Chapter 2
Subgraphs, Paths, and Connected Graphs

2.1 Subgraphs and Spanning Subgraphs (Supergraphs)

Subgraph: Let H be a graph with vertex set V(H) and edge set E(H), and similarly
let G be a graph with vertex set V(G) and edge set E(G). Then, we say that H is a
subgraph of G if V(H) < V(G) and E(H) < E(G). In such a case, we also say that
G is a supergraph of H.

Gy

G1 =Gy, G,=Gs but Gs £G,.

Fig. 2.1 G, is a subgraph of G, and G3

In Fig. 2.1, G is a subgraph of both G, and G3 but G3 is not a subgraph of G,.

Any graph isomorphic to a subgraph of G is also referred to as a subgraph of G.

If H is a subgraph of G then we write H < G. When H < G but H # G, i.e.,
V(H) # V(G) or E(H) # E(G), then H is called a proper subgraph of G.

Spanning subgraph (or Spanning supergraph): A spanning subgraph (or
spanning supergraph) of G is a subgraph (or supergraph) H with V(H) = V(G),
i.e. H and G have exactly the same vertex set.

It follows easily from the definitions that any simple graph on n vertices is a
subgraph of the complete graph K,,. In Fig. 2.1, G| is a proper spanning subgraph
of G3.

S. Saha Ray, Graph Theory with Algorithms and its Applications, 11
DOI: 10.1007/978-81-322-0750-4_2, © Springer India 2013



12 2 Subgraphs, Paths and Connected Graphs

2.2 Operations on Graphs

The union of two graphs G| = (V1,E;) and G, = (V,, E;) is another graph G3 =
(V3,E3) denoted by Gz = G| U G, where vertex set V3 = V; U V, and the edge
set E5 = Ey UE,.

The intersection of two graphs G; and G, denoted by G| N G, is a graph Gy
consisting only of those vertices and edges that are in both G| and G».

The ring sum of two graphs G; and G,, denoted by G| ® G,, is a graph
consisting of the vertex set V| U V, and of edges that are either in G; or G», but
not in both.

Figure 2.2 shows union, intersection, and ring sum on two graphs G; and G».

GNG; G, DG,

Fig. 2.2 Union, intersection, and ring sum of two graphs

Three operations are commutative, i.e.,
GIUG, =G, UG, GINGy=GNGy, G @Gy =G @Gy

If G| and G, are edge disjoint, then G; N G, is a null graph, and G| & G, =
G, U G,. If G| and G, are vertex disjoint, then G| N G, is empty.

For any graph G, GNG=GUG =G and G & G = a null graph.

If g is a subgraph of G, ie., g < G, then G® g =G — g, and is called a
complement of g in G.
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Fig. 2.3 Vertex deletion and edge deletion from a graph G

Decomposition: A graph G is said to be decomposed into two subgraphs G; and
G,, if Gy UG, = G and G| NG, is a null graph.

Deletion: If v; is a vertex in graph G, then G —v; denotes a subgraph of
G obtained by deleting v; from G. Deletion of a vertex always implies the deletion
of all edges incident on that vertex. If ¢; is an edge in G, then G — ¢; is a subgraph
of G obtained by deleting ¢; from G. Deletion of an edge does not imply deletion
of its end vertices. Therefore, G — ¢; = G @ ¢; (Fig. 2.3).

Fusion: A pair of vertices a, b in a graph G are said to be fused if the two vertices
are replaced by a single new vertex such that every edge, that was incident on either
a or b or on both, is incident on the new vertex. Thus, fusion of two vertices does not
alter the number of edges, but reduces the number of vertices by one (Fig. 2.4).

e f e 3 f
1 3 1
3
(a b)
4 6
c 7 d

Fig. 2.4 Fusion of two vertices a and b

Induced subgraph: A subgraph H C G is an induced subgraph, if Ey =
EgNE(Vy). In this case, H is induced by its set Vg of vertices. In an induced
subgraph H C G, the set Ey of edges consists of all e € Eg, such that e € E(Vy).
To each nonempty subset A C V;, there corresponds a unique induced subgraph
G|A] = (A,Ec NE(A)) (Fig. 2.5).
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G Spanning Subgraph Induced Subgraph

Fig. 2.5 Spanning subgraph and induced subgraph of a graph G

Trivial graph: A graph G = (V E) is trivial, if it has only one vertex. Otherwise
G is nontrivial.

Discrete graph: A graph is called discrete graph if Eg = ¢.

Stable: A subset X C Vi is stable, if G[X] is a discrete graph.

2.3 Walks, Trails, and Paths

Walk: A walk in a graph G is a finite sequence
W =wvpeivier - - - vi_1exvi

whose terms are alternately vertices and edges such that for 1 <i <k, the edge ¢;
has ends v;,_; and v;.

Thus, each edge e; is immediately preceded and succeeded by the two vertices
with which it is incident. We say that W is a vy — v; walk or a walk from vy to vy.

Origin and terminus: The vertex v is the origin of the walk W, while vy is
called the terminus of W. vy and v; need not be distinct.

The vertices vy, Vs, . .., vx—1 in the above walk W are called its internal vertices.
The integer k, the number of edges in the walk, is called the length of W, denoted
by |W]|.

In a walk W, there may be repetition of vertices and edges.

Trivial walk: A trivial walk is one containing no edge. Thus for any vertex v of
G, W = v gives a trivial walk. It has length 0.
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Fig. 2.6 A graph with five vertices and ten edges

In Fig. 2.6, W1 = Vie1Vvaesviepviesvaesvs and Wz = Vviejverviervy are both
walks of length 5 and 3, respectively, from v; to vs and from v; to v, , respectively.

Given two vertices u# and v of a graph G, a u—v walk is called closed or open,
depending on whether u = v or u # v.

Two walks W, and W, above are both open, while W3 = v vsv,v4v3v is closed
in Fig. 2.6.

Trail: If the edges ey, e, ...,e; of the walk W = vpejvieavy------ eiVvy are
distinct then W is called a trail. In other words, a trail is a walk in which no edge is
repeated. W; and W, are not trails, since for example es is repeated in Wy, while e,
is repeated in W,. However, W3 is a trail.

Path: If the vertices vg, vy,..., v, of the walk W = vgeivievs - - - ervy are dis-
tinct then W is called a path. Clearly, any two paths with the same number of
vertices are isomorphic.

A path with n vertices will sometimes be denoted by P,,.

Note that P, has length n — 1.

In other words, a path is a walk in which no vertex is repeated. Thus, in a path
no edge can be repeated either, so a every path is a trail. Not every trail is a path,
though. For example, W3 is not a path since v; is repeated. However, Wy =
VoV4V3VsVy is a path in the graph G as shown in Fig. 2.6.

2.4 Connected Graphs, Disconnected Graphs,
and Components

Connected vertices: A vertex u is said to be connected to a vertex v in a graph G if
there is a path in G from u to v.

Connected graph: A graph G is called connected if every two of its vertices are
connected.

Disconnected graph: A graph that is not connected is called disconnected.
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Fig. 2.7 A disconnected graph with two components

It is easy to see that a disconnected graph consists of two or more connected
graphs. Each of these connected subgraphs is called a component. Figure 2.7
shows a disconnected graph with two components.

Theorem 2.1 A graph G is disconnected iff its vertex set V can be partitioned into
two non-empty, disjoint subsets V| and V, such that there exists no edge in G
whose one end vertex is in subset V| and the other in subset V,.

Proof Suppose that such a partitioning exists. Consider two arbitrary vertices
a and b of G, such that a € V| and b € V,. No path can exist between vertices
a and b; otherwise there would be at least one edge whose one end vertex would be
in V| and the other in V,. Hence, if a partition exists, G is not connected.
Conversely, let G be a disconnected graph. Consider a vertex a in G. Let V| be
the set of all vertices that are connected by paths to a. Since G is disconnected, V;
does not include all vertices of G. The remaining vertices will form a (non-empty)
set V. No vertex in V; is connected to any vertex in V, by path. Hence the
partition exists. O

Theorem 2.2 If a graph (connected or disconnected) has exactly two vertices of
odd degree, there must be a path joined by these two vertices.

Proof Let G be a graph with all even vertices except vertices v; and v,, which are
odd. From Handshaking lemma, which holds for every graph and therefore for
every component of a disconnected graph, no graph can have an odd number of
odd vertices. Therefore, in graph G, v; and v, must belong to the same component,
and hence there must be a path between them. O

Theorem 2.3 A simple graph with n vertices and k components can have at most
(n — k)(n — k 4+ 1)/2 edges.
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Proof Let the number of vertices in each of the k components of a graph G be
ni,ny, ..., n. Thus, we have

n+n+---+n=n

where n; >1 for i=1,2,... k.
Now, S5 (i —1)=n—k

i=1

= [(n = 1)+ (g — 1) 4+ (m — D)*=n? + k> — 2nk
k k
= > (m - 1’42 Y (m—1)(nj— 1) =n® + k> — 2nk

= (zk:(n, - l))2: n? + k* — 2nk

ij=1,i#j
k k k
=Y -2m k2 Y (-1 —1) =n® +& - 2nk
i=1 i=1 ij=1i#j '
k k
=Y -2n+k+2 Y (m— 1)(nj— 1) =n?+ k> —2nk
i=1 ij=L,i#j
n k
=>n+2 Y (ni—l)(nj—l):n2—|—k2—2nk+2n—k.
i=1 ij=1,i%j

Since each (n; — 1) >0.

D oni<n® + I =2k +2n — k= n® + k(k — 2n) — (k — 2n)
i=1
=n® —(k—1)(2n —k)

Now, the maximum number of edges in the ith component of G is n;(n; — 1) /2.
Since the maximum number of edges in a simple graph with n vertices is
n(n —1)/2 therefore, the maximum number of edges in G is

imln—1) =45 -
<4 — (k= 1)(2n - )] -4
=1[n* = 2nk +2n+k* —k —n
I ERICE]
=Ln—k)n—k+1) =
2.5 Cycles

Cycle: A nontrivial closed trail in a graph G is called a cycle if its origin and
internal vertices are distinct. In detail, the closed trail
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C =vivy---v,v is a cycle if
1. C has at least one edge and

2. vi,va,...,vaare n distinct vertices.

k-Cycle: A cycle of length k, , i.e., with k edges, is called a k-cycle. A k-cycle is
called odd or even depending on whether k is odd or even.

Figure 2.8 cites C3, Cy4, Cs, and Cg. A 3-cycle is often called a triangle. Clearly,
any two cycles of the same length are isomorphic.

C3 C4
C5 Cé
Fig. 2.8 Cycles C3, C4, Cs and Cg

An n-cycle, i.e., a cycle with n vertices, will sometimes be denoted by C,,.

In Fig. 2.9, C = vivyvavgvy, is ad-cycle and T = v vav5v3v4Vsyy is a non-trivial
closed trail which is not a cycle (because vs occurs twice as an internal vertex) and
C' = vivyvsyy is a triangle.

Fig. 2.9 A graph containing

3-cycles and 4-cycles GDX@
) O,

1
4
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Fig. 2.10 A 2-cycle e

€z

Note that, a loop is just a 1-cycle. Also, given parallel edges e; and e; in Fig. 2.10
with distinct end vertices v; and v,, we can find the cycle vie;v,e,v; of length 2.
Conversely, the two edges of any cycle of length 2 are a pair of parallel edges.

Theorem 2.4 Given any two vertices u and v of a graph G, every u—v walk
contains a u—v path.

Proof We prove the statement by induction on the length / of a u—v walk W.

Basic step: | = 0, having no edge, W consists of a single vertex (u = v). This
vertex is a u—v path of length 0.

Induction step: 1 > 1. We suppose that the claim holds for walks of length less
than /. If W has no repeated vertex, then its vertices and edges form a u—v path. If
W has a repeated vertex w, then deleting the edges and vertices between appear-
ances of w (leaving one copy of w) yields a shorter u-v walk W’ contained in W.
By the induction hypothesis, W’ contains a u—v path P, and this path P is contained

in W (Fig. 2.11). This proves the theorem. O
W @ ° ° ° £ ®
u w w

Fig. 2.11 A walk W and a shorter walk W’ of W containing a path P

Theorem 2.5 The minimum number of edges in a connected graph with n vertices
isn— 1.

Proof Let m be the number of edges of such a graph. We have to show m >n — 1.
We prove this by method of induction on m. If m = 0 then obviously n = 1
(otherwise G will be disconnected). Clearly, then m >n — 1. Let the result be true
for m =0,1,2,3,..., k. We shall show that the result is true for m = k + 1. Let
G be a graph with k 4 1 edges. Let e be an edge of G. Then the subgraph G — e has
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k edges and n number of vertices. If G — e is also connected then by our hypothesis
k>n—1,ie, k+1>n>n-—1.

If G — eis disconnected then it would have two connected components. Let the
two components have kj,k, number of edges and n;,n, number of vertices,
respectively. So, by our hypothesis, k; >n; — 1 and k, > n, — 1. These two imply
that ky + kp, >ny +ny, — 2, ie.,, k>n—2 (since, k; + ko, =k, ny +n, =n), ie.,
k+1>n—-1.

Thus, the result is true for m = k + 1. O

Theorem 2.6 A graph G is bipartite if and only if it has no odd cycles.

Proof Necessary condition:

Let G be a bipartite graph with bipartition (X,Y), ie., V=XUY.

For any cycle C : vy — vy -+ — vy (=vy) of length k,vi e X = v, €Y, v; €
X=>weY --=vy, €Y=y €X Consequently, k+1=2m+ 1 is odd
and k = |C| is even. Hence, G has no odd cycle.

Sufficient condition:

Suppose that, all the cycles in G are even, i.e., G be a graph with no odd cycle.

To show: G is a bipartite graph. It is sufficient to prove this theorem for the
connected graph only.

Let us assume that G is connected. Let v € G be an arbitrary chosen vertex.

Now, we define,

X = {x|dg(v,x) iseven},

i.e., X is the set of all vertices x of G with the property that any shortest v — x path
of G has even length and Y = {y|ds(v,y) isodd}, i.e., Y is the set of all vertices y
of G with the property that any shortest v — y path of G has odd length.

Here,

dg(u,v) = shortest distance from the vertex u to the vertex v
. k
= mln{k tu— v}

[If the graph G is connected then this shortest distance should be finite, i.e.,
dg(u,v) <oo for Yu,v € G. Otherwise, G is disconnected]

Then clearly, since the graph G is connected V = X U Y and also by definition
of distance X NY = (.

Now, we show that V = X U Y is a bipartition of G by showing that any edge of
G must have one end vertex in X and another in Y.

Suppose that u,w € V(G) are both either in X or in Y and they are adjacent.

Let P:v-—u and 0: v 5w be the two shortest paths from v to u and v to w,
respectively.

Let x be the last common vertex of the two shortest paths P and Q such that
P=PP, and Q = Q,Q, where P, ‘x> u and [0 ‘xS w are independent
(Fig. 2.12).
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Fig. 2.12 Two shortest paths P and Q

Since P and Q are shortest paths, therefore, P; : y—x and 0 : v x are
shortest paths from v to x.

Consequently, |Py| = |Q1]

Now consider the following two cases.

Case 1: u,w € X, then |P| is even and |Q| is even (Also, |P;| =|Q])

Case 2: u,w €Y, then |P| is odd and |Q| is odd (Also, |Pi| = |Q1])

Therefore, in either case, |P,| + |Q>| must be even and so uw ¢ E(G). Other-

wise, x5 u — w—x would be an odd cycle, which is a contradiction.
Therefore, X and Y are stable subsets of V. This implies (X, Y) is a bipartition
of G. Therefore, G[X]| and G[Y] are discrete induced subgraphs of G.
Hence, G is a bipartite graph.
If G is disconnected then each cycle of G will belong to any one of the

connected components of G say Gy, Gy, ..., G).
If G; is bipartite with bipartition (X;,Y;), then (X, UX;UX3U------ UX,,
YiuYhU.----. UY,) is a bipartition of G.
Hence, the disconnected graph G is bipartite. U
Exercises:

1. Show that the following two graphs are isomorphic (Fig. 2.13).

Gy Gz

Fig. 2.13
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2. Check whether the following two graphs are isomorphic or not (Fig. 2.14).

DA

G,

Fig. 2.14

3. Show that the following graphs are isomorphic and each graph has the same
bipartition (Fig. 2.15).

X1 Y1
X1 X2 X3 Xq
Yz Xz
X3 Y3
Y1 Yz Y3 Ya
Va Xs
Fig. 2.15

4. What is the difference between a closed trail and a cycle?
5. Are the following graphs isomorphic? (Fig. 2.16).
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Fig. 2.16

6. Prove that a simple graph having n number of vertices must be connected if it
has more than (n — 1)(n — 2)/2 edges.

7. Check whether the following two given graphs G| and G, are isomorphic or
not (Fig. 2.17).

K&

G,

Fig. 2.17

8. Prove that the number of edges in a bipartite graph with n vertices is at
most(n?/2).

9. Prove that there exists no simple graph with five vertices having degree
sequence 4,4,4,2,2.

10. Find, if possible, a simple graph with five vertices having degree sequence
2,3,3,3,3.

11. If a simple regular graph has n vertices and 24 edges, find all possible values
of n.
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12.

13.

14.

2 Subgraphs, Paths and Connected Graphs

If 6(G) and A(G) be the minimum and maximum degrees of the vertices of a
graph G with n vertices and e edges, show that

awg%ng

Show that the minimum number of edges in a simple graph with n vertices is

n — k, where k is the number of connected components of the graph.

Find the maximum number of edges in

(a) a simple graph with n vertices

(b) a bipartite graph with bipartition (X,Y) where |X| =m and |Y|= n,
respectively.
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