
I. General Context and Theories 

He who loves practice without theory is like the sailor who boards ship  
without a rudder and compass and never knows where he may cast. 

Leonardo da Vinci 
 

This part shall provide the fundamental understanding of most core concepts 
involved in the construct of ideas leading to this thesis and its results. Conse-
quently, the following chapters provide an overview over the major research 
fields having influence on the outcome of this thesis. If employed, requirements 
traceability can be seen as a crosscutting concern of all development activities. 
Correspondingly these chapters strive a considerable set of very different general 
research disciplines.  

Stepping into any research topic of considerable depth often implies a steep 
entry curve for any reader being non-expert of the research domain. One of the 
problems is that topics are often manifold interconnected making it difficult to 
find a good start. The author has tried to flatten the entry curve by starting with 
chapters with lower entry barriers. These are the chapters that are more independ-
ent of the other chapters. With the understanding and argumentation collected in 
the first more independent chapters, the further chapters build on the previous 
chapters and then have lower entry barriers. 

In this thesis, the model concept is an essential foundation, since different 
types of models are referred to in different theories. Correspondingly, this part 
starts with a general discussion on the model concept and related terms needed at 
later discussions (ch. I.1). This is followed in ch. I.2 by a general discussion 
about developing embedded systems in general. A certain category of embedded 
systems, called safety-critical embedded systems, demand special concerns about 
quality, because malfunctions in these systems can involve significant fatal con-
sequences. Correspondingly, special standards for development processes (ch. 
I.7) have evolved to ensure quality of the developed systems. One central demand 
are especially rigid demands for requirements traceability. As results of this the-
sis arose in the context of companies involved in the automotive domain, a spe-
cial ch. I.2.3, discusses specific peculiarities of the automotive domain. Even 
though the concepts of the developed R2A tool in principle can be applied to any 
development project, some of the features provide special help in embedded 
projects of the automotive domain. This is, e.g., the case for the special improve-
ments of supplier management (see ch. III.23.1), as the automotive domain is a 
domain with very extensive and deep chains of suppliers. 

B. Turban, Tool-Based Requirement Traceability between Requirement and Design Artifacts,
DOI 10.1007/978-3-8348-2474-5_2, © Springer Fachmedien Wiesbaden 2013



12 I. General Context and Theories 

Ch. I.3 and ch. I.4 then provide general introductions into the theories of 
software engineering and systems engineering. Both theories' concepts are an 
integral part of current development process standards such as the quality stand-
ards applied for safety-critical embedded systems (ch. I.7). 

In ch. I.5, current requirements engineering and management (REM) theory 
is discussed. The traceability concept is a nascent of this theory. Corresponding-
ly, the sub ch. I.5.7 also discusses the traceability concept in the context of REM-
theory and explains concepts needed in the following chapters of this part. An 
extensive discussion of the traceability concept is then performed in ch. II.10 of 
part II. 

Concerning the transition from requirements to design, the author considers 
this an especially difficult traceability problem, because this transition is a transi-
tion from the problem space description (requirements) to the solution space 
description (design) implying a considerable semantic gap between both. There-
fore, this thesis lies a special focus on this topic. Ch. I.6 outlines design with its 
concepts and theories that are important to understand the problems of traceabil-
ity concerning this transition. Instead of concentrating on a specific modeling 
paradigm or method related to software or systems engineering, this chapter ra-
ther tries to outline several general theories about design that describe the role of 
design and how design emerges from designers' thinking. 

After the previous chapters have outlined fundamental concepts of different 
general theories building the theoretical groundwork of this thesis, ch. I.7 de-
scribes process standards to be fulfilled by organizations developing safety-
critical embedded systems. Due to its extent and complexity, the outlined process 
standards cannot be described in full depth. Instead, after a general overview is 
provided, the engineering processes concerning requirements and design with 
their traceability demands are described in detail. In this way, the author derives 
important demands, which the tool-approach described in part III must fulfill in 
order to conform to the standards. 

Last but not least, ch. I.8 refers to findings from practice of embedded engi-
neering that should be kept in mind considering a practice-oriented solution for 
traceability in the context of design. 



I.1  The Model Concept 13 

I.1  The Model Concept 

We can only make a model of a fact in the world we live in,  
i.e. the model must be essentially related to the world we live in  

and what's more, independently of whether it's true or false. 
Ludwig Wittgenstein (*) 

 
“Models are a fundamental concept of our world's handling. All scientists 

and engineers use and create models to prove universal evidences for and to find 
more detailed information on their speculations. Often models mark intermediate 
step on the road to new artifacts as bridges, cars and mobile telephones. In Soft-
ware Engineering the importance of models is even higher, because they not even 
represent the intermediate steps, but the endpoints of our work: a specification 
but also a program is a model” [LL07; p.3 (*)]. 

Stachowiak [St73] found several general properties that models have in 
common with each other (the following statements are taken from [LL07; p.5-6] 
and [BR07b; p.4]): 
• A purpose (or purposes), 
• A reference to the original, also called mapping characteristic5 [LL07; p.5], 
• Abstraction of certain qualities of the original, also called shortening charac-

teristic6: A diversity of relationships can exist between model and original 
emerging by the model's usage purposes [BR07b; p.4], 

• A pragmatic characteristic: “Under certain conditions or problems, models 
can supplement the original” [LL07; p.6 (*)]; 
Fig. 1-1 shows the connections between original and its model according to 

[LL07; p.6] and [St73]. Together three kinds of properties can be distinguished: 
• Essential properties (also called non-neglected) are the properties of the 

original considered in the model. 
• Preterated properties (also called neglected) are properties of the original not 

considered in the model. 
• Abundant properties are properties in the model, not present in the original. 

These properties emerge from the nature of the model7 (Simon [Si06; p.113] 
calls this the implicit logic of the sign system). 

                                                           
5 In German: Abbildungsmerkmal 
6 In German: Verkürzungsmerkmal 
7 Considering the photo of a person, preterated properties of the person would be its 

weight, name, type, whereas the quality of the photo paper or the photo's format would 
be abundant properties (cf. [LL07; p.6]). 



14 I. General Context and Theories 

 

Figure 1-1  Properties of original and model [LL07; p.6 (*)] 

These properties distinctions lead to two fundamental problems that should 
always be considered when working with models: 
1. Due to the preterated properties, “models are always a 'simplification, a kind 

of idealization' of the aspects to be modeled. … We choose for our model 
these characteristics of the reality that we consider essential for our purpose. 
In complex situations … this act of already distinguishing the essential from 
the non-essential must be at least partially an act of judgment, often of politi-
cal or cultural judgments. And this act must then necessarily base on the intu-
itive thinking model of the model constructor” [We76; p.202 (*)]. 

2. On the other hand, abundant model properties can lead to erroneous conclu-
sions about the original. “The implicit logic of the sign system resp. symbols, 
representations, languages, texts, formulas, etc., are in general different to 
the represented phenomena or items; If both are mixed up, the danger arises 
that peculiarities of the observation method (resp. the observers) and its re-
sults are considered instead of the observed fact” [Si06; 113 (*)]. 
Generally, two different model types exist according to [LL07; p.5] (also cf. 

[St73], [Mo04; p.64f]): 
• Descriptive models describe already existing connections or systems. 
• Prescriptive models are manuals for the construction of, e.g., systems. 

In the context described here, both types of models occur. Thus, e.g., a SW 
documentation is a descriptive model, whereas a model as basis for model based 
code generation represents a prescriptive one. Following these interpretations, a 



I.1  The Model Concept 15 

SW design model can be first a prescriptive model determining the structure of 
the code to develop. After coding has been finished, however the model would 
become descriptive. Later in ch. I.7, it is shown that a similar connection may 
exist in the area of process models and that users of process models should be 
aware of possible misinterpretations sparked by an inadvertent transformation of 
descriptive process models into prescriptive process models. 

Due to these possible interpretation ambiguities where the real character of a 
model is not absolutely clear, Schefe [Sch99; p.132] asks for abandoning mean-
ing from the model concept in software engineering except its clear meaning 
emerges from the usage context [Sch99; p.134] (see also [Mo04; p.65]). In fact, 
as the discussion in ch. I.7.3.1 shows, these dangers of interpretation and uncon-
scious shift of meaning can happen.  

The main purpose of a model is the communication of ideas and concepts 
[Mo04; p.171]. Correspondingly, attention must be paid for conclusiveness of the 
modeled ideas. In this context, it seems legitimate to speak of a certain aesthetics 
models should have [Kr95; p.43]. Ch. I.6.1.2 again discusses model esthetics in 
connection with SW architectures. 

Concerning system and software development, models have some special 
characteristics. In more complex development processes, at least two kinds of 
models must be considered ([De04], [Br07a]): 
• A model8 for the targeted system. 
• A model for the development project's processes.  

This thesis deals with both kinds. In the context of design (but also a bit in 
requirement engineering) the first mentioned model kind is essential. When pro-
cess standards as SPICE (see ch. I.7) or process related concepts such as tracea-
bility are discussed, the second kind is equally essential. 

Often, strict formal semantics are also observed as an obstacle to designers 
([Sch83], [HA06a]). As further discussed in ch. I.6.2.3 and ch. II.9.4.2, this is 
especially the case in earlier phases of design, or when designers encounter sig-
nificantly complex situations where no solution covering all aspects can be found 
at once. In this context, some designers (cf. [AMR06], [Kr95; p.49], [Go99], 
[Go95]) emphasize that especially sketching is important because it produces 
ambiguity, a widening of the problem scope and general uncertainty about the 
final solution as nourishment for designers' creativity to bring up new solution 
ideas (see ch. I.6.2.3). 

                                                           
8 In most practice, not one model but several models exist. This is the case, because 

different models with different semantics are often employed at different levels of ab-
straction. Perhaps it is better to say that it should be the goal to have a model of the 
system. 



16 I. General Context and Theories 

I.2  Embedded Systems Development 

Grey, dear friend, is all theory and green is the golden tree of live.  
J. W. v. Goethe (*) 

 
Most of the topics and interrelations discussed in this thesis are not really limited 
to the embedded systems development market, but the special conditions of the 
embedded area force a much stronger need for employing some of the later de-
scribed concepts and techniques. Therefore, before beginning with other more 
specific topics a short introduction into this very complex field shall be given. 

I.2.1  Definition and Context 

Embedded systems – or better embedded control units (ECUs) – are computer 
based systems embedded into a bigger surrounding technical (total) system (au-
tomobiles, airplanes, power plants, consumer electronics etc.) often also referred 
as the context of an ECU. In most cases, ECUs perform complex control, regula-
tion, observation and data processing activities on physical-mechanical compo-
nents with decisive impact on functionality and performance of the complete 
system (cf. [Sch05], [Ge05; p.5]). 

ECUs itself mostly work very integrated into the complete system so that 
users are usually not really aware of the ECUs itself, but the bigger processes or 
technical components are somehow controlled by humans [Ge05; p.5]. Nonethe-
less due to its broad range of employment from very small systems as RFID9 
chips to normal day-life devices (CD-players or washing machines) to high tech-
nology devices (air planes or computer tomographs), over 90 percent of electron-
ic components are embedded systems. This means that of 8.3 billion produced 
processors in 2002, 8.15 billion were used for embedded systems whereas only 
150 millions of processors were part of ordinary computers [Sch05; p.2]. Due to 
the diversity of usages for embedded systems, the embedded market is still one of 
the fastest growing markets [Sch05; p.2]. 

I.2.2  Characteristics 

The fact of being embedded in a higher technical system leads to a set of charac-
teristics different to ordinary computers [Sch05; p.3ff], [Ge05; p.5f]. 
                                                           
9 Radio Frequency Identification 



I.2  Embedded Systems Development 17 

An ECU's primary source of interaction is not humans but the surrounding 
processes or technical components. Humans indirectly influence ECUs by con-
trolling the processes and devices they are integrated, but, primarily, ECUs re-
trieve input by sensors and perform output by actuators integrated into the sur-
rounding system. Accordingly to the special purposes ECUs often fulfill, the 
ECUs in most cases have specialized hardware (HW) specifically designed for 
efficiently fulfilling their purposes. 

Since the surrounding system mostly is an electronic, physical-mechanical, 
chemical or biological device or process, developing ECUs has a strong need for 
interdisciplinary development efforts such as systems engineering discussed in 
ch. I.4. 

Ordinary computer systems can be described as interactive systems. This 
means, the computer system actively determines the interaction process with the 
environment. Whenever an interactive system needs input for further processing 
the system prompts the user for input and proactively synchronizes with the envi-
ronment. 

ECUs on the contrary react more on the settings and changes of the envi-
ronment. They are therefore called reactive systems. This difference has signifi-
cant influence on their behavioral determinism. Interactive systems can be more 
seen as non-deterministic (e.g., interactive systems decide on their own how to 
schedule different tasks), whereas ECUs have well defined input and reaction 
relations with mostly strict temporal interdependencies derived from the needs of 
their surroundings. Three implications can be deduced from this fact:  
• At first, Scholz emphasizes that “the different characteristics of both system 

types must be considered when adequate techniques, methods or tools are 
developed” [Sch05; p.4 (*)].  

• Secondly, SW designs of reactive systems can heavily rely on the very well 
defined and researched concept of state machines. Since state machines are 
deterministic and have a complete formal semantics (other to, e.g., the se-
mantics of activity diagrams in UML), they can be properly used for formal 
requirements specification, their early simulation, verification and complete 
code generation providing very positive effects on complexity handling 
[Ma08a; p.19] (see also [MB05]). 

• Unfortunately, the temporal interdependencies force ECUs to obey timing 
limits. In this context, ECUs are often referred as real time systems. Real 
time systems can be distinct between systems that must obey their timing 
rules at any time (so called hard real time) and systems that should obey their 
timing rules as good as possible with exceptions allowed (so called soft real 
time) [Do04; p.3], [Sch05; p.4]. 



18 I. General Context and Theories 

Another not yet explicitly mentioned demand for ECUs is their functional 
correctness. Different to programs running on ordinary computer systems, errors 
in already delivered ECUs cannot be easily fixed by users installing updates. 
Instead, expensive product recalls are necessary to fix those problems.  

In many application contexts, such as medical equipment, space, aviation, 
nuclear power plants, production lines or automotive, system malfunctions and 
other defects can cause more severe consequences such as threats to life or physi-
cal condition. Such systems are called safety-critical. Constructing safety-critical 
systems demands enforced efforts on avoiding or at least diminishing the proba-
bility of malfunctions, other defects, or fatal consequences. Two factors are the 
central means to achieve this goal:  
1. Explicit consideration in the design of these systems (e.g., providing redun-

dant system parts). 
2. Employing development processes ensuring high quality of the resulting sys-

tem. 
Concerning the first point, it is to say that this thesis speaks about design, 

but more on a higher meta-level and therefore point one will not be directly10 in 
the focus of this thesis. The second point, however, is directly addressed in this 
thesis, as requirements traceability is seen as an important foundation to achieve 
those high quality development processes. 

A fundamental principle of these processes is that their potential to ensure 
high quality outcomes must be controlled in an objective way. This is achieved by 
a set of standards such as the ISO 1550411 (SPICE) defining necessary character-
istics that development processes for safety-critical systems must fulfill. Corre-
spondingly, the solution proposed here must obey the criteria demanded by those 
process standards. Ch. I.7 provides a description of these standards with the de-
manded criteria that are important to this thesis. 

Differently to normal PC applications, ECUs are designed for a specific 
purpose. To optimize costs, the principle of HW/SW Co-design12 is used, where 
HW and SW are designed in parallel with high interdependencies between each 
other to only fulfill its specific purpose. Especially for applications with high 
volumes, the so called mass market, the costs per part are decisive. Therefore 
                                                           
10 Indirectly it well touches this issue in the sense that design for safety-critical issues 

involves decisions to be taken that impose significant consequences on the design out-
come. As communication and documentation of decisions and their consequences is 
one of the special concerns of this thesis, this topic is indirectly connected and this 
connection is show in part III as real-world example of decision-making in embedded 
projects. 

11 Software Process Improvement Capability dEtermination (SPICE). 
12 For more information on this topic cf. [ME01]. 



I.2  Embedded Systems Development 19 

extreme optimization of HW costs has highest priority often leading to highly 
specialized SW. This kind of SW has to deal with very tight resource restrictions 
leading to a significantly higher complexity to be handled in the SW development 
activities.  

 

I.2.3  Embedded Development in the Automotive Domain13 

Technical complexity of electronics and software in the automotive  
industry is similar complex as avionics and aerospace.  

Today, cars are the mass production product with the strongest  
cross-linking of separate computers at the smallest space.  

Meanwhile, more than 90 % of all functions are realized with  
support of software. The quality of a car is substantially  

determined through the quality of electronics and software.  
For this reason, software quality has become a central competitive factor. 

[HDH+06; p.267-268 (*)] 
 

“Modern premium automobiles contain by now up to 100 ECUs, with increasing 
tendency accompanied by approx. 3 kilometres of cable and approx. 2000 plug 
connectors. In these ECUs, SW with more than 600 000 lines of code regulates 
numerous functions and their cooperation. ... In this way, the value creation 
changes significantly in Automotive construction. 90% of the innovation in cars 
are driven by electronic components, thereof 80% software“ [Sch05; p.12f (*)].  

At present as in the near future, the proportion of software (SW) and SW-
based ECUs in everyday products increases exponentially [Br06], (also cf. 
[CFG+05], [KCF+04], [HDH+06; p.267]) and this increase is accompanied by a 
growth of development complexity. Correspondingly, developing these SW-based 
ECUs meanwhile has a central strategic importance for the automotive industry.  

The automotive domain has some special conditions imposing special chal-
lenges for embedded systems engineering. Generally, the following special chal-
lenges can be identified playing significant key-roles in automotive embedded 
development (cf. [Br06], [Gr05], [KM06], [SZ06; p.20], [Sch05; p.5]): 
1. Safety-criticality: As mentioned in the chapter before, cars involve several 

safety-related issues. These issues must be significantly addresses as de-
scribed in the chapter above.  

2. Costs: As cars are mass-market products with high unit volumes, costs play a 
decisive role. Thus, proportional manufacturing costs dominate the price. In 
this way, ECUs' costs are also under strong pressure. The proportional manu-

                                                           
13 Parts of this chapter base on [TWT+08]. 



20 I. General Context and Theories 

facturing costs of ECUs are mainly dominated by HW costs. This leads to 
highly cost-optimized HW with minimal HW resources concerning memory 
calculation power, and other components. Correspondingly, software must of-
ten be fitted to handle these, often leading to higher complexity and unnatural 
solutions in the software design [SZ06; p.20], [Sch05; p.5]. 

3. Quality: Buying a car involves significant costs for the customer. In conse-
quence, cars are intended for long product life-cycles of about 25 years 
[SZ06; p.20]. Correspondingly, cars must provide a high overall quality, espe-
cially if they are premium products.  

4. Hard or at least weak timing restrictions14: Reasons can be physical require-
ments for exact timing (e.g., when controlling motor injection), extremely 
cost optimized HW where strong resource restrictions lead to strong demands 
for timing; or safety-related issues (e.g., exact timing of inflating airbags dur-
ing crash situations). 

5. Strong cross-linking of ECU systems: Increasing cross-linking of vehicle 
functional features leads to increasing cross-linking of ECUs15. Such features 
are typically realized by a collaboration of several ECUs, leading to higher in-
terdependencies between ECUs. ECUs in automotive development are usually 
an integrated system consisting of HW, SW and mechanical components 
[MHD+07; p.91]. In most cases not one ECU handles a certain function in a 
car, but several ECUs in interplay with each other realize a certain function. 
Thus, the different ECUs can communicate with each other using communica-
tion protocols such as Controller Area Network (CAN), Local Interconnect 
Network (LIN), Media Oriented System Transport (MOST) or Flexray. In 
summary, the interconnected ECUs can be seen as distributed systems with 
distributed control logic and changing control hierarchies [Ge05; p.5]. 

6. High demands on inter-organizational collaboration: The development of a 
strongly cross-linked car system can only take place in collaboration with the 
car manufacturers (Original Equipment Manufacturers (OEM)) and heteroge-
neous chains of suppliers. 

7. High numbers of variants: Today, the buyer of a car has the choice between 
hundreds of options being partly connected to each other (e.g., different mo-
tors can be combined with different gearboxes) [SZ06; p.9]. As a plus, cars 

                                                           
14  Mostly, not all timing restrictions of hard real time systems are strict. Some functions 

may also have weaker or even no timing restrictions. 
15  A typical scenario might look like this: A car crash triggers crash sensors which acti-

vate several airbag ECUs and a crash management ECU (CM-ECU). The CM-ECU 
sends an 'Unlock_Doors' signal to all door ECUs, requests the position from the Glob-
al Positioning System-ECU and sends an automatic emergency call via a Universal 
Mobile Telecommunications System-ECU to local rescue organizations. 



http://www.springer.com/978-3-8348-2473-8


	I. General Context and Theories
	I.1 The Model Concept
	I.2 Embedded Systems Development
	I.2.1 Definition and Context
	I.2.2 Characteristics
	I.2.3 Embedded Development in the Automotive Domain13





