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Abstract  

The Kinect™ sensors can be used as cost effective and easy to use Markerless Motion 
Capture devices. Therefore a wide range of new potential applications are possible. 
Unfortunately, right now, the stick model skeleton provided by the Kinect™ is only 
composed of 20 points located approximately at the joint level of the subject which 
movements are being captured by the camera. This relatively limited amount of key 
points is limiting the use of such devices to relatively crude motion assessment. The 
field of motion analysis however is requesting more key points in order to represent 
motion according to clinical conventions based on so-called anatomical planes. To 
extend the possibility of the Kinect™ supplementary data must be added to the 
available standard skeleton. This paper presents a new Model-Based Approach 
(MBA) that has been specially developed for Kinect™ input based on previous 
validated anatomical and biomechanical studies performed by the authors. This 
approach allows real 3D motion analysis of complex movements respecting 
conventions expected in biomechanics and clinical motion analysis.  

1 Introduction 

Human motion tracking is widely used for movement analysis and biomechanical 
representation of the musculoskeletal system. Currently, most movement analysis 
laboratories are using Marker Based Systems (MBS) [1]. Although precision of this 
kind of device is high, practical problems still occur in daily practice: such systems 
are cumbersome and expensive, setting of the markers used on the subject is time-
consuming and result validation is still an issue in the literature (reproducibility 
and accuracy issues). This can be explained by several factors. At first, markers 
need to be placed carefully on the subject’s skin overlying some anatomical reliefs 
located underneath the skin surface, for example some bony tuberosities [2]. Errors 
during placement of the markers will induce errors during motion representation 
(i.e., based on the marker placement), and therefore result will show relatively low 
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reproducibility [3]. Motion artifacts caused by skin deformations can also reduce 
the measurement precision [4]. MarkerLess System (MLS) are developed for nearly 
twenty years and could represent alternatives for MBS [5-7]. MLS shows 
interesting perspectives for biomechanical applications: fast subject preparation 
because no marker placement, reduced reproducibility error due to the absence of 
marker placement. However, despite these promising advantages, MLS does not 
seem to have broad success in the motion analysis field. This lack of interest may 
be due to the fact that, in people’s mind, MLS offers less precision than MBS. Let’s 
note that MBS also show limitations: for example it is recognized that some 
skeleton motions (e.g., longitudinal rotations) are inducing limited skin 
displacements; marker displacements are therefore minimal. [8]. On the other 
hand, precision of MLS depends on the number of cameras used (single camera [9] 
to multiple cameras system [10]), types of algorithms (annealed particle filtering 
[11], stochastic propagation [12], silhouette contour [13], silhouette based 
techniques [14] …), estimation of whole body or only specific region. 

The recent availability of the Kinect™ sensor - PrimeSense technology (Tel Aviv, 
Israel) [15-17] - a cost-effective, portable and single camera MLS, shows interesting 
perspectives in the revalidation and motion analysis field. Due to the high 
potential of the Kinect™ in various fields (e.g. motion assessment, rehabilitation, 
ergonomics…) research is being performed to estimate the precision and validity 
of this device for environment estimation [18], posture assessment [19] or full body 
analysis [20]. Currently, based on these studies, is appears that the Kinect™ can be 
used to assess some kind of motion in well-defined situations [21]. However these 
studies only focused on the validation of the crude stick model skeleton provided 
by the Kinect™ (with SDK) composed by 20 points. These 20 points are gross 
estimations of the center of the major joints of the human body (Figure 1). This 
kind of model however only allows simple motion assessment (e.g., vector angle 
between 3 points for knee or elbow flexion, simple geometric approach to estimate 
elbow abduction between shoulder and elbow…) with limited precision. 
Furthermore this skeleton is a planar representation of the human anatomy, and 
therefore does not really represent the human skeleton in 3 dimensions (3D). It 
must be stressed that in order to be used in clinics for the evaluation and the 
follow-up of patients, the standard provided skeleton must be improved to include 
anatomical knowledge to meet anatomical conventions. This paper presents a 
novel paradigm in motion analysis using a single Kinect™ sensor as MLS to collect 
raw data that are optimized thanks to Model Based Approached using past 
experimental data and knowledge collected by the authors.  
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3 Results 

To assess results of the MBA method, 5 healthy subjects were equipped with 
reflective markers (Plug in Gait model) and were invited to realize clinical “Hand-
to-Head”, “Hand-to-Mouth” and “Hand-to-Back” motions (these motions are used 
to assess upper limb functions with patient suffering, for example, from obstetrical 
braxial plexus palsy [41], see Figure 5). Motion data were recorded with the 
Kinect™ and with a MBS (Vicon, 8MXT40s camera) simultaneously. Both signals 
were processed using MBA, and Range of Motions (ROM) were compared using 
Wilcoxon signed-rank test. Results are presented in Table 1 

Table 1: Mean (std) ROM for the three studied motions, results are expressed in degrees. 

 Hand-to-Head Hand-to-Mouth Hand-to-Back 
Kinect™ MBS Kinect™ MBS Kinect™ MBS 

Shoulder Flexion 35 (8) 33 (5) 29 (7) 30 (7) 32 (12) 29 (8) 
Shoulder 
Abduction 

75 (7) 69 (12) 22 (9) 19 (7) 18 (8) 18 (8) 

Shoulder 
Rotation 

60 (9) 53 (8) 19 (8) 14 (7) 35 (14) 29 (10) 

Elbow Flexion 92 (9) 95 (11) 102 (20) 109 
(18) 

49 (16) 48 (14) 

Forearm Prono-
Supination 

50 (12) 55 (16) 42 (14) 47 (20) 46 (16) 47 (19) 

No statistical difference was found for both devices after processing the inputs 
with MBA. The (non-significative) differences were as following: shoulder flexion 
presented difference values from 3 to 10% depending on the motion, shoulder 
abduction from 0 to 13%, shoulder rotations from 11 to 26%, elbow flexion from 2 
to 7% and forearm prono-supination from 2 to 11%. 

4 Discussion 

The Kinect™ seems promising not only for games purposes but also in clinics and 
rehabilitation. Raw skeleton data must however be processed prior to produce 
motion representation that are meaningful within clinical assessment activities. 
Research have already been performed allowing live visual feedback for patient 
correction during rehabilitation exercises [42], to assess the reachable volume with 
upper limb [43], to correct posture [44]. To the best of knowledge these studies are 
only using the simple stick model skeleton. Restrictions of the clinical use of the 
current system, prior to MBA optimization, include: 
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• The visual feedback is important to correct motion and increase benefits during 
rehabilitation [45]. One can easily imagine that the avatar used for visual 
feedback must be as close as possible to the real movement produced by the 
patient. Currently Kinect™ input can be used to animate avatar or models, but 
due to the lack of sufficient anatomical landmarks these avatars will not reflect 
the patient’s movements in an accurate way. 

• Motion analysis is an important part of the clinical examination of patient 
suffering from various disorders such as neurological conditions (e.g. stroke, 
cerebral palsy, etc) or orthopaedic disorders (e.g. low back pain, total knee 
replacement, etc). This kind of examinations requires precise devices able to 
record 3D motions because these pathologies lead to complex motions patterns 
[46]. MLS must be adapted to be able to track such motion pattern. 

• The same MBA approach could be used to gear human avatar controlled in 
gaming applications. 

The presented MBA solves some of these problems thanks to various operations 
such as segment length rigidification, weighted smoothing for each particular 
joints and physiological joint behaviour based on joint mechanism obtained from 
experimental data. Precision of the overall skeleton is increased. 

The MBA procedure can be used to animate a real skeleton as presented in Figure 
5. MLS results were similar that those obtained with a MBS (Table 1). These results 
indicated that, for those particular motions, the combination of Kinect™ and MBA 
can be used to quantify complex 3D motion of the upper limb. It is important to 
note that, due to the important number of parameters of this model, calibration is 
required in order to have similar results that those provided with gold standard 
MBS. This calibration is mainly focusing on fine tuning of smoothing parameters, 
actually each joint can be configured separately. Despite the MBA some motions, 
in particular shoulder rotations, and the ankle joints, remain difficult to estimate 
and should be, therefore, carefully interpreted. 

The enriched skeleton can also be integrated as Anatomical Optimization Engine 
within game environments in need of anatomical accuracy.  

Further researches are needed to evaluate the possibilities of the Kinect™ for 
future potential clinical applications. This paper presented a method for fast and 
easy 3D motion analysis (kinematics evaluation). Currently there is a lack of tool 
easily available to clinicians to perform clinical motion assessment in a quick and 
efficient way. Proposed devices are either not precise or reproducible (e.g. 
goniometer) or expensive and with limited access (electrogoniometer, 
optoelectronic device). Bringing new and more accessible motion assessment 
devices could allow increasing the frequency of patient follow-up, and therefore 
would allow better patient monitoring. 

New possibilities are also provided by the use of the skeletal model (Figure 5) 
obtained after the MBA process and after data fusion. Soft tissues (e.g. muscles, 
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ligaments …) can be added to this model and information related to muscles 
behaviour during motion (muscle length, lever arm, etc) can be obtained. These 
new information could bring new insight on pathologies involving musculo-
skeletal system such as spasticity [47]. Of course important validation works are 
required before going so far in the treatment of data obtained with this MBA. 

5 Conclusion 

Although the Kinect™ is already used for some limited clinical applications 
including basic motion assessment or live correction during rehabilitation, the 
underlying skeleton model is too crude for more advanced applications. This 
paper presents an optimization method that able to enrich the available raw data 
with supplementary anatomical and biomechanical information which were 
collected in previous scientific data collections. The optimization of the Kinect™ 
data with the proposed MBA method allows more accurate 3D motion analysis 
according to clinical conventions. Since the technology is cost-effective, not time-
consuming to use and portable both patients and clinicians could benefit from this 
kind of developments thanks to an increase availability of motion assessment and 
better control of rehabilitation exercises. Note that this paper is using the first 
version of the Kinect™. The release of new Kinect™ hardware is expected to 
increase the quality of the MBA optimisation thanks to a better production of the 
raw skeleton. 
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