
Chapter 2
Basic Properties of QCD

2.1 The QCD Lagrangian

In this and the following sections, the basic properties of QCD will be briefly
discussed. A more detailed exposure of the many facets of QCD can be found in
various textbooks, such as Yndurain (1983), Greiner et al. (1994), Ioffe et al. (2010).

QCD is a non-abelian SU (3) gauge theory with color charges as the generators
of the gauge group. Its Lagrangian can be given as

LQCD =
∑

f

q f (i �D − m f )q f − 1

4
Ga

μνGaμν, (2.1)

where q f are the quark fields with flavor f , which runs over all presently known
six flavors u, d, s, c, b, t with the corresponding masses m f . The quark fields in
fact have two more indices, which are omitted above for simplicity. One is a spinor
index running from 1 to 4, showing that the quark (and its anti-particle) are spin-1/2
particles, the other is a color index with values from 1 to 3, meaning that the quarks live
in the fundamental representation of the SU (3) gauge group. The covariant derivative
�D contains the coupling between the quarks and gauge fields and is defined as

�D = γ μ(∂μ − ig Aμ). (2.2)

Here, the gluon field Aμ is a 3 × 3 matrix and lives in the adjoint representation of
the SU (3) gauge group. Using the Gell-Mann matrices λa , it can be expanded as
Aμ = 1/2

∑
a λa Aa

μ (a = 1 ∼ 8). Furthermore, g stands for the gauge coupling
constant. Finally, the last term of Eq. (2.1) represents the dynamics of the gluonic
fields only. It can be expressed in terms of the field strength tensor Ga

μν , which is
obtained from the gluon fields as

Ga
μν = ∂μ Aa

ν − ∂ν Aa
μ + g f abc Ab

μ Ac
ν, (2.3)

where f abc are the structure constants of the SU (3) gauge group.
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12 2 Basic Properties of QCD

Note that in the simple description of this section, we have omitted ghost fields
and possible gauge fixing terms, which are introduced during the quantization of the
theory (Faddeev and Popov 1967).

2.2 Asymptotic Freedom

One important piece of evidence, suggesting that QCD is indeed the true theory to
describe the strong interaction, was provided by the discovery of asymptotic freedom
(Gross and Wilczek 1973; Politzer 1973). This property, which essentially means
that the coupling constant g appearing in Eqs. (2.2) and (2.3) becomes small at large
energies, can be derived through the renormalization procedure of QCD. As in any
field theory, the perturbative quantum (loop) corrections in QCD contain ultra-violet
divergences, which have to be renormalized for the theory to produce meaningful
results. If (as it is the case for QCD) the theory is renormalizable, all these divergences
can be absorbed into a redefinition of the bare coupling constant g, the bare masses
m f and the fields q and A. However, this redefinition will depend on the energy scale
μ, at which the renormalization is carried out, therefore introducing some dependence
of the parameters of the theory on μ. As μ is an arbitrary parameter, which has been
introduced by hand, the observables calculated from the theory should not depend on
it. This requirement leads to several renormalization group equations (Callan 1970;
Symanzik 1970), in which the part dealing with the coupling constant g is given as,

μ
∂g

∂μ
= β(g), (2.4)

where β(g) is the β-function, which can be perturbatively calculated for small g. In
QCD, this function has the following form (as an expansion in g):

β(g) = −β0g3 − β1g5 + · · · , (2.5)

β0 = 1

(4π)2

(
11 − 2

3
N f

)
, (2.6)

β1 = 1

(4π)4

(
102 − 38

3
N f

)
, (2.7)

N f being the number of flavors. The fact that β0 is positive and that therefore β(g)

is negative for sufficiently small values of g has been revealed in the papers of Gross
and Wilczek (1973), Politzer (1973) and is equivalent to asymptotic freedom, as will
be seen below.

Solving Eq. (2.4) and keeping for simplicity only the leadingβ0 term, the following
result can be obtained:

αs(μ) = 1

4π ln(μ2/Λ2
QCD)

. (2.8)
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Fig. 2.1 The value of αs as a function of the energy Q, obtained from the β-function including
corrections up to 4-loops (Bethke 2009). The shaded region shows its corresponding numerical
uncertainty. The discontinuity seen in the plot at around 1.5 GeV stems from the matching between
the 3- and 4-flavor β-function, which has to be implemented in this energy region

Here, αs stands for g2/(4π) and the integration constant ΛQCD is known as the QCD
scale parameter. Its actual value is about 200–300 MeV, depending on how many
flavors one considers to be active. From this equation, one sees that the value αs

decreases with larger energy μ. Nowadays, the β-function is known up to 4-loops
(g9) (Bethke 2009), giving values of αs as shown in Fig. 2.1. As can be observed from
this figure, as long as the energy scale Q is much larger than ∼1 GeV, αs is small
and a perturbative treatment is meaningful, while for energy scales around or below
∼1 GeV, αs becomes so large that a perturbative expansion will eventually break
down. It is therefore clear that non-perturbative methods are necessary for studying
low-energy QCD processes.

2.3 Symmetries of QCD

2.3.1 Gauge Symmetry

Gauge symmetry is in a certain sense the most important symmetry of QCD, as the
QCD Lagrangian was indeed constructed on the basis of gauge invariance. It demands
that the theory should be invariant under the following gauge transformation.The
fermionic fields change as

q ′(x) = U (x)q(x), (2.9)
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where U (x) is a 3 × 3 unitary matrix in color space, which generally depends on the
space-time point x . Because of this dependence, Eq. (2.9) is a local transformation
and the corresponding gauge symmetry a local symmetry. At the same time, the
gauge fields Aμ(x) are transformed as

A′
μ(x) = U (x)Aμ(x)U †(x) + i

g
U (x)∂μU †(x), (2.10)

with the same U (x) as in Eq. (2.9). It is not difficult to show that these transformations
act on the covariant derivative of Eq. (2.2) in the following way:

D′
μ(x) = U (x)Dμ(x)U †(x). (2.11)

This then immediately shows that the first term of the Lagrangian in Eq. (2.1), which
describes the motion of the quark fields, is gauge invariant. For the second term,
involving only gluonic fields and their mutual interactions, it is convenient to note
that the field strength tensor of Eq. (2.3) (contracted with 1

2λa) can be expressed as

Gμν(x) = i

g
[Dμ, Dν], (2.12)

from which, together with Eq. (2.11), it follows that this object transforms as

G ′
μν(x) = U (x)Gμν(x)U †(x). (2.13)

As the last term of Eq. (2.1), can be written down as the trace of two Gμν(x)’s with
contracted Lorentz indices, one can see from Eq. (2.13) that it is also gauge invariant,
as it should be.

In actual calculations, one often makes use of the freedom of choosing a gauge
to simplify the algebraic manipulations. For calculations of the operator product
expansion in QCD sum rules, for instance, the so-called Fock-Schwinger gauge is
a convenient choice, as we will discuss in Chapter 3 and Appendix B. On the other
hand, any physical result obtained from QCD should not depend on the gauge, in
which it was calculated. Therefore, to verify the gauge independence of some result
can serve as a useful check of the calculation. Furthermore, for formulating QCD on
a space-time lattice in order to carry out Monte-Carlo simulations, gauge invariance
also has provided essential guidance (Wilson 1974).

2.3.2 Chiral Symmetry

As will be explained below, chiral symmetry is not an exact symmetry of the QCD
Lagrangian of Eq. (2.1), but is only valid in the limit of small quark masses. However,
because the masses of the u- and d-quarks are much smaller than ΛQCD, the typical
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scale of QCD, these can be treated as small perturbations. Therefore chiral symmetry
becomes a useful concept, at least for the u- and d-quark sector, which plays the most
prominent role in almost all low-energy hadronic processes.

To discuss chiral symmetry, one first has to introduce left-handed and right-handed
quarks, which are defined as follows

qL = PLq, qR = PRq, (2.14)

with

PL = 1

2
(1 − γ5), PR = 1

2
(1 + γ5). (2.15)

Here, it is clear that the projection operators PL,R satisfy the necessary conditions
P2

L,R = PL,R, PL PR = 0, PL + PR = 1. Rewriting the QCD Lagrangian of Eq. (2.1)
with the help of the left- and right-handed quark fields of Eq. (2.14), we obtain

LQCD = qLi �DqL + qRi �DqR − qLmqR − qRmqL − 1

4
Ga

μνGaμν, (2.16)

where we have omitted the sum over the flavors for simplicity of notation. It is seen in
the above equation that, if the quark mass m approaches 0, the left- and right-handed
quarks completely decouple and behave as independent degrees of freedom. Ignoring
the mass terms for a moment, it is also observed that this Lagrangian has a global
symmetry, corresponding to certain unitary transformations of the quark fields:

q ′
L = ULqL, UL ∈ U (N f )L, (2.17)

q ′
R = URqR, UR ∈ U (N f )R. (2.18)

Here, UL,R are unitary N f × N f matrices, operating in the flavor space of the quark
fields. As only the u- and d-quarks (and, to a lesser degree, the s-quarks) can be
considered to be light, N f here is usually taken to be 2 or 3. Among the symmetries
contained in Eqs. (2.17) and (2.18), two have a somewhat special character. Firstly,
U (1)V, standing for the case, in which UL and UR are diagonal and equal, represents
the quark number conservation in the strong interaction. This symmetry even holds
when the finite quark masses are taken into account and is valid at both the classic
and quantum level. Secondly, the symmetry of U (1)A, in which UL and UR are
diagonal as well, but represent rotations in the opposite direction, is violated by
quantum corrections, leading to the axial anomaly (Bell and Jackiw 1969; Adler
1969). Therefore, even if the quark masses are exactly 0, this symmetry is broken.

Removing the two subgroups U (1)V and U (1)A discussed above, we are left with
the symmetries corresponding to SU (N f )L × SU (N f )R, which are usually referred
to as chiral symmetry. The respective transformations can be parametrized as
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q ′
L = eiθa

L ta
qL, eiθa

L ta ∈ SU (N f )L, (2.19)

q ′
R = eiθa

R ta
qR, eiθa

R ta ∈ SU (N f )R, (2.20)

with a = 1 ∼ N 2
f −1 and ta being the generators of SU (N f ). θa

L,R are arbitrary real
parameters.

Even though the QCD Lagrangian possesses chiral symmetry as described in
Eqs. (2.19) and (2.20), this symmetry is not fully realized in the QCD vacuum.
Specifically, it is instead believed to be dynamically broken (Nambu and Jona-Lasinio
1961a, b), the symmetry breaking pattern being

SU (N f )L × SU (N f )R → SU (N f )V, (2.21)

where the transformation corresponding to SU (N f )V is such that both rotations of
Eqs. (2.19) and (2.20) are the same (θa

L = θa
R). The simplest order parameter for such

a partial breaking of chiral symmetry is the quark condensate, expressed as

〈qq〉 = 〈qLqR〉 + 〈qRqL〉. (2.22)

Here, contraction and summation over Dirac-, color- and flavor-indices are implicitly
assumed. It is clear that the quark condensate (if it has a finite value) generally
changes its form under arbitrary transformations of Eqs. (2.19) and (2.20), but is
invariant under SU (N f )V, making it an appropriate order parameter for the symmetry
breaking pattern of Eq. (2.21).

The value of the quark condensate nowadays can be obtained from first principle
lattice QCD calculations (Fukaya et al. 2010). The earliest estimation, however, relied
on the Gell-Mann-Oakes-Renner relation (Gell-Mann et al. 1968), based on general
considerations of chiral symmetry. It gives (with N f = 2),

f 2
π m2

π = −mq〈uu + dd〉, (2.23)

where fπ and mπ are the pion decay constant and pion mass, respectively. The values
of these parameters can be obtained from experiment. mq stands for the averaged
quark mass of u- and d-quarks, which can not be directly extracted from experimental
studies, but has to be estimated by other methods (Gasser and Leutwyler 1982).
Finally, assuming that the value for the condensate of the u- and d-quarks is the
same, one arrives at the following number:

〈uu〉 = 〈dd〉 	 −(240 MeV)3. (2.24)

In addition, QCD sum rule studies provide estimates for the s-quark condensate 〈ss〉,
which gives an about 20 % reduced value, compared to Eq. (2.24) (Reinders et al.
1985).
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2.3.3 Dilatational Symmetry

The dilatational symmetry, similarly to chiral symmetry, only holds in the limit
of vanishing quark masses. In this limit, the QCD Lagrangian involves no explicit
energy scale and the theory is therefore scale invariant. This means that the energy
dependence of any physical quantity is fixed by its dimension,

F(E, p1, p2, . . . ) = EdF f
( p1

E
,

p2

E
, . . .

)
, (2.25)

where dF stands for the dimension of the quantity F and f is a dimensionless
function.

Infinitesimal scale transformations can be parametrized by the following coordi-
nate redefinition

x ′
μ = xμ + εxμ, (2.26)

with the infinitesimal parameter ε. The N other current derived from this transfor-
mation reads as

jμ = xνT ν
μ , (2.27)

T ν
μ being the energy momentum tensor. This gives

∂μ jμ = T μ
μ . (2.28)

Therefore, the dilatational symmetry is valid if the right hand side of the above
equation vanishes. Classically, the trace of the energy momentum tensor T μ

μ only
receives non-zero contributions from terms involving finite quark masses. However,
quantum fluctuations lead to additional effects due to the so-called trace anomaly
(Crewther 1972; Chanowitz and Ellis 1972; Collins et al. 1977). Taking this contri-
bution into account, one obtains

T μ
μ = β

2g
Ga

μνGaμν +
∑

f

m f q f q f , (2.29)

where the first term originates from the trace anomaly. β is the β-function of QCD,
which has already appeared in Eq. (2.4). It therefore follows from Eqs. (2.28) and
(2.29), that the dilatational symmetry is not only broken by the finite quark masses,
but also by quantum effects. This can be understood from the fact that in quantum
field theory, a renormalization point μ has to be introduced, thus leading to a new
scale that violates the symmetry of Eq. (2.25).
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2.3.4 Center Symmetry

The center (or Z(Nc)) symmetry of QCD has a somewhat different character from
the ones discussed so far, as it is a symmetry of QCD at finite temperature, and is only
exactly valid when all quarks are infinitely heavy. As will be discussed below, this
symmetry is related to the confinement-deconfinement transition of QCD at finite
temperature (McLerran and Svetitsky 1981; Svetitsky and Yaffe 1982).

For discussing the center symmetry, it first has to be remembered that in quantum
field theory at finite temperature one takes the time axis to be imaginary (t → −iτ ,
τ being a real parameter) and all bosonic fields have to satisfy periodic boundary
conditions with respect to this axis, the period being 1/T (Le Bellac 1996). Now, it is
noticed that one can gauge transform the periodic gluon field according to Eq. (2.10)
with a transformation matrix U (x), which does not necessarily need to be periodic:

U (τ + 1/T, x) = zU (τ, x). (2.30)

Here, z must be an element of SU (Nc). Substituting this gauge transformation matrix
into Eq. (2.10), one obtains

A′
μ(τ + 1/T, x) = zA′

μ(τ, x)z† + i

g
z∂μz†. (2.31)

In order for this transformed gauge field to be periodic, the right-hand side of the
above equation should be equal to A′

μ(τ, x), and this can only happen if z can be
interchanged with any other SU (Nc) matrix and does not depend on the space-time
coordinates at all. Therefore, z has to be proportional to the identity matrix 1 with a
constant coefficient. As z is an element of SU (Nc), its possible realizations turn out
to be

z = e2π in/Nc 1, (n = 0, 1, . . . , Nc − 1). (2.32)

These matrices commute with any member of the SU (Nc) group, are called the
center of SU (Nc) and are denoted as Z(Nc).

While the action for the pure SU (Nc) theory is invariant under the center
symmetry, one can consider other gauge invariant operators constructed from glu-
onic fields, for which this is not the case. Among them, the Polyakov loop (Polyakov
1978), defined as the path-ordered product the gauge field, directed in the imaginary
time direction from 0 to 1/T , is most simple:

L(x) = 1

Nc
Tr

{
P exp

[
ig

∫ 1/T

0
dτ A4(τ, x)

]}
. (2.33)

It can be shown that the Polyakov loop transforms as

L ′(x) = zL(x), (2.34)
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under the center symmetry transformation, where z stands for the constant factor in
front of the identity matrix in Eq. (2.32). Hence, as long as it does not vanish, the
Polyakov loop is not invariant under the Z(Nc) transformation and therefore serves
as an order parameter of the corresponding center symmetry. In other words, if L(x)

takes a finite value, the center symmetry is spontaneously broken.
Additionally, it should be mentioned here that the Polyakov loop of Eq. (2.33)

also has significant implications related to deconfinement of quarks. Namely, the
expectation value of L(x) can be related to the free energy of a single quark (Polyakov
1978; Susskind 1979),

〈L(x)〉 = e−ΔFq/T , (2.35)

where ΔFq is the difference between the free energy of a system with and without
a single deconfined quark. As long as the quarks are confined, such a free energy of
a quark should be infinitely large, and the Polyakov loop should thus vanish. On the
other hand, for a system in the deconfined phase, the respective quark free energy
should have a finite value, meaning that the Polyakov loop will have a value larger
than 0.

2.4 Phases of QCD

The phases of QCD at various values of temperature and density continue to be
intensively studied both theoretically and experimentally. For a recent review of the
current statues in theory, see Fukushima and Hatsuda (2011). However, despite of
these efforts, there are still many open questions and fully established facts are rather
rare. In this short introduction, we will not discuss all open issues in detail, but can
only give a broad overview about what is known about the properties of QCD in a
hot or dense medium.

In Fig. 2.2 a sketch of the QCD phase diagram is given. One can see in this
figure that there are essentially three phases. Firstly, there is the hadron gas phase
at low temperature and density, where both the vacuum in which we live in and
nuclear matter are located. Secondly, the quark-gluon plasma phase is realized at high
temperature (Cabibbo and Parisi 1975), in which quarks and gluons are deconfined
and behave as weakly interacting particles. Thirdly, the color superconductor phase is
expected to appear at high density and low temperature, where quarks are believed to
form Cooper pairs, leading to color superconductivity (Barrois 1977; Bailin and Love
1984). It however has to be noted here, that many features of this phase diagram are
not well understood. Especially for the region of moderately high chemical potential
and low temperature, where the three phases meet, there is no conclusive picture
available, yet. This is so because in this domain, neither perturbative methods nor
lattice QCD calculations (Wilson 1974) can be reliably applied, and one therefore
has to resort to model calculations.

The region of the QCD phase diagram that is perhaps best known is located around
zero chemical potential, as here lattice QCD calculations are available. Particularly
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Fig. 2.2 Sketch of the various phases of QCD, as a function of the temperature and the baryon
chemical potential, which is related to the baryon density

interesting is the transition region between the hadron and quark-gluon plasma phase,
which has been investigated in detail in past studies. The behavior of this transition
depends on the flavor content of the theory, as illustrated in the Columbia plot,
shown in Fig. 2.3. For the purely gluonic case with no active flavors, which is most
easily studied on the lattice because the quenched approximation can be used here,
it is found that the transition is of first-order (Fukugita et al. 1990), with a critical
temperature of about Tc 	 260–270 MeV. This situation corresponds to the top-right
corner of Fig. 2.3.

On the other hand, due to technical difficulties related to the description of quarks
on the lattice, massless quarks can at present not be reliably treated in lattice QCD
and one has to consider other methods in this case. A quite general method for
handling this problem is the Ginzburg-Landau approach, in which one writes down
a general effective Lagrangian in terms of an appropriate order parameter of chiral
symmetry (Pisarski and Wilczek 1984). Furthermore, taking into account the effect
of the UA(1) or axial anomaly (Kobayashi and Maskawa 1970; ’t Hooft 1976), one
obtains

Leff = 1

2
Tr∂Φ†∂Φ + a

2
TrΦ†Φ

+ b1

4!
(
TrΦ†Φ

)2 + b2

4! Tr
(
Φ†Φ

)2

− c

2

(
det Φ + det Φ†). (2.36)
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Fig. 2.3 The Columbia plot for QCD at zero density, depicting the nature of the confinement-
deconfinement or chiral transition at finite temperature for various flavors. The top-right corner
describes the purely gluonic transitions with infinitely heavy quarks, while the bottom-left corner
stands for the chiral transitions with three massless quarks

Here, Φ is a N f × N f matrix and stands for the order parameter of chiral symmetry.
Under a chiral SU (N f )L × SU (N f )R transformation, it changes as

Φ ′ = VLΦVR, (2.37)

while under the axial UA(1) transformation, it changes as

Φ ′ = eiαΦ. (2.38)

It can be seen from the above equations that the first four terms of the Lagrangian of
Eq. (2.36) are invariant under both SU (N f )L×SU (N f )R and UA(1) transformations,
while the last terms breaks the UA(1) symmetry. Therefore, this last term explicitly
incorporates the effect of the chiral anomaly.

Analyzing now the thermal properties of Eq. (2.36), one finds that for N f = 2
this Lagrangian is equivalent to the φ4 model, which possesses the O(4) symmetry.
This model is known to have a second order phase transition. On the other hand,
for N f = 3, due to the cubic interaction introduced by the axial anomaly term, the
model exhibits a first order transition. These considerations lead to the picture shown
in Fig. 2.3, where on the right side the transition changes from first order at the bottom
(N f = 3) to second order on the top (N f = 2). For a more detailed discussion of
this issue, see Chap. 6 of Yagi et al. (2005).

Finally, let us consider more realistic cases, which lie close to the physical point,
indicated by the black dot in Fig. 2.3. Even though still challenging due to the light u
and d quark masses, lattice simulations are now at the stage of becoming possible in

http://dx.doi.org/10.1007/978-4-431-54318-3_6
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such a regime. Most of these simulations employ the staggered fermions (Susskind
1977; Sharatchandra et al. 1981), while some also use the Wilson fermion formalism
(Wilson 1975). Recent results of such studies suggest that the transition at the physi-
cal point is smooth crossover (Aoki et al. 2006). Furthermore, the value of the critical
temperature has been evaluated by various groups, the latest results giving an aver-
aged value of roughly 170 MeV, with a scatter of about 20 MeV (Aoki et al. 2009;
Bazavov et al. 2009; Bornyakov et al. 2010; Cheng et al. 2009; Borsanyi et al. 2010).
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