TRS: A New Structure for Shortest Path Query

Qi Wang™, Junting Jin, and Hong Chen

Renmin University of China, Beijing, China
vicky0105.wq@gmail.com, jjt0901@126.com, chong@ruc.edu.cn

Abstract. Shortest Path Query is being applied to more and more pro-
fessional scopes, such as social networks and bioinformatics. But the
exponential growth of data makes it much more challenging since tradi-
tional BFS-based algorithms are hard to scale due to the requirement of
huge memory.

Different from the traditional algorithm such as Dijkstra algorithm,
our method is based on Depth-First-Search, which first constructs the
DF'S tree with interval-based encoding, and then isolates non-tree edges
to generate the TRS structure for the graph. Shortest path queries
between arbitrary nodes are performed upon this structure. The final
result could be a detail path with exact path cost. This algorithm is
quite easy to scale to large graphs, since the TRS algorithm automati-
cally divide the graph into a set of connected components, each of which
has a single TRS structure. Our experiments has proved that the algo-
rithm fits large sparse graph quite well in real world.

Keywords: Information network - Large graph - TRS - Shortest path

1 Introduction

Traditional algorithms for SPQ are mainly based on Breadth-First-Search of the
graph. The classical Dijkstra’s algorithm [8] with O(n3) time cost and O(n?)
space cost is one of them. And these methods are all memory based, and show
great limitations in scalability with the fast growth of data, especially the web
data. However, now even a small community network may have thousands of
nodes, and storing all of the shortest path trees for this large graph is infeasible
at all.

In general, graphs for real large networks are mostly sparse. That is, the
average degree of each node is close to 1 or even lower. Accordingly, the stor-
age structure also changes to storing edges instead of storing adjacency matrix.
Respect to this property, we proposed a new approach to find the shortest path
in sparse graph, and the time cost only associated with the number of edges,
while a little more space is needed.

This work is supported by a grant from “Special Research on Key Technology of
Domestic Database with High Performance and High Security” for National Core-
High-Base Major Project of China (No. 2010ZX01042-001-002-002).

S. Zhou and Z. Wu (Eds.): ADMA 2012 Workshops, CCIS 387, pp. 13-26, 2013.
DOI: 10.1007/978-3-642-41629-3_-2, (© Springer-Verlag Berlin Heidelberg 2013

14 Q. Wang et al.

Our algorithm first call Depth-First-Search (DFS) algorithm on a directed
acyclic graph(DAG), and converts the graph into our new structure TRS(s),
in which each node has its interval-based three tuple code. TRS divides all
edges into three sets: DFS spanning tree edges (TE), separation edges (SE),
and remaining edges (RE). For each TRS, if it only contains DFS spanning tree
edges, answering any shortest path query upon it only takes O(n) time if the
code is beforehand sorted; If either separation edges or remaining edges are not
null, the time cost only depends on the number of non-tree edges. And this is
why our algorithm is quite efficient on sparse graphs.

There are three main contributions of our work in total. The first one is we
introduce Interval Based Encoding into SPQ to prune some impossible direc-
tions; the second one is we proposed a new structure TRS to represent a graph,
and TRS makes it possible to answer any SPQ with space cost of O(n+m), where
n is number of nodes and m is number of edges; and the last one is our algo-
rithm scales well by using divide-and-conquer strategy. This method is suitable
for parallel processing system for big data like hadoop.

The rest of this paper is organized as follows: Sect.2 depicts related work,
then Sect. 3 introduces our TRS framework. In Sect. 4 we give out the full view
of TRS algorithm for answering shortest path queries. Section5 provides the
complexity in both time and space for our algorithm. Section6 shows all the
experiments. Section 7 is conclusions and future work.

2 Related Work

The very famous algorithm for shortest path query is Dijkstra [8], and some
improvement could be made by using heap data structure for priority queues [9].
Although this algorithm has been extended to external memory [4], it cannot
handle well with respect to response time. In order to deal with SPQ, Agrawal
and Jagadish [10] introduced the idea of graph partitioning. Later, [7] gave a
more efficient way by materializing some local shortest path which could be
held in memory. R. Gutman [5] used the reach value of each node to find the
shortest path for road networks. Depending on the basic idea of reach value,
AV. Goldberg, H. Kaplan and R. Werneck [3] introduced several variants of the
reach algorithm, and some do not need explicit lower bounds. Since in the search
process, some unrelated branches may be taken into account and it may cause a
lot of time cost. Subsequently, methods using geometric attributes of a graph are
proposed, and a lot of work has been done. Reference [6] used a geometric way to
prune some unrelated branches in order to narrow the search. And [14] divides
the graph into several regions, and put an edge into the priority queue in Dijk-
stra’s algorithm when a path from the source region to the destination region
passes this edge. The most recent research using geometric attribute is [2], which
exploits symmetry of the graphs to compress BFS-trees. Experiments shows that
the space cost is reduced in comparison with the un-compressed BFS-trees, but
still, space cost is too high when the graph is large enough. Another new research

TRS: A New Structure for Shortest Path Query 15

done by F. Wei [1] proposed TEDI as an indexing and query processing scheme
for SPQ. Time cost for index construction is O(n?), while query time depends
on the argument of the decomposition.

3 TRS Framework

3.1 Background Knowledge

In this paper, our research object is Directed-Acyclic-Graph with non-negative
weight. Let n be the number of nodes, and m be the number of edges. For a
complete graph, there’s an arc between them for any two nodes, thus number of
edges is M(n) = n* (n — 1). But in most graphs, number of edges is much less
than M (n), so we define the ratio of m to M (n) as the saturation of G, that is,
saturation(G) = m/n* (n —1). Suppose the saturation of a graph is lower than
a given low ratio, e.g. 0.5 %, then we call this graph a sparse graph.

Enlightened by the sparse feature and pruning idea, we propose the TRS
structure. In this structure, we classify edges into three sets, TE, SE, and RE.
Edges in TE form the spanning tree(or forest) of the original graph. When we
only consider the TE edges, if node u could reach node v, the only path is already
the shortest path. But at most time, SE and RE must be considered. If the graph
is sparse, the number of edges is less than 0.005n2. Thus the number of edges
in SE and RE is also small, so that the additional time for searching in SE and
RE will not be too much. In our experiments, this has been well proved.

3.2 TRS Structure

In this section, we will first introduce Interval-Based Encoding.

a
.
: : IBE of Tree 1is:
b.:'_ f'. af1, 18] f[10, 15)
N\ \ b2, 9] g11,12]
\ \ c[3, 6] h [13, 14]
ca)) F » ® d[4,5] 1116, 17]
/ € g h L
ef7, 8]

«d
Treel

Fig. 1. Example of interval based encoding

16 Q. Wang et al.

Interval-Based Encoding. Interval-Based Encoding was first put forward to
be applied to XML files [11], then it is used to solve reachability problems [12,13]
well. Interval-Based Encoding utilizes Depth-First-Search to assign both the pre-
order code and post-order code for every node of a tree. When a node is visited at
the first time it is assigned the pre-order code, and it gets post-order code after all
its offsprings are visited. Figure 1 shows an example of Interval-Based Encoding
of a spanning tree. Relationship between any two nodes could be represented
through their intervals, that is, root a has the most wide interval, which contains
all the intervals of a’s offsprings, and intervals of b and f has no intersections
because they belong to different branches.

In Fig. 1, if we want to find the shortest path from node a to i, we can use
the IBE of Tree 1 to directly prune the b-branch and f-branch. Because neither
of their intervals satisfy the condition containing ¢’s interval. Considering its
O(1) time cost, we think of making it useful in SPQ to avoid a BFS which
only depends on the weight of an edge. But as the example indicates that the
encoding only fits for tree structure, and if we want to take advantage of it to
answer SPQ in an arbitrary graph, we must modify the encoding.

TRS for Graph. For an arbitrary directed graph, it has more edges than its
corresponding spanning tree or forest which could be interpreted by the Interval-
Based Encoding, thus, in order to answer the shortest path query, these non-tree
edges must also be recorded to maintain the complete path information of the
original graph.

In our encoding process, we first select a root node and then perform a DFS
on the graph from this node to get its spanning tree. And then select next root
node as such, as a result, spanning forest comes into being. During this process,
the interval for each node is also assigned. If the arc head of the current scanning
edge directs a closed node, this edge is a non-tree edge.

Theorem 1. For a non-tree edge, the start node is ancestor or sibling (we call
two nodes siblings if they belong to two different subtrees, without regard to the
level of subtrees) of the end node.

Proof. Nodes in the DFS trees have three relationship, which are ancestor, off-
spring, and sibling. Assume a non-tree edge e = (u,v), v is a closed node in the
DFS trees. When the current scanning edge is e, u’s post-order is bigger than v’s
post-order, and thus u cannot be offspring of v, but only can be ancestor or sibling.

Theorem 2. For a non-tree edge, if the start node is a sibling of the end node,
its pre-order is bigger than the post-order of the end node.

Proof. Edge e = (u,v) is a non-tree edge, and u is a sibling of v, and their
intervals are respectively [ug,up] and [v,,vp]. We already know from Theorem
1’s proof that u, > v,. Because different nodes’ intervals can’t overlap, there
may be u, < v, or u, > vp. However, if u, < vg, then [v,, vp] C [ug,up], and
according to Interval-Based Encoding, u should be v’s ancestor, which conflicts
with their sibling relationship. Thus the relationship between u, and v, can only
be ug > vp.

TRS: A New Structure for Shortest Path Query 17

IBE (Tree):
afo,11] b1, 6]
cl2 3] d[4, 5]

ef7,10] {[8 9]

TRS of Graph 1

Fig. 2. Example of TRS

According to Theorem 1 and 2, we classify all non-tree edges into two classes:
SE(Separation Edges) and RE(Remaining Edges). SE are those edges whose two
endpoints are siblings in the DFS tree, and connect two different branches. RE
are those edges whose arc tail is ancestor of head in the DFS tree. We store
the Interval-Based Encoding instead of the whole DFS tree because the code
actually presents the topology of the tree, and the location of each node can be
deduced from the codes. So, as to a spanning tree with tree edges and nodes’
codes, as well as SE and RE, we call it a TRS structure, reconstructing the graph
and keeping all topology information except the weights. Figure 2 is an example.

Weight information is also easy to maintain by adding another item in the
Interval-Based Encoding. For each node, we assign it a weight as the sum of
weights along the path on the DFS tree from the root node. E.g. in Fig. 2, w(b) =
w(ab), in which w(b) represents the weight of node b, and w(ab) represents the
weight of edge (a,b). If one node are reachable from the other node in a tree,
and if we want to get the path weight between the two nodes in the DFS tree,

Algorithm 1 TRS Construction

InpuT: DAG G

OutpuT: TRS(s) for G

ALGORITHM:

01: Find root nodes set R of G

02: For 1.n

03: visited [n]=false

04: End

05: For each root € R Do

06: start DFS from root

07: If v is not visited

08: visited[v]=true

09: Else v is boundary node, back to v’s parent
10: End

11: Assign pre-order if not assigned

12: Assign post-order if all its offspring is visited
13: End

Fig. 3. Algorithm of TRS construction

18 Q. Wang et al.

we can directly use the weight of end node subtracting the weight of start node.
Because of this feature, we record the path weight from root to the current node
as the node weight. And for non-tree edges, we need to record the edge weight.
By adding one more item in the code in this way, the weight information of the
graph is also maintained.

Sometimes, the graph is not well connected in one spanning tree. For example,
if a graph has two connected components, one contains edges (a,b) and (a,d),
and the other contains edge (c,d), the DFS scanning would generate a spanning
forest rooted at a and c for this graph, and node d is shared by both of them.
We call nodes (shared by more than one TRS) boundary nodes like d. In Fig. 3,
Algorithm 1 describes how to generate TRS structure for an arbitrary DAG.

4 Answering Shortest Path Query

4.1 The Framework

In general, the DFS process is performed upon a DAG G at first, then it returns
the TRS structure of G. If there’re more than one spanning tree of G, TRS(G)
returns a group of TRS and identified by their root nodes. In each TRS, the
nodes as well as their codes, the responding SE and RE are recorded. For each
TRS of G, we call AnswerSPQ algorithm to deal with and return the shortest
path between the query nodes. When there are more than one TRS structure in
a connected DAG, there must be some boundary nodes as intermediate nodes to
connect adjoining TRS. For example, If node u is the current encoding node, and
it has already been visited and belongs to another TRS, we mark u a boundary
node and set it to be closed, so that its offspring (if exist) will not appear in the
current TRS, and this avoids mark one node repeatly.

4.2 Answer SPQ On TRS

For the given start node s and end node ¢, if there is no non-tree edges and t’s
interval is within s’s interval, we search in the encoded nodes from s to ¢, and the
shortest path is a sequence which are ordered by their pre-orders of these nodes,
with weight of w(t)-w(s). But mostly, neither SE nor RE is null, and shortest
paths take the same chance to pass both of them. Since it’s easy to find a path
on the DFS tree, the main problem focuses on paths passing these two sets.
When two query nodes are reachable, and no SE edges exist in their branch, we
only need to replace some tree paths with RE edges if they have smaller weight.
When there are SE edges between the branches which contain the two nodes
respectively, we need to find the shortest path between the query nodes and end
points of SE edges and connect these parts together to get the global shortest
path. The algorithm is depicted in Fig. 4.

The first action in Algorithm 2 is to sort edges in SE. According to Theorem 2,
we know that edges starts from a laterly-visited node to a formerly-visited node,

TRS: A New Structure for Shortest Path Query 19

Algorithm 2 AnswerSPQ

InpUT: TRS of G, query nodes s, t

OuTpPUT: Shortest path from s to t if exists

ALGORITHM:

01: gsort(SE) by pre-order of start node in descending order
02: If Reachable(s, t) Do

03: current = RE-SP(s, t)

04: Else Do

05: current.weight = INFINITY

06: End if

07: For e e SE Do

08: If e’s start is reachable from s Do
09: tmp = SE-SP(s, t,)

10: If tmp.weight < current.weight Do
11: current = tmp

12: End If

13: End If

14: End For

15: return current

Fig. 4. Algorithm of AnswerSPQ

and this sorting makes the search starts from the right-most SE edge in a DFS

tree (if the tree spreads from left to right) to guarantee no route is missed. If
the two nodes are reachable in the DFS tree, we find out a temporary shortest
path by taking RE into account, or set them unreachable if not reachable. Then
SE is considered. The searching starts from each SE edge whose start node is
reachable from s, and when the process gets to the end node of this edge, we
treat the end node as a new source node to run SE-SP, until it reaches t or has
searched all edges in SE but not reaching t. Algorithm 3 and 4 illustrate the
process of RE-SP and SE-SP.

Algorithm 3 only consider RE edges while processing SPQ, because whether
or not the shortest path passes SE edges, it needs to consider both DFS tree
and RE. Here we offer a schematic figure to explain the relationship of RE edges
that appear on the same branch of DFS tree as Fig. 6.

The bold line represents a trunk of DFS, and the arc lines represent RE edges
on this branch. Here we must make sure that each RE edge is valuable, that is,
for (a — b) € RE, w(a — b) < w(b) — w(a). Because only when it is valuable,
shortest path may pass it, if not, the shortest path chooses the tree path instead
of this RE edge. The schema indicates that there are two kinds of relationship
between two RE edges: serial and overlying. In Fig.6, edge (¢ — b) and edge
(e — f) are serial; edge (@ — b) and edge(c — d), as well as edge (e — f) and
edge (g — h) are overlying. Algorithm 3 describes how to answer shortest path
query under the two situations.

20 Q. Wang et al.

Algorithm 3 Shortest Path only Considering RE (RE-SP)

INPUT: query nodes s, t

OuTpUT: Shortest path from s to t

ALGORITHM:

01: Find RE Candidate whose end points are on the path from s to t
on DFS-Tree

02: gsort(RE Candidate) by pre-order of end nodes in ascending order

03: Initial path queue Q, Q.push(s, s)

04: For each RE edge(rs, re) € RECandidates Do

05: Current = path(s, rs)+edge(rs, re)

06: While !Q.empty Do

07: Sp(s, t) = Q.pop()
//Pop Q’s first element as the shortest path from s to t in DFS tree.
08: If (rs, re) overlap sp(s, t‘) Do
09: tmp = sp(s, t‘)+path(t’, re)
10: Else if (rs, re) is serial to sp(s t‘) Do
11: tmp = sp(s, t*) + path(t‘, rs) + path(rs, re)
12: brk = true
13: End If
14: If tmp.weight < current.weight Do
15: current = tmp
16: End If
17: Q.push(current)
18: If brk == true break
19: End While
20: End For

21 sp(s, t)=Q.pop()
22: return sp(s, t*) + path(t,t)

Fig. 5. Algorithm of RE-SP

/\7 d///_\;
U* J

Fig. 6. Schema of RE-SP

Then let’s consider the SE edges. From Algorithm 2 we can get a very naive
thought, that is, starting from the right most SE edge, and then treating the
end of this SE edge as a new query source node, repeating this procedure until
we find out the path. But this will lead to traversing all SE edges, so we do a
one-hop ahead computation, that is, connecting SE edges who are reachable.

Definition 1. For any two SE edges, se; and ses, if end of se; can reach start
node of sea, we can define seq is a SE-child of se;.

TRS: A New Structure for Shortest Path Query 21

Algorithm 4 Shortest Path Considering SE (SE-SP)

INPUT: query nodes s, t, SE edge se
OuTtpruUT: Shortest path from s to t
ALGORITHM:

01: result.weight = INFINITY

02: partl = RE-SP(s, se.start)

03: partl=partl + se

04: For p € SE-children Path Array Do
05: If Reachable(se.end, p.start) Do

06: pse = first se edge of p
07: part2 = SE-SP(se.end, t, pse)
08: End If

09: If part2.weight < result.weight Do
10: If Reachable(se.end, t) Do

11: part3 = RE-SP(part2.last, t)
//part2.]ast stands for the end point of the last se edge of p
12: End If
13: If partl.weight + part2.weight + part3.weight<result.weight Do
14: result = partl + part2 + part3
15: End If
16: End If
17: End For

18: Return result

Fig. 7. Algorithm of SE-SP

With this definition, for an SE edge, we first find out all its SE-children. Then
compute the shortest path from its end node to the start nodes of its SE-children
by calling algorithm RE-SP. Next, add its own weight to get the shortest path
from its start node to the start nodes of its SE-children, and store them in a
path array. After all these shortest paths are attained for each SE edge, we order
them by the pre-order of start nodes in descending order. When a query comes,
we only need to search in this array, until we find out a path that could reach t.
Algorithm 4 shows the detail of using this two-hop shortest paths.

If there are more than one TRS structures in a connected DAG, there must
be some boundary nodes connecting them. These boundary nodes help to find
out the shortest path. If two nodes can be connected through some boundary
nodes, we get these paths and select the shortest one as the final result. Some
paths may have only one boundary node lies on, while some may have more than
one, in this case, shortest path between boundary nodes can be pre-computed.

5 Algorithm Analysis

In this section, we will give the mathematic analysis on the complexity of our
algorithm using TRS structures. According to Algorithm 2, time cost for com-
puting shortest path on TRS mainly focuses on SE-SP, let’s name it T(SE-SP),

22 Q. Wang et al.

and SE-SP calls itself recursively. But we cannot use this recursive algorithm to
derive time complexity because for each SE edge, the number of SE edges which
it could reach (we call these SE edges the child edge) is unclear, and actually,
the use of SE is to enumerate all possible paths. So we utilize the average child
SE edges to get the result. Let the average number of child edge a SE edge has
be a, and all possible paths to reach the destination node forms an a-tree, and
the number of leaf node is the number of searching paths. If the a-tree has &
levels, then we get the following equation:

l+a+a®+..+ad" 1 =|SE| (1)
From Eq. (1), we can know that
a P =(|SE|x(a—1)+1)/a (2)

and this is equal to the number of leaf node in this tree. So the search upon SE
edges is totally conducted (|SE|* (a — 1) + 1) times, and each time k& SE edges
are considered. Also from Algorithm SE-SP, each time a SE edge is counted in,
RE-SP is called, so theoretically, for each such path, RE-SP is called (k-1) times,
but many of them are called more than once, and the actual number is

l4+a+a*+a®+.. +a! (3)

which is |SE| + 1.

Here, we still use the average assumption that on each branch that is sep-
arated by SE edges, the number of RE edges are almost the same, so that in
each branch, the number of RE edge is |RE|/|SE|. And time cost for RE-SP is
|RE'|?(|RE'| is the number of RE edges on the current single branch), so that
the total time cost for one a-tree path is (k — 1) * (|RE|/|SE|)?. And then we
get that

T(SE-SP) = (|SE|(a — 1) + 1) + (k — 1) « |RE|?/|SE|?

And time complexity is O(|RE|?/|SE|). Now, let’s turn to Algorithm 2, we
can induce that time cost for one TRS is O(|RE|?). And worst condition for
fulfilling a path is |SE| x n. Therefore, when a graph only has one TRS, the
worst time cost for answering shortest path is O(|RE|? x |SE| * n), while the
best is O(|RE|?*n), and for sparse graph, | RE| and |SE| are both much smaller
than n. Our experiment also shows that time cost for sparse graph speeds up.

Space cost for TRS is also quite small. O(n) for node encoding, O(]SE|) for
SE edges, and O(|RE|) for RE edges. And clearly, the total space cost does not
exceed O(n+m). And this significant space saving will show great advantage in
large graphs.

6 Experiments

All experiments in this paper were run on a Intel Core 2 2.66GHz PC with 4G
memory. Programming language is C/C++.

TRS: A New Structure for Shortest Path Query 23
Table 1. TRS structure on artificial graph

Node no. Edge no. Saturation Time(ms) Space(KB) REno. SE no.
100 129 0.013 0 2.05 15 15
200 237 0.006 0 4.29 7 31
300 348 0.004 0 6.91 15 34
400 463 0.003 0 8.99 26 38
500 577 0.002 0 11.0 21 57
600 671 0.002 0 13.5 29 43
700 807 0.002 0 15.7 54 54
800 907 0.001 0 17.9 37 71
900 994 0.001 0 19.8 35 60
1000 1152 0.001 0 23.1 78 75

The experiments first record the time and space cost for constructing TRS
for graphs. We generated an artificial graph, whose number of nodes ranging
from 100 to 1000, and the saturations are mostly lower than 1%. In the first
experiment, the graph contains one TRS. The first three columns of Table 1 are
the number of nodes, number of edges and saturation. And the next two columns
list the time cost and space cost for TRS construction.

From this table, we can see the time cost and space cost for construction is
quite small for graphs with such scale. And other features such as RE number
and SE number are also shown in the table.

To test the correctness and efficiency of our TRS structure and algorithm, we
designed a group of experiments. To test the correctness, we run AnswerSPQ on
TRS and Dijkstra algorithm using a group of identical queries, and then compare
the results. Table 2 indicates that our algorithm can find out the correct shortest
path between any two pair of nodes if the path exists.

Table 2. Correctness verification of TRS

Query Points(s, t) Result using Dijkstra Result using TRS

(221, 88) <221, 64, 166, 217, 1, 49, <221, 64, 166, 217, 1, 49
181, 93, 59, 184, 302> 181, 93, 59, 184, 302>

(118, 82) <118, 82> <118, 82>

(37, 359) <37, 35, 2, 41, 117, 65, 262, <37, 35, 2, 41, 117, 65, 262,
220, 237, 264, 123, 225, 220, 237, 264, 123, 225
125, 134, 251, 73, 212, 209, 125, 134, 251, 73, 212, 209
72, 14, 414, 164, 359> 72, 14, 414, 164, 359>

(48, 483) <48, 51, 57, 248, 350, 287, <48, 51, 57, 248, 350, 287

(444, 439)

224, 429, 193, 203, 328,
288, 425, 148, 483>

<444, 439>

224, 429, 193, 203, 328
288, 425, 148, 483>

<444, 439>

24 Q. Wang et al.

Table 3. Result on graph

Node no. Edge no. Dijkstra (ms) TRS (ms)
100 129 0.016 0.109
200 237 0.094 0.047
300 348 0.219 0.093
400 463 0.438 0.110
500 577 0.718 0.172
600 671 0.922 0.110
700 807 1.391 0.157
800 907 1.734 0.250
900 994 2.390 0.141

1000 1152 2.860 0.281

To test the efficiency of TRS, 1000 queries using AnswerSPQ on TRS and
Dijkstra algorithm respectively are carried on the graph, and the average time
cost is recorded as follows in Table 3.

In order to clearly see our improvement, we give out Fig.8. The blue line is
the cost for Dijkstra algorithm and the red dotted line is the cost for TRS. In
the figure, we can see when the graph is small, Dijkstra performs better than
TRS. But as the size of graph grows, time cost of Dijkstra increases sharply,
while our TRS shows a slow rate of rise, and lead to a much better performance
than Dijkstra when graph size is 1000.

In addition, we collected the wikipedia data for our real graph experiments.
In this data set, node represents the web page and edge represents the link from
one page to another. Total number of nodes for this graph is 1100000, total
number of edges is 1133321, and the saturation is 0.0000113 %. Construction
of this graph totally outputs 37048 TRSs, and 151639 boundary nodes. The
biggest TRS contains 5667 nodes and 6547 edges, and 1934 boundary nodes.
Table 4 gives the result performing AnswerSPQ on this real graph.

Because the real graph is so large, that it’s necessary to make preparation
for computing. The pre-computation phase can be divided to three parts. The
first is to parse the graph to forests, the second is to generate TRS for each tree
in the forest, and the third is to compute local shortest paths between boundary
nodes. Since we do not directly store all these information in memory, all of the
three parts include disk I/O time cost. The query time 17.5 milliseconds is also
the average query time for 1000 different queries, and for such a big graph, the
response time is acceptable while the BFS method cost 32.47 milliseconds in a
graph contains 592,983 nodes.

Table 4. Result on Wikipedia graph

Node No. Edge No. Space (MB) Pre-computation time (min) Query time (ms)
1,100,000 1,133,321 36.853 107 17.5

TRS: A New Structure for Shortest Path Query 25

3.5

2.5

s Dijk stra{ms) « = »TRS{ms)

Fig. 8. Result on graph

7 Conclusion and Future Work

Answering shortest path query on a graph which does not fit in memory is now
a very important problem with the development of networks. In this paper, we
first introduce Interval-Based Encoding into the graph re-construction stage and
give out a new structure TRS of the graph. For most graphs, the construction
time is short. Proved by experiments, TRS structure performs quite well, and
time cost increase almost linear respect to the graph scale. When AnswerSPQ on
TRS algorithm computes shortest paths in graph with more than one TRS, this
method does not perform quite well when graph is small, but our experiment
results shows that, it performs well when graph is large.

In our experiments, we notice that the pre-computation time cost is high, and
it mainly consumes on disk I/O and computing local shortest path. For disk I/O,
our next attempt is to maintain graph in memory when the scale is not large.
And if a TRS contains too many boundary nodes, the cost is high. E.g., in the
TRS we mentioned above which contains 1,935 boundary nodes, total 3,744,225
queries need to be answered. So we will focus on how to improve efficiency on
graph with a lot of boundary nodes. Besides, the graph tends to be dynamic
in real world, how to maintain the query efficiency using TRS structure when
either some nodes or edges change remains to be studied further.

26

Q. Wang et al.

References

10.

11.

12.

13.

14.

. Wei, F.: TEDI: Efficient shortest path query answering on graphs. In: SIGMOD’10

(2010)

. Xiao, Y., Wu, W., Pei, J., Wang, W., He, Z.: Efficiently indexing shortest paths

by exploiting symmetry in graphs. In: EDBT’09 (2009)

Goldberg, A.V., Kaplan, H., Werneck, R.: Reach for A*: efficient point-to-point
shortest path algorithms. In: Workshop on Algorithm Engineering and Experi-
ments, pp. 129-143 (2006)

. Arge, L., Meyer, U., Toma, L.: External memory algorithms for diameter and

all-pairs shortest-paths on sparse graphs. In: Diaz, J., Karhumaéki, J., Lepisto,
A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 146-157. Springer,
Heidelberg (2004)

Gutman, R.: Reach-based routing: a new approach to shortest path algorithms
optimized for road networks. In: Proceedings of the 6th International Workshop
on Algorithm Engineering and Experiments, pp. 100-111 (2004)

Wagner, D., Willhalm, T.: Geometric speed-up techniques for finding shortest
paths in large sparse graphs. Konstanzer Schriften in Mathematik und Informatik,
pp- 1430-3558 (2003)

Chan, E.P.F., Zhang, N.: Finding shortest paths in large network systems. Depart-
ment of Computer Science, University of Waterloo (2001)

Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik (1959)

Cormen, T.H., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2001)

Agrawal, R., Jagadish, H.V.: Algorithms for searching massive graphs. IEEE Trans.
Knowl. Data Eng. 6, 225-238 (1994)

Eietz, P., Sleator, D.: Two algorithms for maintaining order in a list. In: Proceeding
of thel9th Annual ACM Symposium on Theory of Computing (STOC), pp. 365—
372 (1987)

TRSL, S., Leser, U.: Fast and practical indexing and querying of very large graphs.
In: SIGMOD’07 (2007)

Wang, H., He, H., Yang, J., Yu, P.S., Yu, J. X.: Dual labeling: answering graph
reachability queries in constant time. In: Proceedings of the 22nd International
Conference on Data Engineering (ICDE), p. 75 (2006)

Lauther, U.: An extremely fast: exact algorithm for finding shortest paths in static
networks with geographical background. IfGlprints 22, Institut fuer Geoinformatik,
Universitaet Muenster (ISBN 3-936616-22-1), pp. 219-230 (2004)

2 Springer
http://www.springer.com/978-3-642-41628-6

Social Media Retrieval and Mining

ADMA 2012 Workshops, SMNAM 2012 and SMR 2012,
Manjing, China, December 15-18, 2012, Revised
Selected Papers

Zhou, S.; Wu, Z. (Eds.)

2013, X 167 p. 49 illus., Softcover

ISBM: 978-3-642-41628-6

	TRS: A New Structure for Shortest Path Query

	1 Introduction
	2 Related Work
	3 TRS Framework
	3.1 Background Knowledge
	3.2 TRS Structure

	4 Answering Shortest Path Query
	4.1 The Framework
	4.2 Answer SPQ On TRS

	5 Algorithm Analysis
	6 Experiments
	7 Conclusion and Future Work
	References

