Chapter 2
Overview of Bluetooth Security

The basic Bluetooth security configuration is done by the user who decides how
a Bluetooth device will implement its connectability and discoverability options.
The different combinations of connectability and discoverability capabilities can be
divided into three categories, or security levels [1, 2].

1. Silent: The device will never accept any connections. It simply monitors Bluetooth
traffic.

2. Private: The device cannot be discovered, i.e., it is a so-called non-discoverable
device. Connections will be accepted only if the Bluetooth Device Address
(BD_ADDR) is known to the prospective master. A 48-bit BD_ADDR is nor-
mally unique and refers globally to only one individual Bluetooth device.

3. Public: The device can be both discovered and connected to. It is therefore called
a discoverable device.

The 48-bit BD_ADDR is divided into three parts: the 16-bit Nonsignificant
Address Part (NAP), the 8-bit Upper Address Part (UAP), and the 24-bit Lower
Address Part (LAP). The first three bytes of BD_ADDR (NAP and UAP) refer to the
manufacturer of the Bluetooth chip and represent company_id. The last three bytes
of BD_ADDR (LAP), called company_assigned, are used more or less randomly in
different Bluetooth device models. Company_id values are public information and
are listed in the Institute of Electrical and Electronics Engineers’ (IEEE’s) Organi-
zationally Unique Identifier (OUI) database [2, 5].

There are also four different security modes that a device can implement. In
Bluetooth technology, a device can be in only one of the following security modes
at a time [1, 2]:

1. Nonsecure: The Bluetooth device does not initiate any security measures.

2. Service-level enforced security mode: Two Bluetooth devices can establish a non-
secure ACL link. Security procedures, namely authentication, authorization, and
optional encryption, are initiated when a Logical Link Control and Adaptation
Protocol (L2CAP) Connection-Oriented (CO) or an L2CAP Connection-Less
(CL) channel request is made.

K. Haataja et al., Bluetooth Security Attacks, SpringerBriefs in Computer Science, 3
DOI: 10.1007/978-3-642-40646-1_2, © The Author(s) 2013

4 2 Overview of Bluetooth Security

3. Link-level enforced security mode: Security procedures are initiated when an ACL
link is established.

4. Service-level enforced security mode: This mode is similar to mode 2, except that
only Bluetooth devices using SSP can use it, i.e., only Bluetooth 2.1+EDR or
later devices can use this security mode.

Authentication is used for proving the identity of one piconet device to another.
The results of authentication are used for determining the client’s authorization level,
which can be implemented in many different ways: for example, access can be granted
to all services, only to a subset of services, or to some services while other services
require additional authentication. Encryption is used for encoding the information
being exchanged between Bluetooth devices in such a way that eavesdroppers cannot
read its contents [2].

Bluetooth uses Secure And Fast Encryption Routine + (SAFER+) [6] with a
128-bit key as an algorithm for authentication and key generation in Bluetooth ver-
sions up to 3.0+HS (High Speed), while Bluetooth 4.0 (i.e. Bluetooth Low Energy)
replaces SAFER+ with the more secure 128-bit Advanced Encryption Standard
(AES) [1,2,7].

SAFER+ [6] was developed by Massey et al. in 1998. It was submitted as a
candidate for the AES contest, but the cipher was not selected as a finalist. SAFER+
is a block cipher with the following main features. It has a block size of 128 bits
and three different key lengths (128, 192, and 256 bits). SAFER+ consists of nine
phases (eight identical rounds and the output transformation) and a Key Scheduling
Algorithm (KSA) in the following way. KSA produces 17 different 128-bit subkeys.
Each round uses two subkeys and a 128-bit input word from the previous round
to calculate a 128-bit word that is a new input word for the next round. The last
subkey is used in the output transformation, which is a simple bitwise XOR of the
last round’s output with the last subkey. Although some optimizations for faster
breaking of SAFER+- exist (for example, in [8, 9]), it is still considered quite secure
[1,2,6,8,9].

AES [7] was published by the National Institute of Standards and Technology
(NIST) in 2001 after the evaluation process of the AES contest. Rijndael was the
winner of the contest and NIST selected it as the algorithm for AES. AES is a
symmetric block cipher that is intended to replace the Data Encryption Standard
(DES) as the approved standard for a wide range of applications, but this process
will take many years. NIST anticipates that the Triple Data Encryption Standard
(3DES) will remain an approved algorithm for the foreseeable future, at least for U.S.
government use. AES encryption consists of 10-14 rounds in which data blocks are
processed step-by-step in the following way (except the final round; it is noteworthy
that AES decryption is symmetric to AES encryption) [1, 2, 7, 10, 11]:

1. Byte substitution: Byte substitution uses an S-box to perform a byte-by-byte
substitution of the block.
2. Row shifting: Row shifting is a simple permutation.

2 Overview of Bluetooth Security 5

3. Column mixing: Column mixing is a substitution which makes use of arithmetic
over GF(2%). Galois Field GF(2®) is a finite field of 256 elements, which can be
denoted by strings of eight bits or by hexadecimal notation.

4. Round key adding: Round key adding is a simple bitwise XOR of the current
block with a portion of the expanded key.

The final round of AES encryption (and AES decryption) is slightly different
[1,2,7,10, 11]:

1. Byte substitution.
2. Row shifting.
3. Round key adding.

AES is considered secure, it is very fast and compact (about 1kB of code), its
block size is a multiple of 32 (typically 128 bits), its key length is also multiples
of 32 (typically 128, 192, or 256 bits), and it has a very neat algebraic description
[2,7,10, 11].

Because Bluetooth is a wireless communication system, there is always a possi-
bility that the transmission could be deliberately jammed or intercepted, or that false
or modified information could be passed to the piconet devices [2].

Bluetooth security is based on building a chain of events, none of which should
provide meaningful information to an eavesdropper. All events must occur in a spe-
cific sequence for security to be set up successfully [1, 2].

In order for two Bluetooth devices to start communicating, a procedure called
pairing must be performed. As a result of pairing, two devices form a trusted pair
and establish a link key which is used later on for creating a data encryption key for
each session [2].

In Bluetooth versions up to 2.0+EDR, pairing is based exclusively on the fact
that both devices share the same Personal Identification Number (PIN), or passkey,
that is used for generating several 128-bit keys as Fig.2.1 illustrates. When the user
enters the same passkey in both devices, the devices generate the same shared secret
which is used for authentication and encryption of traffic exchanged by them [1, 2].

An initialization key (K;,i;) is generated when Bluetooth devices meet for the
first time and it is used for securing the generation of other more secure 128-bit keys,
which are generated during the next phases of the security chain of events. K;,;;
is derived from a 128-bit pseudorandom number IN_RAND, an L-byte (1<L<16)
PIN code, and a BD_ADDR. It is worth noting that IN_RAND is sent via air in
unencrypted form [1, 2].

The output of a certain key generation function can be expressed in terms of the
function itself and its inputs. K;,;; is produced in both devices using the formula
Kinit = Eo2(PIN’,L’,IN_RAND). The PIN code and its length L are modified into
two different quantities called PIN” and L before they are sent to the E»» function.
If the PIN is smaller than 16 bytes, it is augmented by appending bytes from the
device’s BD_ADDR until either PIN’ reaches a total length of 16 bytes or the entire
BD_ADDR is appended, whichever comes first. If one device has a fixed PIN code,

6 2 Overview of Bluetooth Security

Device A Device B

| PIN code | PIN code |

| IN_RAND |
Initialization key (K,) — Initialization key (K;;,)

Unit key (K ,) or LECRAND Unit key (K) or
combination key (K z) combination key (K)

Authentication Authentication

ACO
Encryption key (K)

Encryption

AU_RAND, SRES'

EN_RAND
Encryption key (K.)

Fig. 2.1 Summary of Bluetooth security operations [1, 2]

Data exchange

the BD_ADDR of the other device is used. If both devices can support a variable
PIN code, the BD_ADDR of the device that received IN_RAND is used [1, 2].

Kinit is used to encrypt a 128-bit pseudorandom number (RAND or LK_ RAND),
i.e., RAND & Kj;;; or LK_RAND & K;,;;, exchanged in the next phase of the secu-
rity chain of events when a link key (a unit key or a combination key) is generated
[1,2].

A unit key (K 4) is produced from the information of only one device (device A)
using the formula K4 = E»;(BD_ADDR 4, RANDy). Device A encrypts K4 with
Kinit, 1.e., K4 @ Kjjir, and sends it to device B. Device B decrypts K4 with Ky,
ie., (Kg ®Kiuir) @ Kinir = Ky, and now both devices have the same K4 as a link
key [1, 2].

A Bluetooth device that uses a unit key has only one key to use for all of its
connections. This means that the same key is shared with all other trusted Bluetooth
devices. In addition, any trusted Bluetooth device using the same unit key can eaves-
drop on any traffic between two other Bluetooth devices that share the same unit key.
Moreover, any trusted Bluetooth device using the same unit key can impersonate the
target device just by duplicating its BD_ADDR. Thus, only devices that have limited
resources, i.e., no memory to store several keys, should use K4, because it provides
only a low level of security. Therefore, Bluetooth specifications do not recommend
using K4 anymore. More information about unit key weaknesses can be found in
[1,2,12].

A combination key (K 4p) is dependent on two devices and therefore it is derived
from the information of both devices. K4 p is produced in both devices using the for-
mulaKyp = Ez(BD_ADDR 4, LK_RAND,4) @ E»; (BD_ADDR g, LK_RAND3).
It is worth noting that generating K4 p is nothing more than a simple bitwise XOR
between two unit keys, i.e. Kyp = K4 @ Kp. Each device can produce its own unit

2 Overview of Bluetooth Security 7

Verifier (Device A) Claimant (Device B)
AU_RAND, (128 b)
LMP_au_rand
(AU_RAND,} | AU_RAND,
— (128 b)
BD_ADDRg v =
(48 b) BD_ADDRg E1
— (48 b)
K, or K
?123 b;e E, K, or Kag
— (128 b)
"“} w .--..b
30 |3 w |80
0 |(w ﬁ oo
9 ?
N —
L sres|LMP_sres]
Y
Result /TN, (32b)| (SRES’) =
\L/™ z
If Result=0
then SRES = SRES’

Fig. 2.2 Bluetooth challenge-response authentication [1, 2]

key and each device also has the BD_ADDR of the other device. Therefore, two
devices have to exchange only their respective pseudorandom numbers in order to
produce each other’s unit key [1, 2].

Device A encrypts LK_RAND,4 with the current key K, i.e., LK_RAND4 &K
where K can be the K;,,;;, the K4, or the K4p that was created earlier, and sends
it to device B. K is K;,;; if the devices create a link key for the first time together.
K is K4 if the link key is being upgraded to a combination key, and it is Kap
if the link key is being changed. Device B decrypts LK_RAND,4 with K, i.e.,
(LK_RAND,4 & K) ® K = LK_RANDy, and can now produce K4. Correspond-
ingly, device B encrypts LK_RANDjp with K, i.e., LK_RANDp @K, and sends it
to device A. Device A decrypts LK_RANDp with K, i.e., (LK_RANDp & K) @
K = LK_RANDgj, and produces Kp. Finally, both devices can produce K4p by
XORing K4 with Kp,i.e., Kyp = Ks ®Kp [1, 2].

The next phase of the security chain of events is the challenge-response authen-
tication in which a claimant’s knowledge of a secret link key is checked, as
Fig.2.2 illustrates. During each authentication, a new 128-bit pseudorandom number
AU_RAND is exchanged via air in unencrypted form. Other inputs to the authenti-
cation function E; are the BD_ADDR of the claimant and the current link key (K4
orKsp) [1, 2].

A 32-bit result (SRES, Signed Response) and a 96-bit result (ACO, Authen-
ticated Ciphering Offset) are produced in both devices by the E{(AU_RANDy,
BD_ADDRp,Link key) function, where the Link key is K4 or K4p. The claimant
sends SRES’, i.e., the SRES value produced by the claimant, via air in unencrypted
form to the verifier. The verifier compares the generated SRES value with the received

8 2 Overview of Bluetooth Security

Master (Device A) Slave (Device B)
LMP_start_encryption_req
EN_RAND !
[“d2sb) " (EN_RAND,)
EN_RAND, (128 b)
E. |LAco (96 b) = - i
—

3 ACO (96 b) E,

Keiohosiosth b IR

K, or K,g (128 b)
‘7

| K. (128 b)
CLKy (26 b) | Ko (128b) |
—_—

Eo E. | CLKz. (26 b)
0 f¢—————

K, or K,g (128 b)
—_—

BD_ADDR, (48 b)
B

BD_ADDR, (48 b)
-—

Keystream
& Keystream
E % Data from
8= AR :/‘!\ Encrypted data { Datafrom
g N — _;C) AtoB
/1[\‘ Encrypted data { Datafrom
W — /\‘ Bto A
/-

Fig. 2.3 Bluetooth data encryption [1, 2]

SRES value, and if these values match, the authentication is completed successfully.
The ACO is used in the next phase of the security chain of events when an encryption
key is generated [1, 2].

It is worth noting that SRES and SRES’ are 32-bit values, not 128-bit values. The
32-bit SRES provides reasonable protection against an attacker who is trying to guess
the value, while it also reduces the chance that the PIN code will be compromised
by an attacker who has somehow determined the correct SRES value [2].

Figure 2.3 illustrates Bluetooth data encryption between two Bluetooth devices.
The ACO, the current link key (K4 or K4p) and a 128-bit pseudorandom number
EN_RAND are the inputs to the encryption key generation function E3 that is used
for generating an encryption key (K¢). The master (device A) generates EN_RAND
and sends it to the slave (device B) via air in unencrypted form. K¢ is produced in
both devices using the formula K¢ = E3(EN_RAND,4, ACO, Link key), where the
Link key is K4 or K45 [1, 2].

The keystream generator function E((see Fig.2.3) makes symmetric encryption
possible by generating the same cipher bit stream, or keystream (also referred to as a
running key), in both devices. The inputs to the Eg function are K¢, the BD_ADDR of
the master (BD_ADDR 4), and the 26 bits of the master’s real-time clock (CLK»6_1).
The keystream is generated by the Eog(K¢, CLK»¢—1, BD_ADDR,4) function that
is reinitialized for every new sent or received Baseband packet, i.e., CLK6_1 is
updated for every new Baseband packet. This means that inputs to the Eg function
are never identical longer than the lifetime of one Baseband packet and therefore a
new keystream is generated for every new Baseband packet [1, 2].

2 Overview of Bluetooth Security 9

The sender encrypts the plaintext by XORing it with the keystream, i.e., Plain-
text @ Keystream = Ciphertext, and sends the produced ciphertext to the receiver.
The receiver decrypts the ciphertext by XORing it with the same keystream, i.e.,
Ciphertext @ Keystream = (Plaintext @ Keystream) @ Keystream = Plaintext. It is
worth noting that only the payload of the Bluetooth Baseband packet is encrypted
(not an access code or a header), and therefore an attacker cannot use the regularly
repeating information (that is easy for the attacker to guess) of the access code and
the header in order to facilitate a cryptanalysis of the cipher [2].

As already discussed in this chapter, the PIN is the only source of entropy for the
shared secret in Bluetooth versions up to 2.0+EDR. As the PINs often contain only
four decimal digits, the strength of the resulting keys is not enough for protection
against passive eavesdropping on communication. Even with longer 16-character
alphanumeric PINs, full protection against active eavesdropping cannot be achieved:
it has been shown that MITM attacks on Bluetooth communications (versions up to
2.0+EDR) can be performed [2, 13-15].

Let us assume that Alice and Bob are communicating with each other and they
want to secure their communication by using some public-key encryption method.
In a MITM attack, Mallory (an attacker) intrudes between Alice and Bob. Mallory
can eavesdrop on messages, modify messages, delete messages, and generate new
messages between Alice and Bob in such a way that his presence is unrevealed, i.e.,
Alice and Bob do not know that the link between them is compromised by Mallory.
Mallory is also able to imitate Bob when talking to Alice and vice versa. This simple
example of a MITM attack works in the following way [2, 10, 16]:

1. Alice sends her public key to Bob, but Mallory is able to intercept it. Mallory
sends Bob his own public key for which he has the matching private key. Now
Bob wrongly thinks that he has Alice’s public key.

2. Bob sends his public key to Alice, but Mallory is able to intercept it. Mallory
sends Alice his own public key for which he has the matching private key. Now
Alice wrongly thinks that she has Bob’s public key.

3. Alice sends Bob a message encrypted with Mallory’s public key, but Mallory is
able to intercept it. Mallory decrypts the message with his private key, keeps a
copy of the message, re-encrypts the message with Bob’s public key, and sends
the message to Bob. Now Bob wrongly thinks that the message came directly
from Alice.

4. Bob sends Alice a message encrypted with Mallory’s public key, but Mallory is
able to intercept it. Mallory decrypts the message with his private key, keeps a
copy of the message, re-encrypts the message with Alice’s public key, and sends
the message to Alice. Now Alice wrongly thinks that the message came directly
from Bob.

Even if the public keys of Alice and Bob are stored on a database, a MITM attack
will work. Mallory can intercept Alice’s (or Bob’s) database inquiry and substitute
his own public key for Bob’s (or Alice’s) public key. He can also somehow break into
the database and substitute his key for both Alice’s public key and Bob’s public key.
A MITM attack works, because Alice and Bob have no way to verify that they are

10 2 Overview of Bluetooth Security

truly using each other’s correct public keys. If Mallory does not cause any noticeable
delays to the communication, Alice and Bob have no idea that Mallory has intruded
between them [2, 10, 11, 16—-18].

Without any verification of the public keys, MITM attacks are generally possible
(in principle) against any message sent using public-key technology. One solution
to this problem is to use public key certificates (also referred to as digital identity
certificates) [17], which use digital signatures to bind together public keys with the
information of their respective users, i.e., information such as the name of the user,
the address of the user, and so on. Each user is associated with a trusted authority, a
Certification Authority (CA), and each certificate is created by such a CA. A certificate
establishes a verifiable connection between the user and his public keys. The users
know their CA’s public key and therefore they can verify the signatures of their
CA. The certificate is stored in a directory. Only the CA is allowed to write in this
directory, but all users of the CA can read the information in the directory [2, 10, 11,
16-18].

Defences against MITM attacks use authentication techniques which are based
on public key certificates, two-way authentication (also referred to as mutual authen-
tication), secret keys, passwords, and other methods (such as voice recognition and
other biometrics) [2, 10, 11, 16-18].

Bluetooth versions 2.14+EDR, 3.0+HS, and 4.0 add a new specification for the
pairing procedure, namely SSP [1]. Its main goal is to improve the security of pairing
by providing protection against passive eavesdropping and MITM attacks [1, 2].

Instead of using (often short) passkeys as the only source of entropy for building
the link keys, SSP employs Elliptic Curve Diffie-Hellman (ECDH) public-key cryp-
tography. To construct the link key, devices use public-private key pairs, a number of
nonces, and Bluetooth addresses of the devices. Passive eavesdropping is effectively
thwarted by SSP, as running an exhaustive search on a private key with approximately
95 bits of entropy is currently considered to be infeasible in reasonable time [1, 2].

In order to provide protection against MITM attacks, SSP either uses an OOB
channel (e.g., Near Field Communication, NFC), or asks for the user’s help: for
example, when both devices have displays and keyboards, the user is asked to com-
pare two six-digit numbers. Such a comparison can also be thought of as an OOB
channel which is not controlled by the MITM. If the values used in the pairing process
have been tampered with by the MITM, the six-digit integrity checksums will differ
with probability 0.999999 [1, 2].

SSP uses four association models. In addition to the two association models
mentioned previously, OOB and Numeric Comparison, models named Passkey Entry
and Just Works are defined [1, 2].

The Passkey Entry association model is used in cases when one device has input
capability, but no screen that can display six digits. A six-digit checksum is shown
to the user on the device that has output capability, and the user is asked to enter
it on the device with input capability. The Passkey Entry association model is also
used if both devices have input but not output capabilities. In this case the user
chooses a 6-digit checksum and enters it in both devices. Finally, if at least one of
the devices has neither input nor output capability, and an OOB cannot be used, the

2 Overview of Bluetooth Security 11

Table 2.1 Device capabilities and SSP association models [1, 2]

Device 1 Device 2 Association model
DisplayYesNo Display YesNo Numeric comparison
DisplayOnly Numeric comparison
KeyboardOnly Passkey Entry®
NolnputNoOutput Just works
DisplayOnly DisplayOnly Numeric comparison
KeyboardOnly Passkey entry?
NolInputNoOutput Just Works
KeyboardOnly KeyboardOnly Passkey entry?
NolnputNoOutput Just works
NolnputNoOutput NolnputNoOutput Just works

“The resulting link key is considered authenticated

Just Works association model is used. In this model the user is not asked to perform
any operations on numbers: instead, the device may simply ask the user to accept
the connection [1, 2].

The choice of the association model depending on the device capabilities is shown
in Table2.1. DisplayYesNo indicates that the device has a display and at least two
buttons that are mapped to “yes” and “no”: using the buttons the user can either
accept the connection or decline it. Other notation in the table is self-explanatory
[1,2].

SSP is comprised of six phases: [1, 2]

1. Capabilities exchange: The devices that have never met before or want to perform
re-pairing for some reason, first exchange their Input/Output (I0) capabilities (see
Table 2.1) to determine the proper association model to be used.

2. Public key exchange: The devices generate their public-private key pairs and send
the public keys to each other. They also compute the Diffie-Hellman key.

3. Authentication stage 1: The protocol that is run at this stage depends on the
association model. One of the goals of this stage is to ensure that there is no
MITM in the communication between the devices. This is achieved by using
a series of nonces, commitments to the nonces, and a final check of integrity
checksums performed either through the OOB channel or with the help of the
user.

4. Authentication stage 2: The devices complete the exchange of values (public keys
and nonces) and verify their integrity.

5. Link key calculation: The parties compute the link key using their Bluetooth
addresses, the previously exchanged values, and the Diffie-Hellman key con-
structed in phase 2.

6. LMP authentication and encryption: Encryption keys are generated in this phase,
which is the same as the final steps of pairing in Bluetooth versions up to
2.0+EDR.

12

2 Overview of Bluetooth Security

Initiating Non-initiating
device device
A B
| |
Public Key Exchange
1a.PKa
>
1b. PKb
<

Compute DHKey =
P192(SKa, PKb)

Compute DHKey =
P192(SKb, PKa)

2a.

3a. Set r&gie0t random Na

Authentication Stage 1
2b. Select random Nb
3b. Setrbto 0

Compute commitment:
Cb = f1(PKb, P Ka, Nb, 0)

6a. Verify that
Cb = f1(PKb, Pka, Nb, 0)
7a. Compute
Va = g(PKa, PKb, Na, Nb)

4b. Cb
<
5a. Na
>
6b. Nb
<

8. Ask user to compare the numbers Va and Vb shown on the
displays; proceed if user confirms ‘ok’

7b. Compute
Vb = g(PKa, PKb, Na, Nb)

9a. Compute Ea =

f3(DHKey, Na, Nb, 0, I0capA, A, B)

Authentication Stage 2
9b. Compute Eb =
f3(DHKey, Nb, Na, 0, I0capB, B, A)

10a. Ea »
10b. Verify that
Ea = f3(DHKey, Na, Nb, 0, IOcapA, A, B)
11b. Eb

<

11a. Verify that

Eb = f3(DHKey, Nb, Na, 0, IOcapB, B, A)

LK=f2(DHKey, N

master’ " slave’

Link key calculation

12. All parties compute link key

Nave: "DtIk’, BD_ADDR ... BD_ADDR)

Encryption

13. Generate encryption keys as in legacy pairing

Fig. 2.4 SSP with the Numeric Comparison association model [1, 2]

The contents of messages sent during the SSP phase are outlined in Fig.2.4 and

the notations used are explained in Table 2.2.

2 Overview of Bluetooth Security

Table 2.2 SSP protocol notation [1, 2]

13

Term Definition

PKx Public key of device X

SKx Private key of device X

DHKey Diffie-Hellman key generated after key
exchange

Nx Nonce generated by device X

X Random number generated by device X;

equals O in the Numeric Comparison

association model

Cx Commitment value from device X

f1 One-way function used to compute
commitment values

2 One-way function used to compute the link
key

3 One-way function used to compute check
values

g One-way function used to compute numeric
check values

IOcapX Input/Output capabilities of device X

BD_ADDR 48-bit Bluetooth device address

Even though SSP improves the security of Bluetooth pairing, it has been shown
that MITM attacks against Bluetooth 2.1+EDR, 3.0+HS, and 4.0 devices are pos-
sible by forcing victim devices to use the Just Works association model [2, 19-23].
Moreover, at least one of the proposed MITM attacks against Bluetooth SSP has
already been implemented and mounted in practice [24]. Thus, the security of SSP

should be further improved.

2 Springer
http://www.springer.com/978-3-642-40645-4

Bluetooth Security Attacks

Comparative Analysis, Attacks, and Countermeasures
Haataja, K. Hyppdnen, K.; Pasanen, 5.; Toivanen, P,
2013, VI, 93 p. 31 illus., Softcover

ISEN: 978-3-642-40645-4

	2 Overview of Bluetooth Security

