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          2.1   Introduction 

 Stroke was not originally thought to be a good target for development of a neural 
transplantation therapy. Unlike Parkinson’s disease in which a speci fi c cell popula-
tion is lost and therefore could conceivably be replaced, cell loss post stroke is not 
limited to a speci fi c neuronal cell type or even neurons, making it more complicated 
to rebuild the neural circuitry. Even so, the  fi rst studies that used cell therapy for the 
treatment of stroke were performed over 20 years ago and published in 1988. In one 
study, fetal cortical neurons were transplanted directly into the cortex of adult rats 
that had undergone temporary middle cerebral artery occlusion (MCAO) (Mampalam 
et al.  1988  ) . These grafts survived, developed appropriate neurotransmitter pheno-
type as demonstrated with nicotinamide adenine dinucleotide phosphate-diaphorase 
(NADPH-d) and acetylcholinesterase (AChE) expression, and had neurites that left 
the transplant and integrated into the host brain. The other study focused on a label-
ing strategy to identify the transplanted fetal neurons in the host after ischemia 
induced by 4-vessel occlusion (4VO) (Farber et al.  1988  ) . Shortly, thereafter, another 
research group demonstrated that grafted fetal hippocampal neurons integrated into 
hippocampal CA1, receiving  fi ber ingrowth from septum that made synaptic con-
tacts with the grafted neurons and projecting to posterior levels of host CA1 (Tonder 
et al.  1989  ) . These early studies demonstrated proof of principle that fetal neurons 
could survive and engraft in infarcted brain. Subsequent studies examined the abil-
ity to rebuild neural circuits and reduce functional de fi cits. 

 In these earlier days of cell therapy, it was inconceivable that cells could be trans-
planted outside the central nervous system (CNS) and have a therapeutic effect. 
Therefore, all the early studies employed either direct implantation into the injured 
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brain (parenchymal) or into the nearby ventricular system (intracerebroventricular 
or i.c.v.). In more recent years, observations that bone marrow-derived cells could 
enter the brain and express microglial or astrocytic antigens after intravenous (i.v.) 
administration (Eglitis and Mezey  1997  )  led researchers to ask if other routes of cell 
delivery could be ef fi cacious. The  fi rst report of i.v. delivery examined cell ef fi cacy 
in a rodent model of traumatic brain injury (Lu et al.  2001  ) , followed shortly there-
after by a publication from the same research group demonstrating that intra-arterial 
(i.a.) administration of bone marrow stromal cells was effective at inducing func-
tional recovery in a MCAO model of stroke (Li et al.  2001a  ) . Since that time, the 
literature on cell therapies using these nontraditional routes of delivery has greatly 
expanded. In fact, when the route of administration is compared over time, there is 
a shift in the route of administration that is predominantly used, based on the cell 
types that are studied (Table  2.1 ). In this chapter, we will not provide an exhaustive 
review of the  fi eld, but we will provide a short overview of the cell therapy literature 
focusing on the bene fi ts and risks of these different routes of administration, dis-
cussing intraparenchymal, vascular, and ventricular routes of administration.   

    2.2   The Intraparenchymal Route of Cell Delivery 

 All the early neural transplantation studies for stroke used either the intraparenchy-
mal or intraventricular route of delivery of fetal neurons. The goal of these studies 
was predominantly to determine the feasibility of replacing lost neurons and rebuild-
ing neural circuits. The site of transplantation depended on the stroke model 
employed. For example, in the four-vessel occlusion model, neurons are lost in 
CA1. Transplants of fetal hippocampal neurons from embryonic day 17–19 (E17–
E19) rats survived well for extended periods of time (>100 days post transplant) and 
expressed appropriate region-speci fi c receptors (Aoki et al.  1993  ) . Further, the cells 
signi fi cantly improved performance on a spatial memory task (Netto et al.  1993  ) . 
Transplantation of neural stem cells (NSCs) in this region also produces recovery if 
suf fi cient cells survive and express neuronal proteins (Toda et al.  2001  ) . Using the 
similar bilateral occlusion model, investigators have transplanted NSCs into cortex, 
hippocampus, or striatum, depending on the experimental question to be addressed 
(Shichinohe et al.  2010 ; Ohtaki et al.  2008 ; Nodari et al.  2010  ) . 

 The focus of the studies using this route of delivery depends on the cells being 
studied. In those studies that have transplanted primary fetal neurons, the experi-
mental questions concerned whether the grafts survived, for how long, and if sur-
vival could be modi fi ed (Koshinaga et al.  1995  ) . They also asked whether the fetal 
neurons could mature into an adult phenotype that was appropriate for the region 
they were transplanted into (Mampalam et al.  1988 ; Nishino et al.  1993a  ) . Did 
these cells express neurotransmitters and have neuritic processes from graft and 
host developing synaptic contacts (Mampalam et al.  1988 ; Grabowski et al.  1992a, 
  b ; Onizuka et al.  1996 ; Aihara et al.  1994 ; Belichenko et al.  2001  ) ? Most impor-
tantly, questions of the ability of the cells to decrease infarct volume (Johnston 
et al.  2001  )  and improve motor, cognitive, or somatosensory function were also 
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addressed (Zeng et al.  1999 ; Nishino and Borlongan  2000 ; Nishino et al.  1993b ; 
Borlongan et al.  1998a,   b  ) . Later studies that tested NSCs as a treatment for stroke 
not only examined these same issues but were also concerned with the ability of 
the stem cells to proliferate (Darsalia et al.  2007  ) , differentiate into appropriate 
neuronal types (Darsalia et al.  2007  ) , and migrate to the site of injury (Darsalia 
et al.  2007 ; Hoehn et al.  2002 ; Lee et al.  2010a  ) . The studies that have used non-
neural cells as potential treatments have addressed issues of the ability of the cells 
to transdifferentiate, becoming neurons, astrocytes, or oligodendrocytes (Chen 
et al.  2001a,   b  ) . Alternative mechanisms of recovery such as trophic support 

   Table 2.1    Routes of cell administration for treatment of experimental stroke: analysis over time a    

 Year  Cell type 
 # of 
studies 

 Route  Primary 
outcomes b   Parenchymal  Vascular  Ventricular  Other 

 1991 c   Fetal neurons  3  3  2, 3, 5, 7, 12 
 NSCs 
 Bone 
marrow 
 Umbilical 
cord 
 Other  1  1  2, 6, 12 

 2001  Fetal neurons  2  2  1, 3, 5, 12 
 NSCs  2  2  1, 2, 14, 15 
 Bone 
marrow 

 5  2  3  2, 3, 4, 5, 6, 8, 
9, 10 

 Umbilical 
cord 

 1  1  2, 3, 5, 6, 9 

 Other  4  4  1, 2, 3, 7, 12 
 2011  Fetal neurons  1  1  3, 5, 12 

 NSCs  13  7  3  2  1  1, 2, 3, 4, 5, 6, 
7, 8, 9, 10, 12 

 Bone 
marrow 

 23  5  18  1, 2, 3, 5, 6,7,8, 
9, 10, 11, 12, 
13, 14, 15, 16 

 Umbilical 
cord 

 5  1  3  1  1, 2, 3, 7, 9, 10, 
11, 12, 13, 16 

 Other  2  1  1  1, 2, 3, 5, 6, 7 

   a The analysis was performed using the OVID and PUBMED literature database programs. The 
search strategy was as follows: (cerebral ischemia or cerebral hemorrhage or cerebrovascular acci-
dent or stroke) AND (cell therapy or cell transplantation or fetal tissue transplantation or fetal 
neurons or bone marrow or umbilical cord or mesenchymal stem cells, stem cells, endothelial 
progenitor cells) 
  b Primary outcome variables: 
 (1) infarct size, (2) functional outcome, (3) cell survival, (4) proliferation, (5) differentiation, 
(6) migration, (7) trophic support, (8) anti-in fl ammatory, (9) cell dose, (10) induction of neurogen-
esis, (11) induction of angiogenesis, (12) dendritic/synaptic plasticity, (13) cortical reorganization, 
(14) safety, (15) feasibility, (16) timing 
  c Includes years 1988–1991  
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(Chang et al.  2002 ; Ferrer et al.  2001 ; Lin et al.  2011  ) , anti-in fl ammation (Shen 
et al.  2010  ) , and induced neurogenesis (Li et al.  2001b  )  or angiogenesis (Lee et al. 
 2010a  )  were also explored. 

    2.2.1   Intraparenchymal Routes of Delivery in Clinical Studies 

 The  fi rst cell therapy study for stroke patients was conducted in the late 1990s and 
the  fi rst paper published in 2000. The cells chosen were the LBS neurons, derived 
from a human teratocarcinoma, that had been shown in earlier studies to differenti-
ate into neuron-like cells (Andrews  1984 ; Lee and Andrews  1986 ; Pleasure et al. 
 1992 ; Thompson et al.  1984 ; Trojanowski et al.  1993  ) . In animal studies, these 
cells improved outcome after direct transplantation into the striatum of rats sub-
jected to MCAO (Borlongan et al.  1998a,   b  ) . In this study, LBS neurons were 
injected into 12 patients with  fi xed de fi cits after lacunar stroke. European Stroke 
Scale score improved and PET scans performed 6 months post transplant showed 
increased metabolic activity at the implant site. Upon post-mortem examination 
from the  fi rst deceased patient, the cells did survive and express neuronal antigens; 
no tumor growth was detected (Nelson et al.  2002  ) . The second phase II study was 
published in 2005 (Kondziolka et al.  2005  ) . In this study, 5 or 10 million LBS neu-
rons derived were transplanted into 25 sites in the brains of nine patients with  fi xed 
motor de fi cits after subcortical ischemic stroke and 9 patients with  fi xed motor 
de fi cits after hemorrhagic stroke. There were some improvements in motor func-
tion observed, but the primary endpoint did not change. Later analysis of cognitive 
function showed that some of the patients had marked improvement (Stilley et al. 
 2004  ) . There were no adverse effects observed (Kondziolka et al.  2004  ) . The study 
demonstrated safety and feasibility, but not ef fi cacy.   

    2.3   The Vascular Delivery Route 

 The vascular delivery route became more common with the demonstration that bone 
marrow stromal cells could induce functional recovery even when they were deliv-
ered i.v. (Lu et al.  2001  ) . As demonstrated in Table  2.1 , there are now an abundance 
of studies that show that both i.v. and i.a. delivery are ef fi cacious in animal models 
of stroke. 

    2.3.1   Intravenous 

 There have been a number of animal studies that have examined the ability of cells 
(bone marrow cells, umbilical cord cells, neural stem cells, etc.) delivered i.v. to 
reduce infarct size or, more importantly, to induce functional (motor and/or cogni-
tive) recovery. The speci fi c vein that the cells are injected into may vary, but the 
most common are the tail vein and jugular vein, although femoral and penile are 
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also common. In 2001, the  fi rst i.v. bone marrow stromal cell transplants (Chen 
et al.  2001c  )  and human umbilical cord blood cells (Chen et al.  2001b  )  for stroke 
studies were published. The goal of both studies was to demonstrate that the cells 
could improve motor and cognitive function after stroke and set the basic parame-
ters for the timing of transplantation. In both studies, the cells produced the greatest 
recovery when administered at 24 h post stroke. When comparing across studies, 
the cord blood seemed to be marginally better at inducing recovery on the Rotarod 
test (~85 % compared to 75 % of baseline). There was no effect of cell delivery on 
infarct size and only about 10 % of the transplanted cells were present in the infarcted 
hemisphere in either study. In later studies that looked at the biodistribution of those 
cells, when MSCs, NSCs, multipotent adult progenitor cells (MAPCs), or bone 
marrow mononuclear cells were injected i.v. in a normal rat, less than 1 % of the 
MSCs, NSCs, or MAPCs were observed in arterial circulation, with most of these 
cells being found in lung, kidney, spleen, and liver (Fischer et al.  2009  ) . The excep-
tion was the bone marrow mononuclear cells which are smaller than the other cells. 
Fully 5 % of these cells reached arterial circulation, although the majority of the 
cells were found in the kidney, spleen, and liver. 

 Even while survival of human umbilical cord blood cells in the brain was mini-
mal, these cells consistently improved outcome after MCAO. In our subsequent 
studies, we determined that i.v. delivery was better than intraparenchymal delivery 
in the injured striatum (Willing et al.  2003  ) , we optimized the number of cells 
necessary to maximize behavioral recovery and minimize infarct size (Vendrame 
et al.  2004  )  and delineated the ideal timing of cell delivery (Newcomb et al.  2006  ) . 
While we and others showed that the cells could directly interact with all neural 
cells (Dasari et al.  2008 ; Hall et al.  2009a ; Jiang et al.  2010,   2011  )  and they could 
migrate toward extracts of infarcted brain (Chen et al.  2001b ; Jiang et al.  2008 ; 
Newman et al.  2005  ) , the cells did not have to enter the brain to induce recovery 
(Borlongan et al.  2004 ; Nystedt et al.  2006 ; Makinen et al.  2006  ) . The bene fi cial 
effects of i.v. HUCB delivery included local (Vendrame et al.  2005 ; Leonardo et al. 
 2010  )  and systemic (Vendrame et al.  2006 ; Hall et al.  2009b  )  anti-in fl ammatory 
properties as well as induction of neurogenesis and angiogenesis (Taguchi et al. 
 2004  ) . In the bone marrow literature, similar  fi ndings were observed (Li et al. 
 2001b ; Barbosa de Fonseca et al.  2010 ; Chen et al.  2002,   2003 ; Le et al.  2010 ; 
Shen et al.  2006  ) . 

 Perhaps a more surprising application of the i.v. route of delivery has been for 
delivery of NSCs. One of the advantages of NSC treatments was assumed to be their 
ability to differentiate into neurons, astrocytes, and oligodendrocytes in order to 
rebuild the local neural structure. But in recent years, it has become clear that the 
environment in the injured adult brain is not optimal for this and recovery after NSC 
treatment is actually occurring through growth factor-mediated or anti-in fl ammatory 
processes similar to those observed with bone marrow or HUCB cells (Sun et al. 
 2010 ; Lee et al.  2008  ) . For example, in the collagenase model of intracerebral hem-
orrhage, i.v. administration of human NSC decreased both brain and spleen cytokine 
expression and splenectomy reversed this effect (Lee et al.  2008  ) . NSCs respond to 
many of the same chemotactic cues as marrow- or cord blood-derived cells, so it 
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was not too far-fetched to believe that they could also migrate to the site of injury 
when administered by a vascular route. Minnerup and associates recently reported 
that neural progenitor cells administered i.v. improved performance on the adhesive 
removal test of rats that had previously undergone photothrombotic stroke (Minnerup 
et al.  2011  ) . While few of the LacZ-labeled cells were identi fi ed in the injured cor-
tex, those that were expressed doublecortin suggesting they were going to become 
neurons. Even more interesting, these cells did not induce endogenous neurogene-
sis, but they did enhance dendritic outgrowth leading the authors to postulate that 
this was the mechanism underlying behavioral recovery. When embryonic stem 
cells were injected i.v. and migration examined with SPECT imaging, they also did 
not migrate to brain (Lappalainen et al.  2008  ) .  

    2.3.2   Intra-arterial 

 It has been suggested that the i.a. route of delivery is superior to the i.v. route because 
the cells would be directly delivered to the brain where they could act to decrease 
infarct size and increase functional recovery. The  fi rst report of i.a. cell administra-
tion involved the injection of BrdU-labeled BMSCs through the internal carotid 
artery 24 h after transient MCAO (Li et al.  2001a  ) . Compared to vehicle-treated con-
trols, cell-injected animals scored signi fi cantly better on the neurological severity 
score and the adhesive removal test, but there were no signi fi cant differences in 
infarct size between groups. Approximately 21 % of the delivered cells were observed 
in the infarcted hemisphere, but no data were reported on distribution of the rest of 
the transplanted cells. Later studies using noninvasive imaging techniques found that 
by 24 h post injection, 95 % of the injected cells were found in the spleen (Keimpema 
et al.  2009  ) . In follow-up studies, i.a. transplantation increased angiogenesis and 
proliferation of NG2-positive oligodendrocyte progenitors (Shen et al.  2006  ) . 

 As with the i.v. route of delivery, NSCs or neural progenitor cells have also been 
delivered by the i.a. route. There are a number of studies that have reported injecting 
neural stem or progenitor cells via this route. The  fi rst study was a side-by-side 
comparison of intraparenchymal, i.v., and i.a. transplantation of human ES-derived 
neural cells and rat hippocampal cells. After i.v. delivery, the cells were found 
mainly in the liver but also in the spleen and kidney using SPECT imaging; no cells 
were found in the brain (Lappalainen et al.  2008  ) . With i.a. delivery of the human 
ES-derived cells, the cells were also found in the brain, but not to the same extent as 
was found with direct implantation of rat hippocampal neurons. In another study, 
red  fl uorescent protein-labeled cells were tracked using bioluminescence imaging 
(Pendharkar et al.  2010  ) . After i.a. delivery, the  fl uorescent signal was observed in 
the head region; this signal was still visible 7 days later. With the i.v. route, the 
 fl uorescent signal was only visible in the torso and was not evident 7 days post injec-
tion. These results were veri fi ed with SPIO labeling of neural stem cells and histol-
ogy. Immediately after i.a. injection, the cells were present in the vasculature, but by 
2 weeks post injection they were observed in the parenchyma. In the third study, the 
i.a., i.v., and intracisternal routes were compared (Li et al.  2010  ) . Within 4 h, mag-
netic-labeled NPCs were observed in the infarcted hemisphere. With intracisternal 
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and i.v. delivery, the cells only appeared in the infarcted hemisphere 2–3 days later 
and there were signi fi cantly fewer of these cells. These results are generally consis-
tent with the observations of the previous study. What is more interesting is that 
mortality in the three groups was signi fi cantly different. Forty-one percent of ani-
mals in the i.a. group died compared to 8 % in the i.v. group, which was similar to 
MCAO only (10 %). So while these studies both suggest that i.a. is the preferred 
route of delivery when it is necessary to get cells into the brain, the high mortality 
would suggest that caution should be used in employing this route.  

    2.3.3   Vascular Routes of Delivery in Clinical Studies 

 Both i.a. and i.v. routes have been used in clinical trial of bone marrow-derived 
cells. In the  fi rst study, just as reported in the animal studies, most of the cells were 
found in liver, lung, spleen, kidney, and bladder after i.a. delivery (Battistella et al. 
 2011  ) . Only in two patients were the cells observed in the brain, but even at 6-month 
follow-up there were no adverse events. Another study that examined i.v. adminis-
tration of bone marrow mononuclear cells also found no adverse effects that were 
attributable to the cell infusion (Savitz et al.  2011  ) . Patients exhibited functional 
improvements on multiple neurologic scales out to 6 months. Intravenous adminis-
tration of MSCs has also been performed (Bang et al.  2005  ) . In this study,  fi ve 
patients with severe neurologic de fi cits after a stroke in the MCA territory received 
a total of 10 8  autologous MSCs over two injections. Imaging was performed to 
determine infarct volume and National Institutes of Health Stroke Scale (NIHSS), 
Barthel Index, and modi fi ed Rankin Scale for functional recovery. There were no 
signi fi cant differences at study enrolment between these patients and the control 
group of untransplanted patients ( n  = 25). Lesion volume did not change over the 
ensuing year, although ventricular dilation was signi fi cantly more prominent in the 
control patients. There were signi fi cantly improved scores on the Barthel Index and 
a tendency toward improvement on the modi fi ed Rankin Scale. This research group 
expanded the initial study to examine survival and long-term outcomes of stroke 
patients with ( n  = 16) or without ( n  = 36) MSC transplantation after 5-year follow-up 
(Lee et al.  2010b  ) . Mortality of the transplanted patients was 25 % compared to 
58.3 % of the control group. There were signi fi cant improvements in the modi fi ed 
Rankin Scale scores of the treated group, and no difference between groups in 
comorbidities (such as seizures) and no side effects observed. Taken together, these 
data suggest that i.v. administration of MSC is safe and ef fi cacious.   

    2.4   Administration into the Ventricular System 

 There are a few studies that have examined the ability of cell transplants in the ven-
tricular system (i.c.v., intracisternal, or intrathecal) to migrate to the infarcted hemi-
sphere, integrate into the local brain circuitry, and induce anatomical and functional 
repair in a stroke model. One of the issues, especially when there are early progeni-
tors or stem cells within the cell preparation, is the overgrowth of the ventricles. 



22 A.E. Willing and M. Shahaduzzaman

Folkerth and Durso  (  1996  )  published a case report in which a Parkinson’s patient 
that had received i.c.v. transplants from a fetus 5–6 weeks of age died suddenly 23 
months after transplantation. Upon autopsy, the grafts which  fi lled the left lateral 
ventricle and the fourth ventricle were composed of mesenchymal and ectodermal 
cells, but not neurons. 

    2.4.1   Intracerebroventricular Route 

 In 1999, Kopen and associates demonstrated that bone marrow stromal cells became 
integrated into forebrain and cerebellum by 12 days after they were injected into the 
lateral ventricles of neonatal rats (Kopen et al.  1999  ) , demonstrating that the cells were 
capable of migrating into the brain. While this study provided evidence that cells admin-
istered by the i.c.v. route could enter the brain, there have been few studies that have 
followed suit. One exception was a study that used transplantation of microglia 1 h after 
MCAO induction to examine the role of microglia in neuroprotective repair after injury 
(Kitamura et al.  2004  ) . Those animals that were injected with microglia had signi fi cantly 
more neurons surviving in lesioned cortex than did vehicle-treated controls.  

    2.4.2   Intracisternal 

 When NSCs derived from subventricular zone were injected, MRI was used to track 
ferromagnetic-labeled NSCs from young adult rat when they were injected into the 
cisterna magna 48 h after MCAO (Zhang et al.  2003  ) . Fully 85 % of the MRI signal 
was observed in the ischemic striatum; almost 6,000 labeled cells of the 100,000 
transplanted were present by 35 days post transplant. Functional recovery on the 
foot fault and adhesive removal tests was observed in transplanted animals. The 6 % 
survival rate of the transplanted tissue is similar to that observed in other studies of 
neuronal transplantation.  

    2.4.3   Intrathecal 

 There have been few studies that have examined the ef fi cacy of administering cells 
intrathecally. In a recent article, Seyed Jafari and colleagues  (  2011  )  examined 
whether adult PKH-26-labeled neural stem cells (NSCs) administered by lumbar 
puncture could migrate to the infarcted brain and develop into neurons and astro-
cytes. They found labeled cells expressing S100 and  b -tubulin  fl oating in the ven-
tricles and attached to the ventricular wall 1 month after transplantation. Cells were 
not observed around the infarct, and while performance improved signi fi cantly on 
the Rotarod test of motor coordination, performance was still considerably impaired. 
Further, these authors provided no indication of how many cells were found in the 
brain ventricles or where else they were found. This will be critical to determine 
based on a recent report of an ataxia-telangiectasia patient that received NSC trans-
plants both intracerebellar and intrathecally (Amariglio et al.  2009  ) . Within 6 months 
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of treatment, the patient had developed both a brainstem tumor and a tumor at level 
L3–4 of the spinal cord attached to the cauda equina nerve roots; there were satellite 
tumors around both of the larger masses. Molecular analysis of the cauda equina 
tumor suggested it was derived from the NSC donor.   

    2.5   Other Routes of Delivery: Intraperitoneal 

 This route of delivery has only been applied in the stroke  fi eld in rat models of neo-
natal hypoxia-ischemia. The  fi rst study describing this approach injected MSC i.p. 
2 h after birth and then determined location and phenotype of the cells 14 days post-
natally. More cells were found in the ischemic hemisphere than on the contralateral 
side and few expressed neural proteins (Guan et al.  2004  ) . No behavioral measures 
were employed. 

 More recently, two studies have expanded on this early work. In the  fi rst study, 
the Rice-Vannucci model of neonatal hypoxia-ischemia was used to determine the 
ability of human cord blood-derived mononuclear cells to repair the damaged neo-
natal brain (Pimentel-Coelho et al.  2010  ) . The cells were injected 3 h after neonatal 
hypoxia-ischemia and a neurologic testing regimen including the cliff aversion 
re fl ex, the negative geotaxis re fl ex, and gait, was examined. Cord blood cells 
improved re fl ex behavior, but not gait and decreased cell death. 

 In the second study, Geißler et al.  (  2011  )  showed that HUCB cells were able to 
migrate into the brain after hypoxia-ischemia at 7 days as determined with immuno-
histochemistry for HLA-DR. Again no indication of how many cells survived in the 
brain or distribution to other tissues was given. The cells were able to induce more 
long-term recovery on the forelimb asymmetry test that appeared to be the result of 
a reorganization of cortical maps controlling sensorimotor function as determined 
electrophysiologically. 

 The choice of an i.p. delivery route is based more on ease of delivery in the neo-
nate than any other consideration. It is not clear that this route would be ef fi cacious 
in an adult. Barrier function in the neonate may not be as immutable yet as in the 
adult. Growth and trophic factor expression in the neonate may be more amenable to 
long-range migration and integration of the transplanted cells into the injured brain. 
These are cells that are usually found in blood, bone marrow, or lymphoid organs. 
They are usually extravasated into tissue from blood in response to injury or disease. 
They do not usually get taken up into the blood stream directly by “intravasation.” 
The more likely route of uptake is through lymphatic drainage of the peritoneal cav-
ity. Further, neither research group offers an explanation of how the cells may affect 
functional recovery with this delivery route. These questions remain to be answered.  

    2.6   What Is the Best Route for Cell Delivery? 

 Very few studies have directly compared routes of administration. In the earliest 
such study, we directly compared intraparenchymal into striatum and i.v. delivery 
of human cord blood-derived mononuclear cells after permanent MCAO (Willing 
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et al.  2003  ) . Long-term functional recovery was better with i.v. delivery; at one 
month post MCAO, both groups demonstrated good recovery on a battery of behav-
ioral tests, but at two months that recovery was only maintained by the group that 
received i.v. cells. In fact, performance of the group receiving cells into the striatum 
was even worse than the MCAO-only group, demonstrating that testing at longer 
post-stroke survival times is essential. As discussed earlier in this chapter, compari-
sons among the vascular routes have also been performed, demonstrating that cells 
do appear in the brain after i.a. delivery, but not after i.v. or intracisternal delivery 
(Li et al.  2010  ) . There are no consistent studies that look at functional recovery and 
infarct size across all routes of delivery. When choosing the delivery method for a 
study, the best approach is to  fi rst ask what the underlying mechanism of repair is. 
For example, if we believe that human umbilical cord blood cells reduce infarct size 
and improve functional outcomes by altering the systemic in fl ammatory milieu, 
then it does not make sense to implant them directly into the brain. If, on the other 
hand, we believe that the major bene fi t of a NSC therapy is through the cells ability 
to differentiate into neurons, astrocytes, and oligodendrocytes, then it is more 
appropriate to deliver them directly into the brain or i.a. than to inject them i.v. 
Other bene fi ts often attributed to the i.v. route, such as lower cost, relative safety, 
and ease of delivery, are of minor consideration next to this. Safety risks such as 
demonstrated increased risk of mortality with the i.a. route or tumorigenesis must 
also be considered.      
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