
Chapter 2

Least Squares Estimation via Plug-In

2.1 Regression Estimation

Under i.i.d. random vectors (X,Y ), (X1, Y1), (X2, Y2), . . . in the regression
analysis one is interested in the value of the so called response variable
Y (in R) depending on the value of the observation vector X (in R

d, with
distribution μ). To find that, one searches a (measurable) function f : Rd →
R, such that f(X) is a ”good approximation of Y ”, that is, f(X) should be
”close” to Y, achieved making the random quantity |f(X)− Y | ”small”. For
this, assuming square integrability of Y, we introduce the so-called L2-risk
or mean squared error of f :

E
{|f(X)− Y |2} . (2.1)

It is well known that the function that minimizes in a certain sense (2.1) is
the regression function, m(x) := E{Y |X = x}, unknown if the distribution
of (X,Y ) is unknown. In this case, starting from a dataset Dn, a nonpara-
metric estimator mn of the regression function is to construct. There exist
different paradigms how to make it, the aim here is to deal with least squares
approaches. There, the basic idea is to estimate the unknown mean squared
error in (2.1) by approximating the expectation value there appearing via
the empirical mean:

1

n

n∑
i=1

|f(Xi)− Yi|2, (2.2)

and to choose a function, over a set Fn of functions given by the statistician,
f : Rd → R, that minimizes (2.2).
Examples of possible choices of the set Fn are sets of piecewise polynomials
with respect to a partition Pn. Clearly it doesn’t make sense to minimize
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(2.2) over all measurable functions f, because this may lead to a function
which interpolates the data and hence is not a reasonable estimate.
The least squares estimator of the regression function is defined as:

mn(·) = arg min
f∈Fn

1

n

n∑
i=1

|f(Xi)− Yi|2,

where the optimal function is not required to be unique. For consistency
and rate of convergence of such estimators see [16] and the references cited
there.
Sometimes it is possible to observe data from the underlying distribution
only with measurement errors. It can for example happen, that the predictor
vector X can be observed only with errors, i.e., instead of Xi one observes
Wi = Xi+Ui for some random variable Ui which satisfy E{Ui|Xi} = 0 and
the aim is to estimate the regression function from {(W1, Y1), . . . , (Wn, Yn)}.
Instead, as in [16], we assume that we can observe the dependent variable Y
only with supplementary, maybe correlated, measurement errors. Since we
do not assume that the means of these measurement errors are zero, these
kinds of errors are not already included in standard models. Our dataset is

Dn = {(X1, Y 1,n), . . . , (Xn, Y n,n)},

where the only assumption on the random variables Y 1,n, . . . , Y n,n is that
the differences between Yi and Y i,n are in a certain sense ”small”. We will
therefore assume that the average squared measurement error

1

n

n∑
i=1

|Yi − Y i,n|2

is small. Set briefly Y i := Y i,n. With the difficulty of additional measure-
ment errors in the dependent variable in our notation the estimator becomes:

mn(·)(LS) = arg min
f∈Fn

1

n

n∑
i=1

|f(Xi)− Y i|2, (2.3)

and in this chapter we set mn(x) := mn(x)
(LS).

Inspired by [16], Corollary 1, we want here to treat consistency in a general
case where we require the unknown regression function only to be bounded
in absolute value from above by a constant and without continuity assump-
tions.
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Theorem 2.1. Assume that Y −m(X) is sub-Gaussian in the sense that

K2E
{
e(Y−m(X))2/K2 − 1|X

}
≤ σ2

0 almost surely,

for some K, σ0 > 0. Let L ≥ 1 and assume that the regression function is
bounded in absolute value by L (⇒ m ∈ L2(μ)). We define Fn as a subset
of a linear space, consisting of real-valued functions on R

d, with dimension
Dn ∈ N and with the property |f | ≤ L for f ∈ Fn, where Fn ↑, Dn → ∞
for n → ∞, but Dn

n → 0. Furthermore ∪nFn is required to be dense in the
subspace of L2(μ), consisting of the functions in L2(μ) absolutely bounded
by L. In addition it shall hold

1

n

n∑
i=1

|Yi − Y i|2 P→ 0. (2.4)

Then, we have ∫
|mn(x)−m(x)|2μ(dx) P→ 0.

(Consistency of the least squares estimator of the regression function with
additional measurements error in the response variable)

For the proof of Theorem 2.1 we use the following lemma:

Lemma 2.1. {Un} and {Vn} are nonnegative real random sequences. As-

sume Vn
P→ 0 and P {Un > Vn} → 0 (n→∞). Then Un

P→ 0.

Proof. For each ε > 0 and each δ > 0 there exists an n0 such that, for every
n ≥ n0:

P {Vn > ε}︸ ︷︷ ︸
Ω′

n

≤ δ

2

and

P {Un > Vn}︸ ︷︷ ︸
Ω′′

n

≤ δ

2
,

thus

P ({Un ≤ ε}c) ≤ P ({{Vn ≤ ε} ∩ {Un ≤ Vn}}c)

= P ({Ω′c
n ∩ Ω′′c

n }c)
De Morgan

↓
= P ({Ω′

n ∪ Ω′′
n})

≤ P {Ω′
n}+ P {Ω′′

n} ≤
δ

2
+

δ

2
= δ. ��
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We are now ready for the following:
Proof of Theorem 2.1. According to [16], Corollary 1, there is a positive
constant c depending only on L, σ0, K with the following property:

P

{∫
|mn(x)−m(x)|2μ(dx)

> c

(
1

n

n∑
i=1

|Yi − Yi|2 + Dn

n
+ inf

f∈Fn

∫
|f(x)−m(x)|2μ(dx)

)}
→ 0.

By Lemma 2.1, it is enough to show(
1

n

n∑
i=1

|Yi − Yi|2 + Dn

n
+ inf

f∈Fn

∫
|f(x)−m(x)|2μ(dx)

)
P→ 0 (2.5)

But (2.5) holds, because of (2.4), Dn

n → 0 and
inff∈Fn

∫ |f(x) −m(x)|2μ(dx) → 0 (due to Fn ↑ and the density of ∪nFn

in the mentioned subspace of L2(μ)).

2.2 Local Variance Estimation with Additional
Measurement Errors

The quality of the regression function m in view of small mean squared error
is globally given by E{(Y −m(X))2} and locally by

σ2(x) := E{(Y −m(X))2|X = x} = E{Y 2|X = x} −m2(x). (2.6)

σ2(x) is the so called local variance. We define a new variable

Z := Y 2 −m2(X) (2.7)

and consequently its observations (in the case of known m):

Zi := Y 2
i −m2(Xi);

finally the observations with additional errors:

Zi := Yi
2 −m2

n(Xi),

with mn = m
(LS)
n according to (2.4). Combining (2.6) and (2.7) allows us

to say that the local variance is a regression on (X,Z).
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We can therefore define the least squares estimator of the local variance,
analogously to the estimator (2.3) as

σ2
n(·)(LS) = arg min

g∈Gn

1

n

n∑
i=1

|g(Xi)− Zi|2, (2.8)

where g : Rd → R ∈ Gn, with suitable function space Gn. Briefly, define
σ2
n(x) := σ2

n(x)
(LS).

For consistency and convergence rate under Lipschitz conditions see [16].
We want here to treat consistency in a general case where no smoothness
conditions on the m and σ2 are required.

Theorem 2.2. Assume that Y 2−m2(X) is sub-Gaussian in the sense that

K2E
{
e(Y

2−m2(X))2/K2 − 1|X
}
≤ σ2

0 almost surely

for some K, σ0 > 0. Let

1

n

n∑
i=1

|Y p
i − Y

p

i |2 P→ 0, p = 1, 2. (2.9)

It is assumed that L∗ > 0 and L > 0 exist such that σ2 ≤ L∗ and |m| ≤ L.
Let Gn be defined as a subset of a linear space, consisting of nonnegative
real-valued functions on R

d bounded by L∗, with dimension Dn ∈ N, with
the properties Gn ↑, Dn →∞ for n→∞ but Dn

n → 0. Furthermore ∪nGn is
required to be dense in the subspace of L2(μ) consisting of the nonnegative
functions in L2(μ) bounded by L∗. Let also Fn be defined as a subset of
a linear space of real-valued functions on R

d absolutely bounded by L, with

dimension D′
n ∈ N, with the properties Fn ↑, D′

n →∞ for n→∞ but
D′

n

n →
0. Furthermore ∪nFn is required to be a dense subset of C0

0,L(R
d) (with

respect to the max norm), where C0
0,L(R

d) denotes the space of continuous

real valued functions on R
d absoluted bounded by L, with compact support.

Then ∫
|σ2

n(x) − σ2(x)|2μ(dx) P→ 0.

(Consistency of the least squares estimator of the local variance with addi-
tional measurements error in the response variable)

Remark 2.1. In case of boundedness of Yi and Y i (2.9) for p = 1 implies

(2.9) for p = 2 (because of Y 2
i − Y

2

i = (Yi − Y i)(Yi + Y i)).

Proof of Theorem 2.2. As in the proof of Theorem 2.1 we obtain that there
exists a generic positive constant c depending only from L, σ0, K with the
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following property:

P

{∫
|σ2

n(x)− σ2(x)|2μ(dx) > c·(
1

n

n∑
i=1

|Zi − Zi|2 + Dn

n
+ inf

g∈Gn

∫
|g(x)− σ2(x)|2μ(dx)

)}
→ 0.

(2.10)

We notice

1

n

n∑
i=1

|Zi − Zi|2

≤ 2

n

n∑
i=1

|m2
n(Xi)−m2(Xi)|2 + 2

n

n∑
i=1

|Y 2
i − Y

2

i |2

≤ 8

n
L2

n∑
i=1

|mn(Xi)−m(Xi)|2 + 2

n

n∑
i=1

|Y 2
i − Y

2

i |2.︸ ︷︷ ︸
P→0 assumption (2.9)

(2.11)

It remains to prove

1

n

n∑
i=1

|mn(Xi)−m(Xi)|2 P→ 0.

Via conditioning with respect to (X1, . . . , Xn), by [16], Lemma 3, we obtain

P

{
1

n

n∑
i=1

|mn(Xi)−m(Xi)|2

> c

(
1

n

n∑
i=1

|Yi − Yi|2 + D′
n

n

+ min
f∈Fn

1

n

n∑
i=1

|f(Xi)−m(Xi)|2
) ∣∣∣∣∣X1 = x1, . . . , Xn = xn

}
→ 0

(2.12)

where
D′

n

n → 0 and 1
n

∑n
i=1 |Yi − Y i|2 P→ 0 (assumption (2.9)).

Regarding the last term in the round brackets in (2.12), for an arbitrary
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we choose ε′ > 0 a continuous function with compact support m̃ such that
E|m̃(X)−m(X)|2 ≤ ε′.
We observe

min
f∈Fn

1

n

n∑
i=1

|f(Xi)−m(Xi)|2 ≤

≤ 2 min
f∈Fn

1

n

n∑
i=1

|f(Xi)− m̃(Xi)|2︸ ︷︷ ︸
→0 a.s.

(2.13)

+ 2
1

n

n∑
i=1

|m̃(Xi)−m(Xi)|2︸ ︷︷ ︸
a.s. →E{|m̃(X)−m(X)|2}≤ε′ ( Strong Law of Large Numbers)

where (2.13) follows from

min
f∈Fn

1

n

n∑
i=1

|f(Xi)− m̃(Xi)|2

≤ min
f∈Fn

[
sup
x
|f(x)− m̃(x)|2

]
→ 0.

By Lemma 2.1 the assertion follows.

2.3 Rate of Convergence

In this section we investigate the rate of convergence of the least squares
estimator of the local variance function with additional measurement errors
in the dependent variable. In the special case that there are no additional
measurement errors and that d = 1 Kohler’s Corollary 3 [16] investigates
the rate of convergence of the estimator.
In this section we choose as suitable function space for the minimization
problem in (2.8) the space of B-spline functions, as Mathe did [22].
We recall now briefly the definitions of B-splines and the B-splines space.
For a deeper discussion of splines with proofs we refer the reader to the
classical reference here [3].

Definition 2.1. Let K := (Ki) be a nondecreasing sequence. The i-th uni-
variate (normalized) B-spline of orderM for the knot sequenceK is denoted
by the rule
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Bi,K,M (x) := (Ki+M −Ki)[Ki, . . . ,Ki+M ](K − x)M−1
+ for x ∈ R.

Notice that B-splines consists of nonnegative functions which sum up to 1,
i.e., Bi,K,M provides a partition of unity. Further explanations can be found
again in [3].

Definition 2.2. For i = (i1, . . . , id) ∈ Z
d, the multivariate B-splines of

order m are denoted by

Bd
i,K,M (x1, . . . , xd) := Bi1,K,M (x1) · . . . · Bid,K,M (xd)

Definition 2.3. A spline function of order M with knot sequence K is any
linear combination of B-splines of order M for the knot sequence K. The
collection of all such functions is denoted by SK,M . In symbols,

SK,M ([0, 1]d) :=

{∑
i

αiB
d
i,K,M : αi real, for all i

}
.

Notice that the functions from SK,M are multivariate polynomials of degree
smaller or equal to M and for M > 0 they are (M − 1)-times continuously
differentiable.
Because of the bound of the regression function and the local variance func-
tion it makes sense to bound also the functions of the spline space. Therefore,
we bound the estimate introducing the following two modifications of the
spline space SK,M

SL+1
K,M ([0, 1]d) :=

{∑
i

αiB
d
i,K,M : 0 ≤ αj ≤ L+ 1

(j ∈ {1, . . . ,Kn +M}d)
}

and

S4L2+1
K,M ([0, 1]d) :=

{∑
i

αiB
d
i,K,M : 0 ≤ αj ≤ 4L2 + 1

(j ∈ {1, . . . ,K ′
n +M}d)

}
.

Because of the properties of the B-splines to be positive and to sum up to
one, the functions from the space SL+1

K,M ([0, 1]d) are nonnegative and bounded

by L + 1. Analogously, the functions from S4L2+1
K,M ([0, 1]d) are bounded by
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4L2 + 1. The following theorem deals with the rate of convergence of the
estimator of the local variance.

Theorem 2.3. Let L ≥ 1, C > 0 and p = k + β for some k ∈ N0 and
β ∈ (0, 1]. Assume that X ∈ [0, 1]d almost surely. Assume also that |Yi| ≤ L,∣∣Y i

∣∣ ≤ L and

1

n

n∑
i=1

|Yi − Y i|2 = OP

(
n− 2p

2p+d

)
. (2.14)

Moreover, let Γ > 0, Λ > 0 and assume that m and σ2 are (p, Γ )
and (p, Λ)-smooth, respectively, that is, for every α = (α1, . . . , αd), αj ∈
N0,

∑d
j=1 αj = k∣∣∣∣ ∂km

∂xα1
1 , . . . , ∂xαd

d

(x)− ∂km

∂xα1
1 , . . . , ∂xαd

d

(z)

∣∣∣∣ ≤ Γ‖x− z‖β x, z ∈ R
d

and ∣∣∣∣ ∂kσ2

∂xα1
1 , . . . , ∂xαd

d

(x) − ∂kσ2

∂xα1
1 , . . . , ∂xαd

d

(z)

∣∣∣∣ ≤ Λ‖x− z‖β x, z ∈ R
d

(‖ ‖ denoting the Euclidean norm).

Identify Fn and Gn with SL+1
K′

n,M
([0, 1]d) and S4L2+1

Kn,M
([0, 1]d), respectively,

with respect to an equidistant partition of [0, 1]d into

K ′
n = �Γ 2

2p+dn
1

2p+d �

for Fn and

Kn = �Λ 2
2p+dn

1
2p+d �,

for Gn, respectively. Then∫ ∣∣σ2
n(x) − σ2(x)

∣∣2 μ(dx) = OP

(
n− 2p

2p+d

)
.

(Rate of convergence of the least squares estimator of the local variance with
additional measurements error in the response variable)
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Proof. We use (2.10). Because of the dimension Dn = c ·Kn of Gn it follows

Dn

n
≤ O

(
n− 2p

2p+d

)
. (2.15)

From the (p, Γ )-smoothness of σ2 and the definition of Gn we can conclude
(cf. [22], p. 66)

inf
g∈Gn

∫
|g(x)− σ2(x)|2μ(dx) ≤ O

(
n− 2p

2p+d

)
(2.16)

In view of the assertion it remains to show

1

n

n∑
i=1

∣∣Zi − Zi

∣∣2 = OP

(
Λ

1
2p+dn− p

2p+d

)
.

Now we use (2.11). It holds

1

n

n∑
i=1

∣∣∣Y 2
i − Y

2

i

∣∣∣2 = OP

(
Λ

1
2p+dn− p

2p+d

)
because of

1

n

n∑
i=1

|Y 2
i − Y

2

i |2 ≤ 4L2 · 1
n

n∑
i=1

∣∣Yi − Yi

∣∣2
by uniform boundedness of the sequence 1

n

(∑n
i=1

∣∣Yi + Y i

∣∣2)1/2

, and (2.14).

Thus it remains to show

1

n

n∑
i=1

|mn(Xi)−m(Xi)|2 = OP

(
Λ

2
2p+dn− 2p

2p+d

)
.

We work now conditionally on (X1, . . . , Xn) and observe that

P

{
1

n

n∑
i=1

|mn(Xi)−m(Xi)|2

> c

(
1

n

n∑
i=1

|Yi − Yi|2 + D′
n

n

+ min
f∈Fn

1

n

n∑
i=1

|f(Xi)−m(Xi)|2
) ∣∣∣∣∣X1 = x1, . . . , Xn = xn

}
→ 0

(2.17)
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