Chapter 2
Thermopower in Correlated Systems

B. Sriram Shastry

Abstract Novel correlated materials discussed recently such as sodium cobaltate
Na,CoO; and iron antimonide FeSb, show considerable promise for attaining high
values of thermopower. These extend the limits set by standard semiconducting
materials such as bismuth telluride BiyTe3. Understanding the scale of thermopower
and its dependence on material properties is a difficult task, since the Kubo
formulas are somewhat opaque. We have developed two alternative approximate
formulas that are easier to interpret, while capturing the many body enhancements
of thermopower. These are the “high frequency” Seebeck coefficient S* and the
Kelvin formula Sk, published recently. This article provides a brief guide to these
alternate formulas together with a delineation of their domain of usefulness.

2.1 Introduction

The aim of this brief chapter is to collect together and introduce the new formulas
developed by our group for calculating the Seebeck coefficient for strongly corre-
lated condensed matter systems — along with pointers to some applications. There
are two new formulas: the first is the high frequency Seebeck coefficient S*[1,5,6].
It works very well whenever we deal with an effective model that eliminates at the
very start, the highest energy scale in the problem. As an example, the 7-J model,
found by eliminating the large U of the Hubbard model is a good candidate for
this formula. Its application to the triangular lattice sodium cobaltate Na 6sCoO; is
illustrated in Ref. [2—4]. The second formula to note is the so called Kelvin formula
Sketvin [5—7]. Here a modern interpretation of Lord Kelvin’s ideas from 1854 leads
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to a rather useful formula. Its utility is illustrated in applications to the Hubbard
model Ref. [8], and also to the interpretation of the “universal change in sign of the
Seebeck coefficient in high Tc materials” Ref. [9].

In this article, I summarize the various formulas known at present with some
comments on their range of validity. I also summarize the rationale behind the two
approximate formulas mentioned above.

2.2 Comments on the Formulae

The formulas are summarized in tabular form below.

e The Kubo formula is a standard and exact result in transport theory, and is
eminently useful for non interacting systems. However it becomes hard to apply
to most strongly interacting electron systems. In particular retaining vertex
corrections becomes difficult and dropping these corresponds to an uncontrolled
approximation in general. In systems of current interest, such as Na,CoO, that
are describable as doped Mott Hubbard systems, it is difficult to push the analytic
evaluation of the Kubo formulas, although for finite size systems (i.e. rather small
lattices), it is possible to numerically compute exactly the Seebeck coefficient
from this definition [2—4] and benchmark other approximate formulas against
this evaluation.

e The Mott formula is the textbook result of evaluating the Kubo formula for the
thermopower of a weakly correlated metal at low temperatures. It expresses this
object in terms of the single particle density of states (DOS), the velocity average
and the relaxation rate. Being the energy derivative of a logarithm of the product
of the three terms, it can be decomposed into the sum of three types of terms.
This decomposition provides a neat viewpoint, where the thermopower is the
sum of the contribution from the energy dependence of the density of states, the
Fermi suface average of the velocity square and relaxation time. The weakness
of this formula is that it uses the non-interacting single particle DOS and does
not generalize in any simple way to include interactions.

e The Heikes Mott formula was first noted by Heikes [10] in the context of
semiconductors and applied by Mott to the physics of hopping conduction. It
corresponds to throwing out the first (and difficult) term of the Kubo formula
consisting of a ratio of the current correlations, a justifiable approximation only
at very high temperatures. This formula is written in Table 2.1 with a subtracted
1(0), to make it well behaved at T — 0 following Prelovsek et. al. [11]. With
this subtraction, the formula even interpolates reasonably between high and low
T behaviour- although the low T slope is smaller by a factor of 2 from the answer
in the Mott formula DOS contribution [7]. This formula received considerable
attention following the work of Chaikin and Beni [12] who applied it to the
Hubbard model at essentially infinite temperature. In this limit the sole effect
of correlations is to change the entropy in a simple way, and leads to a rough
estimate of the scale of the thermopower in Mott Hubbard systems.
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* The high frequency Seebeck coefficient S* was introduced in Ref. [1,5, 6]
in analogy with the earlier work of Shastry, Shraiman and Singh on the Hall
constant in correlated materials [13]. The basic idea is that the relaxation time
in certain variables- the Hall resistivity, the Seebeck coefficient and the Lorentz
number- tends to cancel out, unlike in the corresponding conductivities. Thus at
a “high frequency” w > €2, for an appropriate frequency scale £2., the many
body effects are easier to capture in terms of equal time correlation functions of
certain fundamental operators. The operators that emerge are related to the sum
rules for the relevant conductivites- generalizing in the simplest case- the plasma
frequency occurring in the f- sum rule to the corresponding lattice sum rule. They
can be computed for various models through a procedure given in Ref. [1,5, 6].
For models with a restricted Hilbert space, such as the 7-J model, this is a very
useful formula as shown in Ref. [2-4], and has non-trivial predictive power, as
we note below.

e The Kelvin formula Sk,;,;, Ref. [6,7] honours the contribution of Lord Kelvin
[14]. In 1854 Kelvin (then Thomson) used thermodynamical arguments (rather
than the then non-existent transport theory!) to prove reciprocity between Peltier
and Seebeck coefficients. Lars Onsager [15] formulated the correct statement
and proof of reciprocity within transport theory much later. In his seminal paper
Onsager [15] mentions precursors to his results in the work of Kelvin. It is
fascinating to read an account of Kelvin’s reasoning Ref. [14], which boils down
to taking the limit of a static perturbation before taking the infinite volume limit.
In modern terminology, Kelvin was working in the slow limit, whereas transport
requires the opposite fast limit, where the thermodynamic limit must precede the
static limit.! Most interestingly Kelvin’s final result of reciprocity shown within
the slow limit, survives in the fast limit taken by Onsager!

After realizing this episode involving two colossi of science, it was natural for
the authors to investigate if the slow limit led to interesting approximations. It
is remarkable that the final answer of the slow limit [7] is so simple: Skein =

q—le (%iNﬂ)T‘V. It gives substance to the adage that the thermopower is the entropy
per particle. In Ref. [7-9] the different formulas are used in the context of
different models and benchmarked.

e It is worth mentioning that the availability of different analytical formulas
sometimes leads to insights that are not otherwise available. One striking example
is the prediction in Ref. [1-3, 6, 8] of the enhanced Seebeck coefficient in an
electronically frustrated lattice- such as the triangular lattice or the FCC lattice.
The prediction of a large Seebeck coefficient is for a particular sign of the
hopping and was originally motivated by an explicit expression for the high
temperature expansion of S* in Ref. [1] Eqs. (87) and (88). In practical terms
either the hole doping or the electron doping contains such an enhancement as

'Our discussion of the high frequency S* above may then be viewed as an ultrafast limit where
again these variables are well defined.
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detailed in the above papers. This remains one of the few predictions to come out
of theory in this area. Our hope is that the materials community evaluates this
prediction experimentally in the near future.

2.3 Collection of all Formulas

Let us note the different formulae in a tabular form:
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