
Chapter 2
Locally Resonant Structures for Low Frequency
Surface Acoustic Band Gap Applications
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Abstract In this chapter we investigate the propagation of acoustic waves in a two-
dimensional array of cylindrical pillars on the surface of a semi-infinite substrate.
Through the computation of the acoustic band diagram and transmission spectra of
periodic pillars arranged in different symmetries, we show that these structures pos-
sess acoustic metamaterial features for surface acoustic waves. The pillars on the
top of the surface introduce new guided modes in the non-radiative region of the
substrate outside the sound cone. The modal shape and polarization of these guided
modes are more complex than those of classical surface waves propagating on a
homogeneous surface. Significantly, an in-plane polarized wave and a transverse
wave with sagittal polarization appear that are not supported by the free surface.
In addition, the band diagram of the guided modes defines band gaps that appear
at frequencies markedly lower than those expected from the Bragg mechanism. We
identify them as originating from local resonances of the individual cylindrical pil-
lar and we show their dependence on the geometrical parameters, in particular with
the height of the pillars. The frequency positions of these band gaps are invariant
with the symmetry, and thereby the period, of the lattices, which is unexpected in
band gaps based on Bragg mechanism. However, the role of the period remains im-
portant for defining the non-radiative region limited by the slowest bulk modes and
influencing the existence of new surface modes of the structures. The surface acous-
tic wave transmission across a finite array of pillars corroborates the signature of
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the locally resonant band gaps for surface modes and their link with the symmetry
of the source and its polarization. Numerical simulations based on an efficient fi-
nite element method and considering Lithium Niobate pillars on a Lithium Niobate
substrate are used to illustrate the theory.

2.1 Introduction

The propagation of acoustic and elastic waves in inhomogeneous media has at-
tracted a lot of interest during the last two decades. Usually presented as periodic
structures with spatially modulated elastic moduli and mass density, the so-called
phononic crystals have a number of important features such as the occurrence of
frequency band gaps [13, 19]. In the frequency band gap ranges, sound and acous-
tic vibrations are strictly prohibited to propagate within these media resulting in a
significant attenuation in their transmission spectra regardless of the direction of
propagation. In order to widen these acoustic band gaps, different combinations of
materials using solid/solid, solid/fluid and fluid/fluid phononic crystals have been
put forward [11, 15, 20]. Using the band gap principle, phononic crystals allow the
propagation of elastic or acoustic waves to be regulated. In other words, they play
the role of perfect mirrors for elastic or acoustic waves in the frequency range of the
band gap. The fundamental interest in controlling the elastic energy, and the poten-
tial applications, of phononic crystals are thus well established. These first studies of
bulk, surface and Lamb waves have paved the way in establishing the fundamental
physics in terms of controlling acoustic waves by trapping, guiding and demulti-
plexing them through single and linear defects [10, 12, 17].

Basically, band gaps can originate from Bragg reflections due to the periodicity
of the structure. In this case, the spatial period of the crystal is of the same order
of magnitude as the acoustic wavelength at the central frequency of the gap and, as
a consequence, the lattice constant has generally been the key parameter to scale
band gaps. A shortcoming of this principle was identified early in the context of low
frequency acoustic applications for sound isolation, as well as earthquake shielding,
which has long been regarded as a pernicious form of environmental pollution and
a dangerous natural issue. In fact, complete sound attenuation for a low frequency
range (10 Hz–10 KHz) needs a feature-sized structure of a few meters in order to
ensure a spectral band gap with classical phononic crystals.

Another approach to realize low frequency acoustic band gaps, while utilizing
lattice constants much shorter than the acoustic wavelength, is to use an acoustic
metamaterial. More generally, these acoustic metamaterials are defined as an ar-
rangement of artificial structural elements, designed to achieve advantageous and
unusual acoustic properties and have an inhomogeneity scale that is much smaller
than the wavelength of interest. Their acoustic response can be expressed in terms
of homogenized material parameters. Various artificially engineered metamateri-
als are now demonstrating unprecedented acoustic proprieties that are not observed
in naturally occurring materials. Among them are negative refraction, super-prism
resolution, sub-wavelength acoustic imaging and acoustic cloaking. The structural
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units of metamaterials can be tailored in shape and size, their composition and mor-
phology can be artificially tuned, and inclusions can be designed and placed in a
predetermined manner to achieve prescribed functionalities.

The first acoustic metamaterials appearing in the literature were so-called locally
resonant sonic crystals [14] with acoustic resonators built into individual unit cells.
The development of these acoustic metamaterials has led to groundbreaking demon-
strations of the mass density law, often used in sonic shielding. Particularly, a broad
frequency (10 Hz–10 KHz) sonic band gap with lattice constants two orders much
shorter than the acoustic wavelength. The physical interpretation of locally reso-
nance band gaps can result from the Fano resonance of a localized state with a con-
tinuum of propagation modes [5, 16]: at resonance, the energy of waves propagating
in the matrix can be efficiently stored and delayed, while at anti-resonance, wave
propagation becomes prohibited. In addition, the local resonance can be tuned by
using intrinsic material features such as silicon rubber for which the sound velocity
is two orders of magnitude lower than the one of the host matrix. For such compos-
ites, polarization-dependent frequency band gaps were reported for bulk waves [21]
and complete band gaps were reported for Lamb waves [6]. A local resonance can
also be altered using shape-design as in the case of Helmholtz resonators [4].

In this chapter, we consider a two-dimensional distribution of a periodic array
of the pillars on the surface of a semi-infinite medium with different symmetries.
The pillars are acting as local acoustic resonances interacting with the substrate
continuum [1, 8, 18] and lead to the possibility of finding a low-frequency band gap
for acoustic waves guided by the surface. In addition, we study the effect of square,
triangular and honeycomb lattices on the band gaps. We highlight the role of the
pitch, where it can be fundamental in controlling the dispersion of guided modes
by defining the non radiative region and its non influence on the band gaps. The
exhibition of these two features—the subwavelength low frequency band gaps and
invariance with the lattice symmetries—makes the proposed structure an acoustic
metamaterial. The numerical results presented here are related to the case of Lithium
Niobate pillars on a Lithium Niobate substrate, but the conclusions remain valid for
other materials and compositions as well. The chapter is organized in three sections.
Section 2.2 deals briefly with model and method of calculation. In Sect. 2.3, we
expose and discuss the main results of new surface modes and low frequency band
gaps of different symmetry arrays. The conclusion is presented in Sect. 2.3.4.

2.2 Model and Method of Calculation

As illustrated in Fig. 2.1, we consider square, triangular and honeycomb lattice ar-
rays of cylindrical pillars on the surface of a semi-infinite substrate. The z axis is
chosen to be perpendicular to the surface and parallel to the cylinder axis. The lattice
parameter of the acoustic periodic structure is a for square and triangular lattices and√

3a for honeycomb lattice. The filling fractions in the case of a square, triangular
and honeycomb lattices, are respectively defined as: F = πr2/a2, F = 4πr2/

√
3a2
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Fig. 2.1 Phononic periodic structure composed of cylindrical pillar arrays on a substrate with
different symmetries: (a) square, (b) triangular and (c) honeycomb lattice. The lattice parameter
is a for square and triangular lattices and

√
3a for the honeycomb lattice. The pillars have height h

and radius r . (a) The unit cell domains used for band structure calculations are meshed in three
dimensions and Bloch-Floquet periodic boundary conditions are applied in both the x and the y

directions. (b) The domain used for transmission computations has periodic boundary conditions
along the y direction and a finite extent along the x direction. Perfectly matched layers are used to
prevent reflections from the domain boundaries. A line S generates waves propagation in the (x, y)

plane including surface acoustic waves. A line D detects the surface waves traveling through the
finite size structure

and F = (8π/3)r2/
√

3a2. Here r is the radius of the cylinder and the height of the
cylinders is h. Dispersion curves are calculated for the infinite system by using a
finite element method in which only the unit cell is meshed and Bloch-Floquet con-
ditions are implemented via periodic boundary conditions [9]. A three-dimensional
mesh is used and the structure is assumed to be infinite and periodic in both the x

and y directions (Fig. 2.1a). A phase relation is applied on the lateral sides of the
mesh, defining boundary conditions between adjacent cells. This phase relation is
related to the Bloch wave number of the modes of the periodic structure. By vary-
ing the wave vector in the first Brillouin zone and solving a spectral problem, the
eigenfrequencies are obtained. The eigenvectors represent the modal displacement
fields.

To simulate the transmission spectra through a finite size structure (finite number
of periods), we use the model depicted in Fig. 2.1b. An incident surface acoustic
wave with a specific polarization (ux,uz, uy) is modelled by applying a line source
vibrating on the surface. We apply in the y direction a periodic boundary condition
that renders the line source infinitely long. The line source thus generates waves
propagating in the (x, z) plane with uniform phase fronts along the y direction. In
the far field of the source, the generated waves can be either bulk waves propagating
away inside the substrate or surface waves propagating along the surface in the x

direction. We assume that a few wavelengths from the source, the displacements at
the surface are only caused by surface waves and not by bulk waves. To prevent
reflections caused by the scattering of waves from the domain boundaries, perfectly
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matched layers (PMLs) [2] are applied as illustrated in Fig. 2.1d. PMLs have the
property that the mechanical disturbances are gradually absorbed in the layers be-
fore they can reach the outer boundaries [3]. Indeed, we can write the governing
equation as

1

γj

∂Tij

∂xj

= −ρω2ui, (2.1)

where ρ is the mass density of the material and ω is the angular frequency. Sum-
mation over repeated indices is implicitly assumed. Tij is the stress tensor, the ui

are the displacements and the xj are the coordinates (x1 = x, x2 = y, x3 = z). The
functions γj (r) are the artificial damping along axis xj at an arbitrary position r
inside the PML. As PMLs are added to attenuate acoustic waves propagating in the
(x, z) plane, only γ1 and γ3 are different from 1. γ1 is for instance given by

γ1(x1) = 1 − iσ1(x1 − xl)
2, (2.2)

where xl is the coordinate of the interface between the regular domain and the PML
and σ1 is a suitable constant. There is no damping outside the PMLs and here γj = 1
is assumed. A suitable thickness of the PML as well as the value of σj must be found
by trial calculations such that mechanical disturbances are absorbed before reaching
the outer boundaries. However, the absorption variation must also be sufficiently
slow so that reflections occurring at the interface between the regular domain and the
PML are kept minimal. The mechanical stresses Tij further depend on the strains as

Tij = CijklSkl, (2.3)

where the Cijkl are the elastic stiffness constants. Strains are related to the displace-
ments according to

Sij = 1

2

(
1

γj

∂ui

∂xj

+ 1

γi

∂uj

∂xi

)
. (2.4)

2.3 Results and Discussion

In this section, we discuss the effect of locally resonant modes of the pillars on sur-
face waves of the substrate and the appearance of band gaps. These band gaps for
the surface guided modes are restricted in a similar manner to those of photonic
crystal slabs. Indeed, there is a continuum of radiation states that are extended in-
finitely in the region outside the slab [7]. Guided modes, which are states localized
to the plane of the slab, can only exist in the regions of the band diagram that are
outside the sound cone. Similarly, since the array of pillars we consider sits on top
of a semi-infinite medium, the continuum of radiation states in this medium forms
a sound cone. Guided acoustic waves, localized in the pillar array and the immedi-
ate vicinity of the substrate surface, can only exist in the regions of the band dia-
gram that are outside the sound cone. However, this situation is unlike acoustic band
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gaps of phononic crystal slabs, which may not be obvious at first sight. Phononic
crystals slabs surrounded by a vacuum provide a naturally perfect confinement of
waves in the vertical direction and their in-plane band gaps are similar to those of
three-dimensional phononic crystals [14]; these band gaps are very sensitive to the
existence of additional branches originating from the finite thickness of the slab [9].
In the following, we restrict our definition of band gaps to a range of frequencies in
which no guided modes exist.

2.3.1 Band Diagram of Locally Resonant Surface Guided Modes

Obviously, the first parameter which can play an important role on the discrete
acoustic modes of the pillars is their height. In order to investigate its influence,
we have calculated the band diagram, for the guided modes, with a square lattice
of the phononic crystal depicted in Fig. 2.1a. Propagation is in the (x, y) plane,
and band structures are generated along the high symmetry axes of the first Bril-
louin zone. Both the substrate and the pillars are made from Ycut Lithium Niobate.
A low filling fraction F = 32 % (r/a = 0.32) and different relative heights of the
cylinders (h/a = 0.32, 0.5 and 1.0) were considered for square lattice in Fig. 2.2.
The gray region on the band structure is the sound cone representing the radia-
tive zone of the Lithium Niobate substrate. The sound line limiting the sound cone
is computed from the smallest phase velocity in the substrate as a function of the
propagation direction. Due to the anisotropy of bulk acoustic wave propagation in
Lithium Niobate, the sound line varies continuously along the XM direction of the
first Brillouin zone. These particular choices for h/a ensure the existence of several
absolute band gaps for guided modes. Particularly, in Fig. 2.2a when h/a is equal
to 0.32, two branches exist in the non radiative zone starting from zero frequency.
The quasi-linear behavior of the mode dispersion is close to that of the classical sur-
face acoustic waves except at the first limit of the Brillouin zone. Indeed, at the X
point of the reduced wave vector the two branches are folded back due to the array
period and their interaction induced the first band gap operating from f a = 1600
to 1700 m/s. The frequency positions of the band gap are very close to those ex-
pected from Bragg interferences related to the pitch period. Which means that the
pillars act here to slow the surface wave velocity as is usual in phononic crystals
and their discrete acoustic modes do not erupt in the non radiative zone. When the
height of the pillars is increased, the branches shift down towards low frequencies
and other kinds of band gaps show up. In fact, for h/a = 0.5, we find two band gaps
extending, respectively, from f a = 1000 to 1100 m/s and a very narrow band gap
appearing around the radiation limit in Γ X direction, i.e. f a = 1700 m/s. More-
over, with equality of height and period h/a = 1.0 as a condition, the first band gap
occurs at a central frequency of f a = 400 m/s and its relative bandwidth reaches
22 %. A wider second band gap appears around f a = 1550 m/s. The first band gap
(low frequency) is bounded from below by flat branches, which induce zero group
velocities and space confinement of the acoustic energy. This effect outlines the role
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Fig. 2.2 Band structure of a
square array of cylindrical
pillars on a Lithium Niobate
substrate, calculated along
high symmetry directions of
the first irreducible Brillouin
zone. The lattice parameter is
a and the filling fraction
F = 0.3. The relative height
of the cylinders h/a equals
(a) 0.32, (b) 0.5, and (c) 1.0.
The gray region represents
the sound cone of the
substrate. The sound line
limiting the sound cone is
given by the smallest phase
velocity in the substrate for
every propagating direction

of the locally resonant modes of the pillars. The frequency position of the first band
gap is markedly lower, and the wavelength propagating in the surface is one order
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Fig. 2.3 Same parameters as
Fig. 2.2, but instead two
values of the filling fraction
are compared: (a) F = 0.4
and (b) F = 0.25

greater, than the period of the structure. Finally, the pitch period and the filling frac-
tion are kept fixed in Fig. 2.2, which clearly shows that the origin of the band gaps
is not related to Bragg interferences, as in classic phononic crystals, but is rather
related to the result of resonant modes of the structure.

Usually the other important geometrical parameter in the process of opening band
gaps and controlling their bandwidths is the filling fraction F . We plot in Fig. 2.3
the band diagram for two values of filling fraction F = 0.25 and 0.4. The relative
height h/a is fixed to 0.5 which allows us to compare the results with those of
Fig. 2.2b. The increase of the filling fraction to F = 0.4, as compared to F = 0.32,
induces a relative widening of the band gap. In fact, when the filling fraction is
increased, or the space between adjacent pillars is reduced, the interaction between
locally resonant modes can be enhanced through surface coupling and can lead to
wider band gaps. Besides, we observe that the second and the fourth bands are more
sensitive to the filling fraction. In the opposite case, decreasing the filling fraction,
the band gap becomes smaller. However, the central frequency position is not very
sensitive to the filling fraction as is usual in any phononic crystal systems.
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In general, if h/a is smaller than 0.3, the acoustic modes of the pillars appear
at well separated frequencies within the sound cone and thus radiate into the bulk.
However, when h/a is increased, the acoustic modes of the pillars shift down in
frequency. They are then in a position to interact and form collective propagating
surface modes, whereby acoustic energy can be guided along the surface of the sub-
strate. Concurrently, this interaction opens band gaps inside which guided surface
acoustic waves are forbidden to propagate. The band gaps shown in Fig. 2.2 are
complete and omnidirectional for guided modes at the surface of the substrate. Such
guided waves exist only under the sound cone such as, for instance, the Rayleigh sur-
face wave of the homogeneous surface. This means that when a standard Rayleigh
surface wave propagating on the free surface of the substrate is incident on the pillar
array, it will be either converted to the existing surface-pillar modes at the same fre-
quency, or reflected from the array if the frequency is within a band gap for guided
waves. Naturally, a fraction of the surface wave energy can be converted to radia-
tion modes of the substrate at the phononic crystal boundary in both cases, but this
does not preclude that no energy is propagated along the surface within a band gap
for guided waves. This exhibition of band gaps makes the pillars a very appeal-
ing structure in achieving low frequency applications with lattice constants much
shorter than the acoustic wavelength.

2.3.2 Wave Transmission of Locally Resonant Surface Guided
Modes

It is well known that the study of wave transmission in finite size systems is crucial
in understanding the size effect (number of periods) on the band gap attenuations,
insertion loss and reflection spectra; this is especially so when the structures pos-
sess a radiation condition, which is the case in 1D and 2D periodic systems. For
instance, in our case the radiative zone allows the surface waves to leak into the
bulk. However, the evaluation of the leaks is not obvious from the band diagram. In
the following, we describe the wave transmission properties through a finite number
of pillars on the substrate.

The wave transmission spectra were simulated for propagation along the x di-
rection, using the three dimensional domain depicted in Fig. 2.1d. The domain is
finite along x with seven rows of pillars sandwiched between the incoming and the
outgoing media and infinitely periodic along y. A line source is applied on the sur-
face of the Lithium Niobate substrate just in front of the first pillar. This source
vibrates at a monochromatic frequency and can have two different polarizations: ei-
ther (i) (ux,uz) sagittal displacements, which can excite the Rayleigh surface wave
of the homogeneous surface or (ii) uy transverse displacements which can be con-
sidered as a shear horizontal wave source. Basically, most elastic materials with free
surface (i.e., without phononic crystal) do not support the propagation of the shear
horizontal surface wave. Nevertheless, the periodic array of pillars can support sur-
face modes with such a polarization, as discussed in the following.
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Fig. 2.4 Band diagram for
surface guided waves
propagating along the Γ X
direction with a square-lattice
phononic crystal composed of
cylindrical Lithium Niobate
pillars on a Lithium Niobate
substrate. The filling fraction
is equal to F = 0.3 and the
relative height is fixed to
h/a = 0.5. Transmission of
surface waves through 7
rows: ((a) straight line)
Computed transmission
spectrum with a sagittally
polarized excitation line
source. ((b) dashed line)
Computed transmission
spectrum with a shear
horizontally polarized
excitation line source.
Transmissions represent an
average of all displacement
components,
|ux | + uz| + |uy |, as a
function of frequency. The
average is collected along a
line D (see Fig. 2.1) located
after the seventh period of
pillars

Figure 2.4 display the computed transmissions for the sagittal and the shear hor-
izontal line sources. The band diagram is added to the transmission to help in in-
terpretation of the results. The filling fraction is fixed to F = 0.32 and the relative
height of the pillars is h/a = 0.5. Transmissions are computed for the Γ X direction
of the band diagram. The transmission in Fig. 2.4a is for the total displacement, but
is however related to the sagittal (ux,uz) excitation. Two attenuations are apparent
in the transmission. The first drop is centered at f a = 1050 m/s corresponding to
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Fig. 2.5 Computed
displacement field |uy | with a
shear horizontal polarized
excitation line source.
(a) displacement field at
resonance frequency.
(b) displacement field at
anti-resonance frequency

the first and the third band limits in the band diagram. The second drop centered at
f a = 1700 m/s is related to the third band and the limit of the non radiative zone.
Besides, the computed transmission for the shear horizontal line source in Fig. 2.4c
displays two narrow pass bands occurring at f a = 1050 m/s and 1700 m/s. These
frequency positions correspond to the deep attenuations of sagittal excitation shown
in Fig. 2.4b. The response of the different excitations allows us to suggest that the
second and the fourth branches are deaf to the sagittal source while the first and the
third bands are deaf to the shear horizontal source.

In addition, the shape of the transmission for the shear horizontal source around
the frequencies where the second and fourth bands reach the X point is typical of a
linear response function proportional to 1/(f 2

0 − f 2), when a wave with frequency
f interacts with a medium supporting a localized excitation with frequency f0. Such
an effect is manifest, for instance, in the electromagnetic frequency response of ma-
terials with optical resonances or more generally the so-called Fano resonances of a
localized state interacting with a continuum of propagating modes. In order to have
a physical interpretation of these local resonances, we display in Figs. 2.5a and 2.5b
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Fig. 2.6 Eigenmode of
mode 1 and mode 3 analysis
close to the point X of the
Brillouin zone. They
represent the displacement
field of the three components
ux and uz and uy . These
modes have mostly in-plane
polarization

the displacement field |uy | of the transmission for two significative frequencies—
resonance and anti-resonance—occurring at f a = 1042 m/s and f a = 1100 m/s. In
Fig. 2.5a, the energy of waves propagating in the matrix can be efficiently stored in
the pillars and delayed at the resonance frequency f a = 1042 m/s corresponding to
the maximum transmission in Fig. 2.4c. However, at the anti-resonance frequency
f a = 1100 m/s which corresponds to a strong attenuation in the transmission spec-
tra, the wave propagation becomes prohibited and the pillars act as an obstacle for
the guided wave in Fig. 2.5b. Naturally, a fraction of the surface wave energy can be
converted to radiation modes of the substrate at the structure boundary in both cases,
but this does not preclude that no energy is propagated along the surface within a
band gap for guided waves.

To corroborate the previous observations of deaf bands, we plot in Figs. 2.6
and 2.7 the modal displacements of the first and the third bands, and on the second
and fourth bands, respectively. The wavevector kx selected for these illustrations is
close to the point X of the first Brillouin zone. We emphasize that the acoustic en-
ergy is mostly distributed between ux and uz for the eigenmodes in Fig. 2.6. Those
modes have mostly sagittal polarization. The displacement uy is not equal to zero
but is very small in comparison. We notice that the same scale has been used in
all displacements to give a good appreciation of each polarization. This observation
explains the significant transmission magnitude of the first and the third bands with
the a sagittal source.

As Fig. 2.7 shows, the acoustic energy is mostly distributed between uz and uy

for the second band and between ux and uy for the fourth band. We observe that the
uz displacement for the second band and the ux displacement for the fourth band
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Fig. 2.7 Same as Fig. 2.6 for
mode 2 and mode 4, these
modes have mostly sagittal
polarization with transverse
propagation

have an antisymmetric character with respect to the sagittal mid plane (x, z) of the
structure. The sagittal excitation is symmetric with respect to the same mid-plane,
which means that the energy cannot be transferred to the second and the fourth
bands. This explains the absence of a signature of these modes in the transmission
spectra with the sagittally polarized source. Conversely, the uy displacement is sym-
metric with respect to the sagittal mid plane and can thus be excited by the shear
horizontally polarized source.

2.3.3 Lattice Symmetry Effect on the Locally Resonant Surface
Acoustic Band Gaps

Basically, in metamaterial structures the observed phenomena are not linked to the
period pitch or to the lattice symmetries and can appear in disordered systems, on
the strict condition that the local resonances are not affected. Aiming to highlight
this effect, we describe in this section the effect of the surface acoustic wave prop-
agation properties of pillars on semi-infinite substrate with square, triangular and
honeycomb lattices. Especially, we focus on the position of the locally resonant
band gap in respect to these symmetry lattices. In other words, we wish to demon-
strate that the sub-wavelength band gaps are not sensitive to the period pitch—which
can be found in conventional phononic crystals—and reinforce the position of this
structure as an acoustic metamaterial element. However, the considered pitch will
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Fig. 2.8 Eigenmode of the
lowest frequency mode
analysis close to the limit of
the first Brillouin zone for the
square, triangular and
honeycomb symmetries.
These are the total
displacement field of the
three component ux and uz

and uy . The relative radius is
r/a = 0.32 and the relative
height of the cylinders h/a

equals 0.2

play a fundamental role in controlling the dispersion of guided modes and will de-
fine the non radiative zone which is a key condition to obtain guided modes.

As discussed in Sect. 2.2, when the discrete acoustic resonances of the pillars
are not able to appear in the non-radiative zone due to the small value of the pillars
height h/a, we still have two major effects coming from the presence of pillars: the
existence of two surface waves propagating in the substrate with different polariza-
tions and a slowing down of the classical wave velocity of the substrate. The latter
effect is less pronounced in the case of the honeycomb structure. In fact, the pitch
is larger than the other symmetries (

√
3a) which decreases its filling fraction, and

therefore reduces the slowing down effect of the classical surface wave. Figs. 2.8a,
b and c show the field distribution of the total displacement close to the limit of the
first Brillouin zone for the square, triangular and honeycomb symmetries respec-
tively. The relative radius is r/a = 0.32 and the relative height of the cylinders h/a

equals 0.2. These modes have different shape for the three symmetries and cover
both the pillar and the surface of the substrate. Consequently, the period pitch will
affect the wave propagation properties through the phase condition that can be ap-
plied in each different symmetry lattice.

Actually, the relative height of the pillars is fixed at h/a = 0.6 to ensure the
presence of pillars vibration modes in the non radiative zone. As shown in Fig. 2.9,
several bands appear below the sound cone and low frequency band gaps show up.
We observe the existence of two band gaps appearing around f a = 1150 m/s and
f a = 2200 m/s for square and triangular lattices (Figs. 2.9a and 2.9b). In the case
of honeycomb lattice, only one complete band gap for guided modes opens around
f a = 1150 m/s Fig. 2.9c. Although, there is a large difference between lattice pitch
of square or triangular (a) and honeycomb (

√
3a), we highlight that the first band

gaps appear at the same frequency position in the three different lattice symmetries.
This means, that the physical phenomena behind the opening of the band gap is
clearly not due to the Bragg interference of waves linked to the period, but to the
signature of the locally resonance acoustic vibration of the pillars. The expectation
of the same position of the band gap occurring in any other ordered or disordered
structures is presumably upon condition that keeping the same geometry of pillars,
which ensures the resonance frequency positions.
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Fig. 2.9 Band structure of a
phononic crystal composed of
cylindrical lithium niobate
pillars on a lithium niobate
substrate, calculated along
high symmetry directions of
the first irreducible Brillouin
zone for: (a) square;
(b) triangular; (c) honeycomb.
The lattice parameter is a for
triangular and square lattice
and (

√
3a) for the

honeycomb lattice. The radius
is r/a = 0.32 and the relative
height of the cylinders h/a

equals 0.6. The gray region
represents the sound cone of
the substrate. The sound line
limiting the sound cone is
given by the smallest phase
velocity in the substrate for
every propagation direction
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Fig. 2.10 Eigenmode of the
lowest frequency mode
analysis close to the limit of
the first Brillouin zone for the
square, triangular and
honeycomb symmetries.
These are the total
displacement field of the
three component ux and uz

and uy . These modes have
mostly the same shape for the
three symmetries. The
relative radius is r/a = 0.32
and the relative height of the
cylinders h/a equals 0.6

To corroborate this effect, we display in Fig. 2.10 the mode shapes of the low-
est frequency solutions for the three lattices. The wave vectors of the eigenmodes
are chosen close to the limit of the first Brioullin zone. These mode shapes, which
represent the total displacement field of the three components ux and uz and uy ,
have mostly the same shape for the three symmetries and demonstrate that the flat
bands observed in their band diagrams are related to the discrete acoustic mode of
the pillars.

2.3.4 Conclusion

In summary, the study of the locally acoustic resonances with different periodic ar-
rays of cylindrical pillars deposited on a semi-infinite substrate is presented. The
band structures of square, triangular and honeycomb arrays show that they possess
the characteristics of acoustic metamaterials. Precisely, the presence of pillars intro-
duce new surface propagating modes. The period defines the non-radiative region
limited by the slowest bulk modes and influences the existence of these new modes.
In addition, with a specific geometrical value of pillars, guided modes define a first
band gap that appears at frequencies markedly lower than those expected from the
Bragg condition and it does not depend on the symmetry of the arrays. This band
gap originates from local resonances of the individual cylindrical pillars and is sen-
sitive to their geometrical parameters, in particular to the height of the pillars. The
transmission calculation corroborates very well with the band structure and high-
lights the major role of the local resonance of a single pillar in the opening of the
low frequency band gap. In this case, we expect the same band gap position to occur
in any other ordered or disordered structures.
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