Chapter 2
Basic CBR Elements

2.1 About This Chapter

This chapter introduces the basic concepts of case-based reasoning (CBR). It does
not require any previous knowledge about the topic. The intention is that the reader
should understand the principal ideas and follow the descriptions of the first exam-
ples, the remaining chapters in Part I, and Part II. This chapter provides the funda-
mental basis for understanding the remainder of the book. In most cases no formal
definitions are used. In later chapters the concepts will be extended and put on a
more formal basis, and they will be illustrated by examples.

2.2 General Aspects

Case-based reasoning (CBR) is a methodology for solving problems. These prob-
lems may be of a variety of natures. In principle, no problem type is excluded from
being solved with the CBR methodology. The problem types range from exact sci-
ences to mundane tasks. However, this does not mean that CBR is recommended for
all problems. Throughout this book, we will give examples of problems and explain
how CBR can be used. As a result of understanding these circumstances, the reader
will develop a sense of when CBR is recommended.

Because CBR is essentially based on experiences, this chapter will discuss the
main aspects of the CBR methodology and how it uses experiences in a specific way
to solve problems. It is inherent in using and reusing experiences that they embed
answers to problems or ways to get solutions. These answers can, for instance, help
to solve difficult combinatorial problems, as an add-on they can also suggest or
improve solutions where uncertainty is involved.

2.3 Case-Based Reasoning

The term case-based reasoning consists of three words and they need a short expla-
nation. A case is basically an experience of a solved problem. This can be repre-

M.M. Richter, R.O. Weber, Case-Based Reasoning, 17
DOI 10.1007/978-3-642-40167-1_2, © Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-40167-1_2

18 2 Basic CBR Elements

Table 2.1 Two recorded experiences of the same event

Experience report 1. Experience report 2.
April 10 April 10
10.45 Problem reported Morning: Strange loud noise, dust came out,

speed of machine is slowing down
10.45 Machine stopped
11.15 Test 35 and test 45 failed

12.15 Pressure was detected not working
12.25 Valve A was working improperly, after
exchange the problem was solved

11.00 Maintenance arrived

11.50 Expert from group C was called
12.10 Expert arrived

13.15 Exchange part arrived

14.15 Part was built in

14.30 Machine is running

sented in many different ways. A case base is a collection of such cases. The term
based means that the reasoning is based on cases, that is, cases are the first source
for reasoning. The term most characteristic of the approach is reasoning. It means
that the approach is intended to draw conclusions using cases, given a problem to
be solved.

The kind of reasoning is, however, quite different from reasoning in databases
and logic. The most important characteristic that distinguishes case-based reasoning
from other kinds of reasoning is that it does not lead from true assumptions to true
conclusions. This means that even if the solution in a recorded case were correct for
its original problem, this may not be the case for a new problem. This possibility
is based on the general fact that the situation in the recorded experience may not
be exactly the same as that in the new problem. In fact, to be reused, it only has to
be “similar”. Therefore, the result of making use (or reuse) of the experience may
only be “close” to the correct solution of the new problem. This means that applying
CBR is a kind of approximate reasoning. Consequently, in order to more precisely
describe its nature, we will investigate the concepts of being similar and close in
more detail. In fact, CBR is essentially centred on these terms and most parts of this
book are meant to describe this form of reasoning.

2.4 Experiences and Cases

Experiences are essential for CBR. In general, an experience is a recorded episode
that occurred in the past, such as “Remember, last year in Italy we had a similar
problem with our car. The hint the mechanics gave us worked pretty well. We had
this problem quite often; and our usual way for fixing the problem always worked
somehow”. Such experiences are used to help solve future problems or make fu-
ture decisions. However, not every recorded episode will be useful in this respect.
For this reason, we consider two recorded experiences of the same event, in Ta-
ble 2.1.

2.4 Experiences and Cases

Problem

A
V.

Stick shift car won’t start when
engineis warm and itis
required to stop the engine to

Problem
Formulation

: getgas ;
No solution
N— I
Retrieve
N Problem A
Stick shift car won’t start when
Problem
engineis warm and it is ~~— —
required to stop the engine to Stick shift car won’t start when
getgas 7 Reuse engineis warm
— ==
\ /

/‘

t —
Solution is to stop on
downhill slopes

Solutioniis to stop on
downhill slopes

/
\

\

Fig. 2.1 Steps of the experience

Both experiences in Table 2.1 record what happened in the past. But the first one
is almost useless for advice on fixing such problems in the future. It may, however,
be used for administrative purposes. The second report offers some advice for a pro-
cedure that can be useful, although no detailed description is provided. This shows
that past events can be viewed from many different perspectives.

To model a real-world situation there is no need to consider all aspects of a prob-
lem. The task is to identify those that are relevant and useful for solving the problem.
In complex and unclear situations this may sometimes be difficult.

Suppose you go on a trip with your colleagues, driving your new used car, used
but new to you—the cheapest you could afford. The car has been working fine,
except that it will not start once the engine is warmed up. You are running out of gas
and stopping at a gas station and waiting for the engine to cool down would delay
your trip. As you share the problem with your colleagues, one of them is quickly
reminded of a time when his cousin had a similar problem starting her car, so she
would only park or stop the car on downhill slopes. Given that her car has a stick
shift, she could simply let it ride to get it started. Because your car is also a stick
shift, you can reuse the same solution, which is feasible because you are in a hilly
area.

In Fig. 2.1 the diagram breaks down the CBR methodology into steps, which
helps explain how CBR uses experiences to solve problems. These steps are exe-
cuted around the concepts of problems and solutions. Problems, solutions, and these
steps will cover a major part of this chapter.

20 2 Basic CBR Elements

2.4.1 Parts of a Case

Cases can be quite complex and consist, as mentioned, of whole stories. CBR uses
them for solving problems; therefore, there must be something in the experience that
talks about a problem and its solution. In a simple view, CBR divides an experience
into two parts:

e A problem part (or a description of a problem situation).
e A solution part that describes how one has reacted.

Often one restricts CBR to solutions that have been successful, but that is by
no means necessary or adequate. A failed solution is also an important piece of
information that states what one has to avoid. The coexistence of both successful
and failed experiences leads to the following definition.

Definition 2.1

(a) Positive experiences (cases) implement successful solutions and lead to the ad-
vice: Do it again!

(b) Negative experiences (cases) implement failed solutions and lead to the advice:
Avoid this!

When positive and negative cases occur one can introduce two sets of cases:
C™ (positive) and C~ (negative) cases. Negative cases occur often in the context of
decision making where one has to choose from different alternatives or when advice
has to be given. Negative cases have to be distinguished from cases that contain
erTors.

Major types of experiences occur in:

(a) Classification: Decide the class to which an object belongs. For instance, clas-
sify mushrooms into the two classes “edible”” and “poisonous”.

(b) Diagnosis: Decide what the diagnosis of a problem is. For instance, determine
whether what causes a car to malfunction is lack of gas (see also the example
given below).

(c) Prediction: Decide what happens tomorrow. For instance, for predict expenses
for a firm for a given month in a given year.

(d) Planning: Decide on a sequence of actions to reach a given goal. For instance,
make travel plans.

(e) Configuration: Decide which elements to include. For instance, decide how to
select technical features and components of equipment.

In Chap. 4, Application Examples, there are several problems in these categories
given and it is shown how they can be approached by CBR. Chapter 4 defines and
discusses the different forms of reasoning that are embedded in different experi-
ences. Because experiences can perform different reasoning tasks, it is important
that a CBR system be uniquely designed to tailor each type of experience. Conse-
quently, one considers one type of problem at a time, that is, one reasoning task.

2.4 Experiences and Cases 21

A CBR system is typically designed to perform one reasoning task. These systems
offer an extended view of CBR.

Recall we mentioned that, to be reused, a recorded experience needs only to
be similar to the new problem. This form of approximate reasoning generates an
additional, though optional, component in cases. This third component is usually
regarded as case outcome. Case outcomes do not retain knowledge about the ex-
perience itself, but they can be seen as a place to record meta-experiences, that is,
information about uses of an experience. For example, how often a case is used, how
successful it has been, and so on.

While humans can understand accounts of experiences told in everyday language,
computers require some formality. Although natural to humans, the recognition of
similarity and the consequent ability to reuse experiences requires an analogy when
using a computer. This is a formal system that is intended to represent experiences
so they can be reused.

Sometimes experiences are not given in such a suitable, formal way because they
may rely on experiences that are informally described, for instance, in a textual
form. Part IV is dedicated to situations such as when experiences are available in
textual, visual, or conversational forms.

2.4.2 Problems

Problems are central to CBR because the main purpose of the methodology is prob-
lem solving. The formulation of a problem is sometimes difficult because it refers to
the context in which it is stated. So, each problem formulation requires a different
kind of solution. For example:

What is the price of this car?

e One answer could be: Too expensive for us.
e Another answer could be: $252,600.

It is obvious that one has to know the context in which the problem is stated in
order to find out which answer is appropriate. In other words, for a precise statement
the context has to be included in the problem formulation.

Part of the context is often the inherited culture. Consider for instance the Roman
and the Anglo-Saxon laws. In the Roman law there are rules that say that in such
and such a situation the decision is in favour of the defendant. In the Anglo-Saxon
law the decision is traditionally based on the relationship (i.e., analogy) between
an event that occurred in the past and the actual event. This latter kind of decision
making is what CBR applies.

Another cultural point is what is considered as important in planning. For in-
stance, what counts more, building a street or a school? Depending on the culture,
laws may be different in different areas. Other cultures are provided by different
sciences such as medicine, business and engineering; even large companies have
developed their own culture. The CBR context has to take this into account because

22 2 Basic CBR Elements

transferring solutions across cultures is problematic. For example, each bank has de-
veloped its own policy for giving loans to customers. The same bank may interpret
the policy differently in each different country it operates; this becomes apparent
during financial crises.

There are two types of problems we discuss in the context of the CBR method-
ology. The problems in the cases recorded as experiences are usually referred to as
problems in CBR. The cases in the case base can sometimes be distinguished as
candidate cases, as they are candidates for reuse. However, the entire CBR process
is triggered by a problem. This is the new problem, or the actual problem that mo-
tivates a user to find a problem-solving method. To make this distinct from other
uses, we henceforth refer to this as the query problem or, simply, the problem.

This section introduces problems and problem types, where the latter are more
general. Next, we distinguish between a problem and a solution. These simple and
intuitive notions are intended to eventually have formal definitions. Alternatively,
we will use the term query instead of problem, and answer instead of solution.

2.4.3 Solution Types

The possible ways of representing a solution vary:

e It can be just a solution in the narrow sense.
e It can contain in addition:

Comments, illustrations, explanations.

Advice on how to use the solution.

— The effect by describing what occurred with the solution in the past.
Remarks on the strategy with which the solution was obtained.

In simple cases the solution contains a name or simple data, for instance, an
object or an expected temperature. It may also be a project with values given to
predefined attributes, such as jogging three times a week for 45 minutes. Solutions
may also have a complex object-oriented structure as a technical object. Even more
complex are solutions for planning and those in textual or image form.

In a complex situation the solution is a decision for performing an action or even
a process. Here one has to distinguish the decision from the action; the action refers
to an implementation and run of a strategy that may change states of variables.
While the decision is usually clearly formulated, the outcome of the action may be
uncertain. Suppose, for instance, that we have the choice between the different lot-
teries L1, ..., L, and we want to choose a lottery that has maximal expected win.
Then our solution can only present us a certain lottery; the win is represented as a
probability distribution. Hence the computed probability has to be mentioned in the
solution description. Another example is if we decide to fly to Toronto. The execu-
tion may fail or be postponed because of various unforeseen events. The latter means
that the result of using a solution is uncertain because of unexpected external results
like bad weather or an earthquake. If these are likely to happen one should extend

2.5 Case Representations 23

Table 2.2 Attributes of the

case Attributes and their values

Symptom Unusual car noise
Observations Knocking engine
Since last inspection (month) 3

Rhythmic pounding No

Related to car speed No

Oil pressure light flickering Yes

Leaking oil No

the solution by an entry “effect” for describing what really happened. The user who
sees the solution does not know this. If it is added then the user may get a hint for
some possible adaptation. Finally, there are situations where the usefulness of the
solutions can only be judged if they are executed in reality. This is the case with
decisions for organising city traffic, or, more generally, with making predictions.

2.5 Case Representations

Now we know that cases are experiences and that such experiences have a context.
We also know that cases include problems and solutions. The next step in introduc-
ing the CBR methodology is to explain how a case is explicitly represented and how
cases are organised. Note that most of the formalisms used are not new. In fact, they
can be considered quite common and they are used in many other problem-solving
methodologies.

2.5.1 How Cases Are Represented

The simplest way to represent a case is by using feature-value pairs. A feature value
pair is used to represent a state of an entity, for example, colour of an entity, “Jes-
sica’s car is red”, where the feature is the colour of the car and the value is red, and
the entity is Jessica’s car. Instead of the word “feature” the word attribute is often
used, and we will freely switch between these.

Features need to be identified for both problem and solution. Suppose someone
has a headache and needs a diagnosis indicating what problem may be causing the
headache. In Table 2.3, we find several cases for this.

A set of features has to be selected to represent cases. Each patient is represented
in a case. Table 2.2 depicts one case with feature-value pairs for problem and solu-
tion.

Cases have to be described in some language. In principle, such a language can
have an arbitrary character. This is only a preliminary view; more details and varia-

24 2 Basic CBR Elements

tions are given in Chap. 5, Case Representations. Feature value representations are,
in fact, just an attribute-value vector.

Definition 2.2

(i) For a given set U of objects, an attribute A assigns to each object O € U some
value taken from a set dom(A), the domain of A.
(i) An attribute-value description is a finite vector of attributes.

This means the represented object is just an attribute-value vector. The problems
and the solutions are described in this way. It is, however, a very simple definition
of a concept; it will be extended later in various ways; see Chap. 5, Case Represen-
tations.

The need for more complex representations originates from the fact that such a
representation cannot entail everything we can see and that is of interest. Consider
the example in which we want to describe a car failure in order to represent it as
a case. A case description limits the scope from the potentially infinite properties
of a car to only a small part. Out of the thousand parts a car may have, many are
irrelevant to most problems. This leads to the question: Which attributes should one
take? The question cannot be answered universally, not even for cars. The point is
that the chosen attributes should be relevant for the problem type in question. Our
early example was for diagnostic purposes, typical when a fault occurs. In order to
sell a car however different attributes would be relevant; as we see in Table 2.2.

A case would be a description of the car problem together with a description
of the solution. Here, a problem is just a case without a solution, in this example
unusual car noises. Table 2.2 presents the example through its attributes. One must
realise that there are numerous car failures that refer to many different aspects of a
car. However, within a certain type of failure the diversity is rather restricted. Hence,
one has either to know what the possibly relevant attributes are or where one can find
them. Table 2.2 shows some attributes.

In order to make use of experiences for solving the problem of finding a diagnosis
and a repair we need a collection of many experiences to choose from. These will be
a collection (or set) of cases. As a general advice, we can look at humans describing
a failure. That means we did not invent something new here. The CBR goal is just
to support the usage of those experiences. Even if all attributes used are of interest,
it is not guaranteed that they all have the same importance. This will be considered
later when similarity is discussed.

2.6 Case Bases

A case base is a memory; it contains a collection of cases that is used in the context
of the CBR methodology for the purpose of performing a reasoning task.

Definition 2.3 A case base is a collection of cases.

2.6 Case Bases 25

0 O

-

L]
O

Case

Fig. 2.2 Three types of case organisation: flat, structured, unstructured text

A case base is a data source and usually it is finite. What is specific to CBR is how
a case base is used. In Chap. 23, Relations and Comparisons with Other Techniques,
we contrast case bases with databases. The usage for CBR requires special ways of
utilizing the case base. The word “memory” is heavily used in cognitive sciences
too; this will also be discussed in Chap. 23.

2.6.1 How Are Cases Organised?

We have three main types of case organisation: flat, structured, and unstructured
(e.g., text, images). Figure 2.2 illustrates the three basic types of case organisation.
Note that these forms already suggest different programming paradigms, but we will
only get into the programming aspects in Chap. 5, Case Representations.

2.6.1.1 Flat Organisation

The flat organisation is the simplest to design and implement, and most suitable for
a small number of cases. Table 2.3 shows an example of cases in a flat organisation.
Attributes are listed in Table 2.3 in the leftmost column. They are used for repre-
senting case problem and solution. The six cases are represented through different
values. There are no relationships between the cases. No one case has any relation-
ship to another that needs to be represented, which means that the representation is
complete. This is an example of a case base, that is, a collection of six cases that can
be used in the context of the CBR methodology to diagnose the potential source of
a headache.

2.6.1.2 Structured and Unstructured Organisation
Cases can be organised into structures such as hierarchies and networks. To be struc-

tured, however, cases do not necessarily require a hierarchical organisation. The re-
lationship between two cases will have specific characteristics. An object-oriented

26 2 Basic CBR Elements

Table 2.3 Six diagnosis cases

Attributes Case id
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Nausea Yes Yes Yes No No Yes
Fever Yes No No No No No
Malaise Dizzy Dizzy Dizzy No Listless Listless
Blood pressure Normal Normal High Normal Normal Normal

to low to high to high
Vision changes No Yes No No No No
Shortness of breath No No Yes No No No
Patient name Bart Marge Lisa Homer Maggie Ned

Flanders
Diagnosis Influenza Migraine Heart Stress Vitamin Hangover
problem deficiency

organisation is structured. The structured organisations can be beneficial when the
number of cases is very large.

Cases are very commonly hidden within texts or images. At this point we will not
yet discuss other concerns pertinent to unstructured organisations. We have entire
chapters dedicated to them, namely, Chaps. 17, 18, and 19.

2.7 Similarity and Retrieval

The purpose of retrieval is to retrieve the case from the case base (i.e., a candidate
case) that is so similar to a given new problem that their solutions can be swapped.
One of the implications of this concept of similarity within the CBR methodology is
that CBR’s similarity is not a general concept, but a polymorphic concept that varies
for each case base. One can, for instance, use the same case base with different
measures for different purposes.

The purpose of any problem-solving method is to obtain a good solution, ideally
even the best. The meaning of this is given by the user. Now that we understand that
the CBR methodology uses a memory (i.e., case base) of experiences represented as
cases, the next step is to understand how to select the experience, that is, case, and
to reuse it properly. The question that needs to be answered is this, “What case in
this memory has the most suitable solution I can reuse to solve my new problem”?
The way it is answered in CBR is by relating the problem and the problems in the
cases that make up the case base in such a way that the notion of “most suitable”
is reflected. This relation was earlier referred to as similarity. The user will identify
a problem in the base as very similar to the query problem if its solution is very
useful.

Now suppose we have is a query problem and a case base to choose experiences
from. There are many experiences in the case base but we do not know which one to

2.7 Similarity and Retrieval 27

Table 2.4 Attributes in query problem, Case 1 and Case 2

Query problem Attributes labels Case 1 Case 2

Unusual car noise Symptom Unusual car noise Unusual car noise
Knocking engine Observations Knocking engine Knocking engine
3 Since last inspection (month) 4 14

No Rhythmic pounding Sometimes No

No Related to car speed No No

Yes Oil pressure light flickering No Yes

No Leaking oil No Rarely

What is to be Solution Loose transmission Oil burning
determined torque converter

take. The main difficulty we face is that the query problem may not be recorded in
the case base because one cannot store all possible situations. Therefore, CBR has
developed intelligent techniques to take advantage of the experiences even if they
do not exactly match the query problem.

In order to illustrate how this is done we extend the example of car faults (Ta-
ble 2.2) and look at a query problem and a small case base, containing just two
cases, shown in Table 2.4. What we do is to compare the query problem with the
problems of the stored cases. This comparison is a crucial step and known as sim-
ilarity assessment. The goal is to find a case that helps in solving the problem. In
other words, the case should be useful for this purpose. The reason is that a case is
useful if its problem description is close to the query problem. Similarity is just a
word for this. The goal is the cases are analogous in such a way that their solutions
can be reciprocally reused.

Assessing similarity between two cases represented with attribute-value pairs en-
tails two concepts.

(1) Similarity between attributes.
(2) Relative relevance of each attribute.

When we compare two such cases it is natural to compare them attribute by
attribute. This is the best way particularly when cases are represented through at-
tributes. For this a similarity notion between attributes is needed. Each attribute
requires its own similarity function. As a general rule, a similarity value 1 is given
when the values of two attributes are the same; and a similarity value of 0 is given
when the values are not the same. Along these lines, for two values that are different
from each other but that may be considered medially similar, one can use a value
of 0.5. This can, of course, become much more complex. These issues are further
discussed in Chaps. 6 and 7, both about similarity.

In the example, such a similarity function would define for attribute “Oil pressure
light flickering” a value of 1 if both cases we have the same value for this attribute,
and 0 otherwise. The attribute “Leaking oil” could have a similarity function return
a value of 1 if in case both cases we have the same value for this attribute; a value

28 2 Basic CBR Elements

Table 2.5 Comparisons between query problem and cases

Attributes labels Sim Sim Importance
(Query problem, Case 1) (Query problem, Case 2) of attributes

Observations 1 1

Since last inspection 0.9 0.2

(months)

Rhythmic pounding 0.6 1

Related to car speed 1 1

Oil pressure light 0 1

flickering (binary)

Leaking oil 1 0.9 3

of 0 if one case has a value of Yes and the other has a value of No; a value of 0.9
if one case has a value of Rarely and the other case has a value of No; and a value
of 0.1 otherwise. These numbers resulting from the similarity function denote the
degree of similarity.

The second concept within similarity assessment is the relative relevance of each
attribute. In practice, each attribute is not equally relevant, and this has to be rep-
resented in the similarity assessment. In addition, the problem of describing the
importance of the attributes is denoted by a number too. Larger numbers denote a
greater importance because more important attributes play a larger role. The com-
parison is described in Table 2.5 and will later be described in more detail.

The comparison uses two parameters based on the two concepts already intro-
duced:

(a) Similarities between the values of the attributes between the two cars. These
similarities are called local similarities.

(b) The importance of the attributes. This is expressed in terms of integers where
larger means more important. The numbers denoting the importance are called
weights.

Presently, we assume that both parameters are given. Later we will better explain
their meaning and potential sources.

Next, we want to compute the overall similarities of the query problem to the two
cases. A simple and plausible way to do this is by taking weighted sums of local
similarities with the weights as coefficients. If sim denotes the intended similarity,
we get:

1
sim(act, Casel) = 5+ (1:840.9-240.6-7+1-2+0-8+1-3) =0.63,

1
sim(act,CaseZ):%-(1-8—}—0.2-24—1~7+1~2~|—1'8—|—0.9'3)=O.936.

Therefore, we choose to reuse the solution from Case 2, which is oil burning.
The reason is that Case 2 is more similar to the problem than Case 1 and there-

2.7 Similarity and Retrieval 29

fore, according to our motivation, more useful. This can be formulated as a general
principle.

Definition 2.4 Let CB be a set of objects and p be an object; then some s of CB is
a nearest neighbour to p if there is no object in the CB that has a higher similarity
to p than s.

The principle is that no case is more useful than a nearest neighbour. The advan-
tage of having degrees of similarity is that we can compare them and have a way
to determine which experience is closer to the new problem. In particular, it allows
us to say which recorded experience is the most similar one. This brings up the
usefulness of the concept of nearest neighbours.

For an investigation of the cars example we had to define an adequate similarity
measure. For our method, this looks as follows for objects with the attribute-value
vectors of an arbitrary domain: x = (xq,...,x,) and y = (y1, ..., Yn):

Attributes : Attribute|, Attribute,, ..., Attribute,,.
Similarity between values of attributes (local similarities):
simy (xy, y1), sima(x2, y2), ..., simy (X, ya); Xi, yi € dom(Attribute;).

Overall (global) similarity:

i=n

Y (osimxi, y) [1<i <n).

i=1
In the example, we did not discuss the origin of two numbers:

(1) The similarity functions for each attribute.
(2) The weights that should reflect the importance of each attribute.

The (local) attribute similarities are easier to get because they deal only with
the domain of a single attribute and are therefore easier to estimate adequately. The
weights, however, are of global character because they relate attributes to each other
and are therefore much more difficult to determine. Intuitively importance means
that an important attribute has a large influence on the choice of which case is the
nearest neighbour for a query.

The case base in the example is very small but sufficient for illustrating these
main concepts. We see that none of the cases has exactly the same problem as our
query problem but the provided solution is still useful. There are two aspects that
are over-simplified in the example:

(1) We have only two cases and the decision between them is easy. If we have
hundreds or thousands of cases, more sophisticated techniques need to be used.
(2) Although the reused case problem is close to the query problem, it is not exactly
the same. In the example we were lucky because the old situation could be the

30 2 Basic CBR Elements

New problem Retrieval R 0ld problem

A

A 4

New solution » Adaptation 0ld solution

Fig. 2.3 Reuse principle

used unchanged. But suppose we had in the case a problem with front lights and
in the actual situation exactly the same problem with back lights. Then it makes
no sense to operate on the front lights. The advice is rather to do the same repair
on the back.

The latter refers to an adaptation of the solution provided by the nearest neigh-
bour. In general, adaptation takes place when one wants to reuse a solution with
some modification.

2.8 Reuse and Adaptation

The use of cases is a reuse of previous experiences in a new situation. If the new
problem situation is exactly like the previous one (which is supposed to have been
successful) then the reuse is simple: Just copy the old solution. The general reuse
principle for a selected case is shown in Fig. 2.3.

It is rare be able to use a solution exactly as it is recorded. This happens if the new
problem situation is not too different in essential aspects from the nearest neighbour
selected from the case base. Then the recommendation is to adapt the recorded solu-
tion before reusing it to best suit the new problem. This can be done either manually
or automatically. CBR presents formal adaptation methods, which we will introduce
next.

Adaptation can be performed on different levels of granularity. One extreme case
is reusing the solution strategy. An example is reusing a travel plan. Another extreme
case is using the solution itself. Both are called solution adaptation.

Suppose we have to design exercise plans for people who need to increase their
endurance. The simplest way would be to create a weekly plan for running. Now
suppose there is a person who is not allowed to run because of knee problems.
The previous plan can still be used but running has to be replaced by swimming or
bicycling. The elements of the procedure are shown in Fig. 2.4.

In an abstract way we can describe the CBR problem-solving procedure by the
following steps:

(a) First describe the problem formally.
(b) Search in the case base for the nearest neighbour and select it.
(c) Make use of the retrieved solution by copying or adapting it appropriately.

2.9 Models of CBR 31

C

A

Lo S

similarity E

New problem p <

B

A

S

E

W reuse

New solution s

o

Fig. 2.4 Abstract CBR procedure

The approximate nature of case-based reasoning has the consequence that there
is no guarantee that the chosen case provides a good solution. For instance, the case
base may not even contain a good solution for the new problem. Sometimes this can
be easily seen, as in symmetric problems. Take for instance an experience of a car
problem with the solution “exchange the left bulb” when we have the same problem
with the right bulb. It is not necessary to record this problem because we can simply
adapt the presented solution. There are other situations where this is not so easy and
a systematic evaluation is needed. This will be discussed in Chap. 9, Adaptation.

After adaptation, the adapted solution has to be tested in reality and possibly
modified further. If the solution obtained in this way is satisfactory, then one may
decide to add the case (new problem, final solution) to the case base in order to
improve it. This last step can be interpreted as a learning step. More learning meth-
ods will be discussed in Chap. 10, Evaluation, Revision, and Learning. Adaptation
allows case bases to be smaller than if no adaptation could be done. Furthermore,
adaptation can be also extended by reusing a strategy when the solution is given be-
cause strategies can also be adapted. These methods are found in game playing. In
chess, for instance, strategies are what is reused most often (but hard to formulate!)

If we solve a problem using experiences, there are many ways of doing it. For
systematic reasons it is desirable to have a general process model for CBR problem
solving. This will be discussed next.

2.9 Models of CBR

We now combine the understanding gained in the previous sections into two views
on CBR. The first view considers the processes that take place when CBR is applied,
that is, problem formulation, retrieve, reuse, revise, and retain. The second view
considers the knowledge organisation in CBR. CBR systems store their knowledge
in knowledge containers. The next two sections will describe these views in more
detail.

32 2 Basic CBR Elements

Fig. 2.5 Tasks in the CBR
process Using experiences for problem solving and learning

Problem Reuse Retain Retrieve Revise
formulation

2.9.1 CBR Process Model

Figure 2.5 introduces the first view we present of CBR, i.e., the main tasks the CBR
methodology implements. In a more abstract way they will now be extended to a
general process model that applies to the entire CBR methodology.

Figure 2.5 lays out the main tasks of this process. Although we have already
described the main concepts of the process, in this section, we present these tasks in
the context of the process model.

2.9.1.1 Problem Formulation

Problem formulation is a task that starts from the need to obtain a new problem from
a user. Ideally, users should enter the new problem using the same representation and
level of detail as those of the cases in the case base. Often, this is not the case. As
an example, it may happen that the user knows what to achieve but cannot express
a precise problem. Consider a user who wishes to find a “comfortable chair” for
a living room. The problem formulation would need a description of chair parts
and their properties that may not be available. Therefore, one cannot immediately
describe such problems as cases.

This can be done in different ways. This is also known as the query generation
problem. A somewhat oversimplified view is that the problem is stated exactly and
complete with all details. In fact, it can be costly to acquire in an attribute-value
representation the values of the attributes for the query problem.

An essential point therefore is to acquire as little information as possible for
solving the query problem but enough to provide an answer. There are two major
ways to proceed:

(1) Use a specific, possibly standardized formulation of the problem.
(2) Perform a dialogue with the user. This is discussed in Chap. 20, Conversational
CBR.

After the content of the new problem is obtained, there are still different ways to
formulate it physically. It can be typed into a computer; it can be spoken, or it can
be represented as an image or diagram. These variations will be discussed in later
chapters.

2.9 Models of CBR 33
2.9.1.2 Retrieve

As previously mentioned, the goal of Retrieval is to determine the case that is most
similar (i.e., most useful) to the new problem. Retrieval starts when the new problem
is readily available and completes when a case is retrieved, becoming available for
the next task of the process: reuse.

For purposes of simplification, we assume that only one case is retrieved. Vari-
ations are, of course, possible. They are further discussed in the chapters dedicated
to retrieval, Chaps. 8 and 14.

Retrieval is comparable with a search, where the new problem is used for guid-
ance and the case base is the search space. Retrieval is a demand and this demand
has to be formulated. In order to formulate it one needs a set of search paths to se-
lect a successful one. The description of the paths is called an index structure. These
indices are basic for the search. Depending on the search structure there are many
indexing methods, for instance:

e For searching a book, the index is a page.
e Search for data entry uses a pointer to a record.
e Searching for a record in a database is a pointer to a record, realised by a key.

As previously mentioned, retrieval methods are not general; they have to be de-
signed for each system. This is because of the complexity of cases and the inexact
matching that CBR implements.

2.9.1.3 Reuse

Reuse is the step of the process when one case is selected for its solution to be
reused. It is completed when the new solution is proposed for the next task of the
process: revision. Reuse is about proposing a solution for solving the new problem
by reusing information and knowledge in the retrieved case(s).

Reuse is quite simple when the new problem is identical to the retrieved case
problem. When they differ, they require adaptation. This is a general theme; details
are in Chap. 9, Adaptation.

2.9.1.4 Revise

Revise starts when a solution is proposed to solve the new problem, and it is com-
pleted when it is confirmed. Revise aims to evaluate the applicability of the proposed
solution. Evaluations can be done in the real world or in a simulation. Simulation is
easier and cheaper but may neglect practically important aspects. In the real world,
evaluation aspects may be present that one might not have considered in the model.
In fact, this is an old phenomenon in Artificial Intelligence called the frame problem.
It says that one can never completely formulate all possible facts that may occur in
the real world.

34 2 Basic CBR Elements

Available Knowledge

VAN

Vocabulary Similarity Case Base Adaptation

Fig. 2.6 Knowledge in CBR

2.9.1.5 Retain

When revising generates a new case, updating the case base with the new (learned)
case for future problem solving takes place. Nevertheless, a confirmed solution may
or may not be retained. Some systems learn new solutions adapted through use; oth-
ers accept only actual cases. Revise and retain are discussed in Chap. 10, Evaluation,
Revision, and Learning.

This model is detailed and extended in various ways. The usefulness of having
a process is that such improvements can smoothly be integrated. For instance, the
learning aspect is much more complex; in the cycle, cases can only be added but
not forgotten. This is connected with the maintenance issue that is discussed in
Chap. 11, Development and Maintenance, together with the problem of developing
a CBR system.

This view of CBR lists the main tasks the methodology entails. Another per-
spective on CBR is given by the knowledge containers it requires to be successfully
implemented, which is discussed next.

2.9.2 CBR Knowledge Model

The knowledge container view of the CBR methodology is based on the perspec-
tive that CBR is a knowledge-based system. Knowledge-based systems are a class
of intelligent systems that are designed by having a knowledge base in an inde-
pendent module. In CBR, we extend this notion to emphasize how the methodology
utilizes different kinds of knowledge in distinct repositories: the knowledge contain-
ers. While the tasks listed in the previous Sect. 2.9.1 look at CBR from the process
point of view, one may also ask what kind of knowledge is represented and where
it can be found. Knowledge can either be represented explicitly or be hidden in an
algorithm. In any case, there must be some way to formulate the knowledge; we say
that knowledge is presented in some formulation. The formulation is stored in what
is called a knowledge container.

For the knowledge containers described next we state what kind of knowledge
could be contained in them. We say little about how the knowledge is formally rep-
resented. In CBR we identify four major knowledge containers. They are presented
in Fig. 2.6.

2.9 Models of CBR 35

The knowledge containers represent one view of a CBR system; they are not
modules that can perform certain subtasks. They contain certain knowledge units
that in combination help solve a problem. Next, we give a short overview of the
containers that will be extended in the following chapters.

2.9.2.1 The Vocabulary Container

The vocabulary is basic for any knowledge-based system. This is not special to
CBR. The vocabulary determines what one can discuss explicitly.

The vocabulary plays a role in all levels of abstraction, which is illustrated by
very simple examples:

1. If we do not know the word heart rate we cannot talk about it. It is knowledge
that this term plays a role.

2. If the term tax cost is missing one cannot compute the tax correctly. Again, this is
knowledge. This aspect plays a major role in different countries, where different
tax regulations are involved.

The vocabulary container retains knowledge about how to explicitly describe the
knowledge elements being used. This does not depend on the types of descriptions,
ranging from logical constructs to free text. It is a classical observation in science
that the solutions of difficult problems have been found only after some person
introduced a new crucial notion.

Therefore, there is usually much knowledge contained in the chosen vocabulary.
For a real-world object there are in principle infinitely many terms that have some-
thing to do with the object but only a few are relevant for a specific task. That means
an object can (and should) have different description terms for different tasks.

In the vocabulary container one can identify various sub-containers that are use-
ful for technical purposes as retrieval, input or output. These are, for example,
names of employees, companies, products in a supermarket, and so on. These sub-
containers are frequently defined and used in application domains.

2.9.2.2 The Similarity Container

The knowledge in the similarity container consists of all knowledge needed to deter-
mine what makes a case similar to another such that their solutions can be recipro-
cally reused. There are multiple ways to ensure similarity knowledge accomplishes
this: From the use of simple symbolic similarities where the values are either equal
or not, through the use of weights to represent relative importance of the attributes,
through the use of systems where relevance is computed at runtime, to the use of
fuzzy algorithms that consider all attributes and their importance at once.

The similarity is used for retrieval purposes. This means that something has to be
known about the problem and what is required for the solution. As an example we

36 2 Basic CBR Elements

consider the task of squaring numbers and assume we are unable to multiply and do
not want to learn how to do so. Suppose we have a base of solved problems, say

Squ={(2.4). (2.5,6.25), (~3,9), (=5.29)....}.

As a special problem we take square (3) =? The answer is not in our list; therefore
we have to look for the nearest neighbour of “3”. A first try is to take the Euclidean
distance, which gives 2.5, and the answer 6.25. A much better method is to equip the
similarity measure with the knowledge square(x) = square(—x) for all x. Then we
would retrieve —3 which gives the correct answer. The similarity measure is much
easier to use than it is to learn multiplication. In Chaps. 6 and 7, similarity concepts
are studied in detail.

For CBR and retrieval purposes it is important to quantify similarities. This is
done by similarity measures, which can be defined as a mapping

sim: U x U — [0, 1]

where U contains the objects to be compared.

Not all aspects of a problem situation may be of equal importance. For example,
the price of a car may be more important than the colour. If the similarity knows this
then it would pay more attention to the price attribute than to the colour attribute.
A way to make this possible is to assign weights to attributes. Earlier, we saw an
example dealing with car repairs where the similarity measure was naively chosen
but successful. It ranked the cases and we selected the most similar one because
similarity tends to be an adequate proxy for utility.

2.9.2.3 The Case Base Container

The case base container contains experiences as cases. These experiences may be
available from the past or may be constructed from variations of existing cases, or
be completely artificial. The description of the case base as a knowledge container is
straightforward as the case base is typically the main source of knowledge in CBR
systems. The implications of the case base as a container of knowledge are discussed
in multiple chapters. Representation formalisms are discussed in Chap. 5, Case Rep-
resentation; quality and maintenance are discussed in Chap. 11, Development and
Maintenance.

2.9.2.4 The Adaptation Container

The knowledge in the adaptation container will be used to adapt cases to solve new
problems. The most common formalisms adopted for adaptation are rule bases; nev-
ertheless, case bases can be used, and even existing cases from the case base have
been used at runtime to extract adaptation knowledge. As previously described in
Sect. 2.9.2.4, the knowledge in the adaptation container can be used to transform

2.10 Tools 37

an existing solution or generate a new solution based on a strategy from a previous
solution.

In the adaptation container one finds information on how to modify a solution.
In the adaptation container rules are stored for adapting a retrieved solution to a
new situation. Such rules are intended to perform a solution transformation that has
to take care of the fact that the solutions obtained from the case base using the
nearest neighbour principle may still be insufficient (either because of a not very
well defined similarity measure or simply because the case base does not contain a
better solution). In this situation the solution is adapted. Adaptation knowledge can
drastically reduce the number of cases needed in the case base. More is shown in
Chap. 9, Adaptation.

2.10 Tools

Tools can speed up design and assessment of an application. We list some tools that
are currently available. However, given the dynamics of tools, we recommend that
the reader rely on a more agile source, like the Cbrwiki (2011).

In addition, we mention some general-purpose tools, i.e., tools that can be used
for building a general CBR system and using it for many applications. Using such
systems one can avoid a lot of work, not least because of a graphical user interface
with useful visualisation.

Some major examples follow.

(1) CBRWorks (http://cbr-works.net) and Orenge (Schumacher 2002). CBRWorks
is developed for e-commerce applications but can be used for other purposes
also. It contains elements from all knowledge containers and can perform the
full CBR cycle. Orenge is a further development and has a more powerful re-
trieval engine.

(2) myCBR. It is open source, developed under the GPL license. It can be viewed
as a successor of CBR Works and contains many useful features. See myCBR
(http://mycbr-project.net), from where it can be downloaded; this also contains
a tutorial.

(3) jColibri. It is a general framework that supports many features like graphical
interfaces, description logics and ontologies, textual CBR, evaluation, and so on
(http://gaia.fdi.ucm.es/projects/jcolibri/). jColibri 2 (Recio-Garcia et al. 2013)
has added a number of features and is becoming more and more a reference
tool for teaching and research purposes.

(4) CBR in Microsoft® Excel. For users familiar with macros in Excel, a simple
case retrieval system can be developed in it. A worksheet should be reserved
for cases, with their attributes laid out vertically. A different worksheet is used
for retrieval, where the new problem is compared to all cases in the case base.
Note that the retrieval worksheet will require one column of computation of
similarity for each case. Weights can be listed in a separate sheet and called
from the retrieval worksheet. Solutions can be presented in a separate sheet.
Such implementation can be extended to include a validation method.

http://cbr-works.net
http://mycbr-project.net
http://gaia.fdi.ucm.es/projects/jcolibri/

38 2 Basic CBR Elements

2.11 Chapter Summary

The chapter presents the basic notions used in CBR and necessary for understanding
the remainder of this book.

Case-based reasoning is a reasoning methodology for problem solving. It mainly
relies on experiences in which problems were solved in the past. CBR reuses pre-
vious experiences to solve current, new problems. Problem solving experiences in-
clude problems and solutions. Problems and solutions should be explicitly stated in
order for the experiences to be successfully reused. CBR can be used to perform
multiple reasoning tasks, such as classification, planning, and design. The way to
develop a reliable CBR system is by limiting its scope to one single reasoning task.
Such a system would be populated by cases that describe experiences of performing
the single chosen reasoning task in a given target domain.

The simplest method to represent cases is to use attribute-value representations.
With a limited and previously defined set of attributes, each case is populated with
individual values for each attribute. This representation allows a case comparison at
the level of attributes.

Cases are compared to search for a similar case. Problems are submitted to a
CBR system through what we call query problems. Once a new query problem is
formulated through the set of attributes defined for case representation, similar cases
can be retrieved.

Case retrieval utilizes a similarity measure to search for similar cases whose so-
Iutions may be reused to solve the new query problem. How to assess similarity
between cases is a core method in CBR.

The problem in the retrieved case is typically very similar to, but not exactly the
same as the query problem. This may cause the solution in the retrieved case not to
be perfectly suitable for solving the new query problem. Adaptation is the step that
modifies the solution in the retrieved case in order to make it perfectly suitable for
solving the query problem.

There are two models of CBR. The CBR process model incorporates formulating
the problem, retrieving solutions, reusing them, revising and repairing them, and
storing them as new experiences.

The CBR knowledge model describes the containers where knowledge is stored.
There are four knowledge containers: Vocabulary, Case Base, Similarity, and Adap-
tation.

From reading this chapter, the reader has a deeper understanding of the CBR pro-
cess. However, we recommend you do not yet jump into designing your own CBR
system, not until after reading Chaps. 3 and 4; the technical details are presented in
Part II.

2.12 Background Information

The first substantial publication on case-based reasoning is the 1993 book by Kolod-
ner (1993). It introduces the main problem areas, thoroughly describing case repre-
sentation, structure, indexing, retrieval, adaptation and learning.

2.13 Exercises 39

CBR has roots outside of computer science, mainly in cognitive science, psy-
chology, and language understanding. The first CBR systems were built within this
context. The use of analogy for reusing previous events is discussed in Carbonell
(1983). The many roots of CBR today are discussed in Richter and Aamodt (2005).

One of the most cited foundational articles is the 1994 article by Aamodt and
Plaza (1994). The CBR cycle as presented by Aamodt and Plaza is a simple and
complete way of visualising the CBR methodology as a whole. It introduces the
CBR cycle and names the four R’s in the cycle: retrieve, reuse, revise, and retain.
An early cycle for modelling the CBR process, referred to as a CBR flowchart, is
given in Riesbeck and Schank (1989). The CBR cycle was extended in many ways
to describe additional activities like maintenance and learning. Some of these ex-
tensions are described by Bridge (2005). More historical information is in Chap. 1,
Introduction, and in Chap. 23, Relations and Comparisons with Other Techniques.

The knowledge containers were introduced by Michael M. Richter; see, for in-
stance, Richter (1998). We return to them in Chaps. 10 and 11 on learning and on
development and maintenance. When systems are developed or improved, the con-
tents of the containers are the objects of interest.

The example in Fig. 2.1 is based on a problem discussed on Car Talk from Na-
tional Public Radio® on 19 February 2011.

2.13 Exercises

Exercise 1 Suppose you are in the automotive domain. Look at the three contexts
manufacturing cars, marketing cars and repairing cars. Find for each context typical
attributes that would not be used in the other contexts.

Exercise 2 Describe the purpose of shifting knowledge from the case base to

(a) the similarity measure,
(b) the adaptation container.

What is the influence on the size of the case base?

Exercise 3 Give an example where the retain step of the process model does not
improve the performance of the CBR system.

Exercise 4 (Intended for readers who understand databases) Write a process cycle
for databases. Can you identify some knowledge containers?

Exercise 5 (Intended for computer scientists) Name some knowledge containers for
other knowledge-based systems such as rule-based reasoning, fuzzy expert systems,

and ontologies.

Exercise 6 Find useful sub-containers for adaptation.

40 2 Basic CBR Elements

Exercise 7 Propose an application domain where CBR can be used to provide so-
Iutions to problems. Consider what source of cases you would have.

Exercise 8 Describe characteristics that you would require for a problem to be
solved with the CBR methodology.

Exercise 9 Describe an area of expertise that you master, e.g., playing a game. De-
scribe how you would explain to someone what makes cases similar to others so
that their solutions can be swapped with minimal adaptation.

Exercise 10 Elicit similarity knowledge from an expert (not you) in any domain
in which you are not a master. In other words, elicit for the expert’s domain of
expertise what makes cases similar to others so that their solutions can be swapped
with minimal adaptation.

Exercise 11 Name one Al methodology and an example problem you are familiar
with and then list advantages and disadvantages you see when comparing it with
CBR.

References

Aamodt A, Plaza E (1994) Case-based reasoning: foundational issues, methodological variations,
and system approaches. AI Commun 7(1):39-59

Bridge DG (2005) The virtue of reward: performance, reinforcement and discovery in case-based
reasoning. In: Keynote at ICCBR 2005: 6th international conference on case-based reason-
ing. Chicago, IL, USA, August 2005. Awards, Honours, Affiliations. http://www.cs.ucc.ie/~dgb/
recognition.html. Accessed 28 Feb 2013

Carbonell JG (1983) Learning by analogy: formulating and generalizing plans from past experi-
ence. In: Michalski R, Carbonell JG, Mitchell T (eds) Machine learning: an artificial intelligence
approach. Springer, Berlin, pp 137-159

Cbrwiki (2011) Case-based reasoning Wiki. http://cbrwiki.fdi.ucm.es/wiki/index.php. Accessed 18
Jul 2011

Kolodner JL (1993) Case-based reasoning. Morgan Kaufmann, San Mateo

Recio-Garcia JA, Gonzalez-Calero PA, Diaz-Agudo B (2013) jColibri2: a framework for building
case-based reasoning systems. Science of Computer Programming (in press)

Richter MM (1998) Introduction. In: Lenz M, Bartsch-Spor]l B, Burkhard H-D et al (eds) Case-
based reasoning technology: from foundations to applications. Lecture notes in artificial intelli-
gence, vol 1400. Springer, Berlin, p 1

Richter MM, Aamodt A (2005) Case-based reasoning foundations. Knowl Eng Rev 20(3):1-4

Riesbeck CK, Schank RC (1989) Inside case-based reasoning. Erlbaum, Hillsdale

Schumacher J (2002) Empolis Orenge—an open platform for knowledge management applica-
tions. In: Minor M, Staab S (eds) Experience management: sharing experiences about shar-
ing the experience. Papers from the 1st German workshop on experience management, Berlin,
March 7-8, 2002. GI, Bonn, p 61

http://www.cs.ucc.ie/~dgb/recognition.html
http://www.cs.ucc.ie/~dgb/recognition.html
http://cbrwiki.fdi.ucm.es/wiki/index.php

2 Springer
http://www.springer.com/978-3-642-40166-4

Case-Based Reasoning

A Textbook

Richter, M.M.; Weber, R,

2013, XV, 546 p. 180 illus., 7 illus. in color., Hardcover
ISEM: 978-3-642-40166-4

	Chapter 2: Basic CBR Elements
	2.1 About This Chapter
	2.2 General Aspects
	2.3 Case-Based Reasoning
	2.4 Experiences and Cases
	2.4.1 Parts of a Case
	2.4.2 Problems
	2.4.3 Solution Types

	2.5 Case Representations
	2.5.1 How Cases Are Represented

	2.6 Case Bases
	2.6.1 How Are Cases Organised?
	2.6.1.1 Flat Organisation
	2.6.1.2 Structured and Unstructured Organisation

	2.7 Similarity and Retrieval
	2.8 Reuse and Adaptation
	2.9 Models of CBR
	2.9.1 CBR Process Model
	2.9.1.1 Problem Formulation
	2.9.1.2 Retrieve
	2.9.1.3 Reuse
	2.9.1.4 Revise
	2.9.1.5 Retain

	2.9.2 CBR Knowledge Model
	2.9.2.1 The Vocabulary Container
	2.9.2.2 The Similarity Container
	2.9.2.3 The Case Base Container
	2.9.2.4 The Adaptation Container

	2.10 Tools
	2.11 Chapter Summary
	2.12 Background Information
	2.13 Exercises
	References

