
Chapter 2
Performance Evaluation of Block
Matching Algorithms for Video Coding

A video sequence typically contains temporal redundancy; that is, two successive
pictures are often very similar except for changes induced by object movement,
illumination, camera movement, and so on. Motion estimation and compensation
are used to reduce this type of redundancy in moving pictures. The block-matching
algorithm (BMA) for motion estimation has proved to be very efficient in terms of
quality and bit rate; therefore, it has been adopted by many standard video
encoders. In this chapter, the basic principle of block matching motion estimation
and compensation is introduced and fast motion search algorithms are addressed.

2.1 Search Algorithms for Motion Estimation

There exist two basic approaches to motion estimation:

1. Pixel-based motion estimation;
2. Block-based motion estimation.

The pixel-based motion estimation approach seeks to determine motion vectors
for every pixel in the image. This is also referred to as the ‘optical flow method’,
which works on the fundamental assumption of brightness constancy, that is, the
intensity of a pixel remains constant when it is displaced. However, no unique
match for a pixel in the reference frame is found in the direction normal to the
intensity gradient. It is for this reason that an additional constraint is also intro-
duced in terms of the smoothness of velocity (or displacement) vectors in the
neighborhood. The smoothness constraint makes the algorithm interactive and
requires excessively large computation time, making it unsuitable for practical and
real-time implementation.

An alternative and faster approach is the block-based motion estimation. In this
method, the candidate frame is divided into nonoverlapping blocks (of size

S. Metkar and S. Talbar, Motion Estimation Techniques for Digital
Video Coding, SpringerBriefs in Computational Intelligence,
DOI: 10.1007/978-81-322-1097-9_2, � The Author(s) 2013

13



16 9 16, or 8 9 8, or even 4 9 4 pixels in the recent standards) and for each such
candidate block, the best motion vector is determined in the reference frame. Here,
a single motion vector is computed for the entire block, whereby we make an
inherent assumption that the entire block undergoes translational motion. This
assumption is reasonably valid, except for the object boundaries. Block-based
motion estimation is accepted in all the video coding standards proposed till date.
It is easy to implement in hardware and real-time motion estimation and prediction
is possible.

The effectiveness of compression techniques that use block-based motion
compensation depends on the extent to which the following assumptions hold:

• The illumination is uniform along motion trajectories.
• The problems due to uncovered areas are neglected.

For the first assumption it neglects the problem of illumination change over
time, which includes optical flow but does not correspond to any motion. The
second assumption refers to the uncovered background problem. Basically, for the
area of an uncovered background in the reference frame, no optical flow can be
found in the reference frame. Although these assumptions do not always hold for
all real-world video sequences, they continue to be used as the basis of many
motion estimation techniques.

2.2 Principle of Block Matching Algorithm

The block matching technique is the most popular and practical motion estimation
method in video coding. Figure 2.1 shows how the block matching motion
estimation technique works. Each frame of size M 9 N is divided into square
blocks B (i, j) of size (b 9 b) with i = 1…., M/b and j = 1…..N/b. For each block
Bm in the current frame, a search is performed on the reference frame to find a
matching based on a block distortion measure (BDM). The motion vector (MV) is
the displacement from the current block to the best matched block in the reference
frame. Usually, a search window is defined to confine the search. The same motion
vector is assigned to all pixels within block.

8~r 2 Bði; jÞ; ~dð~rÞ ¼~dði; jÞ ð2:1Þ

where the image intensity at pixel location~r ¼ ðdx; dyÞT and at time t is denoted by

Ið~r; tÞ and ~d ¼ ðdx; dyÞT is the displacement during the time interval Dt.
Suppose a block has size b 9 b pixels and the maximum allowable displace-

ment of an MV is ±w pixels both in horizontal and vertical directions, there are
(2w ? 1)2 possible candidate blocks inside the search window. The basic principle
of block matching algorithm is shown in Figs. 2.2 and 2.3.

14 2 Performance Evaluation of Block Matching



A matching between the current block and one of the candidate blocks is
referred to as a point being searched in the search window. If all the points in a
search window are searched, the finding of a global minimum point is guaranteed.

Fig. 2.1 Block matching motion estimation

Fig. 2.2 Block matching method

2.2 Principle of Block Matching Algorithm 15



There are different parameters of the BMA with impact on performance and
accuracy in motion estimation and compensation. The first important parameter is
the distortion function, the other is the block size, and finally, the maximum
allowed motion displacement, also known the search range. All these parameters
are elaborated in the following sections.

2.2.1 Block Distortion Measure

In order that the compressed frame looks like the original, the substitute block
must be as similar as possible to the one it replaces. Thus, a matching criterion or
distortion function is used to quantify the similarity between the target block and
candidate blocks.

Assume, Ft is the current frame and Ft�1 is the reference frame. Fðx; yÞ is the
intensity of a pixel at ðx; yÞ in frame F. Each candidate block is located at
xþ wx; yþ wy

� �
inside a search window of size �w pixels such that

�w � wx;wy � þ w. The optimum motion vector which minimizes BDM
function is ðu; vÞ. There are a number of criteria to evaluate the ‘‘goodness’’ of a
match. Popular matching criteria used for block-based motion estimation are:

• Mean Square Error (MSE);
• Sum of absolute difference (SAD).

Fig. 2.3 Search point in a
search window

16 2 Performance Evaluation of Block Matching



• Mean Square Error (MSE)
The mean square error of a block of pixels computed at a displacement (wx, wy)
in the reference frame is given by

MSEðwx;wyÞ ¼
1

N � N

XxþN�1

i¼x

XyþN�1

j¼y

Fði; jÞ � Ft�1ðiþ wx; jþ wyÞ
� �

2

ð2:2Þ

The MSE is computed for each displacement position (wx, wy) within a specified
search range in the reference frame, and the displacement that gives the minimum
value of MSE is the displacement vector which is more commonly known as
motion vector and is given by

ðu; vÞ ¼ min
�w�wx;wy �þw

MSEðwx;wyÞ ð2:3Þ

The MSE criterion defined in Eq. (2.2) requires computation of N2 subtractions, N2

multiplications (squaring), and (N2 - 1) additions for each candidate block at each
search position. MSE is the Euclidian distance between current and reference
blocks. It is considered to be better BDM because it is closer to our visual
perception. The drawback of MSE is that it is more complex than other distortion
measures as it needs square operations.
• Sum of Absolute Difference (SAD)

Similar to the MSE criterion, the sum of absolute difference (SAD) too makes the
error values as positive, but instead of summing up the squared differences, the
absolute differences are summed up. The SAD measure at displacement (wx, wy)
is defined as

SADðwx;wyÞ ¼
XxþN�1

i¼x

XyþN�1

j¼y

Fði; jÞ � Ft�1ðiþ wx; iþ wyÞ
�� �� ð2:4Þ

The motion vector is determined in a manner similar to that for MSE as

ðu; vÞ ¼ min
�w�wx;wy �þw

SADðwx;wyÞ ð2:5Þ

The SAD criterion shown in Eq. (2.4) requires N2 computations of subtractions
with absolute values and N2 additions for each candidate block at each search
position. The absence of multiplications makes this criterion computationally more
attractive for real-time implementation.

2.2 Principle of Block Matching Algorithm 17



2.2.2 Block Size

Another important parameter of the block matching technique is the block size. If
the block size is smaller, it achieves better prediction quality. This is due to a
number of reasons. A smaller block size reduces the effect of the accuracy problem.
In other words, with a smaller block size, there is less possibility that the block will
contain different objects moving in different directions. In addition, a smaller block
size provides a better piecewise translational approximation to non-translational
motion. Since a smaller block size means that there are more blocks (and conse-
quently more motion vectors) per frame, this improved prediction quality comes at
the expense of a larger motion overhead. Most video coding standards use a block
size of 16 9 16 as a compromise between prediction quality and motion overhead.

2.2.3 Search Range

The maximum allowed motion displacement ‘w’ also known as the search range,
has a direct impact on both the computational complexity and the prediction
quality of the block matching technique. A small ‘w’ results in poor compensation
for fast-moving areas and consequently poor prediction quality. A large ‘±w’ on
the other hand, results in better prediction quality but leads to an increase in the
computational complexity (since there are (2w ? 1)2 possible blocks to be mat-
ched in the search window). A larger ‘w’ can also result in longer motion vectors
and consequently a slight increase in motion overhead [1]. In general, a maximum
allowed displacement of w = ±7 pixels is sufficient for low-bit-rate applications.
MPEG standard uses a maximum displacement of about ±15 pixels, although this
range can optionally be doubled with the unrestricted motion vector mode.

2.3 Full Search Algorithm

One of the first algorithms to be used for block-based motion estimation is full
search algorithm (FSA), which examines exhaustively all positions in the search
area. The FSA is optimal in the sense that if the search range is correctly defined, it
is guaranteed to determine the best matching position. However, if the search
range in either direction is ‘w’ with step size of 1 pixel and assumes the search
range is square, there are in total (2w ? 1)2 times of displacement in order to find a
motion vector for each block, requiring a large amount of computations, especially
for a large search window. The high computational requirements of FSA make it

18 2 Performance Evaluation of Block Matching



unacceptable for real-time software-implemented video applications. For real-time
implementation, quick and efficient search strategies were explored.

2.4 Fast Block Matching Algorithms

Many fast search algorithms have been proposed to reduce the computational
complexity of FSA while retaining similar prediction quality. All of them make
use of the quadrant monotonic model [2]. The quadrant monotonic model, first
used for block matching by Jain and Jain, assumes that the value of the distortion
function increases as the distance from the point of minimum distortion increases.
Therefore, not only the candidate blocks close to the optimal block better match
than those far from it, but also the value of the distortion function is a function of
the distance from the optimal position. Thus, the quadrant monotonic assumption
is a special case of the principle of locality. The quadrant monotonic assumption
allows for the development of suboptimal algorithms that examine only some of
the candidate blocks in the search area. In addition, they use the values of the
distortion function to guide the search toward a good match. As the entire can-
didate blocks are not examined, the match found might not be the best available.
But the trade-off between the quality of the match and the number of matching
criteria evaluations is usually good. Some of the popular fast block matching
algorithms are discussed in the following sections.

2.4.1 Two-Dimensional Logarithmic Search Algorithm

The two-dimensional logarithmic search (TDL), introduced by Jain and Jain in 1981,
was the first block-matching algorithm to exploit the quadrant monotonic model to
match blocks [3]. The initial step size ‘s’ is w=4

� �
(where de is the upper integer

truncation function) where ‘w’ is the search range in either direction. The block at the
center of the search area and the four candidate blocks at a distance ‘s’ from the center
on the x and y axes are compared to the target block to determine the best match.
The five positions form a pattern similar to the five points of a Greek cross (+). Thus,
if the center of the search area is at position [0, 0], then the candidate blocks at
position [0, 0], [0, +s], [0, -s], [-s, 0], and [+s, 0] are examined. Figure 2.4 shows the
search pattern of 2D-logarithmic search algorithm.

The step size is reduced by half only when the minimum distortion measure
point of the previous step is the center (cx, cy) or the current minimum point
reaches the search window boundary. Otherwise, the step size remains the same.
When the step size is reduced to one, all eight blocks around the center position

2.2 Principle of Block Matching Algorithm 19



which are [cx - 1, cy - 1], [cx - 1, cy], [cx - 1, cy ? 1], [cx, cy – 1], [cx, cy],
[cx, cy ? 1], [cx ? 1, cy - 1], [cx ? 1, cy], and [cx ? 1, cy ? 1] are examined,
minimum distortion measure point of these is determined to be the best match for
the target block and then it halts the algorithm. Otherwise (step size greater than
one), the candidate blocks at positions [cx, cy], [cx ? s, cy], [cx - s, cy], [cx,
cy ? s], and [cx, cy - s] are evaluated for distortion measure. An experimental
result proves that the algorithm performs well in large motion sequences because
search points are quite evenly distributed over the search window.

2.4.2 Three-Step Search Algorithm

This algorithm is based on a coarse-to-fine approach with logarithmic decreasing
in step size as shown in Fig. 2.5. The three-step search algorithm (TSS) tests eight
points around the center [4].

For a center [cx, cy] and step size ‘d’ the positions [cx - d, cy - d], [cx - d, cy],
[cx - d, cy ? d], [cx, cy - d], [cx, cy], [cx, cy ? d], [cx ? d, cy - d], [cx ? d, cy],
[cx ? d, cy ? d] are examined. After each stage, the step size is halved and mini-
mum distortion of that stage is chosen as the starting center of the next stage. The
procedure continues till the step size becomes one. In this manner, TSS reduces the
number of searching points as equal to [1 ? 8{log 2 (d ? 1)}]. One problem that
occurs with the TSS is that it uses a uniformly allocated checking point pattern in the
first step, which becomes inefficient for small motion estimation.

Fig. 2.4 2D-logarithmic search

20 2 Performance Evaluation of Block Matching



2.4.3 Cross Search Algorithm

The cross search algorithm (CSA) proposed by Ghanbari [5] is a logarithmic step
search algorithm using a saltire cross (9) searching patterns in each step. The CSA
is presented in Fig. 2.6. The initial step size is half of maximum motion dis-
placement ‘w’. At each stage, the step size is halved, until the final stage is equal to
one. At the final stage, however, the end points of a Greek cross (+) are used to
search areas centered around the top-right and bottom-left corners of the previous
stage, and a saltire cross (x) is used to search areas centered around the top-left and
bottom-right corners of the previous stage.

The CSA requires ½5þ 4dlog2 we� comparisons where ‘w’ is the largest allowed
displacement. The algorithm has a low computational complexity. It is, however,
not the best in terms of motion compensation.

2.4.4 One-at-a-Time Search Algorithm

The One-at-a-time Search Algorithm (OTA) is a simple but effective algorithm,
which has a horizontal and a vertical stage [6]. OTA starts its search at search
window center. The center points and its two horizontally adjacent points, i.e., (0, 0)
(0, -1) and (0, +1) are searched. If the smallest distortion is for the center points,
start the vertical stage, otherwise look at the next point in the horizontal direction

Fig. 2.5 Three-step search algorithm

2.4 Fast Block Matching Algorithms 21



closer to the point with the smallest distortion, and continue in that direction till you
find the point with the smallest distortion. The step size is always one. OTA stops
when the minimum distortion point is closeted between two points with higher
distortion. The above procedure is repeated in vertical direction about the point that
has the smallest distortion in the horizontal direction. The search pattern of OTA is
shown in Figure 2.7. This search algorithm requires less time, however, the quality
of the match is not very good.

Fig. 2.7 One-at-a-time
algorithm

Fig. 2.6 Cross search algorithm

22 2 Performance Evaluation of Block Matching



Performance evaluation of FSA, TDL, 3SS, CSA, and OTA algorithms in terms
of quality and computational complexity is discussed in Sect. 2.7.

2.5 Proposed Modified Algorithms

2.5.1 New One-at-a-Time Algorithm

In this section, a modified version of OTA, called modified OTA, is proposed. It
outperforms OTA in terms of computational complexity as compared to OTA
algorithm. As compared to OTA, instead of evaluating in horizontal direction till
the minimum distortion point is closeted between two points with higher distor-
tion, the proposed algorithm checks four points around the center in the horizontal
direction. Initial checking points are (i, j - 1) (i, j - 2) (i, j ? 1) and (i, j ? 2)
around the center (i, j). The step size is always one. If optimum is found at the
center, further procedure stops pointing motion vector as (i, j). This will save more
than 80 % of the computational time. Otherwise, we proceed to search around
the point in vertical direction where the minimum was found. Figure 2.8 illustrates
the NOTA to find the positions of minimum distortion.

The steps of the proposed NOTA are explained as follows:

Step-I Evaluate the objective function for all five points in the horizontal
direction.

Step-II If the minimum occurs at the center, stop the search; the motion vector
points to the center.

Fig. 2.8 New one-at-a-time
algorithm

2.4 Fast Block Matching Algorithms 23



Step-III Otherwise, evaluate the objective function at four points on either side of
previous (having minimum distortion of Step I winning point in the vertical
direction around the winning point.).

Step-IV Search the two positions on either side of the winning point of step III
horizontally; as regards the point that has the smallest distortion in the horizontal
direction search the two positions vertically.

Step-V Minimum distortion point is declared as the best match.

The proposed NOTA retains the simplicity and regularity of OTA. Although
NOTA uses more checking points in the first step as compared to OTA, pre-
emption of the algorithm at the first step reduces the computations significantly.
The experimental results of the proposed NOTA as compared to OTA are reported
in Sect. 2.7.

2.5.2 Modified Three-Step Search Algorithm

The three-step search algorithm has been widely used in the block matching
motion estimation due to its simplicity and effectiveness. However a TSS uses
uniformly allocated checking point pattern in its first step, which is inefficient for
the estimation of small motions, hence a modified three-step search algorithm is
proposed. The features of MTSS are that it employs a center-biased checking point
pattern in the first step, and a halfway-stop technique to reduce the computational
cost.

The search procedure for MTSS is shown in Fig. 2.9. We have considered the
search window size as ±7.

Fig. 2.9 Two different search paths of MTSS

24 2 Performance Evaluation of Block Matching



The MTSS algorithm utilizes a smaller 3 9 3 grid search pattern at the center in
addition to the larger 3 9 3 grid in the TSS. Thus distortion is evaluated for 17
search points. If the minimum BDM point is found at the center of the search
window, the search will stop.

If the minimum BDM point is one of the eight points on the smaller 3 9 3 grid,
only additional five or three points will be checked which depends on previous
minimum distortion point. Otherwise, the search window center will be moved to
the winning point on the larger 3 9 3 grid and the remaining procedure is same as
in TSS. The detail of the algorithm is explained in the following steps.

Step-I For the first Step of MTSS along with larger 3 9 3 grid search points as in
TSS, additional eight search points on smaller 3 9 3 grid at center, with step size
equals to one are evaluated. This way, total 8 ? 9 = 17 search points needs to be
evaluated in the first Step. If the minimum BDM point is the search window
center, the search will be terminated; otherwise algorithm proceeds for Step II.

Step-II If one of the central eight neighboring points on the 3 9 3 grid is found to
be the minimum in the first Step, go to Step III; otherwise go to Step IV.

Step-III Move the smaller 3 9 3 grid so that the window center is the winning
point found in Step I. Evaluate additional five or three points according to the
location of the previous winning point, and then the search is stopped declaring
minimum BDM point as the winning point.

Step-IV Reduce the step size of larger 3 9 3 grid by half and move the center to
the minimum BDM point in Step I, hence forward, procedure of TSS algorithm is
followed till step size becomes one.

Figure 2.9 shows two different search paths for finding motion vector within
7 9 7 search area. According to the halfway-stop technique, the M3SS needs to
evaluate 17 search points for stationary blocks and 20 or 22 points for small
motion within central 3 9 3 search area. For the worst case 25 ? 8 = 33 points
will be required, compared to 25 points in TSS. It has been experimentally proved
that proposed MTSS shows good performance as compared to 3SS for slow motion
sequence. The results of MTSS are discussed in Sect. 2.7.

2.6 Video Sequences for Simulation

In this research work, ten standard Quarter Common Intermediate File Format
(QCIF) video sequences of different motion contents are used for performance
comparison of different algorithms. These video sequences are categorized into
three classes; Class A, Class B, and Class C, with increasing motion complexity.

2.5 Proposed Modified Algorithms 25



That is, the video sequences in Class A have low or slow motion activities. Those
in Class B have medium motion activities and Class C videos have high or
complex motion activities. The video sequences of Silent, Claire, and Grandma
are all of slow object translation with low motion activities and belong to Class A.
Their first frames are shown in Fig. 2.10. The first frames of the Class B
sequences, News, Suzie, and Miss America with moderate motion are revealed
in Fig. 2.11. Similarly, Fig. 2.12 presents the first frames of Foreman, Carphone,
Salesman, and Trevor sequence having fast object translation with high motion
activity which belongs to Class C.

2.7 Experimental Results

In this section, the performance of FSA, 3SS, 2-D logarithmic search, and OTA is
discussed along with the proposed algorithm from the viewpoint of prediction of
accuracy as well as the computational complexity.

Silent Claire Grandma

Fig. 2.10 First frames of video sequences ‘‘silent’’, ‘‘claire’’, and ‘‘grandma’’

News Suzie Miss America

Fig. 2.11 First frames of video sequences ‘‘news’’, ‘‘suzie’’, and ‘‘miss’’ America

26 2 Performance Evaluation of Block Matching



2.7.1 Experimental Setup and Performance Evaluation
Criterion

All the algorithms have been tested on desktop computer P-IV 2.4 GHz CPU. In
our simulation block distortion measure (BDM) is defined to be the Mean Square
Error (MSE). The block size is considered as 8 9 8 as tradeoffs between com-
putational complexity and quality. The maximum motion in rows and column is
assumed to be ±7. Analysis has been done using three standard video sequences in
QCIF (176 9 144) format, each representing different class of motion. These
include Silent, News, and Foreman. The first 100 frames of the above-mentioned
sequences have been used for simulation.

The quality of the reconstructed sequence should be estimated by subjective
tests. One of the subjective metrics is Mean Square Error (MSE) which is eval-
uated between original frame and reconstructed frame. The lesser the value of
MSE, the better the prediction quality. Mean Square Error is given by

MSEði; jÞ ¼ 1
M � N

XM

m¼1

XN

n¼1

ðf ðm; nÞ � f 0ðm; nÞÞ2 ð2:6Þ

Foreman Carphone

Salesman Trevor

Fig. 2.12 First frames of video sequences foreman, carphone, salesman, and trevor

2.7 Experimental Results 27



where f ðm; nÞ represents the current frame and f 0ðm; nÞ is the reconstructed frame
with frame size as M 9 N. Another widely used metric for comparing various
image compression techniques is the peak-signal-to-noise-ratio (PSNR). The
mathematical formulae for PSNR is

PSNR ¼ 10 log10ð
ð2b � 1Þ2

MSE
Þ ð2:7Þ

The b in the equation is the number of bits in a pixel. For 8-bit uniformly
quantized video sequence b = 8. The higher the value of PSNR, the better the
quality of the compensated image.

Within the same search window, FSA can achieve the highest prediction quality
because it searches all possible search points in the search window and thus is
guaranteed to find optimum global minimum point. Therefore, prediction measure
achieved by FSA is often used as reference to compare or evaluate other fast block
matching algorithms. We consider the computational complexity of the algorithm
in terms of the CPU time required to terminate the evaluation of the search
algorithm. The time required increases linearly with the number of points in the
search window being searched.

2.7.2 Performance Comparisons of Fast Block Matching
Algorithms

In this section, we present experimental results to evaluate the performance of the
FSA, TDLS, CSA, and OTA along with the proposed algorithms from the view-
point of computational complexity as well as prediction accuracy.

From Table 2.1 it is found that for all sequences FSA shows higher PSNR
values as compared to other algorithms with increased CPU time. MTSS has
quality improvement in terms of PSNR over 3SS except for Foreman sequence.
For example, the PSNR of MTSS is 37.99 and 37.34 db, higher than that of 3SS
for sequences Silent and News, respectively. Coarse searches in TDLS and 3SS
can locate the rough position of the global minimum and subsequent four searches
can find the best motion vector. They perform well in large motion sequence
because search points are evenly distributed over the search window. For higher
motion, Foreman sequence the PSNR for TDLS is 33.44 and 33.27 db for 3SS
which is higher than other algorithms apart from FSA. However, TDLS required
higher CPU time for computation as compared to other fast algorithms. OTA
performs one-dimensional gradient descending search on the error surface twice.
Although it desires less computational time as compared with other fast block
matching algorithms, its prediction quality is low which is reflected in the PSNR
entries. This is because one-dimensional gradient descend search is insufficient to
provide a correct estimation of the global minimum position. With slight
improvement in the speed as compared to OTA, the proposed NOTA achieves

28 2 Performance Evaluation of Block Matching



higher PSNR quality for slow to fast motion sequence. The PSNR of OTA is 36.29
and 31.59 db for Silent and Foreman sequence and for NOTA, PSNR values are
36.63 and 32.22, respectively. In comparison with the other fast block matching
algorithms, while the computational complexity of the CSA is the second lowest,
its compensation performance is not.

Figure 2.13 shows comparisons of the MSE and PSNR per frame for the first
100 frames by using various search algorithms (including FSA, 3SS, TDLS, CSA,
OTA, and proposed NOTA and MTSS) for Foreman, News, and Silent sequence.

2.8 Summary

In this chapter the importance of motion compensation in video coding is reviewed.
To find motion vectors, block matching motion estimation (BMME) is performed.
BMME takes up to 70 % for the total encoding time in modern video coding
standards. The simplest algorithm for BMME is full search algorithm which can
also achieve the best matching quality. However, the computational complexity

Table 2.1 Performance of block matching algorithms

Algorithms Avg. MSE Avg. PSNR Avg. CPU
Time in Sec.

Using silent sequence
FSA 12.54 37.86 15.70
3SS 14.84 37.31 1.15
OTA 27.57 36.29 0.37
CSA 18.44 36.41 0.48
TDLS 15.97 37.11 1.43
NOTA 23.02 36.63 0.33
MTSS 14.42 37.34 0.76
Using news sequence
FSA 17.10 38.14 15.70
3SS 18.86 37.88 1.26
OTA 24.89 37.53 0.27
CSA 22.88 37.59 0.44
TDLS 20.05 37.91 1.39
NOTA 22.95 37.47 0.22
MTSS 18.82 37.99 0.78
Using foreman sequence
FSA 26.36 34.22 15.70
3SS 34.13 33.27 1.11
OTA 42.49 31.59 0.50
CSA 50.98 30.79 0.52
TDLS 32.06 33.44 1.58
NOTA 41.65 32.22 0.41
MTSS 38.14 33.20 0.92

2.7 Experimental Results 29



of full search algorithm is so high that it is unsuitable for many applications,
e.g., real-time encoding. Fast block matching algorithms are proposed to reduce the
computational complexity of FSA while maintaining similar matching quality.
Some well-known algorithms which include 3SS, TDLS, CSA, and OTA are
analyzed. To compare the performance of fast block matching algorithms, both
matching quality and computational complexity have been considered. Matching
quality is measured by Mean Square Error and Peak-Signal-to-Noise Ratio.

50
40

39

38

37

36

35

34

33

32

31

M
S

E
 p

er
 F

ra
m

e

S
N

R
 p

er
 F

ra
m

e
50

45

40

35

30

25

50

40

30

20

10

5

S
N

R
 p

er
 F

ra
m

e

48

46

44

42

40

38

36

34

S
N

R
 p

er
 F

ra
m

e

45

40

35

30

25

20

15

10

10 20
Frame number Frame number

30 40 50 60 70 80 90 100

M
S

E
 p

er
 F

ra
m

e
M

S
E

 p
er

 F
ra

m
e

450

400

350

300

250

200

150

100

50

10 20

Frame number

30 40 50 60 70 80 90 100

10 20 30 40 50 60 70 80 90 100

Frame number
10 20 30 40 50 60 70 80 90 100

Frame number
10 20 30 40 50 60 70 80 90 100

Frame number
10 20 30 40 50 60 70 80 90 100

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 2.13 Performance comparisons of different algorithms in terms of average MSE and
average PSNR: (a) (b) Foreman (c) (d) News (e) (f) Silent

30 2 Performance Evaluation of Block Matching



Computational complexity is measured by time required for motion estimation.
Finally, video sequences used for analysis and simulation in this work are
illustrated.

References

1. B. Liu, A. Zaccarin, New fast algorithms for the estimation of block motion vectors. IEEE
Trans. Circuits Syst. Video Technol. 3, 440–445 (1995)

2. International Organization for Standardization. ISO/IEC 15938-5:2003: Information Technol-
ogy—Multimedia Content Description Interface—Part 5: Multimedia Description Schemes,
1st edn. Geneva, Switzerland, 2003

3. J.R. Jain, A.K. Jain, Displacement measurement and its application in interframe image
coding. IEEE Trans. Commun. 29(12), 1799–1808 (1981)

4. T. Koga, T. Ishiguro, Motion compensated inter-frame coding for video conferencing,
Proceedings of National Telecommunication Conference, New Orleans, pp. G5.3.1–G5.3.5,
Dec 1981

5. M. Ghanbari, The cross search algorithm for motion estimation. IEEE Trans. Commun. 38(7),
950–953 (1990)

6. R. Srinivasan, K. R. Rao., Predictive coding based on efficient motion estimation. IEEE Trans.
Commun. 33(8), 888–896(1985)

2.8 Summary 31



http://www.springer.com/978-81-322-1096-2


	2 Performance Evaluation of Block Matching Algorithms for Video Coding
	2.1…Search Algorithms for Motion Estimation
	2.2…Principle of Block Matching Algorithm
	2.2.1 Block Distortion Measure
	2.2.2 Block Size
	2.2.3 Search Range

	2.3…Full Search Algorithm
	2.4…Fast Block Matching Algorithms
	2.4.1 Two-Dimensional Logarithmic Search Algorithm
	2.4.2 Three-Step Search Algorithm
	2.4.3 Cross Search Algorithm
	2.4.4 One-at-a-Time Search Algorithm

	2.5…Proposed Modified Algorithms
	2.5.1 New One-at-a-Time Algorithm
	2.5.2 Modified Three-Step Search Algorithm

	2.6…Video Sequences for Simulation
	2.7…Experimental Results
	2.7.1 Experimental Setup and Performance Evaluation Criterion
	2.7.2 Performance Comparisons of Fast Block Matching Algorithms

	2.8…Summary
	References


