
matrix C is based on a rank-one update (i.e., the second term in Eq.2.14) by using
an evolution path p.:

c 2— c
p= (=) ope+ YECZD )

C/ = (1 — Cmv) -C + CeovPe (Pc)T

The evolution path p, is also updated when operating in mode LS, to make sure C
is updated based on up-to-date information when the algorithm switches into mode
CMA.

The pseudocode of the LS-CMA-ES is given in Algorithm 2.9, and the exoge-
nous strategy parameters are set as follows:

19With the additional condition for A to consist of at least m = n? tuples.
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A =10
_ 1
G
Nupa = 100
0, =10"°
4
= n+4
2

RTIVGIE

2.2.2.3 LR-CMA-ES

The LR-CMA-ES (local restart) extends the (uw,A)-CMA-ES by introducing
restarts [4]. The strategy introduces five criteria for identifying stagnation of the
optimization process and, in case of stagnation, starts a new run of the (uw, A)-
CMA-ES. Each run of the (uw,A)-CMA-ES initializes the starting point of the
search and the strategy parameters anew, so that the runs are independent of each
other. For defining the termination criteria, the tolerance values 7, = 01072 and
T, = 10~'2 are used. Any other exogenous parameters are the same as in the
(uw, A)-CMA-ES.

The first termination criterion, called equalfunvalhist, is satisfied if either the
best fitness values f(x;:3) of the last [10 4+ 30n/A] generations are identical or the
difference between their maximum and minimum values is smaller than 7.

The second criterion, TolX, is satisfied if the components of the vector v = op,
are all smaller than Ty, i.e.,v; < T, Vi € {1,...,n}.

The third criterion, noeffectaxis, takes changes with respect to the main coor-
dinate axes induced by C into account. These are given by the eigenvectors u; and
eigenvalues y;,i € {1,...,n}, of C, and they are found (normalized) in the columns
of matrix B and the main diagonal elements of D. The termination criterion does not
check all main axes at once, but in generation 7 it takes the axis i = ¢ mod n into
account. It is satisfied when l"—oﬁui ~ 0.

The fourth criterion, noeffectcoord, analyzes changes with respect to the coordi-
nate axes. Itis satisfied if £C;; ~ 0 Vi € {1,...,n}.

Finally, the criterion conditioncov checks whether the condition number of the
matrix C, cond(C) = % exceeds 1014,

The pseudocode of the LR-CMA-ES, as shown in Algorithm 2.10, consists
of a simple outer loop managing the restarts of the (uw, A)-CMA-ES. The local
termination criteria are exactly the five criteria introduced above for discovering
stagnation. In contrast, the global termination criterion is the same as used in
previous sections, see Sect.2.1.2.
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Algorithm 2.9 LS-CMA-ES
initialize (x), o
C<«1
Archive A <
p. <0
mode <— LS
t <0
repeat
t<—t+1
B and D <« eigendecomposition of C
fori =1— Ado
d; < exp(tN(0,1))
X; < (x) + 0 -d;BDN(0,1)
Ji < f(xi)
A AU, f)}
end for
b < index of best offspring
o <«o0-d
pe < (1= cope + L= ((x) —x,)
if mode = LS then
C unchanged
else if mode = CMA then
C <« (1 - Ccov)C + Ccovp(?p(?
end if
if 7 modulo 7n,,; = 0 then

Obtain & and H based on the last 72 tuples of A by solving Equation 2.15 where xg = (x).
Obtain O (&, H) from Equation 2.16
if 0, H) < O, then
mode < LS
-1
C <« (L)
else
mode < CMA
end if
end if
(x) < x
until termination criterion fulfilled

Algorithm 2.10 LR-CMA-ES
repeat
execute (w,A)-CMA-ES (Algorithm 2.8) using the local termination criteria
until global termination criterion satisfied

2.2.2.4 TIPOP-CMA-ES

The TPOP-CMA-ES [5] is an extension of the LR-CMA-ES as described in the
previous section. Whenever a run of the (i, A)-CMA-ES is terminated due to a
local termination criterion (as introduced for LR-CMA-ES), the population size is
increased by a factor 7 for the next run of the (uw, A)-CMA-ES. This strategy is
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Algorithm 2.11 [POP-CMA-ES

repeat
execute (w,A)-CMA-ES (Algorithm 2.8) using the local termination criteria
KN p
A<n-A

until global termination criterion satisfied

motivated by empirical investigations of the behavior of the (uw, A)-CMA-ES with
different population sizes for multimodal test functions [30]. As these investigations
clarified, the global convergence properties of the algorithm improve with increasing
population size. The corresponding pseudocode is given in Algorithm 2.11. When
using non-integer values for 7, the new number of parents u and offspring A are
obtained by rounding. For 7, the interval [% 5] is identified as a reasonable range,
and the default value n = 2 is recommended.

2.2.2.5 (1+41)-Cholesky-CMA-ES

The (1+1)-Cholesky-CMA-ES [38] introduces a method for adapting the covari-
ance matrix C implicitly, without using an eigendecomposition of C. Consequently,
the approach reduces the computational complexity within each generation from
o(n?) to O(n?).

The algorithm is based on the so-called Cholesky decomposition®® of the
covariance matrix, C = AA”. As proven in [38], an update of the Cholesky
factors A is possible without explicit knowledge of the covariance matrix C. The
corresponding lemma and theorem are stated here without proof. The lemma states
that, for any vectorv € R" and ¢ = W <\/1 + |Iv]|2 = 1), the following equation
holds:

I+vw = ([I+cw’) (I+cw')

This lemma is required for the proof of the following theorem:

Theorem 2.2.1. Let C € R" be a symmetric, positive definite matrix with Cholesky
decomposition C = AAT. Let C' = aC + Bvv! be an update of C with v,z € R",
v = Az and o, 8 € RY. The updated Cholesky factor A’ of C' is then given by

A = JaA + ﬁ (,/1 + Bjz)2 - 1) (Az)zT.

Based on a parent individual x, an offspring x’ is then created according to:

x =x+ oAz withz = N(0,])

20Compare Sect. 19.2.1.2 in [17].
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Using Theorem 2.2.1, the Cholesky factor A is adapted as follows:

’ 1 —c)llzl?
A =c,A + Cz 1+w—1 Azz”,
Izl (&

with a constant exogenous strategy parameter c,. The adaptation above is applied if
the value of a measure p, (explained in the following) is smaller than a threshold
value p;.

The adaptation of the global step size ¢ is in some ways similar to the 1/5-
success rule of the (141)-ES (see Sect.2.2.1). If the offspring is better than the
parent, A; = 1 in the equation below, otherwise, A; = 0. These success indicators
are accumulated across generations by using a learning rate c,, resulting in an
accumulated success rate p;:

ps = (1— Cp)p_s + Cpls

Using this measure and its target value p! for the success rate, the global step
size o is updated as follows:

, 1 (. Dy -
oo (4 (5 )

The pseudocode is given in Algorithm 2.12, and the default settings of the
exogenous strategy parameters are:

; 2
T
11
Przﬁ
Cqg = 4/1— 2
“ n?+6
1
Cl’_ﬁ
d=1+"

2.2.2.6 Active-CMA-ES

The (uw,A)-CMA-ES uses weighted recombination of the p best offspring to
generate a new point in the search space. As shown by Rudolph [57], the con-
vergence velocity of an evolution strategy can be further increased by also taking
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Algorithm 2.12 (1+1)-Cholesky-CMA-ES
initialize x, o
A<1
Ds < Py
repeat
z < N(0,T)
X < x+ o0Az
if f(x') < f(x) then
Ay <1
else
Ay <0
end if
ﬁx <~ (1 - cp)p_s + Cp/'{s
o —a-exp (35— Er1-5))
if f(x') < f(x) then
X < x
if p; < p; then

A<—caA+“;¢( 1+(1_C§#—1)AZZT
end if
end if

until termination criterion satisfied

the worst offspring into account for recombination, however, with negative weights.
The Active-CMA-ES [40] is based on this idea,”! however, it is not used during the
process of recombination,?? but exclusively for adapting the covariance matrix.
Therefore, the corresponding extension of the (i, A)-CMA-ES mainly consists
of changing the covariance matrix adaptation method, modifying Eq.2.14 of the
(uw, A)-CMA-ES within the Active-CMA-ES into:

C' =C <« (1 —¢c.)C+cpcp! + BZ where

1 & (-
Z=BD|—> zzl,—— Y zmuz, |BD)
mi= K k=A—p+1

In addition, the exogenous parameter c¢. is now modified to ¢, = m
The parameter 8 has been tuned by means of an empirical investigation, which

is described in detail in [39]. Its setting of § = % reflects a compromise

between the conflicting goals of achieving a large convergence velocity on the one

2IThe term active is motivated by the fact that specifically the bad offspring individuals play an
active role, although they would normally not be taken into account after selection has been applied.

22This is explicitly avoided due to the occurrence of numerical instabilities for certain objective
functions; see [40].
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Algorithm 2.13 Active-CMA-ES
initialize (x)
p. <0
ps <0
C<«1
t<0
repeat
t<t+1
B and D < from eigendecomposition of C
fori =1 — Ado
z; < N(0,)
y; < BDz;
xi < (x) +oyi
Ji < J(xi)
end for
{y) < Zf:l Wi¥i:x
(x) < (x) +oly) = T wixia
P < (1 - crr)prr + Ve (2— crr)lfbeﬁ"BD_lBT (3’)

o lIps Il
o< 0oexp (T (Elll\l/)(o,l)ll - 1))
P < (1 - Cc)pc + ho Cc(2 - Cc)ﬂeﬂ(y)
A
Z < BD (ﬁ Y meazl, — ﬁ kit zk;kz,f:k) BD)"

C <« (1—c.)C+ cp-p! + BZ
until termination criterion satisfied

hand and ensuring that C remains positive definite, to drive the evolution strategy
into a robust working regime. The pseudocode is provided in Algorithm 2.13, and
the default settings of the exogenous strategy parameters are, except for ¢, and B,
identical to those used in the (uw, A)-CMA-ES.

2.22.7 (u,A)-CMSA-ES

The (u,A)-CMSA-ES [13], more precisely denoted the (i/p;, A)-CMA-0-SA-ES,
reintroduces self-adaptation of the global step size o, just like in the (@, 1)-MSC-
ES, into the algorithm. This approach is motivated by the fact that reintroducing
self-adaptation decreases the number of exegenous strategy parameters to two,>
consequently providing a simplification of the (uy, A)-CMA-ES, which requires
five exogenous strategy parameters. Offspring individuals x; and their step sizes
oi, i € {1,...,1}, are created based on the parent x, the global step size o, and
the matrices B and D (from an eigendecomposition of the covariance matrix C), as
follows:

ZPopulation sizes w and A are not counted.
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oi =0 -exp(zN(0,1))

s; = BDN(0,1)
Z, = 0; *S;
X, =X+ Z;

Recombination is based on identical weights 1/, resulting in averaging the u
best offspring. It is applied to the vectors z;., s;:), and step sizes o;.), for i €
{1,..., u}, and results in the vectors (z), (s) and the new global step size o. The
new parent X is then obtained as X' = x + (z). Vector (s) is required for adapting
the covariance matrix C, and its update uses the learning rate t¢ by proceeding as
follows:

C = (1 - L) C+ i(s)(s)T (2.17)

Tc Tc

The default settings of the exogenous strategy parameters are:

A=4u
1
T =
V2n
1

2p

The pseudocode of the corresponding (i4,A4)-CMSA-ES is given in Algorithm 2.14.

2.2.2.8 sep-CMA-ES

The sep-CMA-ES [54] is a variation of the (uw, A)-CMA-ES which reduces space
and time complexity to reach O(n), i.e., linear in n. This is achieved by using,
instead of an arbitrary covariance matrix, just a diagonal matrix D as in Eq.2.10.
Consequently, this kind of evolution strategy is not able anymore to generate
correlated mutations, in return for the advantage of saving the computationally
intensive eigendecomposition of the covariance matrix C. D can then be obtained
from C by taking the square roots of the main diagonal elements of C. The
covariance matrix is adapted according to the following update rule:

1 1) v
C/ = (1 - Ccov)C + _Ccovpc(pc)T + Ceov (1 - ) ZwiDZi:A(DZi:A)T
Meft Hefr

i=1
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Algorithm 2.14 (u,1)-CMSA-ES
initialize x, o
C<«1
(0) <o
repeat
B and D < from eigendecomposition of C
fori =1— Ado
0; < (o) expTN(0,1)
s: < BDN(0,1)
Zp < 0;"S;
Vi< x+z
Ji < f(yi)
end for
(z) < average of the best  z;,i € {1,..., A}
(s) < average of the best us;,i € {1,..., A}
(o) < average of the best 07,1 € {1,..., A}
X < x+ (z)
C(1-L)c+ Lis")
until termination criterion satisfied

Due to the reduced complexity of the covariance matrix, the learning rate ¢,
can be increased to accelerate the adaptation process. The learning rate c.,, is then
set as follows:

2 1 2 1 2er — 1
Ceov = nt (_ + (1 - _) min (17 M+))
3 \ e (n + V/2)2 Hef (n+2)2 + wop

All other settings of the sep-CMA-ES are identical to those used within the
(1w, A)-CMA-ES. The resulting pseudocode of the sep-CMA-ES is shown in
Algorithm 2.15.

2229 (1*1s)-ES

The (1 +)Lfn)-ES [16] introduces the two new concepts of mirrored sampling
and sequential selection. These two mutually independent concepts change the
algorithmic processes of offspring creation and their selection, and thus they do
not establish a complete evolution strategy. The concept of mirrored sampling can
be used within a (1 4+ A)-ES as well as a (1, 1)-ES. The application of sequential
selection is only possible in the case of a plus-strategy, explaining also the use of
the notation *. Furthermore, the indices s and m of A represent the algorithmic
concepts of sequential selection (s) and mirrored sampling (m), respectively.

The idea of mirrored sampling is to generate part of the offspring in a derandom-
ized way by generating for a mutation vector z not only the offspring x + z, but also
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Algorithm 2.15 sep-CMA-ES
initialize (x)
C<«1
D<«1I
ps < 0
pc <0
t <0
repeat
t<—t+1
fori =1—> Ado
z; < N(0,1)
x; < (x) + oDz;
end for
(x) < Zflzl WiXi:
(z) < Zﬁl:l WiZ;:)
Po < (1 —co)ps + /¢ (2 — Co)\/ ﬂeﬂ(z)
if el (g + %) E(IN(.D)]) then

A 1—(1—cq)?

H, <1
else

H, <0
end if

P < (1 - Cc)pc + HU’V Cc(2 - Cc)«/ /’LeﬂD(z)
C < (1 =cao)C+ 2pep! +cc (1 - ) Y wiDz;; (Dz;:5)"

Heff
o llpoll
0 < oexp (dn (E(||N(0,I)II 1))

D = diag (v/Ci 1, ..., /Cun)

until termination criterion satisfied

the additional offspring x —z. These two offspring are obviously symmetrical®* with
respect to X. As a potential application, mentioned in [3], mirrored sampling can
increase the robustness of the Evolutionary Gradient Search algorithm and increase
convergence velocity in the sphere model. Theoretical convergence rates for variants
of the (1 A3 )-ES have been derived; see [16] for the corresponding results.

Sequential selection can be used to reduce the number of function evaluations.
It is applied within a (1 + A)-ES by sequentially executing the steps mutation and
evaluation for single offspring individuals, rather than generating all A offspring first
and then evaluating their fitness. In sequential selection, as soon as an offspring has
a better fitness than the parent, the offspring can replace the parent, and no more
offspring need to be generated and evaluated. In this way, up to A — 1 function
evaluations can potentially be saved at each generation.

The two concepts can be used independently of each other, or in combination.
As explained before, the (1 +/\fn)-ES does not constitute a complete evolution
strategy, but rather a method for generating the parent (x)’ for the next generation
based on the previous parent (x) and a method mutationOffset, which generates a

4Instead of the term symmetrical, this is called mirrored in the context of this strategy.
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Algorithm 2.16 (17 A3,)-ES

Input: search point (x) and a method mutationOffset
Output: new search point (x)’
i <0
j <0
while i < A do
i<i—+1
J<Ji+1
if (mirrored sampling) A (j modulo 2 = 0) then
X, < (x)—z
else
z; <— mutationOffset()
X, < (x) +z;
end if
if (sequential selection) A (f(x;) < f({x))) then
j <0
break
end if
end while

(x)" <= argmin ({ f(x1), ... f(xi)})

mutation step and is determined by the underlying evolution strategy. The approach
is summarized in pseudocode in Algorithm 2.16.

2.2.2.10 xNES

The xNES algorithm (exponential natural evolution strategies) [26] is a (1, A1)-ES
which adapts its endogenous strategy parameters by using the so-called natural
gradient (see [1]). The idea was implemented for the first time in the context of NES
(natural evolution strategies) [71] and was then developed further by introducing the
eNES (efficient natural evolution strategies)> [66].

In the following, the underlying ideas of the xNES are briefly summarized,
without giving detailed descriptions of the underlying concepts, such as, e.g., the
Fisher information matrix. These fundamentals can be found in the original work of
Glasmachers et al. and the corresponding references, see [26].

This family of evolution strategy algorithms also relies on the multivariate normal
distribution N((x),C) for generating correlated mutations of the current search
point (x). Similar to the (1 + 1)-Cholesky-CMA-ES (see Sect.2.2.2.5), rather
than working with the covariance matrix C explicitly, a Cholesky factor A with
C = AAT is used. The current search point and the covariance matrix are combined
to form the tuple 8 = ({x), C), representing the quantities subject to adaptation
within an xXNES. Rewriting the probability density function of a normal distribution

25In [26] the eNES are called exact natural evolution strategies.
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as a function of the current search point (x) and the Cholesky factor A, its probability
density N((x), C) turns into:

P (xl6) = cexp (-5 a7 - )

1
(m)n detA

Given the distribution described by 6, the expectation J(6) of the fitness
becomes:

J(0) = E(f(x)|0) = /f(X)p(XIQ)dX

The gradient of the expectation J(6), VyJ(0), can be calculated by using the
so-called log-likelihood trick according to

Ve J(6) = / (f®)V log (p(x]6))) p(x]6)dx.

which can be approximated by Monte Carlo estimation based on the offspring
individuals x;, i € {1,...,A}:

A
ViJ(6) ~ 3 Y fx)V log (p(x/6)).

i=1

For calculating the term V log (p(x|6)), we refer to [67]. Combining this with
the Fisher information matrix FIM) F € RV*N 'where N = n 4+ n(n + 1)/2, the
natural gradient G is obtained as:

G =F1vyJ(0)

Use of G is motivated by the fact that it is invariant with respect to linear
transformations, so that the gradient converges in a correlated search space pretty
much like in an isotropic one.

The NES suffer from the disadvantage of their impracticable computational
complexity of O(n®), caused by the explicit calculation of the FIM and its inversion.
In contrast, the xXNES do not require an explicit calculation of the FIM anymore.
Based on using a so-called exponential parameterization (see Sect.4.1 in [26]) a
transformation of 6 into natural coordinates (see Sect. 4.2 in [26]) is applied. Using
step size 6 and Cholesky factor B, an offspring x is then generated from the parent
(x) according to:

X = (x) + 6Bz wherez = N(0,]) (2.18)
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Similar to weighted recombination, the xXNES uses so-called utility values u;.
This approach is also called fitness shaping in the context of an xNES. Using the
rank i given by the fitness values, utility values are calculated as follows:

max (0,log (§ + 1) — log(i)) 1
u; -

- >-l—y max (0, log (5 + 1) —log(i)) A

Using the mutation vectors z; from Eq. 2.18, the gradients G, for the covariance
matrix and G; for the current search point are defined by:

1
GM = EZM,' (Z,’Z’-T —I)

A
G5 = Zuizi

For calculating the gradients, all A offspring individuals are taken into account,
i.e., a selection in the classical sense is not applied. Using those gradients and the
learning rates 7y, 1, and ng, the new search point (x)’, the new step sizes o’, and
the new Cholesky factor B’ are calculated:

(x)" = (x) + 1 - Gy

by
No
o' =0 -exp (% - tr (; u; - (ziz,-T —I)))

B/:B'exp<n73~GM)

0o A
n=0 n!>

Here, the exponential function of a matrix A is defined by exp(A) = Y
see [26].

The resulting pseudocode of the xNES is given in Algorithm 2.17. The default
parameters of the exogenous strategy parameters are as follows:

A =4+ |3log(n)]
Nx = 1

_ 2 3 4 log(n)
e =73 nn

N = No
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Algorithm 2.17 xNES
initialize (x)
B<«<1I
o < 4/|detB|

fori =1— Ado
max (0.log (4 +1)—log(i))

1
Ui <= Z;\-=1max(O,log(%-{-l)—log(i)) X
end for
repeat
fori =1— Ado
z; < N(0,1)
x; < (x) + 0Bz
end for

sort {(z;,x;)} by f(x;)
Gg < Z?L=l Ui *Z;
GM < Z?:l u; * (Z,'Z,-T — I)
G, < tr(Gy)/n
Gg <~ Gy —G,-1
(x) <= (x) + 1. - 0B - Gs
o <o -exp (G- "7")
B<—B-exp(GB . "78)
until termination criterion satisfied

2.2.2.11 (1+41)-Active-CMA-ES

Extending the (14-1)-Cholesky-CMA-ES with the idea of the Active-CMA-ES
to take information of unsuccessful offspring into account for covariance matrix
adaptation consequently leads to the development of a hybrid, the (14 1)-Active-
CMA-ES [2]. Instead of using an explicit covariance matrix C = AAT”, the
(14-1)-Active-CMA-ES works directly with the Cholesky factor A and its inverse
A~!. The update of A has been defined previously, based on Theorem 2.2.1. In order
to use A~!, an extended version of this theorem is required, which we state below
(without proof, see [2]):

Theorem 2.2.2. Let C € R™" be a symmetric, positive definite matrix with
Cholesky decomposition C = AAT, and let C' = aC + Bvv! be an update
transformation of C where v.e R*"\ {0}, o € Rt and B € R. Let w = A™ v
with a + B||w||> > 0 and let C' = A’A'T be the Cholesky decomposition of
the updated matrix C'. Then, the Cholesky factor A’ and its inverse A'~! are

obtained as follows: A = JaA + ﬁ (\/1 + gHW“2 — 1) Aww’ and A’ =

LAa-1_ 1 1 T A—1
AT T T (1 4/_1+,s—||w||z/a)ww A

The offspring x’ is generated from its parent x according to:

x' = x+ ocAz wherez = N(0,])
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As for the (141)-Cholesky-CMA-ES, the success rate p;, i.e., the fraction of
successful mutations, is updated by taking the learning rate ¢, into account:

b {(1—cp>ps+cp if f(x) < (%)
ol =cp)ps if f(x) > f(x)

Based on the success rate py, a damping parameter d € R and the target success
rate p;, the global step size o is updated as follows:

o' =o0-exp lps—pt
d 1—p,

The algorithm uses p, = % which makes the update similar to the 1/5-success rule
update mechanism of the (141)-ES.

If the offspring performs better than its parent, a positive Cholesky update is
applied. In contrast to the (14-1)-Cholesky-CMA-ES, which uses the mutation step
z for this update, the (14-1)-Active-CMA-ES relies on a search path s, accumulating
successful mutation steps with a learning rate ¢ and updating s as follows:

S =(0—-c¢)s+ Ve(2—c)Az

With a constant ¢ > 0 and the vector w = A™!s, the positive update of matrices
A and A~! can now be defined according to Theorem 2.2.2:

A’ = aA + b(Aw)w’ and (2.19)

’ 1 7
Al = AT - _ww A ) wh 2.20
a o apwz "W A ) where (2:20)

a=4/1-ctand

JV1—ct ct
w2 (\/ i )

In the case of an Active-CMA-ES, the A — u worst individuals are used for the
negative update of the covariance matrix, and these individuals can be called the
“especially bad” individuals. In the case of the corresponding (14-1)-strategy, as
introduced here, this definition is not applicable. Instead, the (141)-Active-CMA-
ES stores past function evaluations and defines an individual to be “especially bad”,
if its fitness value is worse than the fitness of its k-th predecessor. For an “especially
bad” offspring, a negative update according to Eqs.2.19 and 2.20 is performed,
using modified values of the coefficients a and b. In contrast to the positive update,
rather than the transformed search path w = A~'s the vector z is used for the
negative update:
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a=+/1+c-
V1+ceo -
b —‘< 1_L”Z”2_1)
1—c-

|z
= lz]|> > 0 needs to
c

hold for the constant ¢, . Moreover, the convergence behavior of the algorithm

can become unstable if the value of 1 — lfrfc_ |z||? is very close to zero. As a

[z||* < 1/2, the value of ¢, is provided with

To ensure a positive definite covariance matrix, 1 —

Ce

countermeasure, in case of 1 — =
c

an upper bound of 1/(2]|z||?).
The default settings of the exogenous parameters are:

d=1+n/2
c=2/n+2)
cp=1/12
e =2/11
2
= 7re
2

T 5w )

The pseudocode of the (14-1)-Active-CMA-ES is given in Algorithm 2.18.

22212 (u/pw,ria + Am)-ES

The (u/pw, Aiig + Am)-ES [7] is based on extending the idea of mirrored sampling,
as described in Sect.2.2.2.9 for a (1 +/\fn)-ES, for the case & > 1. The offspring
population size is given by the number of samples A;y (independent, identically
distributed samples from the mutation distribution) and the number of offspring,
Am (Am < Ajig), which are also subject to mirroring. Using mirrored sampling in
combination with weighted recombination and cumulative step size adaptation (see
Sect.2.2.2.1) introduces a bias with respect to the step size, i.e., the step size is more
than desirably reduced, thus potentially causing a premature stagnation effect for
the algorithm. To avoid this issue, the concept of pairwise selection is introduced,
i.e., it is made sure that recombination will not involve an offspring individual and
its mirrored version at the same time, but either one or the other.

The (u/pw,Aia + An)-ES introduces two different versions of mirroring,
namely random mirroring and selective mirroring. In the case of random mirroring,
denoted by (iu/uw, Aia + AL¢"4)-ES, the A, offspring subject to mirroring are
randomly selected out of the total number of offspring, A;;;. In the case of selective
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Algorithm 2.18 (1+1)-Active-CMA-ES

initialize X, 0, A < L, A7 <~ L, h < 0 € R¥
t<0
repeat
t<—t+1
z < N(0,T)
y < X+ 0Az
if 1 > k then
hi < hip Vie{l,....k—1}
hy <= f(y)
else
he <= f(y)
end if
if /(y) < f(x) then
X<y
ps < (L—cp)ps+cp
s< (1—=c)s+ +/c(2—c)Az

w<« A"ls

a <« l—cc+

i i
b Yop (\/1+ =T ”W”z_l)

A < aA + b (Aw) w"
_ 1A — b —
AT = AT - e (WA
else
ps < (1— Cp)le
if 1o < f(y) then
a< J1+c-
b g (1= =l = 1)
A< aA+bAw)w"
_ 1A — b _
A AT — ey (AT
end if
end if

O'(—()'Cxp(%,?:pp’)
1

until termination criterion satisfied

mirroring, denoted by (iw/puw, Aig + )kj‘,f’)-ES, the A,y offspring are first sorted by
fitness and the A,, worst individuals undergo mirroring. This approach is motivated
by considering that, in a convex objective function topology, mirroring the best
offspring cannot yield any further improvement, such that it will be advantageous to
mirror the worst individuals. Moreover, since bad offspring in the case of a (uw, A)-
ES are often generated by applying too-large mutation steps, selective mirroring
itself will also favor large mutation steps [7]. To counteract this undesired bias,
the resample length approach changes the length of the mirrored mutation step by
additionally using a second, newly sampled mutation vector z'. The mirrored version
X, of the offspring x = (x) + oz is then created according to x,, = (x) — a%z.

Like for the (1T A2,)-ES, theoretical results for the convergence velocity on the
sphere model have been derived, see [7]. In particular, it has been shown that, for



42 2 Evolution Strategies

Algorithm 2.19 (i/pw, Aiig + Am)-ES
initialize (x), o
r<20
repeat
i< 0
while i < kiid do
r<r+1
i<i+1
x; < (x) +oN(0,1)
end while
if selective mirroring then

Xi,..., X = argsort (f(x1), ..., f(Xai))

end if
while i < Aiia’ + )Lm do
i<i—+1
if resample length then
r<r-+1
x; < (x) — MODL (xi s, — (%))
else
xi < (x) — (xi—1, — (x))
end if
end while
X1, oo Xy, = argsort(f(xi), ..., f(Xag—anm)s

min {f K= +1) S/ Kga+135 -+
min {f(x)»,’,u)v f(x)»,’id-l-/\m)})
o < updateStepSize (0, Xy, . .., Xy, (X))
(x) < (x) + 202, wi(x; — {x))
until termination criterion satisfied

the sphere model, maximum convergence velocity is achieved for a setting of r =
Am/Aia ~ 0.1886, which can serve as a guideline for the fraction of offspring
individuals which should be mirrored.

The pseudocode as given in Algorithm 2.19 is based on using a method
updateStepSize® to update the step size o, and weights w; Vi € {1,...,u}, such
that Y1, w; = 1.

2.2.2.13 SPO-CMA-ES

The SPO-CMA-ES [70] is essentially a restart-version of the (uw, A)-CMA-ES. It
is based on using sequential parameter optimization (SPO) [11] to optimize the
exogenous parameters of an evolution strategy. SPO uses methods of design of
experiments (DoE) and design and analysis of computer experiments (DACE).”’

26The aforementioned techniques self-adaptation (see Sect.2.2.1.2) or cumulative step size
adaptation (see Sect. 2.2.2.1) are suitable.

27See [70] for literature references on these topics as well as the Kriging modeling method.
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Concerning the exogenous parameters subject to sequential parameter optimiza-
tion, the number of offspring individuals® A € {1y, ..., 1,000}, the initial step
size oiir € [1, 5] and the so-called selection pressure A/ € [1.5,2.5] are identified.

The pseudocode of the SPO-CMA-ES is provided in Algorithm 2.20, and the
approach is explained in the following by discussing the various methods used
in the algorithm. To begin with, using latin hypercube sampling (LHS) [68] an
initial design of experiments for the exogenous parameters is created. In the next
step (runDesign), independent runs of the (uw,A)-CMA-ES are executed, using
the parameter sets of the DoE plan. The results, i.e., the best evaluated individual
with its fitness value, of each run is collected in the set Y. This initial phase of the
algorithm is called the exploration phase.

The next phase, called the exploitation phase, is repeated until the predefined
budget of function evaluations is reached. Using a function aggregateRuns, a
performance measure y is calculated for every run configuration in Y. Based on
these performance measure values as outputs and the corresponding parameter sets
according to the experimental plan, a Kriging model*® M is trained in the method
fitModel. This Kriging model M is then used by the method modelOptimization
to identify a new design point, e.g., by running an optimization on the Kriging
model and using the resulting point. The new design point d is then added to the
experimental plan D, and the loop is executed again. Default settings are not given
for the size of the initial experimental plan, N;,;, nor for the split of the number of
function evaluations between the two phases of the algorithm [70]. Rather, the user
of the algorithm can fix them, depending on the optimization task at hand. In the
case of noisy objective functions, the method runDesign can execute more than the
one run, in order to use, e.g., the averages as an estimation of the true fitness value.

2.3 Further Aspects of ES

So far, we have described the ES algorithms as single-criterion optimizers with
R" as search domain and without handling of constraints. The next three sections
give summarized overviews and literature references for further aspects of ES,
namely constraint handling, binary and integer search spaces, and multiobjective
optimization.

BFor A4 the standard setting of a (jw, A)-CMA-ES with A4y = 4 + [3logn] is used.

In principal, any modeling technique can be used to establish the relationship between the
exogenous parameters and the performance measure.
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Algorithm 2.20 SPO-CMA-ES

Input: box constraints 1, u € R” and size N;,;, of the initial design
Output: final model M and best design point d *
i< 0,D<0

d[ < LHS(], u, Ninit)
Y < runDesign(d;)
while function evaluation budget not exhausted do
i<i—+1
y <— aggregateRuns(Y)
M < fitModel(D, y)
d; < modelOptimization(M)
Y <Y U runDesign(d;)
D < DUd;
end while
d* < d with the best y, € {yo,..., i}

2.3.1 Constraint Handling

In Sect.2.1.1 we defined the optimization problem used throughout this book with
equality and inequality constraints as in Eq.2.2. There are many techniques for
handling constraints ranging from simple penalty methods to more complex ones
like hybrid methods involving Lagrangian multipliers. Coello gives an overview
[18] of constraint-handling techniques to be used with Evolutionary Algorithms
but some of these methods may be applied to ES as well. A review by Kramer
[42] specializes in constraint-handling methods dedicated to ES and presents the
four techniques penalty methods, a multiobjective bioinspired approach, coordinate
alignment techniques, and metamodeling of constraints.

2.3.2 Beyond Real-Valued Search Spaces

There are many optimization problems where the search domain is not constrained
to the real domain. Especially decision problems’ use categorical search spaces,
in most cases binary search spaces, i.e., x € {0, 1}", as the simplest categorical
search space. Another search space of practical use is the integer search space
representable as a subset of Z. Originally, Genetic Algorithms (see [27] or [25] for
a comprehensive introduction) were designed to handle binary search spaces, but
there are approaches to incorporate those search spaces into ES. In Sect.2.1.3 we
named three guidelines to choose a distribution to be used for mutation. Rudolph
[56] introduces a mutation operator for integer search spaces using the difference

39For example the NP-hard Traveling Salesman Problem.
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of two geometrical distributions. Each discrete variable of a categorical search
space is assigned a probability whether to mutate or not. The new value of the
discrete variable is drawn uniformly from all possible values. The MI-ES (mixed-
integer evolution strategies) [43] solve optimization problems which are mixed
in their search domain, i.e. the search domain is a composition of real, integer
and categorical search spaces. They use the aformentioned mutation approaches
together with self-adaptation for the endogenous parameters. An overview of other
approaches for handling mixed search spaces is given by Li [43].

2.3.3 Multiobjective Optimization

In single-objective optimization fitness values can be ordered to decide whether one
solution is better than another. In multiobjective optimization, where fitness values
are represented as vectors, such a strict ordering does not exist anymore. Solutions
are partially ordered and based on the partial order solutions can be either dominated
or non-dominated by other solutions. Hence there is not a single optimum to be
found but a set of solutions which is called the Pareto set or Pareto front. For
a detailed description of these concepts see [20]. Algorithms for multiobjective
optimization have to measure how well a Pareto front is approximated. The most
common measures for this task are the crowding distance and the hypervolume
contribution. The former is used for example by NSGA-II [21] the latter by SMS-
EMOA [12].
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