
Chapter 2
Implementation of Kalman Filter
to Monitor the Level Fluctuations
in a Dam Using FPGA

K. Shashank, Nitin Ravi, M. Rakshith and J. V. Alamelu

Abstract In this paper we study the design, implementation and evaluate the
performance of a Kalman filter using FPGA. It is essential to be familiar with
minimum mean square error filtering and state space methods. It is important that
the set of equations, their relevance to one another and indeed the overall func-
tionality of the algorithm that defines the Kalman filter require complete under-
standing. The filter will be implemented with field programmable gate arrays
(FPGA), to monitor the level fluctuations for a dam/reservoir.
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2.1 Introduction

The Kalman Filter is a means to predict the future behavior of a system based on past
behavior. A system’s past behavior is, in a way, remembered and used along with
measurements to make the predictions of how the system might behave in the future.
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According to the paper published by Kleeman (1995) the reason that mathematical
models such as the Kalman Filter are useful to a designer is because virtually all
systems are non-deterministic. In other words, few if any systems are devoid of
randomness or stochastic behavior. Whether a system contains stochastic processes
or the environment that may act upon a system is itself stochastically governed is
non-deterministic [1].

A DSP (Digital Signal Processor) processor on the other hand is a normal pro-
cessor optimized for faster floating point calculations to aid in signal processing
without much modification. Preferably FPGA is chosen when aimed to test/simulate.
Current DSP’s have one two MAC (Multiply Accumulator) units. In our summary of
results for Kalman Filtering we draw heavily upon the work of Dan Simon [2].

These units are used sequentially. If one needs more than two MAC’s (for
example, over 100 tap FIR filter with sample rate of 200 MHZ) then parallel
MAC’s with single cycle computation is possible to realize only using FPGA’s
with current trends.

Why FPGA and not ASIC?

• Integrated circuit costs are rising aggressively
• ASIC complexity has lengthened development time
• R&D resources and headcount are decreasing.
• Revenue losses for slow time-to-market are increasing.
• Financial constraints in a poor economy are driving low-cost technologies.

These trends make FPGA’s a better alternative than ASIC’s for a larger number
of higher-volume applications than they have been historically used for, to which
the company attributes the growing number of FPGA design starts.

The paper is explained under the following topics:

• Kalman filter.
• Design optimization.
• Application and Outcome of the project.
• Block diagram for implementation.
• Results and discussions.
• Advantages of designing the model.

2.2 Kalman Filter

The Kalman filter equations are a set of mathematical equations that provide an
efficient computational means to estimate the state of a process, in a way that
minimizes the mean of the squared error [3]. The filter is a very powerful device as it
supports the estimation of past, present and future states. It even extends its func-
tionality so it can carry out this procedure when the precise nature of the modelled
system is unknown. The system may or may not be subjected to a series of random
disturbances, when this occurs it is required to estimate the state variables from
noisy observations. The Kalman filter takes inaccurate, incomplete and noisy data
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combined with environmental disturbances beyond a designer’s control and over
time develops an optimal estimate of desirable quantities [3]. The Kalman Filter is a
means to predict the future behaviour of a system based on past behaviour. A sys-
tem’s past behaviour is, in a way, remembered and used along with measurements to
make the predictions of how the system might behave in the future.

The filter estimates its process by using a form of feedback control, as implied in
the previous section. The filter will estimate the process state at some time and then
obtains its feedback in the form of noisy measurements. These equations fall into
the category of either Time update equations or measurement update equations.

Xk = AXk�1 þ Buk�1 þ wk�1 ð2:1Þ

zk ¼ HXk þ vk ð2:2Þ

2.2.1 Time Update Equations

The time update equations are used to predict the current state and covariance
matrix, used in time t ? 1 to predict the previous state. These equations can be
generally seen as predictor equations as they are responsible for projecting forward
in time. K is representative of the time step, so the time update equations are
basically indicative of K ? 1.

2.2.2 Measurement Update Equations

The measurement equations are responsible for feedback and for correcting the
errors that have been made in the time update equations [3]. In a sense they are
back propagating to get new values for the prior state to improve the guess for the
next state. These equations can be seen as corrector equations and the final esti-
mation algorithm resemble that of a predictor corrector algorithm. So by definition
measurement equations adjust the projected estimate by an actual measurement at
that time.

TIME UPDATE (PREDICT):

^x�k ¼ A^xk�1 þ Buk ð2:3Þ

P�k ¼ APk�1AT þ Q ð2:4Þ

MEASUREMENT UPDATE (CORRECT):

Kk ¼ P�kHT HP�kHT þ R
� ��1 ð2:5Þ

^xk ¼^ x�k þ Kk zk � H^x�kð Þ ð2:6Þ

Pk ¼ I� KkHð ÞP�k ð2:7Þ
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Pk Prior Error Convergence
K Kalman Gain
zk State Measurement
x̂ Posterior State Estimate
Rk Measurement Error Covariance
Qk Random White Noise
Ak Variable
Bk Variable
lk Control Variable
Hk Matrix—valued Function

Above set of equations provide a definition of variables in the Kalman filter
equations. In the equations, a measurement of the process, Zk and Xk are previ-
ously defined by linear stochastic difference equations. For practical examples,
process noise covariance Q and measurement noise covariance R matrices, might
change with each time step or measurement. However for the purposes of our
project, we have assumed them to be constant values. A is an n by n matrix in the
difference equation and relates the state at the previous time step k - 1 to the state
at the current time step k, without the presence of process noise. Once again A is
assumed to be fixed despite the fact that this would more realistically be sus-
ceptible to change with each time step. Matrix B relates the control variable to the
state x. Matrix H relates the state to the measurement Zk (Fig. 2.1) [4].

The primary goal of this design is to maximize speed or throughput or drive
through as much as possible. As a secondary goal, minimization of area and power
will also be considered (Fig. 2.2).

Fig. 2.1 Operation of discrete Kalman filter
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2.3 Design Optimization

Design optimization can be accomplished in several ways depending on what type
of optimization is required [5]. For the Kalman filter described by us, optimization
for speed is most critical. Parallelization and pipelining are two methods used to
help create a hardware design that fulfils this requirement. These optimizations are
studied in order of priority as they relate to our system design. The designed model
proposes a system that allows a designer to greatly reduce the time needed for

Fig. 2.2 Flow chart of methodology

Fig. 2.3 Block diagram to convert MATLAB to Verilog
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design, verification, and testing; as such, the risk factor or the rate of failure is also
reduced tremendously. Specifications for a design requiring or benefiting from the
use of a Kalman Filter can be entered into the system and an efficient and opti-
mized hardware description suitable for implementation on an FPGA (Field Pro-
grammable Gate Array).

The code flexibility means that parameters are adjustable allowing for experi-
mentation of various combinations as to optimize or tune the algorithm for dif-
ferent applications (Fig. 2.3).

Model-Based Design is a process that enables faster, more cost-effective
development of dynamic systems. In Model-Based Design, a system model is at
the centre of the development process, from requirements development, through
design, implementation, and testing [6]. The model is an executable specification
that is continually refined throughout the development process. After model
development, simulation shows whether the model works correctly.

2.4 Application and Outcome of the Project

The Kalman filter removes noise by assuming a pre-defined model of a system.
Therefore, the Kalman filter model is meaningful.

The Kalman filter model can be set up in all dams across the world. The
outcome of this project is complete automation of dam operations such as the
opening and closing of the gates based on the set level values. Leakage or any
irregularity in functioning of the dam can be detected by comparing measured
value with the estimated level value.

This technique aims at estimating the level of water in the tank, which is
unknown. The measurements obtained are from the level of the float. This could be
an electronic device, or a simple mechanical device

The water could be:

1. Filling, emptying or static (i.e., the average level of the tank is increasing,
decreasing or not changing).

2. Sloshing or stagnant (i.e., the relative level of the float to the average level of
the dam or reservoirs changing over time, or is static) [7].

2.5 Block Diagram for the Implementation

2.5.1 Case Study with Reference to KRS Dam (Mysore)

We will measure the level changes with respect to the change in flow level. We
will also measure if any loss of water occurs due to leakage. We will present a look
up table (LUT) with the parameters of the dam such as inlet capacity, outlet
capacity, level (storage capacity) (Fig. 2.4).
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2.6 Project Diagram

Fig. 2.4 Block diagram of the prototype model
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2.7 Results and Discussions

This project is done keeping in mind its implementation in dams such as KRS dam
Mysore. The height of the dam is 124.8 ft. The operations are completely manual.
This project is completely automated i.e. an official can monitor the level readings
from an enclosed room (control room) avoiding the risk of manually noting the
readings (Fig. 2.5).

Level sensors were used dividing the total height into 4 levels, each repre-
senting a particular level (namely 30, 60, 90 and 120 ft) for easier monitoring [8].

This project also constitutes predict and updating the level of water through
Kalman filter in FPGA and driving a buzzer and a motor through the algorithm. A
buzzer is mainly used as an alarming mechanism to alert officials in the control
room regarding water level rise and taking necessary safety steps. A motor is used
as gate mechanism. When overflow level is reached, gates (motor) will automat-
ically be switched on reducing the possibility of human delay and error in oper-
ations. The shortcomings of the present operational mechanism is that the level
readings are noted down manually only twice a day (0630 and 1,830 hrs). This
type of manual level monitoring is very risky during rainy seasons. This project
being automated reduces the element of risk involved.

For the first test, the true level of the dam or reservoir is L = 1 is assumed.
Initialization of the state with an arbitrary number, with an extremely high vari-
ance as it is completely unknown: x0 = 0 and p0 = 1,000. If initialized with a
more meaningful variable, a faster convergence will be obtained. The chosen
system noise will be q = 0.0001, assuming that an accurate model is acquired.

Predict:

x1=0 ¼ 0 ð2:8Þ

p1=0 ¼ 1000þ 0:0001 ð2:9Þ

The hypothetical measurement, y1 = 0.9 (due to noise) is obtained.
A measurement noise of r = 0.1 is assumed.
Update:

K1 ¼ 1000:0001 1000:0001þ 0:1ð Þ�1¼ 0:9999 ð2:10Þ

x1=1 ¼ 0þ 0:9999 0:9� 0ð Þ ¼ 0:8999 ð2:11Þ

p1=1 ¼ 1� 0:9999ð Þ1000:0001 ¼ 0:1000 ð2:12Þ

So Step 1, the initialization of 0, has been brought close to the true value of the
system. Also, the variance (error) has been brought down to a reasonable value
(Figs. 2.6, 2.7, 2.8, 2.9, 2.10).

16 K. Shashank et al.



Here the initial level input is
Z_level = 11001100110011001100110011001100

Fig. 2.6 Intial level input [bit 31–16]

Fig. 2.7 Intial level input [bit 15–0]

Fig. 2.8 Predicted level value [bit 31–16]
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The predicted level value is
level = 11111111110100100111111011111111

The above graph shows the automatic control of buzzer and gates through level
measurements. Taking into consideration the KRS dam Mysore specifications, the
total height of the dam is considered as 125 ft. This is divided into 4 levels namely
30, 60, 90, and 120 ft for operational purpose. However for safety purpose, the
threshold level value is considered to be 120 ft.

• When water reaches 30 and 60 ft, only the level measurements are made and no
controlling is required.

• When water reaches 90 ft, near to threshold level (120 ft) the buzzer switches
on (alarm) alerting officials in control room that the level is approaching the
threshold mark.

Fig. 2.9 Predicted level value [bit 15–0]

Fig. 2.10 Signals of sensors actuating the motor and buzzer
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• When water reaches 120 ft i.e. threshold mark, the gates are automatically
opened and required amount of water flows out of the dam. Once the water level
falls below 120 ft the dam gates automatically close.

• The dam operations are hence completely automated. dam operations are hence
completely automated.

2.8 Advantages of Designing Model in FPGA

1 Cost of the design is less compared to ASIC.
2 Unlike ASIC models, any changes can be implemented without having to make

changes in the hardware i.e. it is flexible [9].
3 The model can be implemented into VLSI chip design which can be generated

in large numbers making the model implementation easy and cost effective [10].

2.9 Scope for Future Work

This model strives to develop a VLSI chip as the end product and implement them
in dams across the world. This work falls under the category of CPS (Cyber
Physical Systems).CPS gives equal importance to the link between computational
elements and physical elements unlike embedded systems which gives importance
only to the computational elements. Development in this area will lead us to live in
a more advanced and user friendly ‘Cyber Physical Society’.
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