
Chapter 2
Probabilistic Transfer Matrices

In this chapter, we present a general framework for reliability analysis that treats
circuits entirely probabilistically. While this is useful for analyzing soft errors, it is
also useful for analyzing devices that periodically fail or behave probabilistically
during regular operation. Quantum dot cellular automata (QCA), where gates and
wires are made from “quantum dots”, are examples of such devices; see Fig. 1.5.
Each dot consists of a pair of electrons that can be configured in two different ways
to represent a single bit of information. In QCA, both gates and wires are created from
planar arrangements of dots. QCA have an inherent propensity for faults because the
electrons can easily be absorbed into the atmosphere or arrange themselves in an
ambiguous configuration [1, 2]. Other examples of inherently probabilistic devices
include probabilistic CMOS, molecular logic circuits, and quantum computers.

Historically, the probabilistic analysis of circuits has centered around signal-
probability estimation, which was motivated by random-pattern testability concerns
[3–5]. In short, the probability of a signal being a 0 or 1 gives some indication of the
difficulty in controlling (and therefore testing) the signal. In this chapter, we treat
circuits probabilistically to analyze circuit reliability. As opposed to signal proba-
bility estimation, reliability analysis deals with complex probabilistic failure modes
and error propagation conditions.

In general, accurate reliability analysis involves computing not just a single output
distribution but, rather, the output error probability for each input pattern. In cases
where each gate experiences input-pattern dependent errors—even if the input distri-
bution is fixed—simply computing the output distribution does not give the overall
circuit error probability. For instance, if an XOR gate experiences an output bit-flip
error, then the output distribution is unaffected, but the wrong output is paired with
each input. Therefore, we need to separately compute the error associated with each
input vector.

Consider the circuit in Fig. 2.1. Given that each gate experiences an error with
probability p = 0.1, the circuit’s output error probability for the input combination
000 is 0.244. The input combination 111 leads to an output error probability of 0.205.
The overall error rate of the circuit is the sum of the error probabilities, weighted by
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the input combination probabilities. The probability of error for the circuit in Fig. 2.1,
given the uniform input distribution, is therefore 0.225. Note that joint probabilities
of input combinations, rather than individual input probabilities, are necessary to
capture correlations among inputs.

We analyze circuit reliability and other aspects of non-deterministic behavior,
using a representation called a probabilistic transfer matrix (PTM). A PTM for a
gate (or a circuit) gives the probability of each output combination, conditioned upon
the input combinations. PTMs can model gates exhibiting varying input-dependent
error probabilities. PTMs form an algebra—a set closed under specific operations—
where the operations in question are matrix multiplication and tensor products. These
operations may be used to compute overall circuit behavior by combining gate PTMs
to form circuit PTMs. Matrix products capture serial connections, and tensor products
capture parallel connections.

For those familiar with Bayesian inference, a PTM for a gate is essentially a condi-
tional probability table and reliability analysis is a specific, although, complex form
of Bayesian inference. Our aim is to compute the joint probability of the primary out-
puts given joint probabilities of primary inputs. Circuits offer a very natural way of
decomposing the joint probability distribution because essentially, the output proba-
bility of a gate only depends on its immediate input probability. Therefore, each gate
can be represented by a conditional probability table. However, unlike traditional
Bayesian analysis, in this chapter we discuss operations necessary to combine these
probability distributions to form a joint probability distribution utilizing algebraic
analysis. In the next chapter, we show how to scale this computation to simple cir-
cuits using decision-diagram-based compression. Most of the concepts and results
described in this chapter also appear in [6, 7].

2.1 PTM Algebra

This section describes the PTM algebra and some key operations for manipulating
PTMs. First, we discuss the basic operations needed to represent circuits and to
compute circuit PTMs from gate PTMs. Next, we define additional operations to
extract reliability information, eliminate variables, and handle fan-out efficiently.

Consider a circuit C with n inputs and m outputs. We order the inputs for
the purposes of PTM representation and label them in0, . . . inn−1; similarly, the
m outputs are labeled out0, . . . outm−1. The circuit C can be represented by a
2n × 2m PTM M . The rows of M are indexed by an n-bit vector whose values
range from 000 . . . 0

︸ ︷︷ ︸

n

to 111 . . . 1
︸ ︷︷ ︸

n

. The row indices correspond to input vectors, i.e.

0/1 truth assignments of the circuit’s input signals. Therefore, if i = i0i1 . . . in−1
is an n-bit input vector, then row M(i) gives the output probability distribution
for n input values in0 = i0, in1 = i1 . . . inn−1 = in−1. Similarly, column
indices correspond to truth assignments of the circuit’s m output signals. If j is
an m-bit vector, then entry M(i, j) is the conditional probability that the out-
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Fig. 2.1 Sample logic circuit and its symbolic PTM formula

Fig. 2.2 a ITM for the circuit
in Fig. 2.1; b circuit PTM
where each gate experiences
error with probability p = 0.1
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puts have values out0 = j0, out1 = j1 . . . outm−1 = jm−1 given input val-
ues in0 = i0, in1 = i1 . . . inn−1 = in−1, i.e, P[outputs = j|inputs = i].
Therefore, each entry in M gives the conditional probability that a certain output
combination occurs given a certain input combination.

Definition 2.1 Given a circuit C with n inputs and m outputs, the PTM for C is a
2n × 2m matrix M whose entries are conditional probabilities of the form shown
here: M(i, j) = P[outputs = j|inputs = i].
Definition 2.2 A fault-free circuit has a PTM called an ideal transfer matrix (ITM)
in which the correct logic value of each output occurs with probability 1.

The PTM for a circuit represents its functional behavior for all input and output
combinations. An input vector for an n-input circuit is a row vector with dimensions
2n × 1. Entry v(i) of an input vector v represents the probability that the input values
in0 = i0, in1 = i1 . . . inn−1 = in−1 occur. When an input vector is right-multiplied
by the PTM, the result is an output vector of size 1 × 2m . The output vector gives the
resulting output distribution. Examples of an ITM and PTM are shown in Fig. 2.2.

2.1.1 Basic Operations

PTMs can be defined for all the gates of a logic circuit by taking into account errors
affecting the gates. A PTM for the entire circuit can then be derived from the PTMs
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of the gates and their interconnections. The basic operations needed to compute the
circuit PTM from component PTMs are the matrix and tensor products.

Consider the circuit C formed by connecting two gates g1 and g2 in series,
i.e., the outputs of g1 are connected to the inputs of g2. Suppose these gates have
PTMs M1 and M2; then the entry M(i, j) of the resulting PTM M for C repre-
sents the probability that g2 produces output j , given g1 has input i . This probabil-
ity is computed by summing over all values of intermediate signals (outputs of g1
which are also inputs of g2) for input i of g1 and output j of g2. Therefore, each
entry M(i, j) = ∑

all h M1(i, h)M2(h, j). This operation corresponds to the ordinary
matrix product M1 M2 of the two component PTMs.

Now suppose that circuit C is formed by two parallel gates g1 and g2 with PTMs
M1 and M2. An entry in the resulting matrix M should represent the joint conditional
probability of a pair of input–output values from g1 and a pair of input–output
values from g2. Each such entry is therefore a product of independent conditional
probabilities from M1 and M2, respectively. These joint probabilities are given by
the tensor product operation.

Definition 2.3 Given two matrices M1 and M2, with dimensions 2k ×2l and 2m ×2n ,
respectively, the tensor product M = M1 ⊗ M2 of M1 and M2 is a 2km × 2ln matrix
whose entries are:

M(i0 . . . ik+m−1, j0 . . . jl+n−1) = M1(i0 . . . ik−1, i0 . . . jl−1)

× M2(ik . . . ik+m−1, jl . . . jl+n−1)

Figure 2.3 shows the tensor product of an AND ITM with an OR ITM. Note that the
OR ITM appears once for each occurrence of a 1 in the AND ITM; this is a basic
feature of the tensor product.

Besides the usual logic gates (AND, OR, NOT, etc.), it is useful to define three
special gates for circuit PTM computation. These are (i) the n-input identity gate
with ITM denoted In ; (ii) the n-output fan-out gate Fn ; and (iii) the swap gate swap.
These wiring PTMs are shown in Fig. 2.4 .

An n-input identity gate simply outputs its input values with probability 1. It
corresponds to a set of independent wires or buffers and has the 2×2 identity matrix as
its ITM. Larger identity ITMs can be formed by the tensor product of smaller identity
ITMs. For instance, the ITM for a 2-input, 2-output identity gate is I2 = I ⊗ I . More
generally, Im+n = Im ⊗ In . An n-output fan-out gate, Fn , copies an input signal to
its n outputs. The ITM of a 2-output fan-out gate, shown in Fig. 2.4b, has entries of
the form F2(i0, j0 j1) = 1, where i0 = j0 = j1 and all other entries are 0. Therefore,
the 5-output fan-out ITM, F5, has entries F5(0, 00000) = F5(1, 11111) = 1, with
all other entries 0. Wire permutations such as crossing wires are represented by swap
gates. The ITM for an adjacent-wire swap (a simple two-wire crossover) is shown
in Fig. 2.4c. Any permutation of wires can be modeled by a network of swap gates.
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Fig. 2.3 Illustration of the tensor product operation: a circuit with parallel AND and OR gates;
b circuit ITM formed by the tensor product of the AND and OR ITMs

Fig. 2.4 Wiring PTMs: a
identity gate I ; b 2-output
fan-out gate F2; c wire-swap
gate denoted swap
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Example 2.1 Consider the circuit in Fig. 2.5—this is the circuit of Fig. 2.1 with its
wiring gates made explicit. The PTMs for the gates with error probability p are as
follows:
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NAND2p XOR3p NOTp

The corresponding circuit PTM is expressed symbolically by the formula in Fig. 2.5.
Each parenthesized term in this formula corresponds to a level in the circuit. The
advantage of evaluating the circuit PTM using such an expression is that the error
probabilities for the entire circuit can be extracted from it.
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Fig. 2.5 Circuit to illustrate PTM calculation; vertical lines separate levels of the circuit; the
parenthetical subexpressions correspond to logic levels

2.1.2 Additional Operations

In addition to the basic operations of matrix multiplication and tensor product, we
introduce the following three operations to increase the scope and efficiency of PTM-
based computation:

• fidelity. This operation measures the similarity between an ITM and a correspond-
ing PTM. It is used to evaluate the reliability of a circuit.

• eliminate_variables. This operation computes the PTM of a subset of inputs or
outputs, starting from a given PTM. It can also be used to compute the probability
of error of individual outputs.

• eliminate_redundant_variables. This operation eliminates redundant input vari-
ables that result from tensoring matrices of gates that are in different fan-out
branches of the same signal

We now formally define and describe these operations in more detail. First, we
define the element-wise product used in computing fidelity.

Definition 2.4 The element-wise product of two matrices A and B, both of dimen-
sion n × m, is denoted A. ∗ B = M and defined by M(i, j) = A(i, j) × B(i, j).

To obtain the fidelity, the element-wise product of the ITM and the PTM is multi-
plied on the left by the input vector, and the norm of the resulting matrix is computed.
In the definition below, ‖v‖=�i‖vi‖ denotes the l1 norm of vector v.

Definition 2.5 Given a circuit C with PTM M , ITM J , and input vector v, the fidelity
of M is defined as
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fidelity(v, M, J ) = ||v(M. ∗ J )||

The fidelity of a circuit is a measure of its reliability against transient errors.
Fig. 2.6 illustrates the fidelity computation on the circuit of Fig. 2.1.

Example 2.2 Consider the circuit C from Fig. 2.1, with inputs {w, x, y} and output
{z}. The ITM is denoted J , and the PTM, shown in Fig. 2.2b, is denoted M . The
circuit PTM is calculated using the PTMs from Example 2.1, with probability of
error p = 0.1 at each gate, on all inputs. Fig. 2.6 shows intermediate matrices needed
for this computation. The quantity fidelity(v, M, J ) is found by first element-wise
multiplying J and M , then left-multiplying by an input vector v. The l1 norm of the
resulting matrix is fidelity(v, M, J ) = (0.3716+0.3716) = 0.7432. The probability
of error is 1 − 0.7432 = 0.2560.

The eliminate_variables operation is used to compute the “sub-PTM” of a
smaller set of input and output variables. We formally define it for 1-variable elimi-
nation as follows.

Definition 2.6 Given a PTM matrix M that represents a circuit C with inputs
in0, . . . , inn−1, eliminate_variables(M, ink) is the matrix M ′ with n − 1 input
variables in0, . . . , ink−1, ink+1, . . . , inn−1 whose rows are

M ′(i0 . . . ik−1ik+1 . . . in−2, j) = M(i0 . . . ik−1 0 ik+1 . . . in−2, j)

+ M(i0 . . . ik−1 1 ik+1 . . . in−2, j)

The eliminate_variables operation is similarly defined for output variables.1

The elimination of two variables can be achieved by eliminating each of the vari-
ables individually in arbitrary order. Fig. 2.7 demonstrates the elimination of column
variables from a subcircuit C ′ of the circuit in Fig. 2.5, formed by the logic between
inputs w, x and outputs g, h. The PTM for C ′ with probability of error p = 0.1 on
all its gates is given by:

(F2 ⊗ F2)(swap ⊗ N OTp)(N AN D2p ⊗ N AN D2p)

If we eliminate output h, then we can isolate the conditional probability distribution
of output g, and vice versa. Output h corresponds to the second column variable
of the PTM in Fig. 2.7b. To eliminate this variable, columns with indices 00 and
01 of Fig. 2.7b are added, and the result is stored in the column 0 of the resultant
matrix (Fig. 2.7c). Columns 10 and 11 of M are also added, and the result is stored in
column 1 of the resultant matrix. The final PTM gives the probability distribution of
output variable g in terms of the inputs w and x . A similar process is undertaken for

1 The eliminate_variables operation is analogs to the existential abstraction of a set of variables
x in a Boolean function f [8], given by the sum of the positive and negative cofactors of f , with
respect to x : ∃x f = fx + fx . The eliminate_variables operation for PTMs relies on arithmetic
addition of matrix entries instead of the Boolean disjunction of cofactors.
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Fig. 2.6 Matrices used to compute fidelity for the circuit in Fig. 2.1: a input vector; b result of
element-wise product of its ITM and PTM; c result of left-multiplication by the input vector
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Fig. 2.7 Example of the eliminate_variables operation: a ITM of subcircuit C ′ from Fig. 2.5;
b PTM of C ′; c output variable h eliminated; d output variable g eliminated

elimination of g in the PTM of Fig. 2.7d. However, this time the first column variable
is eliminated.

Often, parallel gates have common inputs, due to fan-out at an earlier level of logic.
An example of this appears in level L3 of Fig. 2.5 due to fan-out at level L1. The
fan-out gate was introduced to handle such situations; therefore, the PTM for
level L1 in Example 2.1 is composed of two copies of the fan-out PTM F2 ten-
sored with an identity PTM I . However, this method of handling fan-out can
be computationally inefficient because it requires numerous matrix multiplica-
tions. Therefore, in either inputs or outputs we introduce a new operation called
eliminate_redundant_variables to remove redundant signals that are due to fan-
out or other causes. This operation is more efficient than matrix multiplication
because it is linear in PTM size, whereas matrix multiplication is cubic.

Definition 2.7 Given a circuit C with n inputs in0, . . . inn−1 and PTM M , let ink

and inl be two inputs that are identified with (connected to) each other. Then
eliminate_redundant_variables(M, ink, inl) = M ′, where M ′ is a matrix with
n − 1 input variables whose rows are
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Fig. 2.8 Signal forwarding using eliminate_redundant_variables: a circuit with signal b fan-
ning out to two different levels; b AND ⊗ I , adding b as an input and output; c final ITM for circuit
computed by removing rows in boldface

M ′(i1 . . . ik . . . il−1 il+1 . . . in−1, j) = M(i1 . . . ik . . . il−1 ik il+1 . . . in−1, j)

The definition of eliminate_redundant_variables can be extended to a set of input
variables that are redundant. Fig. 2.8 shows an example of this operation.

PTMs yield correct output probabilities despite reconvergent fan-out because the
joint probabilities of signals on different fan-out branches are computed correctly
using the tensor product and eliminate_redundant_variables operations. Suppose
two signals on different fan-out branches reconverge at the same gate in a subsequent
circuit level. Since the joint probability distribution of these two signals is computed
correctly, the serial composition of the fan-out branches with the subsequent gate
is also correct, by the properties of matrix multiplication. On the other hand, if
the individual signal probabilities are computed separately, then these probabilities
cannot be recombined into the joint probability without some loss of accuracy.

The eliminate_redundant_variables operation can efficiently handle fan-out
to different levels by “signal forwarding,” as seen in Fig. 2.8. Signal b is required
at a later level in the circuit; therefore, b is added to the ITM as an output variable
by tensoring the AND ITM with an identity matrix. However, tensoring with the
identity ITM adds both an input and output to the level. Hence, the additional input
is redundant with respect to the second input of the AND gate and is removed
using eliminate_redundant_variables. Note that the removed rows correspond to
assigning contradictory values on identical signals.

2.1.3 Handling Correlations

There are many cases of errors where input and output values cannot be separated
and combinations of these values must be taken into account. For example, using
the eliminate_variables operation, the conditional probabilities of the inputs or
outputs cannot always be stored separately in different matrices. While such storage
can alleviate the input-space explosion inherent in storing all possible combinations
of inputs and outputs, it may not capture correlations within the circuit.
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Fig. 2.9 Example of output inseparability: a PTM for a probabilistic wire-swap; b PTM for each
individual output after applying eliminate_variables; c incorrect result from tensoring two copies
of the PTM from part b and applying eliminate_redundant_variables

Example 2.3 Suppose two wires have a 0.25 probability of swapping. The matrix
corresponding to this error is given in Fig. 2.9a. If we try to separate the probability
of each output, using eliminate_variables, the output probabilities both have the
PTM of Fig. 2.9b. If these outputs are tensored (with redundant inputs eliminated),
they result in the erroneous combined matrix of Fig. 2.9c. This demonstrates that
these two outputs cannot be correctly separated; their joint conditional distributions
are, in fact, inseparable.

Just as some errors cannot be separated, some faults affect multiple gates simul-
taneously. In this case, the combined PTM cannot be built from individual PTMs,
and the joint probabilities must be obtained (or the exact correlation determined).
This same effect can occur with input vectors that cannot always be separated into
probabilities of individual inputs. An example is given below.

00 01 10 11
[

0.5 0 0 0.5
]T

PTMs have the advantage that, at every level, they can represent and manipulate
joint probabilities from the inputs to the outputs. If necessary, individual output
distributions can be obtained using the eliminate_variables operation.

So far, we have introduced the PTM representations of gate and wire constructs,
and the operations needed to combine them into circuit PTMs. In the next section,
we give examples of the various kinds of faults that PTMs can capture, as well as
the application of PTMs to soft-error analysis and error-threshold computation.

2.2 Applications

In this section, we discuss applications of PTMs to various fault types as well as in
determining the error-transfer behavior of logic circuits.
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Fig. 2.10 PTMs for various types of gate faults: a a fault-free ideal 2-1 MUX gate (select line is the
3rd input); b first input signal stuck-at 1; c first two input signals swapped; d probabilistic output
bit-flip with p = 0.05; e wrong gate: MUX replaced by 3-input XOR gate.

2.2.1 Fault Modeling

The PTM model can represent a wide variety of faulty circuit behaviors, including
both hard and soft physical faults, and design errors. The fact that there are sepa-
rate probabilities for each input and output, and the fact that they are propagated
simultaneously make this possible. Fig. 2.10 lists some fault/error types that can be
represented by PTMs.

Figure 2.10a shows the ITM for a fault-free ideal 2-1 multiplexer (MUX).
Fig. 2.10b shows the first data input signal of the MUX stuck-at 1, i.e., row 000
is replaced with row 100 of the ITM, row 010 with row 111, and so forth. Fig. 2.10c
shows an example where the first two wires have been swapped; this is captured by
permuting the rows of the ITM, accordingly. Fig. 2.10d shows the first example of
a probabilistic error, an output bit-flip where the wrong value occurs with probabil-
ity p = 0.05 in each row. Fig. 2.10e shows a design error where a MUX has been
replaced by a 3-input XOR gate. As these examples indicate, PTMs can capture both
gate and wiring errors.

PTMs can also represent faults that are likely to occur in nanoscale circuits. For
instance, in QCA, the wires themselves are made of “quantum dots,” and so, like
gates, wires can experience bit-flips. Such bit-flips on wires can be represented by
the 1-input identity gate I , with probabilities as shown below.

[

1 − p p
1 1 − q

]

2.2.2 Modeling Glitch Attenuation

Thus far, signals have been described by their logic value, with each signal repre-
sented by a 1×2 vector that indicates the probability of it being 0 or 1. While retaining
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the discreteness of our model, we now expand signal representation to incorporate
some necessary electrical characteristics.

For instance, we can differentiate between signals of long and short duration,
just as we differentiate between signals with high and low amplitude by their logic
value. We can represent a signal by a vector w which has four entries instead of two,
w = [p0s p0l p1s p1l ]. The second bit of the row index represents short (“s”) or long
(“l”) duration, so p0s is the probability of a logic 0 with short duration. Extraneous
glitches, such as those induced by SEUs, are likely to have short duration, while
driven logic signals are likely to have relatively long duration.

Each gate in a circuit has a probability of an SEU strike that depends upon various
environmental factors, such as neutron flux and temperature. We call this the proba-
bility of occurrence for a gate (or node) g, and denote it by poccur(g). However, SEU
strikes create glitches which can be differentiated by a combination of shape and
amplitude. These distinctions are important for the propagation of a glitch through
circuit gates. Therefore, we utilize a modified identity matrix denoted I1,n(poccur) to
represent a probability distribution on a glitch induced by an SEU strike.

We use the glitch-propagation model from [9] to determine which signal char-
acteristics to capture; a different model might require other characteristics to be
represented. In [9], glitches are classified into three types depending on their dura-
tion D and amplitude A, relative to the gate propagation delay Tp, as well as the
threshold voltage Vt . Glitches are assumed to change only logic 0 to logic 1 when
they occur, but they can be inverted later.

• Glitches of type 1 have amplitude A > Vt and duration D > 2Tp. Glitches of this
type are propagated without attenuation.

• Glitches of type 2 have amplitude A > Vt and duration 2Tp > D > Tp. Glitches
of this type are propagated with an attenuated amplitude of A′ < A.

• Glitches of type 3 have A < Vt . Glitches of this type are not propagated, i.e., they
are electrically masked.

Since amplitude is already indicated by the logic value, an additional bit is used
to indicate whether the duration is larger or smaller than the propagation delay of
the gate (when the amplitude is higher than the threshold voltage). The duration is
irrelevant for glitches with amplitude lower than the threshold voltage, since these
are likely to be attenuated. Fig. 2.11a shows the probability distribution of an SEU
strike when the correct logic value is 0. Glitches of type 1 are indicated by row labels
11, glitches of types 2 are indicated by labels 10, and glitches of type 3 are indicated
by 01. In particular, Fig. 2.11a assumes uniform distribution with respect to glitches.

Once an SEU strikes a gate g and induces a glitch, the electrical characteristics
of the circuit gates determine whether the glitch is propagated. Glitches with long
duration and high energy relative to the gate propagation delay and threshold voltage
are generally propagated; other glitches are normally quickly attenuated. We call the
probability that a glitch is propagated pprop(g). The glitch-transfer characteristics of
a logic gate are described by a modified gate PTM that represents relevant charac-
teristics of the glitch. For instance, Fig. 2.11b shows a modified AND PTM, denoted
AND2,2(pprop).
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Fig. 2.11 PTMs for SEU modeling where the row labels indicate input signal type: a I2,2(poccur)

describes a probability distribution on the energy of an SEU strike at a gate output, b AND2,2(pprop)

describes SEU-induced glitch propagation for a 2-input AND gate. The type-2 glitches become
attenuated to type 3 with a probability 1 − pprop
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Fig. 2.12 Circuit with ITM and PTMs describing an SEU strike and the resultant glitch propagation
with multi-bit signal representations

In the selected glitch model [9], attenuation acts by transforming sensitized
glitches of type 2 with a certain probability, into glitches of type 3. All other signals
retain their original output values given by the logic function of the gate. This transfer
function can be described by the PTM of Fig. 2.11b. This PTM shows an AND gate
which propagates an input glitch (only if the other input has a non-controlling value),
with certainty if the glitch is of type 1 (in which case it is indistinguishable from a
driven logic value) or with probability pprop if the glitch is of type 2.

When using 2-bit signal representations, the probability of a logic 1 value for
a signal is computed by marginalizing, or summing-out, over the second bit. For
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Fig. 2.13 Circuit used in
Example 2.4 to illustrate the
incorporation of electrical
masking into PTMs

Fig. 2.14 PTM incorporating
electrical properties of gates
for the circuit in Example 2.4
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instance, if a signal has 2-bit distribution [0.2 0.1 0.3 0.4], since the second bit
indicates duration, the probability of a logic 0 is 0.2 + 0.1 and the probability of a
logic 1 is 0.3 + 0.4. Fig. 2.12 shows a circuit with the corresponding ITM and PTMs
with multi-bit signal representations.

Example 2.4 For the circuit in Fig. 2.13, suppose an SEU strike produces a glitch at
input b. By inspection, we see that this glitch will only propagate to primary output
e for the primary input combination 101. In other words, the glitch propagates if the
input sensitizes the appropriate path to d and then e. If we let poccur = 0.001 and
pprop = 0.5, and AND2,2(pprop) is as shown in Fig. 2.11, then the circuit PTM is
given by:
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Table 2.1 Polynomial approximations of circuit and residual errors. The fitted polynomials are of
the form e(x) ≈ a0 + a1x + a2x2 + a3x3 . . .

Circuit Error Polynomial coefficients
a0 a1 a2 a3 a4 a5 a6

Majority 2.5 E−7 0.2080 0.1589 0 0 0 0 0
MUX 6.6 E−6 0.0019 1.9608 −2.8934 1.9278 0 0 0
Parity 0.0040 0.0452 5.4892 −21.4938 31.9141 −4.2115 −30.3778 19.5795
tcon 0.0019 0.0152 6.2227 −13.5288 7.1523 9.2174 −9.0851 0
9symml 0.0010 0.0250 2.4599 −3.7485 1.5843 0 0 0
XOR5 0.0043 0.0716 5.9433 −26.4666 51.1168 −44.6143 14.4246 0

(I2 ⊗ I2,2(poccur) ⊗ I2)(AND2,2(pprop) ⊗ I2)(AND2,2(pprop))

The corresponding PTM and fidelity are given in Fig. 2.14.

2.2.3 Error Transfer Functions

In this section, we analyze circuit reliability as a function of gate reliability. Using data
points for various gate error values, we derive low-degree polynomial approximations
for the error transfer functions of some benchmark circuits. Such functions can be
used to derive upper bounds for tolerable levels of gate error.

Definition 2.8 The error transfer function e(x) on 0 ≤ x ≤ 1 of a circuit C is the
fidelity of C with output-error probability x on all gates.

Figure 2.15 illustrates the error-transfer functions for several standard benchmark
circuits, determined by introducing varying amounts of error into gates and then cal-
culating the circuit fidelity according to Definition 2.5. Generally, such error transfer
curves can be described by polynomials. If two gates experience errors with prob-
ability p > 0, then their serial and parallel compositions experience errors with
probability O(p2). If a circuit has n gates, each with error p, then its fidelity is
a polynomial in p of degree n. Realistically, only gate error values under 0.5 are
useful since the gate can simply be viewed as its negated version for higher error
values. However, Fig. 2.15 uses probabilities of gate error up to 1 to emphasize the
polynomial nature of the curves.

Table 2.1 gives low-degree polynomials that estimate error transfer functions with
high accuracy. Such functional approximations are useful in determining the upper
bounds on gate error probability necessary to achieve acceptable levels of circuit
error. For instance, it has been shown that replication techniques such as TMR or
NAND-multiplexing only decrease circuit error if the gate error is strictly less than
0.5 [10]. However, Fig. 2.15 suggests that for most circuits, replicating the entire
circuit at gate errors of 0.20 or more will only increase circuit error.
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Fig. 2.15 Circuit error probability under various gate error probabilities
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