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Abstract Application of statistical methodology to model dialogue strategy in
spoken dialogue system is a growing research area. Reinforcement learning is a
promising technique for creating a dialogue management component that accepts
semantic of the current dialogue state and seeks to find the best action given those
features. In practice, increase in the number of dialogue states, much use of
memory and processing is needed and the use of exhaustive search techniques like
dynamic programming leads to sub-optimal solution. Hence, this paper investi-
gates an adaptive policy iterative method using learning automata that cover large
state-action space by hierarchical organization of automaton to learn optimal
dialogue strategy. The proposed approach has clear advantages over baseline
reinforcement learning algorithms in terms of faster learning with good exploita-
tion in its update and scalability to larger problems.
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1 Introduction

Human—computer interfaces are now widely studied and have become one of the
major interests among the scientific community. In particular, spoken dialogue
system (SDS) is a natural language interface designed to make use of spoken
language technology to accomplish a task between the user and a computer.
Broadly, a SDS has three-modules, as shown in Fig. 1. The essential components
are subsystems for input (conveying information from the user to the system),
control (deciding how to react) and output (conveying information from the system
back to the user) [1]. This paper is concern with the design of Dialogue Man-
agement (DM), the central component within the spoken dialogue systems to
determine which communicative actions to take (i.e. what to say) given a goal and
a particular set of observations about the dialogue history. In other words, they are
responsible for controlling the flow of the interaction, sometimes referred to as
dialogue strategy or policy in an efficient and natural way. This is a challenging
task in most of the spoken dialogue systems wherein the dialogue strategy is
handcrafted by a human designer which leads to errors, strenuous and non-
portable.

Current research trends indicate attempts to find a way to automate the
development of dialogue strategy using machine learning techniques. In practice,
Reinforcement Learning (RL) techniques show appealing cognitive capabilities
since they try to learn the appropriate set of actions to choose in order to maximize
a scalar reward by following a trial and error interaction with an environment [2].
In this context, the dialogue strategy is regarded as a sequence of states with a
reward for executing an action which in turn inducing a state transition in the
conversational environment. The objective for each dialogue state is to choose
such an action that leads to the highest expected long-term reward. For SDSs, these
reward signals are associated with task completion and dialogue length. Hence, the
system model covers the dynamics of Markov Decision Processes (MDPs) with a
set of states S, a set of actions A, a state transition function, and a reward for each
selected action. In this framework, a reinforcement learning agent aims at opti-
mally mapping states to actions, i.e. “finding the optimal policy so as to maximize
an overall reward” [3, 4].
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However, the practical application of RL to optimize dialogue strategy faces a
number of technical challenges such as choosing an appropriate reward function,
scalability, robustness, and portability [5]. Several approaches to deal with the
problem of large state-action spaces have been proposed in recent years. One of
the approaches is based on the idea that not all state variables are relevant for
learning a dialogue strategy and the state-action space is reduced by carefully
selecting a subset of the available state variables by function approximation and
hierarchical decomposition. If the relevant variables are chosen, useful dialogue
strategies can be learnt. This technique has been applied successfully in several
recent studies [6-9]. In addition, eXtended Classifier System (XCS) model has
been applied in dialogue strategy optimization to evolve and evaluate a population
of rules/and RL algorithm is applied to assign rewards to the rules [10]. However,
it mitigates the curse of dimensionality problem by using a more compact repre-
sentation with regions of state-action, but it finds less optimal solutions compared
to tabular value functions.

The limitations of these contributions indicate that the exploration/exploitation
trade-off in action selection strategy and curse of dimensionality in modeling the
state space has to be solved completely. Most of the reinforcement learning based
research attempt value iterative approach (Q-learning, SARSA) to find the optimal
dialogue policy in action selection. However, when state-action spaces are small
enough to represent in tabular form, Q-learning can be applied to generate a
dialogue strategy. On the other hand, increasing the size of the state space for this
algorithm has the danger of making the learning problem intractable referred to as
“the curse of dimensionality.” Another setback of the above baseline reinforce-
ment learning algorithm is that it requires an update of the value function over the
entire state space that is purely based on value iteration. In this case, one may get
stuck on one iteration for a long time before any improvements in performance are
made. Hence, tabular RL algorithms are designed to operate on individual state-
action pairs with some practical limit to the size of the state-action table that can
be implemented. Even with a relatively small number of state features and system
actions, the size of the state-action space can grow very quickly. This constraint
poses to be a problem for dialogue strategy developers. Hence, this paper proposes
a scalable optimization approach which utilizes the policy iterative hierarchical
structure learning automata algorithm of [10] to perform policy optimization over
large state-action spaces.

2 Background

Reinforcement learning is a sub-area of Artificial Intelligence (AI) which con-
siders how an autonomous agent acts through trial-and-error interaction with a
dynamic unknown environment. Here, the agent refers to an entity that can per-
ceive the state of the environment, and take actions to affect the environment’s
state. In turn, it receives a numerical signal called reinforcement from the
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environment for every action it takes. Its goal is to maximize the total
reinforcements it receives over time. In reinforcement learning, an environment is
often modeled as MDP, where the history of the environment can be summarized
in a sufficient statistic called state to solve sequential decision making problems.

2.1 Dialogue as a MDP

One of the key advantages of statistical optimization methods for dialogue strategy
design is that the problem can be formulated as a precise mathematical model which
can be trained on real data. The Markov Decision Process (MDP) model serves as a
formal representation of human—machine dialogue and provides the basis for for-
mulating strategy learning problems. Every MDP is formally described by a finite
state space S, a finite action set A, a set of transition probabilities 7 and a reward
function R. At each time step t the dialogue manager is in a particular state. It
executes the discrete action a; € A, transitions into the next state s,,; according to
the transition probability p(s.;|s,a,) and receives a reward r,, ;. In this framework, a
DM is a system aiming at optimally mapping states to actions, that is finding best
strategy 7* so as to maximize an overall reward R over time, i.e. the policy that
selects those actions that yield the highest reward over the course of the dialogue.

2.2 Learning Automata

Learning Automata (LA) are adaptive decision-making devices operating on
unknown random environment, and are associated with a finite set of actions and
each action has a certain probability (unknown to the automaton) of getting
rewarded by the environment of the automaton [11]. The aim is to learn the ways
to choose the optimal action (i.e. the action with the highest probability of being
rewarded) through repeated interaction on the system as shown in Fig. 2.

Fig. 2 Learning Automaton Vo
& & Environment Response [ ()

and its interaction with the
. e
environment
\ J
- »
v
o ™
Performance
Evaluation
L 2
Automaton L
-

Set of Actions o« (t)



Optimizing Dialogue Strategy in Large-Scale Spoken Dialogue System 19

Formally, LA are represented by a triple < o, 5, T >, where « is the action set,
f is the environment set and T is the learning algorithm. The learning algorithm is
used to modify the action probability vector. The idea behind this update scheme
T is that, when an action was successful, the action probability for the chosen
action should be increased and all other action probabilities should be decreased
appropriately. The general form is given by a following recurrence equations for
the case where action q(i) is selected at time step t (thus a, = a(i)), the total
number of actions is n and the reward obtained from the environment is r,,;. The
action probabilities are updated by the scheme given below:

pev1(i) = pi(i) + ar (1 — pi(i)) — B(1 — riv1)ps (1)

n—1

pe1(f) = pi(i) — arap(j) + B(1 — rt+l)<; — pt(j)) Vi£i (2)

3 Methodology

A given dialogue task is decomposed into a root subtask and set of dialogue goals.
Then, each dialogue goal is decomposed according to the nature of the slot filling
strategy. Therefore, each dialogue sub-task in the hierarchy is represented with an
MDP, and the hierarchy is denoted by M = MJ’ The proposed method follows
frame-based approach in modeling the dialogue structure in the form of frames that
have to be filled by the user. Each frame contains slots that guide the user through
the dialogue. In this approach, the user is free to take the initiative in the dialogue.
The large body of transcribed and annotated conversation forms the basis for task
identification, DA recognition, and form filling for task completion. In particular,
this representation scheme classifies system actions in terms of their conversa-
tional domain, speech act, and task. For example, one possible system action is
<about task, request info, dest city>, which corresponds to a system utterance
such as What is your destination city?. The high-level structure of the dialogue
manager is illustrated in Fig. 3, which includes several interconnected LA
organised in hierarchical modules to handle such dialogue sub-tasks.

The dialogue policy is defined by a hierarchy of dialogue sub-tasks M = M} and
that each sub-task can apply state abstraction to compress the state space. The
indexes i and j only identify a subtask in a unique way in the hierarchy and they do
not specify the execution sequence of subtasks because it is learnt by the learning
automaton. Algorithm 1, elucidate the procedural form of Hierarchical Learning
Automata (HLA) approach for handling knowledge-rich and knowledge-compact
state space. HLA approach in practice receives dialogue subtask M} and knowl-
edge base k (based on domain artifacts) used to initialize the automaton at each
level in the hierarchy and performs primitive action selections. But for composite
actions it invokes recursively with a child subtask. When the subtask is completed
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with o time step it returns an average reward R (a}(h)) and continues its execution
until finding a leaf state for the root subtask M. The algorithm is iterated until
convergence occurs in optimal context-independent policies.

Algorithm 1 HLA-learning algorithm with knowledge compact states
Procedure HLA (Knowledge base k,Sub task hﬁ)return

averageReward R{al(h))
Initialisation
For all the learning automata: Initialize action

probabilities:
1

Va e€A:p(a) =
The estimates of all the actions Va € A4:R{(al(h))=0;
The estimates for the learning automata at level n

Va €A:La(h)=0;
for each trial do
Activate the top LA of the hierarchies
for each level “1” in the hierarchy “h” do
The active LA selects action al(h) probabilistically
Perform joint-action selection a=[al(1),..,a (h)]
Observe immediate reward r;
Compute R, =1, +y L{al(h)))
end for
for each level “1” in hierarchy “h “do
Compute combined reward R(al(h)) = R{al(h))+ p[R, —
R{a¢(h))]
Update action probability p using R{al(h)) as the
reward for the Lgz; scheme
Propagates 147 to the parent
end for
end for
end procedure HLA
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4 Experiments and Results

In this section, a slot-filling dialogue system based on the travel domain to verify
the effectiveness of a dialogue strategy in a simulated learning environment for the
proposed model is presented. The experimental design is based on the open agent
architecture (OAA).The state space illustration of the chosen application has six
slots representing all the currently available information regarding internal and
external processes controlled by the dialogue system i.e., the knowledge of the
concerned domain. For information seeking tasks, a common approach is to
specify state variables on the number of slots that need to be filled and grounded.
For example, a particular slot has not yet been stated (unknown), stated but not
grounded (known), or grounded (confirmed). In addition, A record of the number
of times each slot was asked for or confirmed by the system was necessary to
indicate that a dialogue was not progressing sufficiently, perhaps due to the per-
sistent (simulated) misrecognition of a particular slot. With these factors, the list of
state variables and their possible values are given in Table 1.

The preferred system and user DAs which comprise action space for modeling
dialogue strategies are summarized in Table 2. The system dialogue acts allow the
system to request the user for the slot values and to restart or end the dialogue.
Finally, the system can then present the results of a user’s database query. The user
dialogue acts allow the user to provide slot information, allow the user to terminate
the dialogue, ask for help, and start the dialogue from the beginning.

Hence with 2,916,000,000 unique states and 10 system actions, the selected size
of the state-action space explored by the experimental setup is 2.9 x 109. For
tractable hierarchical learning, the state-action representation is decomposed into 7
sub-tasks. Figure 4 illustrates the sub-task hierarchy of the aforementioned
application domain and Table 3 describes the state variables actions per subtask. It
has been clearly emphasized that the each sub-tasks undergoes a state abstraction
procedure by ignoring irrelevant variables.

Table 1 State variables representation in travel planning SDS

State variable Possible values State space size
dep_city_confidence unknown, known, confirmed 3
dest_city_confidence unknown, known, confirmed 9
date_confidence unknown, known, confirmed 18
time_confidence unknown, known, confirmed 324
brand_confidence unknown, known, confirmed 972
location_confidence unknown, known, confirmed 2916
dep_city_times_asked 1..10 29,160
dest_city_times_asked 1..10 291,600
date_times_asked 1..10 2,916,000
time_times_asked 1..10 29,160,000
brand_times_asked 1..10 291,600,000
location_times_asked 1..10 2,916,000,000
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Table 2 Common system and user dialogue acts used in travel planning SDS

System acts User acts

Greeting Command(bye)

Goodbye Command(request_help)
Restart Command(restart)
Request_Info(dep_city) Provide_ Info(dep_city)*
Request_Info(dest_city) Provide_ Info(dest_city)*
Request_Info(date) Provide_ Info(date)*
Request_Info(time) Provide_ Info(time)*
Request_Info(brand) Provide_ Info(brand)*
Request_Info(location) Provide_ Info(location)*
Database Results Answer(yes); Answer(no)

* Multiple slot values can be provided in a single utterance

Table 3 State variables and actions of the subtask hierarchy in the travel planning system

Subtask State variables Actions

MY GIF, SAL, FO,HO M|, M?, greeting(),

M| MAN, OPT M3, M2, greeting(), restart(), database_results()
M12 MAN, OPT M;,Mg, greeting(), restart(), database_results()

le C00,C01,C02,C03 request_Info(dep_city) + imp_confirmation + exp_confirmation,
provide_ Info(dep_city);

request_Info(dest_city) +imp_confirmation + exp_confirmation,
provide_ Info(dest_city);
request_Info(date) + imp_confirmation + exp_confirmation,
provide_ Info(date);
request_Info(time) + imp_confirmation + exp_confirmation,
provide_ Info(time);

M% Co4 command(request_help); answer(yes);answer(no);

Mg C05,C06 request_Info(brand) + imp_confirmation 4 exp_confirmation,
provide_ Info(brand);
request_Info(location) + mp_confirmation + exp_confirmation,
provide_ Info(location)

Mg Co7 command(request_help)); answer(yes);answer(no);

The values of state variables includes Goal In Focus (GIF) = {0 = flight
details, 1 = hotel details}, Salutation (SAL) = {0 = null, 1 = greeting,
2 = goodbye}, {MAN, OPT, FO, HO} « {0 = unfilled sub-task, 1 = filled sub-
task, 2 = confirmed sub-task}, slot in focus (Cij) « {0 = unknown, 1 = known,
2 = confirmed}.

To assert the impact of the proposed method, different sizes of datasets (dia-
logue corpora) which represent the problem space are required. However, it is not
possible to collect large amounts of data. Therefore, a user simulation technique
[12] has been used to generate different datasets. The task of the user simulator is
to provide examples of how a real user would behave while interacting with the
system. It provides user actions at a dialogue act level and uses two main
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Fig. 4 The hierarchy of LA induced for the dialogue sub-tasks in the travel planning system

components user goal and user agenda. At the start of each dialogue, the goal
describes the full set of constraints that the user requires to satisfy such as
departure city, destination city, date and time. The agenda stores an ordered list of
dialogue acts that the user is planning to use in stack like structure in order to
complete its task. At the end of every dialogue episode the system receives a —1
penalty for every action it takes, a final reward of +20 in case of successful
dialogue when all the necessary information has been obtained. In the case where
no flight detail matches the attribute-slot values, the dialogue is deemed successful
and a suitable alternative is offered. Since a characteristic dialogue will require
about six or seven turns to complete, this implies that the achievable average
reward has an upper bound of 14.

In each experiment, dialogue strategies were allowed to evolve over a fixed
number of dialogues. The goal of the system is to acquire the values for the slots
(attributes) with concern to each subtask (flight and hotel booking). In this case,
the state-action space representation follows 2 hierarchies of 4 levels, with 10
actions per automaton. This gives a total of (2%)'° = 1.09 x 10'? solution paths.
Each action in the respective hierarchy is selected based on Lg_; scheme as stated
in Egs. (1) and (2). The average reward is normalized to the interval [0—1] which
determines the probability of action selection in each automaton in the hierarchy.
The accuracy of the proposed approach is tested in function of the learning rate as
shown in Fig. 5.

Figure 6 shows the reward value plotted against the number of iterations
averaged over 10 training runs of 2000 episodes (or dialogues) by various
approaches. With one time step of history, the baseline RL and HLA methods both
appear to converge after about 500 dialogues. However the baseline RL method
show clear signs of instability whereas HLA does not. This is due to the fact that
the non-mobile LA defined in the levels of hierarchy does not move around the
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state space but stay in their own state to get active and learn to take actions only in
their own state of the MDP. However, in the case of baseline hierarchical learning
approach using Q-learning algorithm, each Q-learner learns individually the
associated Q-values with their own action rather than joint actions.

As a consequence the tabular approaches are completely independent and have
no knowledge of the other Q-learner acting in the environment and influencing
their reward. However, when the system has a unique limiting distribution over the
state space, both independent LA and independent Q-learners are able to find a
strategy for optimal action. Although the latter needs good exploration settings, it
may take a very long time before convergence. In addition, the proposed approach
appears quite stable and converges consistently with improved exploitation in its
updates compared to the baseline tabular approach. This is one of the advantages
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of the HLA method when developing a new system or adapting it to changes in the
tendency in the data.

5 Conclusion

This paper proposes learning dialogue strategies using policy iterative hierarchical
structure learning automata that cover large state-action spaces under the for-
malism of Markov Decision Process in the simulated environment. In the analysis,
it is found that the developed methodology is capable of learning optimal dialogue
strategy in the context of large state-action spaces, application to travel planning
domain. The hierarchical representation allowed the system to automatically
generate specialised action that takes into account the current situation of the
dialogue depending on the use of expected cumulative reward. Faster learning has
become possible when the state space is being divided among multiple intercon-
nected automata that can work independently to provide better convergence and
knowledge transfer which provides the solution to learn about previous problems
that can be re-used in new problems. For future work, we believe that our approach
can also be extended in the direct context of Partially Observable MDPs which
account for approximately linear running time of learning algorithms when the
state space is continuous and directly incorporates uncertainty imposed to a noisy
channel.
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