
Chapter 2
The Ramanujan τ -Function

1 Introduction

The 1916 memoir of Ramanujan, innocuously entitled “On certain arithmetic func-
tions”, introduced the τ -function. This is an integer-valued function on the natural
numbers which, at first, manifested as part of an “error term” in counting the number
of ways that a number could be written as a sum of 24 squares. However, Ramanu-
jan realized that it was a function worthy of study in its own right. It would not be an
overstatement to say that one of the significant themes of mathematics in the 20th
century has emanated from this observation.

The τ -function is defined by the formal identity

∞∑

n=1

τ(n)qn = q

∞∏

n=1

(
1 − qn

)24
. (1)

It is in fact more than a formal identity. If we think of q as a complex number with
|q| < 1, then taking the logarithm of the infinite product and expanding, we see that
it is

logq − 24
∞∑

n=1

∞∑

m=1

qnm

m
.

Interchanging sums, we see that the double sum is

−24
∞∑

m=1

1

m

qm

1 − qm
,

and this converges for |q| < 1. For a complex number z with �(z) > 0, we see that

q = e2πiz

satisfies |q| < 1, and so we may define a function �(z) by the right-hand side of (1).
Moreover, we see that �(z) �= 0 as it is given as an absolutely convergent product
of non-zero terms.
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The function �(z) was known to previous authors. If we consider the Eisenstein
series

E2k(z) =
∑

(m,n) �=(0,0)

1

(mz + n)2k

where the sum ranges over pairs of integers (m,n) which are not both zero, then
there is the identity

�(z) = 1

1728

(
E4(z)

3 − E6(z)
2).

Dedekind had studied �(z) (and a 24th root of it known as the η-function). The
η-function occurs in the transformation properties of the Dedekind sums, and the
�-function occurs in the theory of the moduli of elliptic curves. It also occurs in
the limit formula of Kronecker. However, Ramanujan was the first to realize that the
coefficients of the q-expansion give rise to an interesting arithmetic sequence.

2 The τ -Function and Partitions

Writing integers as sums of elements of a distinguished subset is a theme that oc-
cupied Ramanujan in many of his works. As we said, the τ -function itself arises
in the problem of representing an integer as a sum of 24 squares. Ramanujan also
gave considerable attention to the partition problem, namely the number of ways of
writing a positive integer as a sum of positive integers. If we denote by p(n) the
number of such representations of a positive integer n, then we see that the first few
values are given by p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7, p(6) = 11
and so on. If we consider the generating function

∞∑

n=1

p(n)qn

then it is easily seen to be equal to

∞∏

m=1

(
1 − qm

)−1
.

This bears some superficial resemblance to (1). Indeed, such series had been studied
classically by Euler, Jacobi and others. However, it was Ramanujan who began to
observe arithmetical properties of the coefficients, such as congruences. For exam-
ple, he observed that

p(5n + 4) ≡ 0 (mod 5)

and

p(7n + 5) ≡ 0 (mod 7).
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He continued this line of thought to the τ -function itself. We know now that such
congruences are based on deep aspects of the theory of modular forms.

While the sequence {p(n)} and {τ(n)} share properties such as congruence rela-
tions, they are, however, very different in terms of their growth properties. Ramanu-
jan’s circle method (described in another chapter) shows that p(n) grows exponen-
tially as a function of n, while as we shall see in this chapter, τ(n) has a polynomial
growth in n.

3 Related Generating Functions

Euler had studied the function
∞∏

n=1

(
1 − qn

)
(2)

and proved that it is equal to

∑

n∈Z
(−1)nq(3n2+n)/2.

Numbers of the form n(3n + 1)/2 are called pentagonal. This and related q-
expansion identities can be expressed in terms of the number of partitions of an
integer into other integers satisfying various constraints. For example, Euler’s iden-
tity can be interpreted as giving an expression for the number of partitions of a
number into an even number of unequal parts minus the number of partitions of the
same number into an odd number of unequal parts.

We can ask for which integers m there is an n ∈ Z such that

m = 1

2
n(3n + 1)? (3)

We need to have 1 + 24m to be a perfect square, say r2. Moreover, we need −1 ± r

divisible by 6, and in particular, 6 should not divide r . When these conditions are
satisfied, we have

n = 1

6
(−1 ± r).

In particular, given m, there are at most two values of n satisfying (3). Thus, when
(2) is written as a power series in q , the coefficients are bounded. Moreover, the
number of m ≤ x for which (3) has a solution is ≤ √

2x/3. In particular, most of
the coefficients are zero, and the series is “lacunary”. We can say a little more about
which coefficients are nonzero. Indeed, for 1 + 8m = r2 to be satisfied, we need r

odd, and

r + 1 = a, r − 1 = b
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for some factorization 8m = ab. This implies that r = 1
2 (a + b) and a = b + 2. In

particular, both a and b are even, and r = b + 1 and 8m = b(b + 2).
Jacobi studied the third power of (2) and proved that

∞∏

n=1

(
1 − qn

)3 =
∞∑

n=0

(2n + 1)qn(n+1)/2. (4)

Numbers of the form n(n + 1)/2 are called triangular. Again, it is seen that this
is a lacunary series, in the sense that the set of n for which the coefficient of qn is
nonzero has density zero. Note that we have

∞∑

n=1

τ(n)qn = q

( ∑

m∈Z
(−1)mq(3m2+m)/2

)24

and

∞∑

n=1

τ(n)qn = q

( ∞∑

m=0

(2m + 1)qm(m+1)/2

)8

.

In particular, one can derive the following formulas for τ(n):

(n − 1)τ (n) =
∑

1≤|m|≤an

(
n − 1 − 25m

2
(3m + 1)

)
τ

(
n − m

2
(3m + 1)

)

where

an = 1

6

(
1 + (1 + 24n)

1
2
);

(n− 1)τ (n) =
∑

1≤m≤bn

(−1)2m+1(2m+ 1)

(
n− 1 − 9m

2
(m+ 1)

)
τ

(
n− m

2
(m+ 1)

)

where

bn = 1

2

(
(1 + 8n)

1
2 − 1

)
.

The first of these is due to Lehmer, and the second to Ramanujan. However, these
formulas do not seem to be useful in giving an expression for τ(n) in terms of
elementary functions. They cannot be viewed as ‘closed-form’ expressions since
the range of summation is a function of the argument. However, they do suffice to
show that τ(n) has at most polynomial growth in n.

4 Values of the τ -Function

It is easy to compute the first few values: τ(1) = 1, τ(2) = −24, τ(3) = 252. The
following table is copied from [116].
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n τ(n) n τ(n) n τ(n)

1 1 11 534,612 21 −4,219,488

2 −24 12 −370,944 22 −12,830,688

3 252 13 −577,738 23 18,643,272

4 −1472 14 401,856 24 21,288,960

5 4830 15 1,217,160 25 −25,499,225

6 −6048 16 987,136 26 13,865,712

7 −16744 17 −6,905,934 27 −73,279,080

8 84480 18 2,727,432 28 24,647,168

9 −113,643 19 10,661,420 29 128,406,630

10 −115,920 20 −7,109,760 30 −29,211,840

Looking at this table and others that give more values, many natural questions
come to mind. Firstly, we see that the numbers are growing fairly rapidly. However,
the growth is not exponential since it was shown by Ramanujan that

∣∣τ(n)
∣∣ 	 n7.

He conjectured that
∣∣τ(n)

∣∣ ≤ d(n)n11/2

where d(n) denotes the number of positive divisors of n. This is known as the Ra-
manujan conjecture (actually Hardy called it the Ramanujan hypothesis), and it is
now a theorem as we shall explain in another chapter. The only proof of this relies
on “reducing” it to a special case of the Weil conjectures and appealing to the proof
of these conjectures by Deligne.

It is a classical result that d(n) = O(nε) for any ε > 0, and so a weaker version
of the Ramanujan conjecture is that for any ε > 0,

τ(n) 	ε n11/2+ε

where the subscript indicates that the implied constant may depend on ε.
We might also notice from the table a fact that Ramanujan stated as a conjecture,

namely that the τ -function is multiplicative:

τ(mn) = τ(m)τ(n) (5)

for positive integers m and n that are relatively prime. Moreover, Ramanujan ob-
served that for a fixed prime p, the values of τ(pm) satisfy a second-order recur-
rence relation: for m ≥ 1, we have

τ
(
pm+1) = τ(p)τ

(
pm

) − p11τ
(
pm−1). (6)
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p τ(p) p τ(p) p τ(p)

2 −24 31 −52,843,168 73 1,463,791,322

3 252 37 −182,213,314 79 38,116,845,680

5 4830 41 308,120,442 83 −29,335,099,668

7 −16744 43 −17,125,708 89 −24,992,917,110

11 534,612 47 2,687,48,496 97 75,013,568,546

13 −577,738 53 −1,596,055,698 101 81,742,959,102

17 −6,905,934 59 −5,189,203,740 103 −225,755,128,648

19 10,661,420 61 6,956,478,662 107 90,241,258,356

23 18,643,272 67 −15,481,826,884 109 73,482,676,310

29 128,406,630 71 9,791,485,272 113 −85,146,862,638

Both of these properties were proved by Mordell within a year of the publication of
Ramanujan’s paper. These relations imply that all of the values of the τ -function can
be determined once they are known at prime arguments. Above is a table of τ(p)

for primes p ≤ 113 (the first 30 primes).
Consider again the values of the τ -function on powers of a prime. Denote by αp

and βp the complex numbers which are roots of the equation

T 2 − τ(p)T + p11 = 0.

Then τ(p) = αp + βp and αpβp = p11. Let us write

αp = p11/2eiθp .

Here θp is a complex number, and the Ramanujan conjecture is the assertion that in
fact θp is real. In any case, we deduce that

τ(p) = 2p11/2 cos(θp).

This implies that

τ(p)2 = 4p11(1 − sin2(θp)
)
.

We see from this that we cannot have sin(θp) = 0 as τ(p) is an integer. Moreover,
relation (6) shows that

τ
(
p2) = τ(p)2 − p11 = α2

p + αpβp + β2
p.

More generally, by induction, we can show that

τ
(
pa

) = αa+1
p − βa+1

p

αp − βp

.
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Equivalently,

τ
(
pa

) = p11a/2 sin(a + 1)θp

sin θp

. (7)

5 Parity of the τ -Function

A few more calculations will show that τ(p) seems to be even for all primes p. This
is in fact true and can be proved as follows. We have the congruence

(
1 − qn

)24 ≡ (
1 + q8n

)3
(mod 2).

Now, by a q-series identity of Jacobi, we have

∞∏

n=1

(
1 + q8n

)3 =
∞∑

m=0

q4m2+4m.

Thus, we deduce that

∞∑

n=1

τ(n)qn ≡ q

∞∑

m=0

q4m2+4m ≡
∞∑

m=0

q(2m+1)2
(mod 2).

In particular, τ(n) is odd if and only if n = (2m + 1)2, in other words, if and only if
n is an odd square. In particular, τ(p) is even for every prime p.

6 Congruences Satisfied by the τ -Function

The result of the previous paragraph is that

τ(p) ≡ 0 (mod 2)

for all primes p. There are many other congruence relations discovered by Ramanu-
jan. Here is a partial list:

(1) τ(p) ≡ 1 + p3 (mod 25)

(2) τ(p) ≡ 1 + p (mod 3)

(3) τ(p) ≡ p + p10 (mod 52)

(4) τ(p) ≡ p + p4 (mod 7)

(5) τ(p) ≡ 1 + p11 (mod 691)

More congruences were discovered later by other authors including Bambah,
Chowla, Gandhi, Swinnerton-Dyer and Wilton.

As mentioned briefly earlier, Ramanujan was also the first to find congruences
satisfied by the partition function. Some of these are
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(1) p(5m + 4) ≡ 0 (mod 5)

(2) p(7m + 5) ≡ 0 (mod 7)

(3) p(11m + 6) ≡ 0 (mod 11)

In Chap. 7, we will indicate how such congruences can be proved.

7 Vanishing of the τ -Function

Of the many problems that are open with respect to the τ -function, there is a con-
jecture of Lehmer [117] that asserts that

τ(p) �= 0

where p is a prime. Equivalently,

τ(n) �= 0

for any n ≥ 1. In fact, we have the following elementary result of Lehmer.

Proposition 7.1 Let n0 denote the least value of n for which τ(n) = 0 (if it exists).
Then n0 is prime.

Proof The multiplicativity of the τ -function (5) shows that n0 is a prime power, say
n0 = pa . Suppose that a > 1 (in other words, τ(p) �= 0). Then from (7) we deduce
that

sin(a + 1)θp = 0

and so

θp = kπ/(a + 1) (8)

for some integer k. The number

4(cos θp)2 = τ(p)2/p11

is rational. On the other hand, by (8), it is an algebraic integer. Thus, it is in fact
an integer, say m, and it is also clear that m > 0. Again, by (8), θp is real, and so
| cos θp| ≤ 1 and so m ≤ 4. Then

τ(p)2 = mp11

and as τ(p) is an integer, m must be divisible by p. Putting all of these constraints
together, we see that p = m = 2 or p = m = 3. This implies that

τ(2) = ±26 or τ(3) = ±36.
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But neither of these can hold as we see from the tables above: τ(2) = −24 and
τ(3) = 252. This completes the proof. �

We also have the following curious result.

Proposition 7.2 Suppose that the set {n : τ(n) = 0} has density zero. Then it is, in
fact, empty.

Proof Suppose that τ(n) = 0 for some n. Then by the previous result, the least such
n is a prime number, p (say). It follows that if n = mp with p � m, then τ(n) = 0.
Thus, the set

{
n : τ(n) = 0

}

has density ≥ (p − 1)/p2, contradicting our hypothesis. �

Using the congruences satisfied by the τ -function, it is possible to show that n0

(if it exists) must be quite large. Indeed, Lehmer himself observed that if τ(p) = 0,
then the congruences imply that

p3 ≡ −1
(
mod 25).

Since p �= 2, we also have that

p16 ≡ 1
(
mod 25).

These two congruences together imply that

p2 ≡ 1
(
mod 25)

from which it follows that

p ≡ −1
(
mod 25).

Similarly, one finds p ≡ −1 (mod 25 · 3 · 52 · 691). This immediately implies that

p ≥ 25 · 3 · 52 · 691 − 1 = 1,658,399.

In fact, one can do much better, and it is currently known that τ(p) �= 0 for p < 1015.
Of course. Lehmer’s conjecture is that it should be nonzero for all p. Recently,
this conjecture has been related to the irrationality of coefficients of certain mock
modular forms.

There is an even stronger conjecture than that of Lehmer, which has been sug-
gested by Atkin and Serre. For every ε > 0, they ask whether

∣∣τ(p)
∣∣ �ε p

9
2 −ε?



20 2 The Ramanujan τ -Function

Nothing is known about this conjecture. In terms of the angle θp introduced earlier,
the above conjecture is equivalent to the assertion that

∣∣∣∣θp − π

2

∣∣∣∣ �ε

1

p1+ε
.

If we consider τ(n) rather than τ(p), it is possible to prove a kind of lower bound.
It is shown in [143] that there is an effectively computable absolute constant c > 0
such that for all positive integers n for which τ(n) is odd, we have the lower bound

∣∣τ(n)
∣∣ ≥ (logn)c.

The condition on the parity of τ(n) ensures that it is not divisible by the first power
of any prime. Thus, the set of n for which the result applies is the so-called squarefull
numbers (that is, numbers for which every prime divisor occurs to at least the second
power).

It is also interesting to ask for lower bounds that hold infinitely often. Hardy
showed that

τ(n) > n11/2

holds infinitely often. The best result in this regard is to due to R. Murty [136], who
showed that there is an absolute and effective constant c > 0 such that

∣∣τ(n)
∣∣ > n11/2 exp{c logn/ log logn}.

This result is essentially best possible since we know that

d(n) < exp
{
c′ logn/ log logn

}

and by Ramanujan’s conjecture (Deligne’s theorem), we have
∣∣τ(n)

∣∣ ≤ d(n)n11/2.

With recent developments on the Sato–Tate conjecture (see Chaps. 10 and 12), these
results are valid for any c < log 2. �

8 Divisibility of τ(p) by p

The many congruences satisfied by the τ -function all have a fixed modulus and vary-
ing argument. A different kind of congruence is the one in the title of this section,
namely whether

τ(p) ≡ 0 (mod p). (9)

Indeed, this does occur, and the first example is p = 2 as we have already seen
above. The only primes known to satisfy (9) are p = 2,3,5,7,2411,7758337633.
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(This last prime was discovered quite recently [122].) It is not known whether there
are infinitely many such primes. Neither is it known that the complement is infinite!
In this regard, the situation is similar to that of Wieferich primes.

Heuristic reasoning would suggest that

#
{
p ≤ x : τ(p) ≡ 0 (mod p)

} ∼ log logx. (10)

However, the function log logx grows so slowly that it is computationally difficult
to distinguish it from a constant. (For example, log log 1015 is approximately 3.54.)
If (10) were true, we would expect that

∑

τ(p)≡0 (mod p)

1

logp

converges. However, we do not even know whether

∑

τ(p)≡0 (mod p)

1

p

converges.
Suppose that p is a prime for which (9) holds. Then from the relation

τ
(
pa+1) = τ(p)τ

(
pa

) − p11τ
(
pa−1)

we see that for all a ≥ 1,

τ
(
pa

) ≡ 0
(
mod pa

)
.

We also note that if τ(p) ≡ 0 (mod p) and n = pm where (p,m) = 1, then
(
τ(n), n

) �= 1. (11)

If the set of primes for which (9) holds has positive density, then it follows by an
elementary sieve argument that the set of n for which (11) holds has density 1. This
latter statement can be proved unconditionally. In fact, one knows that

#
{
n ≤ x : (τ(n), n

) = 1
} 	 x/ log log logx.

It is interesting to note that if there are infinitely many primes p such that τ(p) =
0, then for any value of k, there exist infinitely many values of n such that τ(n) =
τ(n+1) = τ(n+2) = · · · = τ(n+k) = 0. This is an easy exercise using the Chinese
remainder theorem.

9 Lehmer’s Conjecture and Harmonic Weak Maass Forms

Finally, we report on some recent work of Bruinier, Ono and Rhoades [28] that
opens another line of investigation for Lehmer’s conjecture. We give a brief (and
slightly technical) explanation of this new development.
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After the study of classical modular forms, it is natural to study the space of
weakly holomorphic modular forms which are just meromorphic modular forms
whose singularities may only occur at the cusps. These spaces are contained in the
larger space of harmonic weak Maass forms which need not be holomorphic but
are annihilated by a second-order differential operator. At the cusps, we allow for
exponential growth of a special type. To be precise, let

�k := −y2
(

∂2

∂x2
+ ∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

Let χ be a Dirichlet character modulo N . A harmonic weak Maass form of weight k

on Γ0(N) with Nebentypus χ is a smooth function on the upper half-plane satisfying
the following three conditions:

(1) f

(
az + b

cz + d

)
= χ(d)(cz + d)kf (z) for all

(
a b

c d

)
∈ Γ0(N);

(2) �kf = 0;
(3) there is a polynomial Pf = ∑

n≤0 c+
f (n)qn ∈ C[q−1] such that for some fixed

ε > 0, f (z)−Pf (z) = O(e−εy) as y tends to infinity, with analogous conditions
at the other cusps. The polynomial Pf is called the principal part of f at the
corresponding cusp.

This vector space of harmonic weak Maass forms is denoted Hk(Γ0(N),χ). One
can show that every weight 2 − k harmonic weak Maass form f (z) has a Fourier
expansion at each cusp of the following form:

f (z) =
∑

n�−∞
c+
f (n)qn +

∑

n<0

c−
f (n)Γ

(
k − 1,4π |n|y)

qn,

where Γ (a, x) is the incomplete Gamma function given by

Γ (a, x) =
∫ ∞

x

ta−1e−t dt.

The differential operator

ξw := 2iyw ∂

∂z
,

has the property that

ξ2−k : H2−k

(
Γ0(N),χ

) → Sk

(
Γ0(N),χ

)
.

A straightforward calculation shows that

ξ2−k(f ) = −(4π)k−1
∞∑

n=1

c−
f (−n)nk−1qn.
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In other words, the coefficients c−
f (n) are really coefficients of classical cusp forms.

Now let g ∈ Sk(Γ0(N),χ) be a normalized newform. We say that a harmonic weak
Maass form f is good for g if the following conditions are satisfied:

(1) The principal part of f at the cusp ∞ belongs to Fg[q−1], where Fg is the
number field obtained by adjoining the Fourier coefficients of g to Q;

(2) The principal parts of f at the other cusps of Γ0(N) are constant;
(3) ξ2−k(f ) = g/(g, g), where (·,·) denotes the Petersson inner product.

The main theorem of [28] is that if

g =
∞∑

n=1

cg(n)qn ∈ Sk

(
Γ0(N),χ

)

is a normalized newform and f ∈ H2−k(Γ0(N),χ) is good for g, then for any p

coprime to N for which cg(p) = 0, we have c+
f (n) algebraic for any n with ordp(n)

odd. In other words, the vanishing of the Fourier coefficients of a Hecke eigenform
implies the algebraicity of the Fourier coefficients of the corresponding harmonic
weak Maass form. The authors in [28] discuss the case for Lehmer’s conjecture in
this context.



http://www.springer.com/978-81-322-0769-6


	Chapter 2: The Ramanujan tau-Function
	1 Introduction
	2 The tau-Function and Partitions
	3 Related Generating Functions
	4 Values of the tau-Function
	5 Parity of the tau-Function
	6 Congruences Satisﬁed by the tau-Function
	7 Vanishing of the tau-Function
	8 Divisibility of tau(p) by p
	9 Lehmer's Conjecture and Harmonic Weak Maass Forms


