Multiple Zeta Values and Modular Forms
in Quantum Field Theory

David Broadhurst

Abstract This article introduces multiple zeta values and alternating Euler sums,
exposing some of the rich mathematical structure of these objects and indicating
situations where they arise in quantum field theory. Then it considers massive
Feynman diagrams whose evaluations yield polylogarithms of the sixth root of unity,
products of elliptic integrals, and L-functions of modular forms inside their critical
strips.

1 Sums and Nested Sums

We begin by generalizing the single sum of a zeta value to the nested sum that
defines a multiple zeta value (MZV) [1-4].

1.1 Zeta Values

For integer s > 1, the zeta values
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divide themselves into two radically different classes. At even integers we have
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710
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¢10) 93,555
and hence integer relations such as
50(4) - 28%(2) = 0. M

Yet no such relations have been found for odd arguments.
To prove (1), consider the wonderful formula

cos(z) > 1
sin(z) nZ

I—Nnmw
=—00

in which the cotangent function is given by the sum of its pole terms, each with unit
residue. Multiplying by z, to remove the singularity at z = 0, and then combining
the terms with positive and negative n, we obtain

z¢0s(z) > 1
=1-22Y ————.
sin(z) ¢ ; n?x? — 72

Expanding about z = 0 we obtain

1—-22/214+ 24 /41+ O(z°)
1—22/31424/514+ 0(z°)

2 z* 6
1=20Q) 5 ~20(4) 5 + 0

and easily prove that {(2) = 7?/6 and ¢(4) = 7*/90.

1.2 Double Sums

For integers a > 1 and b > 0, let
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caby = Y

m>n>0

which is a multiple zeta value (MZV) with weight a + b and depth 2. Then, when a
and b are both greater than 1, the double sum in the product

(@it =Y

m>0 n>0

can be split into three terms, withm > n > 0,m = n > 0andn > m > 0. Hence
¢(@)¢(b) = ¢(a.b) + L(a+b) + L(b.a). 2
There are further algebraic relations. Consider the sums
— 1
T(a,b,c) = ;; eI
Multiplying the numerator by (j + k) — j — k = 0 we obtain
0=T(@—-1,b,c)—T(a,b—1,c)—T(a,b,c—1)
and hence by repeated application of
T(a,b,c)y=T@@+1,b—1,c)+T(a+1,b,c—1)
we may reduce these Tornheim double sums [5] to MZVs. For example
T(1,1,1)=2¢(2,1).

We also have

But now the inner sum has only j terms and hence
N A
T(1.1,1) = ZFZE =2, 1) +¢0).
j=17 n=1

Comparing the two results for 7(1, 1, 1), we find that

£@2.1) =E0).
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More generally, for a > 1, Euler found that
a—1

Ca ) = Soa+ )= 3 Y Ea+ 1=, G
b=2

Moreover, Euler found the evaluation of all MZVs with odd weight and depth 2.
For odd a > 1 and even b > 0 we have

1+ C(a,b,a+b)

¢(a,b) = — > {la+Db)
(a+b=3)/2
+ Y Clab.2k+1)ia+b-2k-1IQk+1) 4
k=1
where

Cla.b.c) = (Z:i) + (Z:i)

For example, we obtain

2
(6.2) = ~5£0) + 2L0)

§(2,3) =5(2)5(3) = ¢(5) —¢(3,2)
9 w2
= S66) - 550)

using (4) and (2).
With weight w = a + b < 8 there is only one double sum ¢ (@, b) not covered by
Euler’s explicit formulas, namely

(4.2 = 2() - 526)

with an evaluation whose proof will be considered later.

To obtain such evaluations by empirical methods, you may use the EZFace
interface! which supports the 1indep function of Pari-GP. For example, the
input
lindep([z(4,2),2(3)72,2(6)])
produces the output
3., -3., 4.

Thttp://oldweb.cecm.sfu.ca/cgi-bin/EZFace/zetaform.cgi
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corresponding to the integer relation
30(4,2) —30%(3) + 42(6) = 0.

At weightw = 8, it appears that { (5, 3) cannot be reduced to zeta values and their
products, though we have no way of proving that such a reduction cannot exist. We
cannot even prove that ¢(3)/3 is irrational. I shall take ¢ (5, 3) as an (empirically)
irreducible MZV of weight 8 and depth 2. Then all other double sums of weight 8
may be reduced to (5, 3) and zeta values. For example,

202(6,2) = 40¢(5)¢(3) — 8£(5,3) — 492 (8).

It is proven that the number of irreducible double sums of even weight w = 2n is
no greater than [n/3]— 1. Up to weight w = 12, we may take the irreducible double
sums to be £(5,3), £(7,3) and £(9, 3). Later we shall see that the proven reduction

24,2572

8
£(1,5) = %4@(9, 3)+ 2;4“ (NE®) = 57398, 646,350 ®

sets us a puzzle. There is only one irreducible MZV with weight 12 and depth 2.

1.3 Triple Sums

The first MZV of depth 3 that has not been reduced to MZVs of lesser depth (and
their products) occurs at weight 11. It is proven that

1
) bv c) = T
C(a ) Z lambnpe
I>m>n>0
is reducible when the weight w = a + b + ¢ is even or less than 11. I conjectured
that all MZVs of depth 3 are expressible in terms of Q-linear combinations of the
set

By ={QRa+1,2b+1,2c+ 1)ja=b>c,a>c}

together with double sums, {(a, b), single sums, {(c), and their products. This was
borne out by investigations with Borwein and Girgensohn [6] and more recently
with Blimlein and Vermaseren in [7], with the associated MZV DataMine?
providing strong evidence for many of the claims made in this article. The conjecture

2http://www.nikhef.nl/~form/datamine/
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implies that the number of irreducible MZVs of weight w = 2n + 3 and depth 3 is
[n2/12] — 1, with the sequence

1,2,2,4,5,6,8,10,11, 14,16, 18,21, 24,26, 30

giving the numbers for odd weights from 11 to 41.

1.4 A Quadruple Sum

The mystery of MZVs really begins here. At weight 12 there first appears a
quadruple sum that has not been reduced to MZVs with depths less than 4. In the
DataMine we take this to be

1
COALD= D e

k>I>m>n>0

and prove, by exhaustion, that the following methods are insufficient to reduce it.

2 Shuffles, Stuffles and Duality for MZVs

Next we consider the sources of relations between MZVs.

2.1 Shuffles of Words

For integers s; > 0 and s; > 1, the MZV

1
C(s1,82,....8) = Z T

ny>ny>..>np>0

may be encoded by a word of length w = Z];=1 s in the two letter alphabet (4, B),
as follows. We write A, s; — 1 times, then B, then A, s, — 1 times, then B, and so
on, until we end with B. For example
£(5,3) = Z(AAAABAAB)
(6,4,1,1) = Z(AAAAABAAABBB)
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where the function Z takes a word as it argument and evaluates to the corresponding
MZV. Note that the word must begin with A and end with B. The weight of the MZV
is the length of the word and the depth is the number of B’s in the word.

We may evaluate the MZV from an iterated integral defined by its word. For
example

X1 1—2x, 1—x3

1 X1 X2
£(2.1) = Z(ABB) = / dxy / dx / dxs o
0 0 0

where we use the differential form dx/x whenever we see the letter A and the
differential form dx/(1 — x) whenever we see the letter B. Then the equality of
the nested sum (2, 1) with the iterated integral Z(ABB) follows from binomial
expansion of 1/(1 — x;) and 1/(1 — x3) in (6).

The shuffle algebra of MZVs is the identity

ZWzwvy= Y, ZW) (7)

Wes(U,V)
where .7 (U, V') is the set of words obtained by all permutations of the letters of UV
that preserve the order of letters in U and the order of letters in V. For example,
suppose that U = ab and V = xy. Then (U, V') consists of the words

S (ab, xy) = {abxy, axby, xaby, axyb, xayb, xyab} .

The only legal two-letter word is AB. Hence settinga = x = Aandb =y = B
we obtain

Z(AB)Z(AB) = 2Z(ABAB) + 4Z(AABB)
which shows that

£2(2) =26(2,2) + 4¢(3,1).

2.2 Stuffies of Nested Sums

We also have the “stuffle” identity

@82 =1202.2) +1(4) +¢2.2)

from shuffling the arguments in a product of zetas and adding in the extra “stuff” that
originates when summation variables are equal. Hence we conclude that £(3,1) =
%C (4). The evaluation ((2,2) = %C (4) requires the extra piece of information
222 = %é (4) obtained from expanding the cotangent function.
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Like the shuffle algebra, the stuffle algebra can be used to express any product of
MZVs as a sum of MZVs. For example

(3. 1)t(2)=¢(3,1,2) +¢(3,3) + (3,2, 1) + ¢(5, 1) + £(2,3,1).

2.3 Duality

By combining shuffles, stuffles and reductions of ¢(2), £(4) and {(6) to powers of

72 we may prove that

4
Z(AAABAB) = £(4,2) = {*(3) — 34“(6)-
Moreover, we obtain the same value for the depth-4 MZV

Z(ABABBB) = (2,2,1,1)

since Z(W) = Z(W), where the dual W of a word W is obtained by writing it
backwards and then exchanging A and B. This duality was observed by Zagier.
It follows from the transformation x — 1 — x in the iterated integral, which
exchanges the differential forms dx/x and dx/(1 — x) and reverses the ordering
of the integrations. Hence

¢(2,3,1) = Z(ABAABB) = Z(AABBAB) = ¢(3,1,2).

2.4 Conjectured Enumeration of Irreducible MZVs

Thus we arrive at a well-defined question: for a given weight w > 2 and a given
depth d > 0, what is rank-deficiency D,, s of all the algebraic relations that follow
from the shuffle and stuffle algebras algebras of MZVs, combined with duality
and the reduction of even zeta values to powers of 72? Note that D, 4 is an
upper limit for the number of irreducible MZVs at this weight and depth. There
may conceivably (but rather improbably) be fewer, since we cannot rule out the
possibility of additional integer relations. We cannot even prove that ¢(3)/73 is
irrational.

In 1996, Dirk Kreimer and I conjectured [8] that the answer to this question is
given by the generating function

. ‘ 3 12021 — 2
l_[l—[(l_xwyd)Dw_d ; 1— . y + y ( y ) (8)

_y2 4 _ 16
w>2d >0 X (1 X )(1 X )
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Table 1 Number of basis elements for MZVs as a function of weight and depth in a minimal
depth representation. Underlined are the values we have verified with our programs

w/d 1 2 3 4 5 6 7 8 9 10
3 1

4

5 1

6

7 1

8 1

9 1

10 1

11 1 1

12 1 1

13 1 2

14 2 1

15 1 2 1

16 2 3

17 1 4 2

18 2 5 1

19 1 5 5

20 3 7 3

21 1 6 9 1

22 3 il 7

23 1 8 15 4

24 3 16 14 1

25 1 10 23 11

26 4 20 21 5

27 1 11 36 23 2
28 4 27 45 16

29 1 14 50 48 7
30 4 35 73 37 2

which produces the values of D,, 4 in Table 1, with underlined values verified by
work with Johannes Bliimlein and Jos Vermaseren [7].

To explain how I guessed the final term in the generating function (8), we shall
need to consider alternating Euler sums.

3 MZVsin QFT

The counterterms in the renormalization of the coupling in ¢* theory, at L
loops, may involve MZVs with weights up to 2L — 3 [9]. Those associated
with subdivergence-free diagrams may be obtained from finite massless two-point
diagrams with one less loop.
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The first irreducible MZV of depth 2, namely (5, 3), occurs in a counterterm
coming from the most symmetric six-loop diagram for the ¢* coupling, in which
each of the 4 vertices connected to an external line is connected to each of the 3
other vertices, giving 12 internal propagators (or edges, as mathematicians prefer to
call them). It hence diverges, at large loop momenta, in the manner of [ d**k/k**.
Its contribution to the B-function of ¢*-theory is scheme-independent and may be
computed to high accuracy by using Gegenbauer polynomial expansions in x-space,
which give the counterterm as a four-fold sum that is far from obviously a MZV.
Accelerated convergence of truncations of this sum gave an empirical Q-linear of
combination of £(5)¢(3) with

(6.3~ 120®)

and the latter combination was found to occur in another six-loop counterterm.
I shall attempt to demystify the multiple of ¢(8) after discussing alternating Euler
sums.

At seven loops, Dirk Kreimer and I found the combination

¢(3.5.3) = £(3)(5.3)

in three different counterterms, where it occurs in combination with rational
multiples of £(11) and £2(3)¢(5).

4 Alternating Euler Sums

This second topic is closely related to the first, namely alternating sums of the form

oo ni ng

Z 81 .- Sk

81 Sk

ny>ny>..>np>0 1 k

with positive integers s; and signs ¢; = =£1. We may compactly indicate the
presence of an alternating sign, when &; = -1, by placing a bar over the
corresponding integer exponent s ;. Thus we write

_— (_1)m+n
§(3’ ) B m§:>0 m’n
B _ (_1)k+m
C(Ss 67 3565 3) = Z j3k()l3m6n3

Jj>k>I>m>n>0

using the same symbol { as we did for the MZVs. Such sums may be studied using
EZFace and the DataMine.
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4.1 Three-Letter Alphabet

Alternating sums have a stuffle algebra, from their representation as nested sums,
and a shuffle algebra, from their representation as iterated integrals. In the integral
representation we need a third letter, C, in our alphabet, corresponding to the
differential form dx /(1 + x). Consider

sy = [ [ [
B o X Jo l—y 0 1+Z

The z-integral gives log(1 + y) = — Zj>0(—y)j /j and hence

zaney =y [ [

j>0

Expanding 1/(1 —y) = >, y*~1 and integrating over y we obtain

ST
Z(ABC) = ZZ/ d;c ;C:rk( })f

k>0 j>0 J

and the final integration gives

1 =D/
zn0) =YY A Y
k>0 j>0 (] + k) J
Finally, the substitution k = m — j gives

Z(ABC)=— ) ( 1) =—£(2,1).

m>]>0

It takes a bit of practice to translate between words and sums. Here’s another
example:

(R R GV G VL
Z(ACCAC) = (— 1)3222(1 +k+02j+k 2

>0 k>0 j>0
gives
=D 5
Z(ACCAC) =— Y —— =-{(2.1.2)
- m?nj
m>n>j>0

after the substitutions/ =m —nandk =n — j.
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Going from sums to words is quite tricky. For example, try to find the word W
and the sign (W) such that

§(37 67 35 85 3) = €(W)Z(W)
Note that e(W) is +1 or —1 according as whether there is an odd or even number of

letters C in the word W. The word W begins AABAAAAACAA .. .. The next letter
is either B or C, but which is it?

4.2 Shuffles and Stuffles for Alternating Sums

The six shuffles in
S (ab, xy) = {abxy, axby, xaby, axyb, xayb, xyab}
give six different words, witha = A,b = B,x =y = C:

Z(AB)Z(CC) = Z(ABCC) + Z(ACBC) + Z(CABC)
+ Z(ACCB) + Z(CACB) + Z(CCAB)

which translates to
(M, =¢2,1,H)+¢2, 1, +¢10,2,D)+¢2, 1, D) +¢(1,2,1) +¢(1,1,2).
The stuffles for this product are

tc, ) =¢2, L, +c@, ) +¢(1,2, 1) +¢(1,3)+¢(1,1,2).

4.3 Transforming Words

The transformation x = (1 — y)/(1 + y) gives

dlog(x) = dlog(l — y) —dlog(l + y)
dlog(1 — x) = dlog(y) —dlog(l + y)
dlog(l + x) = —dlog(l + y)
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and maps x =0and x = 1toy = 1 and y = 0. Thus, if we take a word W, write
it backwards, and make the transformations

A—- (B+C)
B—-(A-C)

we may obtain an expression for Z(W) by expanding the brackets.
For example the transformation

AB = (A—C)(B+C)=AB+AC— CB - CC
gives
Z(AB) = Z(AB) + Z(AC) — Z(CB) — Z(CC).
Combining this with the shuffle
Z(C)Z(C) = Z(CC) + Z(CC)

we obtain

0= Z(AC) ~ Z(CB) ~ 3 Z(C)Z(C) = ~£() + £(1T) — 3£ (D).
Combining this with the stuffle

(M) = £ D) +¢0) + 20T
we obtain
(@) = 5t

which is also obtainable as follows.

4.4 Doubling Relations

For a > 1 we have

1 —-1)" 2
t@ i@ = Y e~
n>0 k>0
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by the substitution n = 2k. Hence

(@ = Q"7 = 1.

Ata = 2, we obtain £ (2) = —£(2)/2, as above. Note also that (1) = —log(2).
We may take any MZV and convert it into a combination of MZVs and
alternating sums, by doubling the summation variables. For example, we obtain

2—a—b _ 2
2T @) = 3 (2m)a @y

m>n>0

_ Z 1+ (=1) 1+ (=D
j>k>0 ja ke

= {(a,b) +{(@b) + {(a,b) + ¢ (@, b)

by the transformations j = 2m and k = 2n.

More complicated doubling relations were used in constructing the DataMine.
With these, it was possible to avoid using the time-consuming transformations
A — (B+ C)and B — (A — C) as algebraic input. It was verified that the output,
obtained by shuffling, stuffling and doubling, satisfied the relations that follow from
word transformation.

4.5 Conjectured Enumeration of Irreducible Alternating Sums

Before considering the enumeration of irreducible MZVs, in the (A, B) alphabet,
I already had a rather simple conjecture for the generator of the number, E,, 4, of
irreducible sums of weight w and depth d in the (A, B, C) alphabet, namely

wpdyBua 2 XV
e e e T ©

w>2d>0

If this be true, it is easy to obtain E,, ; by Mobius transformation of the binomial
coefficients in Pascal’s triangle. Let [8]

(a/c +b/c)!
T(a.b) = +bZ ) @lonw/on "

where the sum is over all positive integers ¢ that divide both a and b and the M&bius
function is defined by

1 whenc¢ = 1
n) =140 when c is divisible by the square of a prime (11)
(=1)* when c is the product of k distinct primes.
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When w and d have the same parity, and w > d, one obtains from (9)

Ew,dzT(W;d,d). (12)

The DataMine now provides extensive evidence to support this conjecture. It
was verified at depth 6 up to weight 12, solving the algebraic input in rational
arithmetic, and then up to weight 18, using arithmetic modulo a 31-bit prime. At
depth 5, the corresponding weights are 17 and 21. At depth 4, they are 22 and 30.

S Pushdown from MZVs to Alternating Sums

Now consider the integers M,, ; generated by an even simpler process:

TTTTH - xyybos =1 - 222 (13)

1 —x2
w>2d>0

But what is the question, to which this is the answer?

I conjectured that M,, 4 is the number of irreducible sums of weight w and depth
d in the (A, B, C) alphabet that suffice for the evaluation of MZVs in the (A, B)
alphabet.

5.1 Pushdown at Weight 12

As already hinted, the first place that this conjecture becomes non-trivial is at weight
12, where the enumerations M4 = 0 and M, = 2 are to be contrasted with
the enumerations D4 = 1 and D, = 1 of irreducible MZVs. The conjecture
requires that

£6.4.1.1)= Y !

kol4mn
k>I>m>n>0
be reducible to sums of lesser depth, if we include an alternating double sum in the
basis.

In 1996, I found such a “pushdown’ empirically, using the integer-relation search
routine PSLQ [10]. It took another decade to prove such an integer relation, by
the laborious process of solving all the known algebraic relations in the (4, B, C)
alphabet at weight 12 and depths up to 4. Jos Vermaseren derived this proven identity
from the DataMine:
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_ 64 7,967 1, 11,431
£6,4,1,1) = =22 A(7.3) = 15280, 3) + S8 + T5550(E6)

_%5(9)«3) +30()0(7.3) + %m)zz(S) +100@)EMNIG)

3 2 1 2 18 3 2
+200(5.3) = PRGN G) - 28 @F6)

5,607,853
_6,081,075§ @
where

A(7,5) = Z(AAAAAA(B — C)AAAAB) = ¢(7,5) + ¢(7.5).

It is now proven that all MZVs of weight up to 12 are reducible to Q-linear
combinations of (5, 3), ¢(7,3), £(3,5,3), £(9,3), {(7,5), single zeta values, and
products of these terms.

5.2 Enumeration of MZVs Revisited

I can now explain the rather simple-minded procedure that Dirk Kreimer and I used
in 1996 to arrive at the conjecture [8]

[T - w21 - Xy o x2-y?)

— x2 — x4 _ 6
w>2d>0 1 X (1 X)(l )C)

for the number D,,; of irreducible sums in the (A4, B) alphabet of pure MZVs.
We added the third term to the much simpler conjectured generator for the much
complicated question answered by M,, s, namely the number of irreducibles in
the (A4, B, C) alphabet that suffice for reductions of MZVs. The numerator, x!2 y2
(1 — y?), of this term was determined by the single pushdown observed at weight
12, from an MZV of depth 4 to an alternating sum of depth 2. The denominator,
(1—x*)(1—x9), was chosen to agree with the empirical number D5, » = [1n/3]—1
of double non-alternating irreducible sums of weight 2n. Then we assumed that the
enumeration of all other pushdowns would be generated by filtration. It was possible
to check this, in a few cases, using PSLQ in 1996.

The list of explicit pushdowns that have now been obtained, in accord with the
conjecture, has grown since then.

At weights 15, 16, 17, we have found pushdowns from MZVs to these alternating
sums: £(6,3,6), £(13,3), £(6,5,6).
At weight 18, there were pushdowns to £ (15, 3) and £ (6, 5,4, 3).
At weight 19, to £(8,3,8) and £(6, 7, 6).
At weight 20, to £(17,3), £(8,5,4,3) and £(6. 5,6, 3).
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Our most ambitious efforts were at weight 21, where 3 MZVs of depth 5 are
pushed down to the alternating sums ¢ (8, 5, 8), (6, 9, 6)and ¢ (8, 3, 10). Moreover
the first pushdown from an MZV of depth 7 to an alternating sum of depth 5 is
predicted at weight 21. A demanding PSLQ computation gave a relation of the form

326
£(6.2,3.3.5.1.1) = =t (3.6.3.6.3) + ... (14)

where the remaining 150 terms are formed by MZVs with depth no greater than
5, and their products. At such weight and depth, it becomes rather non-trivial to
decide on a single alternating sum that might replace a MZV of greater depth. It
took several attempts to discover that the alternating sum

~ B (_1)k+m
£(3,6.3,63)= ) (jk2Im?n)?

Jj>k>I>m>n>0

is an “honorary MZV” that performs this task.

5.3 Suppression of & in Massless Diagrams

Now I can demystify, somewhat, the combination

(6.3~ 120®)

that occurs in scheme-independent counterterms of ¢* theory at six loops. Dirk
Kreimer and I discovered that the combinations [8]

N(a,b) = (@, b) = ¢ (b, a),

with distinct odd integers a and b, simplify the results for counterterms. In
particular, the use of

27 29 45
NG5 = o5 (669 - e ) + o)

removes all powers of 7 from both subdivergence-free diagrams that contribute to
the six-loop B-function. In each case, the contribution is a Z-linear combination of
N(3,5) and (3)¢(5).

At higher loop numbers, Oliver Schnetz has found that N(3,7) suppresses the
appearance 7'°. However, at 8 loops he found that N(3,9) and N(5,7) are not
sufficient to remove 7 '2. Like the maths, the physics becomes different at weight 12.
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6 Magnetic Moment of the Electron

The magnetic moment of an electron, with charge —e and mass m, is slightly greater
than the Bohr magneton

B
9274 % 10724 T
2m

which was the value predicted by Dirac. Here I included # = h/(27), which we
usually set to unity in QFT.

Using perturbation theory, we may expand in powers of the fine structure
constant:

e? 1
o= = .
dmephc 137.035999. ..

In QFT, we usually set & = 1 and ¢ = 1 and expand in powers of o/ = e?/(47?),
obtaining a perturbation expansion

magnetic moment

o a2 a3
=1+A1—+A2(—) +A3(—) + ...
Bohr magneton g b4 b4
which is known up to three loops.

In 1947, Schwinger [11] found the first correction term A; = % In 1950, Karplus
and Kroll [12] claimed the value

125 2,687
282(3) = 54L(2) log(2) + —~L(2) = T = —2.972604271 ..

for the coefficient of the next correction. It turned out that they had made a mistake
in this rather difficult calculation. The correct result

197
144

A, = §§(3)_3§(2) log(2) + %g(z) + = —0.3284789655 ...

was not obtained until 1957 [13, 14]. Not until 1996 was the next coefficient

215 83 13 50, — —
Az = —55(5) + 55(3)5(2) - §§(4) - ?5(3, 1)
139 596 17,101 28,259
+§§(3)_T§(2)10g(2)+ 135 ‘(2 + =134 (15)

= 1.181241456. ..
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found, by Stefano Laporta and Ettore Remiddi [15]. The irrational numbers
appearing on the second line are those already seen in A,. On the first line we see
zeta values and a new number, namely the alternating double sum

_ -1 m—+n
(3,1 = Z L ~ —0.11787599965050932684101395083413761 . ..

I visited Stefano and Ettore in Bologna when they were working on this
formidable calculation and recommended to them a method of integration by parts,
in D dimensions, that I had found useful for related calculations in the quantum
field theory of electrons and photons [16]. Here D = 4 — 2¢ is eventually set to 4,
the number of dimensions of space-time. But it turns out to be easier if we keep it as
a variable until the final stage of the calculation. Then if we find parts of the result
that are singular at ¢ = 0 we need not worry: all that matters is that the complete
result is finite. Based on D-dimensional experience, I expected their final result to
look simplest when written in terms of (3, 1).

The D-dimensional calculation that informed this intuition involved three-loop
massive diagrams contributing to charge renormalization in QED [16]. These
yielded Saalschiitzian F3, hypergeometric series, with parameters differing from
% by multiples of &, namely

o

W(ayazas,as) =y

n=0

(3 — a18)a (3 — @28y

(% + 6138)n+1(% + a48)n+1

with (@), = I'(e +n)/I" (). In particular, I needed the expansions of W(1, 1; 1, 0)
and W(1,0;1,1) in &. The result for the most difficult three-loop diagram had the
value 72 log(2) — %é (3) at & = 0. Noting that this also occurs in the two-loop
contribution to the magnetic moment, I expanded the charge-renormalization result
to O(g), where I found only ¢(3,1) and ¢(4). I thus hazarded the guess that these
two sums would exhaust the weight-4 contributions to the magnetic moment at three
loops, which happily is the case.

One may also write (15) in terms of a polylog that is not evaluated on the unit
circle, such as

L1/ = 3 o (3] = =530 + 6@ 108 @) + 52 - 3G,
n=1

but then the result for A3 will acquire extra terms, involving powers of log?(2).
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7 Three-Loop Massive Bubble Diagrams

Here we consider three-loop diagrams with a massive particle in at least one of the
internal lines. If this mass is much larger than the scales set by external momenta,
we may set the latter to zero, and obtain vacuum bubbles.

7.1 Tetrahedral Bubbles from Two-Loop Propagators

There are ten distinct colourings of a tetrahedron by mass, shown in Fig. 1.

The massive lines in V,4 and V,y are adjacent and non-adjacent, respectively;
in the dual cases, Vi4 and Vuy, it is the massless lines that are adjacent and non-
adjacent; in cases Vs7, V35 and V3, the massive lines form a triangle, star and line,
and hence the massless lines form a star, triangle and line.

Defining the finite two-point function (with space-like p?)

2
I(ry...rs; p*/m?) := %/d“k/d“l Pi(k)Po(p + k)Ps(k — D Py(D)Ps(p +1)  (16)

with P; (k) := 1/(k? + m?r;), in 4 dimensions, we obtain

V(rl...r5,0)—V(rl...rs,l)=/oodx1(r1...r5;x){§_L} + O(e)
0

x+1
a7
for the difference of vacuum diagrams with a massless and massive sixth propagator.

This difference is finite in 4 dimensions.
Suppressing the parameters r;...rs, temporarily, we exploit the dispersion

relation
© 1 1
I(x) = / dso(s){ ——} (18)

S0 s+ x K

where —2mwio(s) = I(—s + i0) — I(—s — i0) is the discontinuity across the cut
[—00, —So] on the negative axis. Integration by parts then gives

I(x) = /OO ds o’ (s) {—log (1 n ?) + log (1 n :—0)} (19)

where the constant term in the logarithmic weight function may be dropped if
o (so) = 0, as occurs when sy = 0. As x — o0, we obtain the universal asymptotic
value

60(3) = I(o0) = / " dso '(s) {log(s) —log(so)} (20)

S0
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LN LN LN BN AN
LA LN BN AN A

Fig. 1 Colourings of a tetrahedron by mass, denoted by a blob

with the log(so) term dropped when so = 0. The finite difference in (17) is obtained
from (19) as

/0 dx 1(x) {% -— 1} _ / o ML)~ Lo} @D

with a dilogarithmic weight function

o o dx 1+x 1 _ _ _l 2 R _
Ly(s) := /0 ot D) log(1 m x/s) =Liy(1-1/s) = 3 log=(s)—Liz(1—s)
(22)

that is chosen to satisfy L,(1) = 1, thus enabling one to drop L, (so) for so = 0 and
so = 1, which covers all the cases with N < 3 massive particles in the two-point
function, and hence N + 1 < 4 massive particles in vacuum diagrams.

We now prove that the two terms in the weight function (22) can be separated to
yield the finite parts of the vacuum diagrams combined in (17), as follows:

F(ry...r5,0) = % /oo dso’'(ry ...rs:s) {log*(s) — log*(s0) } (23)

S0

oo

F(rl...rs,l)Z—/ dsa’(rl...r5;s) {Liz(l—S)—Liz(l—S())} (24)

50

with constant terms in the weight functions that are inert when so = 0 and when
so = 1. The proof uses the representation

o0

I(x) =6L(3) + / dso’(s) {—log(x + 5) + log(x + s0)} (25)
50

in which the asymptotic value (20) is subtracted. Then one obtains

/0 dxl(o.;)—;f(x):—[o dso’(s) {Lin(1 —5) —Lio(1 —s0)}.  (26)
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Specializing the analysis to cases with r; = 0 or 1, we obtain from [17]

o'(r1...rs5;8) = {a;(rl ...r5;s)(~)(s—(r1 —|—r2)2> +( <—>4,2<—>5)}

+ {a}l)(rl . r5185) O (s P r4)2) F (12,4 5)}

i T(x.r1,12,73.14.75) 0 ( A(x,ry,
ol(ry...rs5;8) := 25)’%/ dx (xX,r1,72,73,74 ”5)_( (x, 7 ".2)) @7
(ra+7s)> A(s,r1,12) ox \x—s+1i0
(Vfs=r2)? 9 /T
o) (r1...r55) = 25}{/ o ( (x,s,rz,rsyf‘4,r3)) 28)
(r3+r4)? as x—r; +1i0

A(s,a,b)A(s,d, e)
x2—x(a+b—-2c+d+e)+(a—b)d—e)

T(s,a,b,c,d,e) := arctanh( ) 29)

Aa,b,c) := Va2 + b2 + ¢2 — 2ab — 2bc — 2ca (30)
with integration by parts in (27) giving a logarithmic result, in all cases, and

differentiation in (28) giving a logarithmic result when r r3r; = ryrary = 0, i.e.
when there is no intermediate state with three massive particles.

7.2 The Totally Massive Case

We were able to hand nine cases by methods that avoided intermediate states with
three massive particles. Now there is no option, since

o0
Fe = —/ dSE/(S) L12(1 — S) (31)
4
involves intermediate states with two and three massive particles in
() =0,(s)O(s —4) +7,(s)O(s — 9).. (32)

We may, however, simplify matters by separating these contributions in

Fs—Fs = /:Odsc_r/(s) Liy(1—1/s) = F, + F, (33)
F = /4 " s (5) {Lin(1 — 1/5) — £ ()} (34)
F, ;:/9 dsT)(s) {Lix(1 — 1/5) — £(2)} (35)

where F5 may be evaluated without encountering elliptic integrals.
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The two-particle cut gives a logarithm in

2 2
il

L(5) = arccosh(s/2 — 1) - ——— (36)

s—3 V3s(s —4)

while the three-particle cut gives the elliptic? integral

_, Vs=D% gy A(x,1,1) x+s—1

o(s) = — 3 . 37
x—1 A(x,s, 1) A%*(x,s,1) + xs

At large s, contributions (36) and (37) are each O(log(s)/s), while their sum is
O(log(s)/s?). The integrals (34) and (35) converge separately, thanks to the ¢(2) in
their weight functions, to which the combination (33) is blind.

It appears that we need to integrate the product of a dilog and an elliptic integral.
To avoid this, we may we reverse the order of integration. Setting x = 1/u?® €
[4, 00] in (37), which now becomes the outer integration, and s = (1/u+ v)(1/u +
1/v) € [(1/u + 1)?, 0] in the inner, we then integrate by parts on v € [0,1] to
convert the dilog to a product of logs, with the result [18]

i 1
Fy = 2/ du (dfl(”))/ dv (%) C(u,v) Du,v)  (38)
u 0

Au) == log( ) (39)
(1
B(u,v) := log( u++”z)f:‘;2v)) (40)
Cluv) = log ((1 ruet ”)) (41)
142w+ 02+ (1 —v2)V1 —4u?
D(u,v) :=1 42
®.2) 0g<1—|—2uv—|—v2—(1—vz)x/1—4u2 )

which establishes that F}, is the integral of a trilogarithm.

The NAG routine DOIFCF is notably efficient at evaluating rectangular double
integrals in double-precision FORTRAN, which was ample to to discover the
remarkable relation

Fs = Fss + Fay — Fay = 4 (CB(1/3) + 4(4) + 203, 1)) (43)

3T am told that Killén was disappointed to find that the two-loop electron propagator involves an
elliptic integral, unlike the simpler photon propagator.
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where Cly(7/3) = Y, _,sin(nx/3)/n?. This corresponds to a direct relation
between diagrams

Vs + Vany = Vas + Van + O(e) (44)

verified to 15 digits. It stands as testament to the oft remarked fact that results
in quantum field theory have a simplicity that tends to increase with the labour
expended.

8 Massive Banana Diagrams

To progress beyond diagrams that yield polylogs and elliptic integrals we now turn
attention to vacuum diagrams with merely two vertices. I shall call these “banana”
diagrams. The L-loop banana diagram has L + 1 edges, each representing a massive
propagator with unit mass. To avoid ultra-violate divergences, let us consider these
in two space-time dimensions.

8.1 Schwinger’s Bananas

Let A be the diagonal N x N matrix with entries 4; ; = §; ;a;. Let U be the column
vector of length N with unit entries, U; = 1. Then B = U U is the N x N matrix
with unit entries, B; ; = 1. The banana diagram with N + 1 edges of unit mass, in
two space-time dimensions, may be evaluated by Schwinger’s trick as a multiple of
the N -dimensional integral

V — / dO(]...dOéN (45)
N+ . <0 Det(A + B)(Tr(A) + 1)

where

N 1 N
Det(A+B)=Za—
i

a;
i=0 ' j=0

is the first Symanzik polynomial, with oy = 1 fixed by momentum conservation,
and the second Symanzik polynomial

N
Tr(A) +1=) o

i=0

results from the fact that the N + 1 edges are propagators with unit mass.
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8.2 Bessels’s Bananas

We may also evaluate banana diagrams in x-space, since the two-dimensional
Fourier transform of the p-space Euclidean propagator 1/(p? + m?), with p?> =
P2 + p?, yields the Bessel function Ko(mx), with x> = x2 + x?. The normalization
in (45) corresponds to

Vsl = ZN/O [Ko()]N 't dt (46)

which differs by a power of 2 from the Bessel moments that I studied with Bailey,
Borwein and Glasser [19].

Hence I but a bar over V' and use the subscript N + 1 to indicate the number of
Bessel functions.

8.3 Known Bananas

It is proven that [19]

Vi=1 47)
V,=1 (48)
Vi =3L_3(2) (49)
Vi=17503) (50)

where

1 1
L) =2 ((3n Ty Gnt 2)s)

n>0
is the Dirichlet L function with conductor —3.
The zero-loop evaluation (47) merely checks our normalization.

The one-loop evaluation
o0
- d
v, = / L
o (o1 +1)2

follows neatly from (45), since with N = 1 we have Det(A + B) = Tr(A) + 1 =
o + 1.
I shall now use {a, b, c, ...} for the Schwinger parameters {&, &y, o3, ...}
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8.4 Three-Edge Banana and Sixth Root of Unity

At two loops, the Schwinger method gives the banana diagram with 3 edges as

v _/°°/°° da db
T f Sy @tra+b)at+b+1)

To proceed we may take partial fractions with respect to ». Then

a’>+a+1 _a+l 1 9 o ab+a+b
(ab+a+b)a+b+1) ab+a+b a+b+1 b o
enables integration over b. Hence we obtain
— *® G(a)d
v, = / _G@da_ 51)
0o a’+a+1
with contributions to
G(a) =log(1 + a) + log(1l + 1/a) (52)

at b = oo and b = 0. It is apparent from (51) that the sixth root of unity
A = (1 +i+/3)/2 is implicated, since a®> + a + 1 = (a + A)(a + A), where
A = (1 —iv/3)/2 = 1 — A is the conjugate root. Working out the corresponding
dilogarithms we obtain

_ 4
V3= —3Lih(A) =3L_3(2
3 7 2(A) 3(2)

in agreement with the well known result (49).

8.5 Four-Edge Banana and §(3)

To evaluate

v _/°°/°°/°° da db de
o)y (abe+ab+betcaya+b+c+1)

we take partial fractions with respect to ¢ and then integrate over ¢, to obtain

- [ [~ L(a,b)dadb
V“_/O /0 (a+ )b + )(a+b)
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with
Lmjazkg(@b+a+bxa+b+n).
ab
Hence with
*® (a—1)L(a,b)db
F =
(@) /0 &+ )(a+b)
we have

(53)

— * F(a)da _ (F(a) — F(l/a))da
A=

- a2 —1 2

I shall need only the derivative of F(a). Let

K(a,b) =

L
M +log(ab + a + b) —2log(a + b + 1).
a

+b

Then, by construction,

d _ d ((a—1)L(a,b)
%K(a,b) = ag (—)

b+1(a+b)

and hence
d
ad—F(a) = K(a,00) — K(a,0) =2G(a)
a

where G (a) was given in (52). We now integrate (53) by parts, to obtain

V= / —1og( )(G(a)+G<1/a>)

and use Nielsen’s evaluations
14 5
—/ il log(1 —a)log(l1 +a) = =¢(3)
0o d 8
1 d 3
—/ it log(a)log(1 + a) = =¢(3)
o d 4
1 d 1
/ & log’(1 +a) = —£(3)
0o 4a 4

1
/ 4 ) e(@)log(1 - a) = £3)
0o a
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to obtain
_ 5 3 1

in agreement with the previously known result (50).

8.6 Unknown Banana

The next diagram has 5 edges and hence 4 loops. After an easy first integration, we
obtain

v _/oo/w/f’o M(a,b,c)dadbdc
>~ ) Ly )y @+a+b)er+ (ab+a+b)a+b)c+ (a+bab
with

|
M(a,b,c’)=10g(a+b+c+1)+log(l+—+E+—).
a C

But then integration over ¢ will produce complicated dilogarithms with arguments
involving the square root of the discriminant

D(a,b) = (ab + a + b)(a + b)(ab(a + b) + (a — b)?)

of the quadratic in c¢. The result will have the form

v _/°°/°° Ly(a,b)dadb
T o Jo v D(a,b)

with undisclosed dilogs in L,(a, b). Integration by parts, to reduce the dilogs to
logs, would require us to introduce an elliptic function, since D(a, b) is a quartic
inb.

We know nothing about the number theory of Vs. Its value is known to 1,000
decimal places.

9 Cut Bananas: On-Shell Sunrise Diagrams

For N > 2 we may cut an edge in V y and set the two external half edges on the
unit mass shell, which is at pz = —1. I call the result Sy. It has N — 1 internal
edges and hence N — 2 loops. Thus V3 and S correspond to the two-loop diagrams
of Fig. 2, with the “sunrise” diagram S obtained by cutting an edge of V.
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Fig. 2 Two-loop banana and
sunrise diagrams

9.1 Schwinger’s Cut Bananas

At N loops, the integral over Schwinger parameters is

_ day ... d
Snis = / oGOV (54)
;>0 Det(4 + B)Tr(A) + UCU

where C is the adjoint of A + B, with
(A+ B)C =Det(A+ B)I

where / is the unit matrix with /; ; = §; ;. The denominator in (54) is the second
Symanzik polynomial.
9.2 Bessels’s Cut Bananas

In x-space, cutting an edge and putting it on the mass shell corresponds to replacing
one instance of the Bessel function K(¢) by I(¢), to obtain

Syas = 2 / Ko@) e dr 55)
0

at N loops. Note that S is divergent, since

p
I(t) = Z (W)

2

k>0
grows exponentially, with
exp(?) ( 1 ) )
Iy(t) = I1+—+001/t

ast — oo, while
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Ko(t) = \/zztexp(—t) (1 — é + 0(1/t2))

is exponentially damped.

9.3 Known Cut Bananas

It is proven that [19]

_ 2r

S3=2L_3(1) = — 56
3 3(1) e (56)

_ 2

Sy =Lix(1) —Lix(-1) = T (57)

and it is conjectured that [19]

| 1 2 4 8
Ss = —30¢§F(1_5)F(1_5)F(E)F(1_5) ©8)

which holds to at least 1,000 decimal places.

9.4 Cut Banana with Sixth Root of Unity

The Schwinger formula (54) at one loop gives

S _ /°° da _ log(A) — log(}) _ 2 arctan(~/3) 27
T @ tat+1 A=A B V3 33

as claimed in (56).

9.5 Cut Banana with ©*

At two loops, we have

_ oo oo da db
54:/0 /0 (@+b)a+)b+1)
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with a convenient factorization of the second Symanzik polynomial. Hence

00 1
S, = / log(a) da _ 2/ log(a) da
0 0

a’>—1 a>—1
yields dilogs at square roots of unity, namely

— 7[2 w? w?

S4=Lix(1) —Lix(~=1) = — + 7 = e

as claimed in (57).

9.6 Cut Banana at the 15th Singular Value

At three loops, we have
/ / / * dadbdc
Ss =
P(a b,c)

P(a,b,c) = (abc+ ab + bc + ca)(a + b + ¢) + (ab + bc + ca)

where

with the final term, (ab + bc + ca), resulting from the adjoint matrix. Grouping
powers of ¢, we see that

P(a,b,¢) = (ab+a+b)c*+ (ab+a+b)a+b+ 1)+ (a+b+ 1)ab
yields a discriminant
Aa,b) =(ab+a+Db)a+b+1)(ab+a+b)a+b+1)—4ab)

and the integral over ¢ gives

5 / / da db (1+X(a,b))
T ‘/A(a b 1_X(avb)

with

4ab
X@b)= \/1_ (@+a+batb+1)
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Conjecture (58) was stimulated by a proven result for

= _ e 2 3 — = Ooﬂ
Ts= 4/0 [1o@F[Ko (@)t dt —/0 /0 V/A(a.b)

namely

e () (3)r ()G e
1207 15 15 15 15

obtained at the 15th singular value, by diamond mining [19].
Numerical evaluation suggested that

§5 _7 4

Ts /15

and this has been confirmed at 1,000-digit precision. Yet it remains to be proved that

% % dgdb 1+X(a,b))_47f)
/0 /0 JA@D) (IOg(l—X(a,b) i (60)

1,000

vanishes. It has been shown that its magnitude is smaller than 10~

10 Diagrams Evaluating as L-Series of Modular Forms

Finally, I indicate how sunrise diagrams lead to evaluations in terms of the Dirichlet
L-functions of modular forms, evaluated at integers inside their critical strips.

10.1 L-Series of a K3 Surface

Fors > 2 let

1
L(s)zl_[
p 1_%"‘(115)5_21

where (E) is a Kronecker symbol and the product is over all primes p, with integers
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A, =2x7 + 2xy —Ty%, forx* + xy + 4y = p =1, 4 (mod 15),  (61)
A, = x* 4+ 8xy + y?, for2x* + xy +2y* = p =2, 8(mod 15),  (62)
with pairs of integers (x, y) defined, for x > 0, by the quadratic forms in (61)

and (62).
As shown by Peters, Top and van der Vlugt [20], the L-series

L(s)zz%

n>0

is generated by the weight-3 modular form

f@ = n@n@)n@ @ )R@) = Anq" (63)
n>0
where
;71(721 — l—[(l _qj) — Z(_l)nqn(3n+l)/2’ (64)
Jj>0 nez
R((]) — Z qm2+mn+4n2. (65)
mne’L

Note that A; = 1,since 1 +3 + 5+ 15 =24.1f ¢ = p" is a prime power, then

Apg = ApAg — (%) P Agp-
Ifn = [T, q;. with prime powers ¢; = p//, then A, =[], A, . Thus (61) and (62)
suffice to compute A, and are easily programmed using the gfbsolve command
of Pari-GP.
I now describe how I was able to evaluate 20,000 good digits of the conditionally
convergent series L(2) = Y _, An/n>. Let

A(s) = @L(s), with ¢ = 5—711_5

Then the functional equation A(s) = A(3 — s) may be used to extend the Mellin
transform
o0
d
Ay =Y 4, / & S exp(=cnx) (66)
0 X

n>0
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throughout the complex s-plane, as follows

Als) = ZA (F(s cn/\) F(3—s,cn/)t)) 67)

(cn)* (cn)>=

n>0
where
o0
d
rey =[x e
y X

is the incomplete I" function and A > 0 is an arbitrary real parameter. To
establish (67), I remark that it agrees with (66), at A = 0, and that its derivative
with respect to A vanishes by virtue of the inversion symmetry

M) = 22" Ay exp(—cnd) = M(1/A).

n>0

Optimal convergence is achieved at A = 1, where

A(s) = ZA/ dx (x* + x° )exp(—z\j/t%c) (68)

n>0

makes the relation A(s) = A(3 — s) explicit. Zeros on the critical line Ns = 3/2
occur when

) o 12 2mwnx
A(3/2+1isp) =2 Z A, dx x /= cos(so log(x))exp | — VG
1

n>0
vanishes. I have computed 100 good digits of the first zero, obtaining

5o = 4.8419258142299625880455337112471754483999458406347
669395095360856334816804741135372158525188377525005. ..

At s = 2, the integral in (68) is elementary and we have dramatically improved
convergence for

g T (o ()

n>0 n>0

from which I obtained more than 20,000 good digits in less than a minute, by
computing the first 30,000 terms, with the aid of (61) and (62). The result is
consistent with the conjecture
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3L(2) = Ts (70)
=4 [P Ko a a1
0
3 /00 /00 da db 72
o Jo @a+a+b)a+b+1)((ab+a+b)a+b+1)—4ab)
4
= %2 (x/l_— ﬁ) (1 + ZZOexp (—x/gnnz)) (73)
= o (1) 7 (5) 7 () 7 () o
12070 \15 15 15 15
2 Egs (75)
4

where T's is defined in (71) as a Bessel moment, with a proven integral represen-
tation over Schwinger parameters in (72), a proven evaluation at the 15th singular
value in (73), a proven reduction to I" values in (74) and a conjectural relation to S's
in (75).

Unfortunately, T did not succeed in relating V's to L(3) and/or L(4).

10.2 L-Series for 6 Bessel Functions

We are interested in relating Bessel moments of the form

o
Vy =2N"1 / [Ko(t)]Vt dt, for N > 0, (76)
0
o0
Sy = 2N—2/ TIo()[Ko(O))V "'t dt, for N > 2, (77)
0
o0
Ty = 2N—3/ I2(O[Ko)])N 2t dt, for N > 4, (78)
0
o0
Uy =2V / I3O)[Ko@)]N 3t dt, for N > 6, (79)
0
o0
Wy =2V / 15 () [Ko())¥ ¢ dt, for N > 8, (80)
0

to L-series derived from modular forms. In [19] it was conjectured that
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dr _

P (81
NI )

_ 47?2

S = Us (82)

7o 2 37 g, (83)

with a notable appearance of 7 in the denominator on the right hand side of (83).
Francis Brown suggested that the weight-4 modular form

1@ = [@n@n@n@®]’ = Asag" (84)

n>0

of Hulek, Spandaw, van Geemen, and van Straten [21] might yield an L-series

Asp 1 1 1
L4(S)ZZ = - - l—[ A 3
n>0 n I+271+3 Sp>3l_%+#

with values related to the problem with 6 Bessel functions. Note that A4, = 1, since
20 +2+3+6) =24,
The Mellin transform

00 = ST L) = T A [ e (-2F)

n>0

may be analytically continued to give

Au(s) = ZA4”/ dx (x* +x* )exp(—zit/%x)

n>0

by virtue of the inversion symmetry

M) =2 Y dagexp (<27 ) = a1/

n>0

that gives the reflection symmetry A4(s) = A4(4 — ).
Then, at s = 2 and s = 3, we obtain the very convenient formulas

A4y 4rn 2mn
L,2) = : (2 + —) exp (——) (85)
; n V6 V6

A 2 2722 2
L) =Y =% (1 n % + %) exp (—%) (86)

n>0
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without resort to incomplete I" functions that entail exponential integrals. By this
means, I was able to compute 20,000 good digits of (85) and (86) in less than 100s.
Then the conjectural evaluations

S¢ = 48L(2)La(2) (87)
T = 12L4(3) (88)
Te = 6L4(2) (89)

were discovered and checked at 1,000-digit precision.

I remark that Francis Brown had expected a result of form (88), for T, with an
unknown rational coefficient, which I here evaluate as 12. The existence of a relation
of the form (89), for Uy, had not been predicted, since I had been unable to provide
an expression for this Bessel moment as an integral over Schwinger parameters of
an algebraic or polylogarithmic function. However, it was quite natural to guess that
a reduction of T'g to L4(3) would be accompanied by a reduction of Ug to L4(2).
Then the reduction of S¢ to £(2)L4(2) follows from conjecture (82), which I had
already checked at 1,000-digit precision in [19].

10.3 L-Series for 8 Bessel Functions

Next, Francis Brown provided the first 100 Fourier coefficients of a weight-6
modular form fs(q) =), Aenq", whose L-series

A6n 1 1 1
Le(s) = Z = 2—s 2—s l_[ A 5
n>0 n 1-2"71+3 ‘p>31_%+%

was expected to yield values related to the problem with 8 Bessel functions. His data
may be condensed down to the values

-66, 176, -60, -658, -414, 956, 600, 5574, -3592, -8458,
19194, 13316, -19680, -31266, 26340, -31090, -16804, 6120,
-25558, 74408, -6468, -32742, 166082

of Ag , for the primes p = 5,7, ..., 97.

From this I inferred that the explicit modular form is given by

fo(@) = g(@)g(q?) (90)
2@ = [n@n@] > g 1)

mn€”l
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with fs(q)/fa(q) given by the 6 function of the strongly 6-modular lattice [22]
indexed by QQF .4 .g* with expansion coefficients in entry A125510 of Neil
Sloane’s On-Line Encyclopedia of Integer Sequences.’

Proceeding along the lines of the previous section, I accelerated the conver-
gence of

() _ d_ 2mnx
- gl - B [ )

n>0

by using the functional relation A¢(s) = Ae(6 — 5) to obtain

Ag(s) = ZAM/ d; x + x° )exp(—zjgx)

n>0

and hence the convenient formulas

Asn ( 4mn 2712112) ( Znn)
Le(3) = 2 0L T Vexp (=22 ), (92)
@ ; " 6 s )P

Ag ( 2zn  4n*n?®  47in 3) ( 27rn)
Lo =S 20 (1 4+ 222 4 + exp (-2 ), (93)

Aén( 2nn  wn?  27%n3 n4n4) ( 27tn)
Le(5)=Y 22 (1+ + + + exp (= ).
o) 2 n’ 63 o 21 )T\

%94

The resulting fits

Ty = 216L4(5) 95)
Us = 36L6(4) (96)
Ws = 8L4(3) 97)

are rather satisfying. They leave the conjectural relation

Lo(s) £ 2Q)Lo) ©8)

as a restatement of the notable conjecture (83) given in [19].

“http://www2.research.att.com/~njas/lattices/QQF.4.g.html
Shttp://oeis.org/A125510
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Thanks to the explicit formula (90) for the weight-6 modular form, conjec-
ture (98) has now been checked to 20,000-digit precision.

11 Open Questions

This article has provided examples of single-scale Feynman diagrams that evaluate
to five types of number: multiple zeta values, alternating sums, polylogarithms of
the sixth root of unity, products of elliptic integrals, and L-functions of modular
forms. In each case, I indicate an open question concerning the physics and an open
puzzle concerning the mathematics.

Q1: At which loop-number do the counterterms of QFT cease to evaluate to
MZVs?

There remains a single subdivergence-free counterterm in ¢* theory at seven
loops that has not been reduced to MZVs, but might be expected to evaluate to
polylogs. At eight loops there is a diagram for which there is good reason [23]
to suppose that no reduction to polylogs will be possible, yet there is no concrete
guess of the type of new number that might emerge.

On the mathematical side, the conjectural enumeration [8] of irreducible MZV's
by weight and depth, in (8), is still unproven. Might it be that the conjecture fails
at weights higher than those in the table of Sect. 2.4, notwithstanding the notable
agreement so far achieved?

Q2: At which loop-number do the diagrams for the magnetic moment of the
electron case to evaluate in terms of alternating sums?

One might guess that this will happen at four loops, since there one has diagrams
with five electrons in an intermediate state and the corresponding on-shell sunrise
diagram in two dimensions, with 6 Bessel functions, evaluates to the L function
of a modular form, as seen in Eq. (87).

On the mathematical side, one would like to understand why a depth-5 alternating
sum like ¢(3, 6,3, 6, 3) in (14) is an honorary MZV of depth 7.

Q3: Does a polylogarithm of the sixth root of unity appear in the seven-loop
beta-function of ¢* theory?

It has been argued [24] that this may happen, for one special diagram. However,
comparable arguments suggested the appearance of alternating sums from a pair
of simpler seven-loop diagrams and these were found to evaluate to MZVs.

On the mathematical side, one would like to have an economical basis for
polylogs of the sixth root of unity up to weight 11, so as to tackle the seven-
loop problem in QFT. However, that seems to be a daunting task.

Q4: What type of number results from the four-loop banana diagram V's, with
5 Bessel functions?

We have seen that the three-loop on-shell sunrise diagram S's evaluates, empir-
ically, to the square of an elliptic integral at the 15th singular value. Yet the
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simplest result so far achieved for Vs is the integral of the product of a
dilogarithm and a complete elliptic integral [19].

On the mathematical side, one would like to be able to prove the vanishing of the
remarkable integral (60).

Q5: Is there a modular form whose L-function gives an evaluation of the
on-shell five-loop sunrise diagram S;?

It is frustrating to have identified modular forms for problems with 5, 6 and 8
Bessel functions, yet to have failed to do so for any 7-Bessel problem.

On the mathematical side, one would like to understand the relation between
integrals of powers of Bessel functions and Kloosterman sums [25, 26] that
evaluate to rational numbers.

In conclusion, these open questions arose from fertile meetings of number theory,
algebraic geometry and quantum field theory, reported in part by this article.
While much remains to be understood, we may still rejoice that mathematicians
and physicists continue to learn how to share their understanding and their
puzzles at the work-face of perturbative quantum field theory.
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