Chapter 2
Least Squares Estimation via Plug-In

2.1 Regression Estimation

Under i.i.d. random vectors (X,Y"), (X1,Y1), (X2,Y2),... in the regression
analysis one is interested in the value of the so called response variable
Y (in R) depending on the value of the observation vector X (in R¢, with
distribution p). To find that, one searches a (measurable) function f : R? —
R, such that f(X) is a "good approximation of Y, that is, f(X) should be
"close” to Y, achieved making the random quantity |f(X) — Y| "small”. For
this, assuming square integrability of Y, we introduce the so-called Lo-risk
or mean squared error of f:

B{|f(X)- Y]} (2.1)

It is well known that the function that minimizes in a certain sense (2.1) is
the regression function, m(z) := E{Y|X = x}, unknown if the distribution
of (X,Y) is unknown. In this case, starting from a dataset D,,, a nonpara-
metric estimator m,, of the regression function is to construct. There exist
different paradigms how to make it, the aim here is to deal with least squares
approaches. There, the basic idea is to estimate the unknown mean squared
error in (2.1) by approximating the expectation value there appearing via
the empirical mean:

D IESERT 2:2)

and to choose a function, over a set F,, of functions given by the statistician,
f:R? = R, that minimizes (2.2).

Examples of possible choices of the set F,, are sets of piecewise polynomials
with respect to a partition P,,. Clearly it doesn’t make sense to minimize
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(2.2) over all measurable functions f, because this may lead to a function
which interpolates the data and hence is not a reasonable estimate.
The least squares estimator of the regression function is defined as:

n
() = arg min © S [£(X) — Vif2,
fer. i

where the optimal function is not required to be unique. For consistency
and rate of convergence of such estimators see [16] and the references cited
there.

Sometimes it is possible to observe data from the underlying distribution
only with measurement errors. It can for example happen, that the predictor
vector X can be observed only with errors, i.e., instead of X; one observes
W; = X, + U, for some random variable U; which satisty E{U;|X;} = 0 and
the aim is to estimate the regression function from {(W1,Y1),...,(W,,Y,)}.
Instead, as in [16], we assume that we can observe the dependent variable Y
only with supplementary, maybe correlated, measurement errors. Since we
do not assume that the means of these measurement errors are zero, these
kinds of errors are not already included in standard models. Our dataset is

Dn = {(le Yl,n)a ceey (XTMYH,TL)}a

where the only assumption on the random variables Y ,,...,Y,,, is that
the differences between Y; and Y; ,, are in a certain sense "small”. We will
therefore assume that the average squared measurement error

1 n
. ; Y = Vil

is small. Set briefly YV; := Y, ,. With the difficulty of additional measure-
ment errors in the dependent variable in our notation the estimator becomes:

1 n
(LS) _ : N vo2
My (- = arg min f(X; Yl 2.3
() i ni§:1|( ) | (2.3)

and in this chapter we set m,, () := m,, ()=,

Inspired by [16], Corollary 1, we want here to treat consistency in a general
case where we require the unknown regression function only to be bounded
in absolute value from above by a constant and without continuity assump-
tions.
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Theorem 2.1. Assume that Y — m(X) is sub-Gaussian in the sense that
K*E {e(yfm(x))z/K2 - I\X} < of  almost surely,

for some K, o9 > 0. Let L > 1 and assume that the regression function is
bounded in absolute value by L (= m € La(u)). We define Fy, as a subset
of a linear space, consisting of real-valued functions on R?, with dimension
D,, € N and with the property |f| < L for f € F,, where Fp, T, D,, — o0
for n — oo, but [:L" — 0. Furthermore U, F, is required to be dense in the
subspace of La(u), consisting of the functions in La(u) absolutely bounded
by L. In addition it shall hold

1 n
Syi-viP 5o (2.4)
n

i=1
Then, we have

t/mm@fm@Wmmwia

(Consistency of the least squares estimator of the regression function with
additional measurements error in the response variable)

For the proof of Theorem 2.1 we use the following lemmas:
Lemma 2.1. {U,} and {V,,} are nonnegative real random sequences. As-

sume Vi, £0 and P{U, >V,} =0 (n— o0). Then U, £o.

Proof. For each € > 0 and each é > 0 there exists an ng such that, for every
n > ng:

)
P{V,>e} <
- ~ -~ 2
2],
and 5
P{U,>V,} < _,
~ o -2
oy
thus

P({U, <e}) < P({{Va<e} N {Un <Vi}}9)

—P{2°n Qe 2 P, U
gP{Q;L}JrP{Q,’{}gngg:(S. o
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We are now ready for the following:
Proof of Theorem 2.1. According to [16], Corollary 1, there is a positive
constant ¢ depending only on L, oy, K with the following property:

P [ 1ma(a) = mia)Pu(ae)
< Z|Y YiP+ 7" + lnf /|f |udm)>}—>0.

By Lemma 2.1, it is enough to show

(iZM—muﬁw inf [ 17(e) ~ miz) P <dx>> Zo o (@)
i=1

But (2.5) holds because of (2.4), D" — 0 and
infrer, [|f(z) —m(z)]*u(ds) — 0 (due to F,, 1 and the density of U, F,
in the mentioned subspace of La(pu)).

2.2 Local Variance Estimation with Additional
Measurement Errors

The quality of the regression function m in view of small mean squared error
is globally given by E{(Y —m(X))?} and locally by

o%(z) = B{(Y = m(X)?|X = a} = B{Y?|X =z} —m?(z).  (2)
o?(z) is the so called local variance. We define a new variable
Z:=Y?*-m*X) (2.7)
and consequently its observations (in the case of known m):
Zi :=Y7 —m*(X);
finally the observations with additional errors:
Zi= Y, —ma(X),

with m, = mi&® according to (2.4). Combining (2.6) and (2.7) allows us

to say that the local variance is a regression on (X, 7).
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We can therefore define the least squares estimator of the local variance,
analogously to the estimator (2.3) as

1y
on () = arg min Y |g(Xi) — Zif?, (2.8)
9€Gn n =

where g : Rd — R € G,, with suitable function space G, . Briefly, define
ap () = oy ()59,

n
For consistency and convergence rate under Lipschitz conditions see [16].
We want here to treat consistency in a general case where no smoothness

conditions on the m and o2 are required.

Theorem 2.2. Assume that Y? —m?(X) is sub-Gaussian in the sense that
K’E {e(yzfmz(x))z/Kz - 1|X} < op  almost surely

for some K, o9 > 0. Let

1 n
DIV YIP S0, p=12 (2.9)

i=1

It is assumed that L* > 0 and L > 0 exist such that 0®> < L* and |m| < L.
Let G, be defined as a subset of a linear space, consisting of nonnegative
real-valued functions on R? bounded by L*, with dimension D, € N, with
the properties G, 1, Dy, — oo for n — oo but [7)1" — 0. Furthermore U, G, is
required to be dense in the subspace of Lo(p) consisting of the nonnegative
functions in La(p) bounded by L*. Let also F, be defined as a subset of
a linear space of real-valued functions on R absolutely bounded by L wzth
dimension D!, € N, with the properties F,, T, D), — oo forn — oo but P .

0. Furthermore Uy,F, 1is required to be a dense subset of Cg,L(Rd) (wzth
respect to the max norm), where C’&L(Rd) denotes the space of continuous

real valued functions on R® absoluted bounded by L, with compact support.
Then

/|a ()2 u(dz) 5 0.

(Consistency of the least squares estimator of the local variance with addi-
tional measurements error in the response variable)

Remark 2.1. In case of boundedness of ¥; and Y; (2.9) for p = 1 implies

(2.9) for p = 2 (because of Y2 — Y- = (Y; — Y:)(Y; + Y2)).

Proof of Theorem 2.2. As in the proof of Theorem 2.1 we obtain that there
exists a generic positive constant ¢ depending only from L, oy, K with the
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following property:

P{ [1920) - o*w)Putao) >
<i2|zizi|2 + inf /|g —o(2)|?u (d@)} — 0.

=1
(2.10)
We notice
1 n
Zi — Zi|?
. gl |
PR 2 2 9 2 = 2 22
< Y mE ) —mE )R+ v - Y
i=1 i=1
< SLQXTL: I (X3) — m(X;)]? + 2 zn: Y2 - Y22
= n l:1 n (2 7 n l:1 1 1 M
~
Lo assumption (2.9)
(2.11)

It remains to prove

n
P

i > ma(X) = m(X)? 0.

i=1

Via conditioning with respect to (X1, ..., X,), by [16], Lemma 3, we obtain

=1
1 < D’
5/,&7}/12 n
>c<n;| 2
1< 9
+ 2 W) m<X>|>‘1 71, X mn}%o

(2.12)

where Dn;l —0and } " |V — V]2 Eo (assumption (2.9)).
Regarding the last term in the round brackets in (2.12), for an arbitrary
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we choose &’ > 0 a continuous function with compact support 7 such that
E|m(X)—m(X)]? <¢.
We observe

n

1
i X)) —m(X)]? <
min D 17X —m(XoP <
1 n
< 2 mi X;) — m(X;)? 2.13
<2pip | 31700 —mX) (2.13)
- = ~ -
—0 a.s.
1 n
2 n(X;) — m(X;)[?
+ p 2 1K) = (%)
\l ~~ -

a.s. »E{|m(X)—m(X)|2}<e’ ( Strong Law of Large Numbers)

where (2.13) follows from

1 n
i X;) — m(X;))?
i, 2K — ()

< uip [sup 170 - m(a)2] 0.

n

By Lemma 2.1 the assertion follows.

2.3 Rate of Convergence

In this section we investigate the rate of convergence of the least squares
estimator of the local variance function with additional measurement errors
in the dependent variable. In the special case that there are no additional
measurement errors and that d = 1 Kohler’s Corollary 3 [16] investigates
the rate of convergence of the estimator.

In this section we choose as suitable function space for the minimization
problem in (2.8) the space of B-spline functions, as Mathe did [22].

We recall now briefly the definitions of B-splines and the B-splines space.
For a deeper discussion of splines with proofs we refer the reader to the
classical reference here [3].

Definition 2.1. Let K := (K;) be a nondecreasing sequence. The i-th uni-
variate (normalized) B-spline of order M for the knot sequence K is denoted
by the rule
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Bi,K,M(Qi) = (Ki-i-M — Kl)[K“ ey KH_M](K — l‘)i\_/[_l for z € R.

Notice that B-splines consists of nonnegative functions which sum up to 1,
i.e., B; ik, m provides a partition of unity. Further explanations can be found
again in [3].

Definition 2.2. For i = (iy,...,i5) € Z% the multivariate B-splines of
order m are denoted by

Bzd,K,M(xlv .. .,de) = BihK,M(xl) Lt Bid,K,M(-Td)

Definition 2.3. A spline function of order M with knot sequence K is any
linear combination of B-splines of order M for the knot sequence K. The
collection of all such functions is denoted by Sk . In symbols,

SK,]\/[([O7 1]d) = {Z aiBf,K,M : o; real, for all Z} .

%

Notice that the functions from Sk ps are multivariate polynomials of degree
smaller or equal to M and for M > 0 they are (M — 1)-times continuously
differentiable.

Because of the bound of the regression function and the local variance func-
tion it makes sense to bound also the functions of the spline space. Therefore,
we bound the estimate introducing the following two modifications of the
spline space Sk m

K2

SL+1([01] {ZQZ ik 0<a; <L+1

(je{l,...,Kn+M}d)}

and

St (10,11 {Za a0 < a; <AL 41

(je{L...,K{I—s—M}d)}.

Because of the properties of the B-splines to be positive and to sum up to
one, the functions from the space SZHL ([0, 1]%) are nonnegative and bounded

by L + 1. Analogously, the functions from S}%Jz\jl([Q 1]¢) are bounded by



2.3 Rate of Convergence 27

4L? + 1. The following theorem deals with the rate of convergence of the
estimator of the local variance.

Theorem 2.3. Let L > 1, C > 0 and p = k + 8 for some k € Ny and
B € (0,1]. Assume that X € [0,1]% almost surely. Assume also that |Y;| < L,
’Yi| < L and

1 " 2 _ 2

Z|Yi ~Y2=0p (n 2p+d> ) (2.14)
n

i=1

Moreover, let I' > 0, A > 0 and assume that m and o* are (p,I")

and (p, A)-smooth, respectively, that is, for every o = (on,...,aq), a; €
d
NQ, Zj:l Q= k
oFm oFm
B8 d
‘Bxfl,...,axg‘d (z) - oz, ..., 0xy? ()] < Tlle—z|" @ z€R
and
%02 %02
B d
lax‘f‘l,...,axgd (z) - Oz, ..., 0xy" ()] < Allz = 2|7 2, z€R

(I'l| denoting the Fuclidean norm).
Identify F, and G, with SIL(Z}M([O, 1]4) and S}‘éiﬁ([@, 1]4), respectively,

with respect to an equidistant partition of [0,1]¢ into
K;l = |VF2p2+dn2p{+»d—|

for F, and
Kn = |:/12p2+dn2p{+»d—|7

for G, respectively. Then
/ o2 () — 02(x)|2,u(dx) =Op (niﬁid) .

(Rate of convergence of the least squares estimator of the local variance with
additional measurements error in the response variable)
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Proof. We use (2.10). Because of the dimension D,, = ¢- K, of G,, it follows
D, _ 2p
<0 (n 2,?4(1) . (2.15)
n

From the (p, I')-smoothness of ¢ and the definition of G,, we can conclude
(cf. [22], p. 66)

inf / lg(z) — 0*(z)2u(dz) < O (n—aﬁid) (2.16)
9geEYn
In view of the assertion it remains to show

1 n 2 1 _ P

Z ’Zl — Zz’ = OP (/12P+dn 2P+d) .

i3
Now we use (2.11). It holds
'y
n

i=1

2
v2_y?

K2 K2

1
=0Op <A2p+d n- 2p’ld)

because of
;1|Y; Y |? <AL ;1|Yl Y;|

o\ 1/2
by uniform boundedness of the sequence ! (Z?Zl ‘YZ + YZ-’ ) ,and (2.14).

n
Thus it remains to show

:Li |m”(X1) - m(Xz)|2 =0p (AZpidn72;$d> .
i=1

We work now conditionally on (X7, ..., X,,) and observe that

1 n
+ min Zlf(Xl)_m(Xl)F) ‘X1:$1;-~-7Xn:37n} —0
i=1

(2.17)
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