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Abstract In this chapter, we study different gene regulatory network learning
methods based on penalized linear regressions (the Lasso regression and the Dantzig
Selector), Bayesian networks, and random forests. We also replicated the learning
scheme using bootstrapped sub-samples of the observations. The biological motiva-
tion relies on a tough nut to crack in Systems Biology: understanding the intertwined
action of genome elements and gene activity to model gene regulatory features of
an organism. We introduce the used methodologies, and then assess the methods on
simulated “Systems Genetics” (or genetical genomics) datasets. Our results show
that methods have very different performances depending on tested simulation set-
tings: total number of genes in the considered network, sample size, gene expression
heritability, and chromosome length. We observe that the proposed approaches are
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able to capture important interaction patterns, but parameter tuning or ad hoc pre-
and post-processing may also have an important effect on the overall learning quality.

2.1 Introduction, Motivations

One of the central targets of Systems Biology is to decipher the complex behavior
of a living cell in its environment. The effective behavior of the cell is probably
defined through multiple layers of interacting entities including DNA, mRNA, non-
coding RNA, proteins, and metabolites. In this chapter, we are interested in the
so-called genetical genomics approach that combines the power of genetics, through
the polymorphism, together with the measurement capabilities of gene expression
to decipher a gene regulatory network (GRN), a simplified representation of the
gene-level interactions occurring under given conditions. In such a network, vertices
represent genes and directed edges represent the direct causal effect of genes over
the expression of other genes through gene regulation (which can be activation or
repression). Although proteins are often considered as the main vector of such regu-
lations (through transcription factors for example), this simplified view of regulation
could also accommodate other regulation effective transcribed molecules acting on
transcription levels such as ncRNA genes. Moreover, protein levels are still quite
difficult to measure.

By deciphering the set of gene regulations that are acting in a given context,
one may be able to identify the most important, possibly indirect, players in the
network that are capable of influencing a specific gene expression or phenotype
of interest (Yvert et al. 2003), one may also link network structure to associated
functional properties (Leclerc 2008; Marbach et al. 2009) and more generally under-
stand the way gene interactions can control the overall cell behavior. A variety of
mathematical formalisms, continuous or discrete (Boolean network Thomas 1973),
defined over time (ordinary differential equations Bansal and di Bernardo 2007 or
dynamic Bayesian networks Rau et al. 2010; Lebre et al. 2010) or in stationary states
(Friedman et al. 1999) have been proposed to represent the complex behavior of
known gene regulation networks. In this chapter, we consider different statistical
models of gene regulation that have been chosen for their ability to automatically
infer gene regulations from expression data. As initially proposed by Jansen and Nap
(2001), in order to integrate some causality in the inference process, we do not rely
on time series of expression data but follow the so-coined genetical genomics (or
Systems Genetics) path that exploits the possible influence of genetic polymorphisms
on genic expression in a population (Aten et al. 2008). In a genetically controlled
setting, defined for example by a population of recombinant inbred lines (RILs) pro-
ducing randomly perturbed polymorphism combinations, the influence and genomic
positions of polymorphisms that are observed in the population can be exploited to
predict causal influences between gene expressions. The added value of having both
genetic polymorphisms and perturbed phenotypic data, the expression level of genes,
has already been demonstrated, in particular to infer causality (Zhu et al. 2007). From
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a statistical point of view, GRN learning is cursed by its high-dimensionality: the
number of genes in a typical genome is much larger than the number of samples
that can reasonably be produced ever. Existing works that decipher GRN structure
based on genetical genomics data have been using Bayesian networks using genetic
data as prior information (Zhu et al. 2007) or complex multivariate regression in a
structural equation modeling framework with multiple testing, greedy search, and
filtering steps (Liu et al. 2008). More recently, a meta-analysis of the output of dif-
ferent statistical methods targeted at learning in high dimension (based on penalized
linear regression or penalized Bayesian network structure learning) has been shown
to define the best performer (Vignes et al. 2011) on different datasets of simulated
genetical genomics data, including up to 1,000 genes.

This chapter follows on this result in different directions: we first exploit the new
genetical genomics simulated datasets that were produced by A. de la Fuente and
colleagues, described in more detail in Chap. 1 of this book. These new datasets
include a variety of different network topologies and include larger sets of genes (up
to 5,000 genes for the largest ones), defining very challenging problems both in terms
of dimensionality and in terms of computational learning cost. We also sophisticate
and extend the set of statistical methods that are tested on these problems. The original
methods included gene-by-gene Lasso regressions (Tibshirani 1996) and the Dantzig
selector (Candes and Tao 2007) as well as a penalized Bayesian network learning
algorithm. We have improved each of them by bootstrapping, in order to offer more
reliable ranked list of edges representing regulations. Finally, we also integrated the
random forest approach (Breiman 2001). This method has been used in Huynh-Thu
et al. (2010) for GRN learning with expression data only. It is of specific interest
for its ability to predict directed edges in all cases, compensating for the weaknesses
of linear regression models, that only infer causal orientation from linear marker to
genes relations, and Bayesian networks which may not allow to orient edges in all
situations because of Markov equivalence (Koller and Friedman 2009).

In Sect. 2.2, we present the mathematical models and associated learning methods
which have been used to analyze the data. In Sect. 2.3, we then present and discuss
the results obtained by each of these methods and conclude.

2.2 Methods

In this section, we detail the statistical models and learning methods we used to
tackle the datasets at hand, and how we adapted them to actually learn GNR with an
associated edge-specific confidence score.
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2.2.1 Data and Notations

The genetical genomics datasets were provided by Alberto de la Fuente and
colleagues from CRS4 Bioinformatica (Pula, Italia). These datasets were simulated
with the SysGenSim software (Pinna et al. 2011) and are available at the follow-
ing http://sysgensim.sourceforge.net/datasets.html. Starting from a given network
(a directed graph), the software simulates the network behavior using differential
equations capturing expression, regulation, and molecule decay. The datasets and
simulator are detailed in Chap. 1 of this book.

For each gene regulation network, a dataset is defined by a sample of n RILs
which are measured for p bi-allelic markers and p gene expression levels. Every
polymorphism is associated with a single gene and may influence either its direct
expression (cis polymorphism occurring in the regulatory region of the gene) or its
ability to regulate other target genes (frans polymorphism in the transcribed gene
region itself, influencing its affinity with other gene regulatory complexes). A dataset
is therefore defined by:

1. an x p matrix e where e;; gives the steady-state expression level of gene j for
the RIL individual i (a real number). Each e;; is an observation of the random
variable E; representing the expression level of gene j. E is the random matrix of
all such variables. For a given gene g € {1, ..., p} we denote by E78, matrix E
omitting its gth component.

2. an x p matrix m where m;; gives the allelic state of the polymorphism associated
with gene j for RIL individual i (a 0/1-data). Each m;; is an observation of the
random variable M; representing the allelic state of the polymorphism associated
to gene j. M is the random matrice of all such variables.

The dataset generation is controlled by the network size p, the RIL population
size n, chromosome size, and gene expression heritability. The chromosome size is
controlled by a mean genetic distance (either 1 or 5cM) between adjacent marker
positions, on all five chromosomes. The shorter the genetic distances between two
markers, the stronger their genetic linkage. This leads to highly correlated allelic
states between neighboring and even close markers. The latter parameter, heritability,
is defined for each gene as the ratio of expression variance due to genetic factors over
the expression variance when both genetic factors and biological/technical noise
is accounted for. A broader distribution for biological noise implies lower gene
heritability.

Our goal is to reconstruct the GRN that gave rise to the observed steady-state
expression measures. Following the DREAMS challenge, a prediction is defined by
a directed consensus graph, each directed edge being associated with a “confidence
score.” In practice, all the statistical inference methods we used produce two con-
fidence scores. One score derives from the estimated influence of allelic states on
each expression levels and is denoted wy; for the k — [ edge. A similar score wy; is
obtained by estimating the influence of expression level Ej on expression level E;.

In the following sections we introduce the most important components of the
statistical learning methods we used: bootstrapping, penalized linear regressions,
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random forests, and Bayesian network structure learning. We detail how they can
produce wy; and wy; scores. Then, in Sect.2.2.6, we show how one can produce a
final network prediction in the form of a ranked list of edges.

2.2.2 Bootstrapping

Bootstrapping (Efron 1981) is a resampling technique for assigning measures of
accuracy to sample estimates. It has the advantage of allowing the estimation of
the sampling distribution of virtually any statistic using only a simple resampling
approach, at the cost of repeated computations.

The general idea of bootstrapping is to randomly draw Nyt replicate datasets with
the same sample size as the original data. Each of these replicate dataset is obtained
by randomly sampling with replacement from the original sample. For each replicate
dataset, the model is fitted, and it is then possible to study the statistical properties
of the distribution of the considered statistic on all resampled datasets.

In this chapter, the major use of bootstrapping is to contribute to the construction of
the so-called “confidence score” of edges in the predicted GRN. However, bootstrap-
ping offers further opportunities. Since bootstrap datasets are obtained by sampling
with replacement, each of them is deprived from around 1 — 0.632 = 36.8 % of
the original samples (Efron and Tibshirani 1997). It is possible to use these out-of-
bootstrap samples to study the behavior of any given loss function on those samples.
This feature is used internally in the random forest approach and allows to avoid
overfitting.

A major drawback of bootstrapping is that it roughly multiplies the computational
burden by Npoor. The loss of 36.8 % of the data in every bootstrap sample may also
affect the sharpness of estimates on every resampled dataset.

2.2.3 Penalized Linear Regression Approaches

A natural approach to solve the network inference problem is to consider each gene g
individually from the others and consider that its expression value can be represented
as a linear function of all other gene expression levels and of all polymorphisms:

)4 )4
E, = Z(Xg/% + Z,ngEj + &g,
j=1 j=1
J#8
where a, is the p-vector of linear effects of polymorphisms on E;, f, is the p-vector
of linear effects of other expression levels on E; (we assume Bg, = 0), and &g is a
Gaussian residual error term.
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Parameters o and B, can be estimated for each gene g from matrices m and e
using a variety of linear regression methods. The main strength of this model lies
in its simplicity, leading to only 2p parameters to estimate for E, a very desirable
property for estimation in high-dimensionality settings. More complex linear models
including interactions terms between polymorphisms and expression levels would
immediately lead to a quadratic number of parameters.

Given the fact that n < p and that regulation networks are expected to be sparse,
penalized regression methods leading to variable selection such as the Lasso regres-
sion (Tibshirani 1996) or the Dantzig selector (Candes and Tao 2007) were chosen
to perform the regression.

2.2.3.1 Lasso Penalized Regression

In the linear regression problem, a response variable Y is a linear combination of
regressors X = (X1, ... X,) and Gaussian noise &:

Y=X0+¢

Having observed Y and X on a sample of size n and assuming Gaussian
distributions, the estimation 6 of the parameters 6 is obtained by minimizing the
residual sum of squares (RSS):

n r
0™S — aro min - x;i0;)? = argmin || Y — X0 ||2 )
gm Z;‘(Yz le i) gm I Iz,

i= =

where y; and x;; are the observed values of Y and X; for the ith individual.
The Lasso regression (Tibshirani 1996) penalizes this RSS criteria by the sum of
the absolute values of the parameters (their 1 norm):

flasso _ arg min || ¥ — X0 12, +2 116 Ile, 2.1

This penalization leads to a shrinkage of parameter estimation. More importantly,
the shape of the £1-norm specifically favors the estimation of zero values, leading to
a natural variable selection behavior. Shrinkage and selection levels are controlled
by the magnitude of the penalty term A. The Lasso criterion can also be written in
its dual form (by Lagrangian transform), which makes the constraint on parameters
more explicit:

lasso — argmin || ¥ — X0 [le,. subjectto || 6 ||, <1 (2.2)

In Eq.(2.1), the larger A is, the greater the amount of shrinkage, and the more
parsimonious the selected model will be. More precisely, A is an upper bound on the
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correlation between regressors excluded from the model and the regression residual.
Interpreting ¢ of Eq.(2.2) is also possible by considering the specific value 7y =||
6™ ||, .- Then, setting ¢ to f/2 roughly shrinks active coefficients in the regression
by 50 % (Hastie et al. 2009).

Equation (2.1) was solved using the Least Angle Regression (LAR) algorithm
implemented in the R glmnet package (Friedman et al. 2010). The choice of the
penalty A is presented later.

2.2.3.2 The Dantzig Selector

The Dantzig selector (Candes and Tao 2007) is a related penalized linear regression
method based on €1 norm penalization of the parameters subject to a constraint bound
on the maximum absolute correlation between the residuals and regressors (we use
TX to denote the transpose of X):

GENE = argmin || 6 [le,. || XY —X6) [lro< 6. (2.3)

where § is the actual bound on the correlation between the residual and each regressor.
With no bound, the Dantzig selector sets all coefficients to zero which minimizes
the £1 norm of the parameters. When the bound tends to 0, the Dantzig selector
imposes a null correlation between the residual and the regressors. This condition is
satisfied by the RSS estimate, as it is equivalent to enforcing a null derivative of the
RSS (Hastie et al. 2009). Equation (2.3) can be written in its dual form, as an analog
of Eq. (2.2) for the Lasso:

édantzig — argmein I TX(Y —X0) ||€oc’ || 6 ||g1§ t 2.4)

In Vignes et al. (2011), we used the reduction of the Dantzig selector to lin-
ear programming and an open source linear programming solver (glpk) for resolu-
tion. Because of the increased computational burden generated by bootstrapping, we
decided to instead use a dedicated homotopy Dantzig algorithm (Asif and Romberg
2010) and its companion Matlab package, which was run using Octave. The choice
of the value for the parameter § is difficult and is described in the following.

2.2.3.3 Confidence Scores with Penalized Linear Regressions and Bootstrap

We want to provide confidence scores on the prediction of every oriented edgej — g
capturing the causal influence of gene j on gene g. For a fixed value of the penalization
and for a given bootstrap sample, two distinct cases can be identified. If ag; estimation
is nonzero, marker j is assumed to have a direct effect on the expression of gene g.
The converse is impossible since expression levels cannot affect polymorphism.
The interpretation of a nonzero fBg; (or Bje) is slightly different: this indicates that a
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relationship exists between the expressions of genes j and g, but the causal orientation
is unknown: either j influences g or g influences j.

Choosing the ‘right’ level of penalization in the Lasso regression or in the Dantzig
selector is a difficult model selection problem. To avoid this problem, we follow the
idea of Vignes et al. (2011), described here for the Lasso regression. Instead of
choosing a fixed value for the penalty term XA, we explore an evenly spaced grid of
possible penalty values from a starting value O (no penalization) to a maximum value
Amax: the infimum of the set of all A that prevents a single regressor to be included in
any of the regressions. A total of ¢ = 10 different penalty values we used from k“‘%

(low penalty level) to Amax (maximal penalty level). A similar mechanism, with the
same number g of penalty values, is used for the Dantzig selector. The fraction of
times, over all penalizations, that a regressor is introduced with a nonzero parameter
estimate was then used as a confidence score.

In our case, bootstrapping offers a second dimension that can be exploited to
evaluate a confidence score. Besides the first dimension defined by the grid of ¢
evenly spaced values of penalizations, a second dimension is available through the
set of Npoot different bootstrap samples. We denote by # (o) (resp. #(Bg;) the total
number of regressions along these two dimensions where ag; # 0 (resp. By # 0).
The marker-based confidence score wy; of the oriented edge k — [ is then defined
as the frequency:

Wi = #(an)
q Nboot

The computation of the expression-based confidence score wy; of the oriented
edge k — [ has to take into account the fact that it can be derived from any (or both)
of B and By to be nonzero and also that this information is uncertain on the two
possible edge orientations. This leads to:

W — #(Brr) + #(Bu)
M 4 g Nooot

Bach (2008) studied the asymptotic (n — o0) properties of the Lasso variable
selection for some penalization decays. In specific settings, the Lasso tends to select
correct variables with probability 1 and irrelevant variables with a probability which
is strictly between O and 1. Hence Bach (2008) proposed to use bootstrapping to
assess the probability of selecting a variable at a given penalty level, keeping only
those variables that are always selected.

Our strategy is quite different from the strategy proposed in Bach (2008), and
it may ultimately include false positive regressors in the model (especially for low
confidence scores). But the properties of the analyzed data—including their high
dimensionality—and the predicted object, with edge confidence scores, are different
from those considered in Bach (2008).

We tested the Lasso method with values of Npoor equal to 100 and 200. Given the
very limited impact of this choice on the results, we ultimately decided to use the
computationally favorable solution of Nper = 100.
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2.2.4 Random Forests

In the previous section, we reduced the GRN learning procedure to a gene-by-gene
linear regression problem. However, nonlinear regression methods can also be con-
sidered, assuming that the expression level of Ej is a function of the remaining
expression levels £78 and of allelic states M:

E; =f,(M,E™%)

The use of random forest for GRN reconstruction from expression data alone
has been originally proposed in GENIE3 (Huynh-Thu et al. 2010). Indeed, one way
to solve such a nonlinear regression problem between a response variable Y and
regressors X is to try to recursively split the observed data with binary tests based
each on a single regressor variable, trying to reduce as much as possible the variance
of the response variable in the resulting subsets of samples. Each test is a node in a
binary tree and typically compares the input variable value with a threshold which
is determined during the tree growing. Ultimately, the leaves of the tree give the
predicted numerical value for the response variable.

A random forest (Breiman 2001) is a collection of such trees grown partially at
random, using two sources of randomness:

e Each tree is grown using a random bootstrapped sample of the data.
e The variable used at each split node is selected only from a random subset of all
variables (typically of a fixed size K).

The random forest predicted response for a sample is the mean of all the regressions
predicted by each tree. Besides the possible nonlinearity of the response, a specific
strength of random forests lies in the fact that they can use the internal bootstrapping
to estimate the importance of any regressor. After shuffling the values of the regressor
considered in the samples that have not been used in each bootstrapped sub-sample,
it is possible to compute the resulting increase in the variance of the regression error
compared to non-permuted samples. This provides an evaluation of the regressor

importance.
In the context of GRN learning for any gene g € {1, ..., p}, the random forest
method provides us with importance factors leg" with i € {I,...,p} and ];Z, with

je{l,...,p},j # g, that respectively give the importance of allelic state M; and
of expression level E; to predict Eg. These weights can then be normalized for each
gene (Huynh-Thuetal. 2010). Foreach g € {1, ..., p} independently, we normalized
the i;" and ];z, by their estimated standard deviation. All these importance factors can
then be sorted producing global ranks rf; and r{,. The marker-based “confidence
scores” for oriented edge k — [ are then defined as:

_r,i’l’—l
N

m __
wy =1

El

where N is the largest overall rank. A similar definition is used for the wf,.



18 D. Allouche et al.

The computation was performed using the randomForest R package (Liaw and
Wiener 2002). The number of trees was set to 1,000 and other parameters (defining
individual tree depth or the number of variable to draw at each split for example)
were kept at their default value.

2.2.5 Bayesian Networks

A Bayesian network is a directed acyclic graphical (DAG) model that captures the
joint distribution probability over a set of variables by a factorization in local con-
ditional probabilities linking one random variable with its “parents.” The fact that
a Bayesian network naturally defines a directed graph makes this formalism highly
suitable for learning directed GRNs and unsurprisingly, this mathematical model has
already been used to predict GRN in the context of pure expression data analysis in
the seminal paper (Friedman et al. 2000).

More formally, a Bayesian network denoted by B = (¥, Py) is defined by a DAG

¢ = (V, A) with vertices representing random discrete variables V = {V, ..., Vj,,},
linked by a set of directed edges A, and a set of conditional probability distributions
Py ={Py, ..., Py}. The variables involved in each conditional probability table P;

are defined by the DAG: P; = P(V;|Pa(V})), where Pa(V;) = {V; e V| (V;, V}) € A}
is the set of parental nodes of V; in 4.
The DAG of a Bayesian network B implicitly captures a set of conditional inde-

pendencies between variables and represents a joint probability distribution on V
defined as:

P(V) = [ [ PVilPa(vi)) 2.5)

i=1

To model the available data, as in previous approaches, we used one variable E; to
represent the expression level of gene i and one variable M; to represent the associated
allelic state (foralli € {1, ..., p}). All variables are discrete (see below for expression
level discretization scheme) , allowing to capture nonlinear relationships between
variables. If a given DAG structure G is assumed, maximum likelihood estimates of
the parameters defining the conditional probability tables can be computed by simple
counting. The GRN learning process then reduces to the problem of learning a DAG
structure among these variables that maximizes P(4|D) « P(D|¥4)P(¥), where D
represents the observed data.

Under specific assumptions, the marginal loglikelihood log(P(D|%)) can be
expressed as a decomposable scoring function. We used the BDeu score (Heckerman
et al. 1995).
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2.2.5.1 GRN Structure Learning with Bootstrapped Greedy Search

Learning Bayesian networks is an NP-hard problem with a super-exponential search
space of potential DAG structures (Chickering et al. 2004). Even a greedy search
heuristic method can be very time-consuming when the number of variables p is
large. In order to get reasonable computation times, we selected for each gene a set
of candidate parents if the local BDeu score increases when each candidate parent
is added separately in comparison to the empty graph. Furthermore, we kept only
one marker having the best BDeu score increase in a sliding window of 10 markers
along the chromosomes. We also limited the maximum number of parents per gene
to 5. In addition, we took into account biological knowledge of the observed data to
reduce the search space.

First, genetic linkage between close markers induces strong correlations between
their allelic states. Learning the corresponding edges between marker variables M;
is useless for reconstructing the GRN and just makes the structure search more
complex. We therefore forbade such edges. We also forbade edges from genes to
markers, which have no biological meaning.

Furthermore, a preliminary analysis of variance was used to predict cis-regulatory
markers: detected positive markers (Bonferroni corrected p-value < 0.1) were those
giving the most significant signal in a seven marker-width window, centered on the
gene, to avoid false marker influence due to genetic linkage. We used this cis-effect
information to constrain the structure: since each cis-marker M; had an effect on its
associated gene activity E; only, we constrained our model to use an M; — E; edge.
In the opposite case, when the marker M; was detected as not being a cis-regulatory
marker, we only forbade the M; /4 E; edge.

The structure and parameters of the underlying graph can then be estimated using
the BDeu score-based structure learning algorithm described in Vandel et al. (2012),
using the same adaptive discretization policy into 2—4 states as in Vignes et al.
(2011). We selected the DAG with the best BDeu score among three restarts of the
Stochastic Greedy Search algorithm which exploits extended local move operators
(SGS?, Vandel et al. 2012). We used BDeu equivalent sample size parameter o = 1.
Each learnt DAG structure produces a set of oriented edges which therefore translate
directly into the predicted GRN. For each edge M; — Ej or E; — E; in the learnt
structure, we predict the existence of a directed edge i — j in the GRN. Notice that
thanks to this mapping procedure, an initial acyclic directed graph may ultimately
lead to the prediction of a cyclic GRN.

This procedure was improved by bootstrapping, allowing to produce a set of
directed edges with confidence scores set to the frequency of the corresponding
edge over all bootstrap samples (Npoot = 100). Again, this may lead to cycles in
the predicted GRN. Because of the important computational burden generated by
bootstrapping, the Bayesian network approach could, however, not be applied to the
largest datasets with p = 5,000 genes.
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2.2.6 Postprocessing

Each of the methods produces two weighted oriented graphs, one that connects
marker variables M; to expression variables E, (where edge j — g is weighted by
wj’ﬁ) and another connecting expression variables E; to other expression variables E
(where edge j — g is weighted by w;g). Ultimately,a single ranked list of edges is
wanted, representing one gene regulation network.

In order to combine the two informations, we simply ranked all edges k — [ by
the sum of their weights wy}; + wy;. This ranking is denoted in the rest of the paper
as the “genes-and-markers” ranking.

To further evaluate the influence of the post-processing on the ultimate results and
the specific contribution of the causal marker-expression information, we also tested
two additional post-processings. The first variant focuses on the genetic information
and ranks each edge k — [ using the w}; weight only. Whenever marker j influences
the expression of gene g, the strong correlations between the allelic states of j and
other close markers on the genome (caused by genetic linkage) may easily lead
to spurious predictions involving neighboring markers. We therefore scanned all
markers along the genome and removed all edges that were locally dominated by
other edges with the same target. More precisely, for all genes g, we removed any
marker i such that there exists another marker j within a window of five markers
containing i with w?? > w?. The resulting ranked list of edges is called the “filtered
markers” ranking in the following sections.

To evaluate the importance of this filtering process, we also included this marker
filtering process in the initial “genes-and-markers” ranking method. In this post-
processing method, the w® and the w™ weights are combined by addition, as in
the initial “genes-and-markers” post-processing, but only weights w” coming from
the list of “filtered-markers” edges are used. This third post-processing is naturally
termed “genes-and-filtered-markers.”

2.3 Results

2.3.1 General Analysis of the Predicted Networks

The above methods have been applied to the 72 datasets, including cases with 100,
1,000, and 5,000 genes. In this section we report results on the 1,000 gene datasets.
The 100-gene networks were essentially provided as test datasets. The general trends
in the 5,000 gene situation is that it is similar to the 1,000 gene situation (except
for the fact that the Bayesian network approach could not be applied, our current
implementation being limited to 4 GB corresponding to less than 3,000 variables, pro-
viding less opportunity for comparison) with slightly degraded overall performances.

We first present in Table 2.1 performances obtained by individual approaches as
the area under the precision versus recall curve (AUPR). We remind the reader that
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Table 2.1 Area (in percentage) under the precision versus recall curve (AUPR) for predicted
networks with 1,000 genes by, respectively, the Lasso penalized regression, the Dantzig selector,
random forests (RF), and Bayesian networks (BN)

Network/configuration/ AUPR with edge orientations AUPR without edge orientations
data-set Methods Methods
Lasso Dantzig RF BN Lasso Dantzig RF BN

Net4-Conf1-DS25-300SH 11.65 1202  9.63 14.20 15.76 1641 11.06 15.90
Net4-Conf2-DS26-900SH 15.88 15.66 17.95 18.30 21.97 21.68 20.05 20.08
Net4-Conf3-DS27-300SL 11.20 1135 388 11.83 16.64 17.18 529 15.01
Net4-Conf4-DS28-900SL 21.49 21.78  9.64 27.28 32.46 33.30 11.31 3295
Net4-Conf5-DS29-300DH 4.89 502 731 7.3 697 729 841  8.60
Net4-Conf6-DS30-900DH 9.68 10.05 13.82 20.15 13.81 1453 15.60 22.23
Net4-Conf7-DS31-300DL 8.60 9.57 3.09 13.18 13.07 1495 438 16.59
Net4-Conf8-DS32-900DL 16.20 1743 7.39 23.24 24.20 2671  9.12 28.76
Net5-Conf1-DS33-300SH 16.05 1571 16.16 16.96 21.52 21.27 17.81 18.89
Net5-Conf2-DS34-900SH ~ 22.17 21.71 2396 3046 31.08 30.64 2628 32.25
Net5-Conf3-DS35-300SL 14.55 14.61 556 13.28 21.69 2210 742 16.89
Net5-Conf4-DS36-900SL 24.57 2470 13.53 25.56 37.38 37.85 15.86 31.37
Net5-Conf5-DS37-300DH 6.66 6.74 9.04 871 934 9.63 10.58 10.27
Net5-Conf6-DS38-900DH  12.80 12.67 21.76 23.74 17.55 17.76 23.73  25.66
Net5-Conf7-DS39-300DL 10.71 11.16 3.60 15.36 17.10 18.19 520 18.71
Net5-Conf8-DS40-900DL 17.42 17.92 11.04 25.57 2633 2775 12.86 30.71
Net6-Conf1-DS41-300SH 13.07 12.83 1334 15.75 17.90 17.64 15.05 17.72
Net6-Conf2-DS42-900SH 17.54 17.59 23.63 24.13 24.81 2480 2556 26.14
Net6-Conf3-DS43-300SL 12.62 1272 432 1340 19.00 19.38 5.64 17.02
Net6-Conf4-DS44-900SL 20.72 21.07 10.67 20.14 32.06 32,72 12.69 26.12
Net6-Conf5-DS45-300DH 5.43 551 741 570 7.79 798 883 698
Net6-Conf6-DS46-900DH 8.55 8.43 1590 1234 1191 11.95 17.67 14.13
Net6-Conf7-DS47-300DL 8.70 923 257 10.07 13.69 14.84 398 1342
Net6-Conf8-DS48-900DL 14.68 1533 7.82 16.11 22.86 2441 10.06 21.36
Each network name ends by a short string which defines the sample size (n = 300 or 900), the gene
density (D/S for dense or sparse), and the simulated gene expression heritability (H/L for high or
low)

the recall is the ratio of correctly predicted edges among all edges to predict. The
precision is the ratio of correctly predicted edges among all predicted edges. Since the
predicted list of edges is ranked, edges are successively introduced with decreasing
confidence scores, and precision and recall levels are computed at each step, defining
a curve in the precision—-recall space. The AUPR score is a compromise of the global
performance of the method. Itis ausual criterion in the Machine Learning community.
Its values range from 1 (perfect recovery of all true edges with no error) to 0 (all
predicted edges are incorrect). Note that a simple random guessing of edges should
produce an AUPR of % often close to O if the network is sparse (with a
number of edges much lower than the potential number of directed edges of n(n—1)).
We report AUPR scores with and without taking edge orientations into account.
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Sensitivity to Simulated Parameters

As described in Chap. 1, the different datasets were generated by varying different
parameters: the underlying directed network, the number of simulated RILs
(samples), the spacing between markers (and therefore gene density given the one
gene/one marker assumption), and the gene expression heritability. The first obser-
vation that can be done on these datasets is the sensitivity of all methods to sample
size that was expected. For 300 individuals (odd configuration numbers), the AUPR
is usually between 5 and 15 % roughly. These results are weaker than the results pre-
sented in Vignes et al. (2011), using a set of different simulation parameters. With
900 individuals, the performance of all methods almost doubles, but still remains
relatively poor.

Considering the inter-marker distance (low distance for configurations 5-8), all
methods were sensitive to gene density. The higher the gene density, the lower the
AUPR for the linear regressions and the random forest-based method. Indeed, with a
high density marker map, the allelic states of two neighboring markers are correlated.
It therefore becomes more difficult to precisely predict which marker i regulates a
gene g: all neighboring markers offer essentially the same predictive information.
Compared to these methods, the Bayesian network approach benefits from the dedi-
cated marker pre-processing aimed at identifying cis-regulatory markers. When such
a cis marker is detected, the corresponding edge is forced into the Bayesian network
structure, avoiding increasingly likely mistakes in high-density configurations.

This marker distance effect became less important in configurations with a great
number of individuals. This is due to the increased power and reliability of the
regulatory marker localization and the expression data itself that becomes more
informative.

From a more usual linkage analysis point of view, we must point out that the eval-
uation criteria used here is a very hard one. Imagine M; is the regulatory marker that
should have been identified as influencing gene g. If M;;; (or any other neighbor
marker/gene) is predicted instead, then the difference in terms of the chromoso-
mal region that influences E is negligible and becomes increasingly small with an
increasing gene density. Despite this increasingly small error, our edge detection
criteria is purely Boolean and counts any neighbor prediction as a totally bad pre-
diction. This probably advocates for new evaluation criteria beyond a pure 0/1 edge
detection event.

Another possibility that could explain this sensitivity to inter-marker distances lies
in the quality of our confidence score. Compared to Vignes et al. (2011), the explored
grid of penalizations was reduced to only ¢ = 10 different values (instead of 20),
offering a coarser image of the frequency of inclusion of a variable. This was required,
from a computational point of view, because of the additional computational burden
generated by bootstrapping. Another possibility would be that the bootstraping itself
facilitates the selection of neighboring markers, because of the generated sampling
noise. Our later evaluation of the bootstrapping influence (in one network), however,
tends to show this is probably not the case.
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Finally, all methods seem to be sensitive to the simulated gene expression heritabil-
ity. In many cases, and quite unexpectedly at first, a weak heritability (high biological
variance) seems to be favorable, especially for linear regression approaches. A likely
explanation lies in the relationships that one can observe between the expression
levels of two genes g1 and g; that have a common parent regulator. In high heritabil-
ity situations, a strong nonlinear dependency between the two genes was visible. In
low heritability situations, the nonlinearity of the relationship seemed to fade away,
which was favorable to linear regression methods. A possible way to enhance the
behavior of linear regression in these conditions would be to apply a power transform
such as the Box—Cox transform (Box and Cox 1964), a useful data pre-processing
technique used to stabilize variance and make the data more normal distribution-like.

Comparison of Different Methods

The Lasso regression and the Dantzig selector had, as expected, very similar perfor-
mances (both are linear regression approaches, using the same underlying model).
Although, Dantzig seemed to offer better performances than Lasso in a majority
of cases, the difference was usually negligible. This is different from our previ-
ous comparison in Vignes et al. (2011), where the Dantzig selector seemed to offer
better performance than the Lasso regression (the Dantzig selector approach fin-
ished second of the DREAMS challenge, and was outperformed only by a consensus
meta-analysis that exploited its predictions). More tests would be needed to check
whether this could be caused by the shift in the underlying optimisation method.
Vignes et al. (2011) used an exact simplex-based linear programming solver, while
we used a more efficient homotopy-based method (Asif and Romberg 2010) to cope
with the additional computational burden generated by the bootstrapping process.
Surprisingly, our random forest approach often gave the worst performance
(except on configurations 2 and 6, with high heritability). A likely explanation for the
limited performance of our random forest approach lies in the fact that we handled
expression data E; and allelic states M; together, as possible splitting variables in
the same trees. However, these two variables are very different. Expression data is
a continuous variable, which offers a lot of freedom on possible splitting decisions.
Allelic states are Boolean variables, and therefore offer no freedom in the possible
splitting decision. The criteria used to grow forests and decide which variable is
taken next being its ability to reduce the variance in the separated datasets, it is likely
that allelic state variables tend to be inserted lately compared to expression data
variables. This tendency is confirmed by Strobl et al. (2007) when random forests
are used for classification purpose: the algorithm tends to be biased and to be more
likely to select variables with a higher number of levels than variables with few
levels like binary variables. This may lower the performance of the approach a lot
compared to others. A better approach would probably be to handle expression data
variables and allelic state variables in two independent random forest constructions
to later mix the associated confidence scores in a single confidence score (Geurts and
Huynh-Thu 2012) instead of mixing the simultaneous edge ranks as we did (see also
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Chap. 7 of this book). The better performances (compared to other methods) on the
configurations 2 and 6 (high heritability) can also be explained with the previously
mentioned highly nonlinear relationships that appear between co-regulated genes
in this case. The ability of random forests to capture nonlinear relationships may
explain its relative success on these configurations.

Overall, Bayesian networks offer the best performance in most cases, comparable
to those obtained in Vignes et al. (2011). We observe that each method has
an advantage in a specific area of the parameter space, showing their potential
complementarity.

Directed or Undirected Edges

In our linear regression methods, the current post-processing only partially allows us
to orientate edges, thanks to marker data: it is known that genetic content influences
observed phenotypes, including gene expression levels, and not the converse. Learnt
relationships between variables that account for gene expression levels are symetrical,
hence the predicted direct links between these variables are given a disadvantage.
The other way to see this is that edges from a marker variable to a gene expression are
favored even if they are slightly less supported by the data according to a modeling
criterion. This may result in either spurious marker to gene expression arcs being
assigned relative scores higher than they should or significant relationships between
gene expression levels being moved back in the list of predicted edges. For this reason,
we also evaluate the performances considering undirected edges. This analyzes the
ability to predict noncausal relationships between genes. The corresponding AUPR
scores are given in the four rightmost columns of Table 2.1.

The limited ability of penalized linear regression methods to infer causality (which
is only done when a polymorphism is detected as a possible regressor of the expres-
sion level) leads to visible improvements in their predictive capabilities. The Lasso
regression and the Dantzig selector are performing best in only two cases if directed
edges are considered and in 12 cases over 24 in the undirected edge case. In the best
cases, the Dantzig selector can offer an AUPR of almost 40 %, with performances
that more frequently exceed those of Bayesian networks.

Overall, both the Bayesian Network approach and the random forest approach
seems to benefit less from this relaxation in the evaluation criteria. This means that
when they predict a directed edge, in most cases, this edge may be a correct directed
edge or else, it is often a false edge (even ignoring orientation).
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Table 2.2 Effect of different post-processings on the AUPR scores (in percentage) for learning
Net5-Conf2-DS34 (n = 900, sparse marker map and high gene expression heritability) with the
Lasso regression, the Dantzig selector and our random forest method (RF)

Post-processing Methods

Lasso Dantzig RF
Genes-and-markers 22.17 21.71 23.96
Genes-and-filtered-markers 23.38 23.21 25.66
Filtered-markers 28.10 26.30 20.05

2.3.2 Focus on a 1,000 Gene Network with n = 900, High Gene
Expression Heritability, and 5 cM Between Consecutive
Markers (Net5-Conf2-DS34-900SH)

Implementing a practical learning scheme for GRN in System Biology cannot be just
characterized by the underlying mathematical method used to perform the inference
itself. The modeling, the pre- and post-processing of the data, possible bootstrapping
(and number of bootstrap samples), the criteria used for evaluation may all have
non-negligible impacts on the final results.

2.3.2.1 Post-processing

To analyze the importance of the post-processing used on the obtained results, we
compared two other post-processing methods on one network. We used dataset 34.
With a large sample, a sparse gene density and high heritability, it defines a play-
ground where most methods (including our random forest approach) obtain compara-
ble performances for the directed edges prediction. The Bayesian network approach
is excluded from this comparison since it uses a specific pre-processing that could
hinder the effect of the different post-processings.

Table 2.2 gives the AUPR obtained using the previous “genes-and-markers” post-
processing (which combines expression data-based scores w* and allelic states-based
scores w” by addition) with two extra post-processing (described in
Sect.2.2.6). The “filtered-markers” post-processing focuses on marker information
by using only w™ scores. It also tries to weaken the influence of high correlations
between close markers by keeping only markers with local undominated w™ score.
The “genes-and-filtered-markers” post-processing combines this filtering process in
the original “gene-and-markers” post-processing.

On this dataset, one can check that a change in the post-processing may change
the ranking of the different methods. On dataset 34, retaining only allelic state-
based scores gave much better results for linear regression methods but was rather
disappointing for random forests. As we mentioned previously, the Boolean allelic
state variables are probably introduced lately in the regression trees, giving priority
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to expression levels. This may explain the important effect of keeping only allelic
state-based scores on random forests. The mixed “genes-and-filtered-markers” post-
processing gave more even performances.

All three post-processing were tested on all configurations of the whole datasets.
The “filtered-markers” post-processing gave the overall best result on dataset 34, but
it gave extremely poor results on most other configurations (except for configurations
1 and 2, all AUPR being below 11%). The ‘“genes-and-filtered-markers”
post-processing often offered performances that were comparable to our initial
“genes-and-marker” post-processing, but was more often dominated by it than the
converse.

Clearly, because of the dual nature of genetical genomics data that captures differ-
ent effects through different types of variables, there are plenty of possible choices
for combining the two types of information. A sensible conclusion at this point is that
the optimal post-processing depends on features of the data that need to be carefully
checked before proposing analysis results.

2.3.2.2 The AUPR Curve

To be consistent with the previous DREAMS experiment, we used the AUPR criteria
to compare the performances of the different approaches. In this section, we want
to show that AUPR is a very high-level criterion. It summarizes the performance of
every method as a unique number, but hides different behaviors.

In Fig. 2.1, we give the complete precision versus recall curve for all methods on
dataset 34 using two different post-processings (“genes-and-markers” and the best
post-processing from Table 2.2). Some methods (such as the Dantzig selector in the
“filtered-markers” post-processing) tend to have a very high precision initially. This
means that almost all of the first few hundred predicted edges are correct. On this
same dataset, the Bayesian network learning presented a similar AUPR but a very
different behavior. The initial precision decreased more rapidly. This means that false
positive edges existed in the beginning of the list of ranked edges, making the output
harder to use. Again, this comparison between the Dantzig selector and the Bayesian
network learning is valid for this dataset and this post-processing but conclusion may
differ on another dataset and with different post-processings.

2.3.2.3 Effect of the Chosen Number of Bootstraps

The use of bootstrapping is quite costly in terms of computation time: all cpu times
are immediately multiplied by our Npoot = 100 bootstraps. We checked whether
this additional work is of interest first beyond theoretical grounds and whether it is
sufficient. We therefore compared the results obtained using bootstrapping with an
increasing number of bootstraps. The results obtained on dataset 34 are presented
in Fig. 2.2 using the Lasso regression approach and two different post-processings.
These curves give the observed recall at different precision levels. Precision levels
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Fig. 2.1 PR curve for the different methods and different post-processings on dataset Net5-Conf2-
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Fig. 2.2 Effect of the number of bootstrapped samples on dataset Net5-Conf2-DS34-900SH for
different levels of precision with the Lasso regression method using the “genes-and-markers” and

the “genes-and-filtered-markers” post-processings

range from a nearly acceptable degree of precision of 0.4 to a good degree of precision
of 0.7. One can see that bootstrapping enhances performance, but the importance of
the improvement varies a lot depending on the post-processing used. These curves
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Fig. 2.3 Normalized frequency for shortest path lengths in the predicted network as a function
of shortest path lengths in the Gold Standard network. Disc areas are proportional to normalized
frequencies. Dataset 34 was analyzed with the Lasso regression method using the “genes-and-
filtered-markers” post-processing. The predicted network was built with the 1,000 first predicted
edges. Raw total column frequencies are 540, 2,283, 2,407, 1,098, and 82. For clarity, we do not
represent shortest paths that are not recovered (virtually of length co)

also confirm that the number of bootstrap sub-samples we performed is sufficient,
an asymptotic behavior being reached before 50 sub-samples in most cases.

2.3.2.4 Shortest Path Lengths

Another way to gain knowledge about the topology of the predicted network (without
edge orientations) is to compare its shortest paths to the shortest paths of the true
(Gold Standard) network. In a graph, the shortest path between two nodes is defined
as the path of minimum length connecting these two nodes. For example, shortest
paths of length 1 are direct edges between two nodes. If the network was perfectly
recovered, the length of shortest paths for any pair of nodes in the predicted graph
would perfectly match the length of the corresponding shortest paths in the true
network. We depict in Fig.2.3 the normalized distribution of shortest path lengths
in one of the predicted network as a function of the shortest path lengths in the
corresponding Gold Standard network. Note that shortest paths which exist in the
true network but whose extremities are not connected in the predicted network are
not accounted for here. The rationale here is to check whether the distribution of
distances between genes of the two compared networks are close. If this is the case,
the distribution should concentrate around the y = x axis.

For example, we found 2,341 shortest paths of length one (i.e., edges) that were
not connected at all in the predicted network. It means that among the 2,882 true
edges to recover, 439 (implying a recall of 15.2 %) were correctly identified by the
predicted network while 102 were found with at least another intermediate gene in
the path between them, and 2,341 pair of genes were not connected in the predicted
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network. This is due to the fact that the predicted network was not fully connected,
and that only 1,000 edges were predicted while the true network contained three
times more edges.

Focusing on the first two columns of Fig.2.3, we see that the predicted graph
had a distribution of shortest paths of lengths 1 and 2 that matched with the actual
distribution of such edges in the true network. This was not the case anymore for paths
of length 3 and over: the predicted network tended to overestimate the length of such
shortest paths when it was able to identify them. Again, the fact that we only studied
the first 1,000 predicted edges plays an important role in this observation. Longer
paths are needed to cope with correct paths of a given length that are composed of
true edges only. However, even those few edges and some of them that were not
correct (the precision level was here below 0.5), the distributions of shortest path
lengths in the predicted network and in the true network were not too different.

2.4 Conclusion

In contrast with our previous experiments in Vignes et al. (2011), which relied on
a subset of the same algorithms (the Lasso regression, the Dantzig selector and
Bayesian network structure learning) on data generated using the same generator but
with simplified settings, the results we obtained here with additional effort (computa-
tional cost of the bootstrapping process and integration of a random forest approach)
are rather disappointing in the hardest situations, in terms of AUPRs. On these hardest
problems, whether because of limited number of individuals, or because of nonlinear
relationships induced by high heritability, these low AUPR often hide rapidly decreas-
ing precision, which means that the list of predicted edges quickly becomes hard to
exploit to predict gene regulations.

Given that boostrapping seems to be able to provide improved prediction quality,
the most likely reason of these results lies in the generated data itself which relies on
new parameters and new networks. Clearly, the specific characteristics of these new
datasets could probably be accommodated, to some extent, by the same methods,
using different modeling or pre/post-processing strategies. In the case of configura-
tion 2, the use of the “filtered-marker” post-processing strategy provided significant
improvements in the AUPR of the linear regression-based approaches, leading to
respectable performances.

These results point also to the ambitious aim of trying to identify which statistical
method would perform best for GRN learning in a genetical genomics context, based
on a large scope of methods and on large datasets of simulated data. The overwhelm-
ing size of combinations that can be imagined using different methods, models and
pre and post-processing procedures to deal with a large amount of simulated data
which is itself parameterized by several parameters defines a daunting task. It is quite
obvious for us that we have only explored a small fraction of all possible combina-
tions and that much work remains to be done to identify an ideal performer, if it
exists. Indeed, our results show that every method, even those that tend to give the
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worst results, can outperform other methods in specific situations. A combination of
methods may therefore be, ultimately, the best approach.

These experiments also show the possible difficulty in the generation of realistic
simulated data for genetical genomics. Given the radically different results obtained
depending on the change of parameters used for problem generation, it is natural to
wonder which of these different settings could be considered as the most realistic
model for real genetical genomics data and for which organism. First elements of
response to this question may finally open the door to tackle real datasets.
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