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2 DEIOC, IUDR, Facultad de Matemáticas, Universidad de La Laguna,
4a planta Astrofisico F. Sánchez s/n, 38271 Santa Cruz de Tenerife, Spain

3 School of Information Systems, Computing and Mathematics,
Brunel University, Uxbridge, Middlesex UB8 3PH, UK
sergio.consoli@istc.cnr.it, jamoreno@ull.es,

nenad.mladenovic@brunel.ac.uk

Abstract. Given a connected, undirected graph whose edges are labelled
(or coloured), the minimum labelling spanning tree (MLST) problem
seeks a spanning tree whose edges have the smallest number of distinct
labels (or colours). In recent work, the MLST problem has been shown
to be NP-hard and some effective heuristics have been proposed and
analysed. In this paper we present preliminary results of a currently on-
going project regarding the implementation of an intelligent optimization
algorithm to solve the MLST problem. This algorithm is obtained by
the basic Variable Neighbourhood Search heuristic with the integration
of other complements from machine learning, statistics and experimen-
tal algorithmics, in order to produce high-quality performance and to
completely automate the resulting optimization strategy.
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1 Preliminary Discussion

In a currently ongoing project, we investigate a new possibility for solving the
minimum labelling spanning tree (MLST) by an intelligent optimization algo-
rithm. The minimum labelling spanning tree problem is a challenging combina-
torial problem [1]. Given an undirected graph with labelled (or coloured) edges
as input, with each edge assigned with a single label, and a label assigned to one
or more edges, the goal of the MLST problem is to find a spanning tree with the
minimum number of labels (or colours).

The MLST problem can be formally formulated as a network or graph prob-
lem [2]. We are given a labelled connected undirected graph G = (V,E,L), where
V is the set of nodes, E is the set of edges, and L is the set of labels. The pur-
pose is to find a spanning tree T of G such that |LT | is minimized, where LT
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is the set of labels used in T . Although a solution to the MLST problem is a
spanning tree, it is easier to work firstly in terms of feasible solutions. A feasible
solution is defined as a set of labels C ⊆ L, such that all the edges with labels
in C represent a connected subgraph of G and span all the nodes in G. If C is a
feasible solution, then any spanning tree of C has at most |C| labels. Moreover,
if C is an optimal solution, then any spanning tree of C is a minimum labelling
spanning tree. Thus, in order to solve the MLST problem we first seek a feasible
solution with the least number of labels [3].

The MLST problem was first introduced in [1]. The authors also proved
that it is an NP-hard problem and provided a polynomial time heuristic, the
Maximum Vertex Covering Algorithm (MVCA), successively improved in [4].
Other heuristics for the MLST problem have been proposed in the literature [2,
3,5–9].

The aim of this paper is to present preliminary results concerning the design
of a novel heuristic solution approach for the MLST problem, with the goal of
obtaining high-quality performance. The proposed optimization strategy is an
intelligent hybrid metaheuristic, obtained by combining Variable Neighbourhood
Search (VNS) [10] and Simulated Annealing (SA) [11], with the integration of
other complements in order to improve the effectiveness and robustness of the
optimization process, and to completely automate the resulting solution strategy.

2 Complementary Variable Neighbourhood Search

The first extension that we introduce for the MLST problem is a local search
mechanism that is inserted at top of the Variable Neighbourhood Search meta-
heuristic [10]. The resulting local search method is referred to as Complementary
Variable Neighbourhood Search (COMPL).

For our implementation, given a labelled graph G = (V,E,L), with n ver-
tices, m edges, � labels, each solution is encoded as a binary string, i.e. C =
(c1, c2, . . . , c�) where ci = 1 if label i is in solution C, ci = 0 otherwise, ∀i =
1, . . . , �.

Given a solution C, COMPL extracts a solution from the complementary
space of C, and then replaces the current solution with the solution extracted.
The complementary space of a solution C is defined as the set of all the labels that
are not contained in C, that is (LΔC). To yield the solution, COMPL applies
a constructive heuristic, such as the MVCA [1,4], to the subgraph of G with
labels in the complementary space of the current solution. Note that COMPL
stops if either a feasible solution is obtained (i.e. a single connected component
is obtained), or the set of unused labels contained in the complementary space
is empty, (i.e. (LΔC) = ∅), producing a final infeasible solution. Then, the
basic VNS is applied in order to improve the resulting solution. At the starting
point of VNS, it is required to define a suitable neighbourhood structure of
size kmax. The simplest and most common choice is a structure in which the
neighbourhoods have increasing cardinality: |N1(·)| < |N2(·)| < ... < |Nkmax

(·)|.
In order to impose a neighbourhood structure on the solution space S, comprising
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all possible solutions, we define the distance between any two such solutions
C1, C2 ∈ S, as the Hamming distance: ρ(C1, C2) = |C1ΔC2| =

∑�
i=1 λi, where

λi = 1 if label i is included in one of the solutions but not in the other, and 0
otherwise, ∀i = 1, ..., �. VNS starts from an initial solution C with k increasing
from 1 up to the maximum neighborhood size, kmax, during the progressive
execution.

The basic idea of VNS to change the neighbourhood structure when the
search is trapped at a local minimum, is implemented by the shaking phase. It
consists of the random selection of another point in the neighbourhood Nk(C)
of the current solution C. Given C, we consider its kth neighbourhood, Nk(C),
as all the different sets having a Hamming distance from C equal to k labels,
where k ← 1, 2, . . . , kmax. In order to construct the neighbourhood of a solution
C, the algorithm first proceeds with the deletion of labels from C. In other
words, given a solution C, its kth neighbourhood, Nk(C), consists of all the
different sets obtained from C by removing k labels, where k ← 1, 2, ..., kmax.
In a more formal way, given a solution C, its kth neighbourhood is defined as
Nk(C) = {S ⊂ L : (|CΔS|) = k}, where k ← 1, 2, ..., kmax.

The iterative process of selection of a new incumbent solution from the com-
plementary space of the current solution if no improvement has occurred, is
aimed at increasing the diversification capability of the basic VNS for the MLST
problem. When the local search is trapped at a local minimum, COMPL extracts
a feasible complementary solution which lies in a very different zone of the search
domain, and is set as new incumbent solution for the local search. This new
starting point allows the algorithm to escape from the local minimum where it
is trapped, producing an immediate peak of diversification.

3 The Intelligent Optimization Algorithm

In order to seek further improvements and to automate on-line the search
process, Complementary Variable Neighbourhood Search has been modified by
replacing the inner local search based on the deterministic MVCA heuristic with
a probability-based local search inspired by a “Simulated Annealing cooling sched-
ule” [11], with the view of achieving a proper balance between intensification and
diversification capabilities. The strength of this probabilistic local search is tuned
by an automated process which allows the intelligent strategy to adapt on-line to
the problem instance explored and to react in response to the search algorithm’s
behavior [12]. The resulting metaheuristic represents the intelligent optimization
algorithm that we propose for the MLST problem.

The probability-based local search is another version of the MVCA heuristic,
but with a probabilistic choice of the next label to be added. It extends the basic
greedy construction criterion of the MVCA by allowing moves to worse solutions.
Starting from an initial solution, successively a candidate move is randomly
selected; this move is accepted if it leads to a solution with a better objective
function value than the current solution, otherwise the move is accepted with a
probability that depends on the deterioration, Δ, of the objective function value.
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Following the SA criterion, the acceptance probability is computed according
to the Boltzmann function as exp(−Δ/T ), using the temperature (T ) as control
parameter. The value of T is initially high, which allows many worse moves to be
accepted, and is gradually reduced following a specific geometric cooling schedule:

Tk+1 = α · Tk where
{

T0 = |BestC |,
α = 1/|BestC | ∈ [0, 1], (1)

with BestC being the current best solution, and |BestC | its number of labels.
This cooling law is very fast for the MLST problem, yielding a good balance
between intensification and diversification. Furthermore, thanks to its self-tuning
parameters setting, which is guided automatically by the best solution BestC
without requiring any user-intervention, the algorithm is allowed to adapt on-
line to the problem instance explored and to react in response to the search
algorithm’s behavior [12].

The aim of the probabilistic local search is to allow, with a specified prob-
ability, worse components with a higher number of connected components to
be added to incomplete solutions. Probability values assigned to each label are
inversely proportional to the number of components they give. So the labels
with a lower number of connected components will have a higher probability of
being chosen. Conversely, labels with a higher number of connected components
will have a lower probability of being chosen. Thus, the possibility of choosing
less promising labels is allowed. Summarizing, at each step the probabilities of
selecting labels giving a smaller number of components will be higher than the
probabilities of selecting labels with a higher number of components. Moreover,
these differences in probabilities increase step by step as a result of the reduction
of the temperature for the adaptive cooling schedule. It means that the difference
between the probabilities of two labels giving different numbers of components is
higher as the algorithm proceeds. The probability of a label with a high number
of components will decrease as the algorithm runs and will tend to zero. In this
sense, the search becomes MVCA-like.

A simple VNS implementation which uses the probabilistic local search as
constructive heuristic has been tested. However, the best results were obtained
by combining Complementary Variable Neighbourhood Search with the proba-
bilistic local search, resulting in the hybrid intelligent algorithm that we propose.
Note that the probabilistic local search is applied both in COMPL, to obtain a
solution from the complementary space of the current solution, and in the inner
local search phase, to restore feasibility by adding labels to incomplete solutions.

4 Summary and Outlook

Concerning the achieved optimization strategy, the whole approach seems to be
highly promising for the MLST problem. Ongoing investigation will consist in a
statistical comparison of the resulting strategy against the best MLST algorithms
in the literature, in order to quantify and qualify the improvements obtained by
the proposed intelligent optimization algorithm.
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