Chapter 2
Vector Bundles

Vector bundles constitute a special class of manifolds, which is of great importance
in physics. In particular, all sorts of tensor fields occurring in physical models may
be viewed in a coordinate-free manner as sections of certain vector bundles. We start
with the observation that the tangent spaces of a manifold combine in a natural way
into a bundle, which is called tangent bundle. Next, by taking its typical properties as
axioms, we arrive at the general notion of vector bundle. In Sect. 2.2, we discuss el-
ementary aspects of this notion, including the proof that—up to isomorphy—vector
bundles are completely determined by families of transition functions. In Sect. 2.3
we discuss sections and frames,! and in Sect. 2.4 we present the tool kit for vec-
tor bundle operations. We will see that, given some vector bundles over the same
base manifold, by applying fibrewise the standard algebraic operations of taking the
dual vector space, of building the direct sum and of taking the tensor product, we
obtain a universal construction recipe for building new vector bundles. In Sect. 2.5,
by applying these operations to the tangent bundle of a manifold, we get the whole
variety of tensor bundles over this manifold. The remaining two sections contain fur-
ther operations, which will be frequently used in this book. In Sect. 2.6, we discuss
the notion of induced bundle and Sect. 2.7 is devoted to subbundles and quotient
bundles. There is a variety of special cases occurring in applications: regular distri-
butions, kernel and image bundles, annihilators, normal and conormal bundles.

2.1 The Tangent Bundle

Let M be a C*-manifold, let I C R be an open interval and let y : I — M be a
CK-curve. According to Example 1.5.6, for every ¢ € I, the tangent vector y (¢) of y
at ¢ is an element of the tangent space T, ;) M. Hence, while ¢ runs through 1, y(¢)
runs through the tangent spaces along y, see Fig. 2.1.

Here, as well as in Sect. 2.5, in order to keep in touch with the physics literature, the local de-
scription is presented in some detail. In particular, we discuss transformation properties. This way,
we make contact with classical tensor analysis.
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Fig. 2.1 Tangent vectors along a curve y in M

To follow the tangent vectors along y it is convenient to consider the totality of
all tangent spaces of M. This leads to the notion of tangent bundle of a manifold M,
denoted by TM. As a set, TM is given by the disjoint union of the tangent spaces at
all points of M, that is,

T™ := |_| T M. (2.1.1)
meM

Let 7 : TM — M be the canonical projection which assigns to an element of T,, M
the point m for every m € M. TM can be equipped with a manifold structure as
follows. Denote n = dim M. Choose a countable atlas {(Uy, ky) : o« € A} on M and
define the mappings

kX7 (Uy) = R" x R™, Ko (Xm) i= (ko (m), X52). (2.1.2)

The image of /cg is given by x4 (Uy) x R" and is hence open in R" x R”. Using
(1.4.9), for the transition mappings we obtain

k3o (k)T (% X) = (kg o '), (kg oy ) (%) - X), (2.1.3)

where (X, X) € x4 (Uy N Upg) x R". Since k4 0 Kﬂ_l is of class C*, the transition

mappings are of class C¥~!. Finally, it is obvious that the subsets 7 ~!(U,) cover
TM. Thus, according to Remark 1.1.10, the family of bijections {(x~ (U ,Kg) :
o € A} defines a differentiable structure of class C*=! and dimension 2n on TM,
which has the following properties. First, due to (2.1.3), it is independent of the
choice of an atlas on M used to construct it. Second, the local representative of the
projection w : TM — M with respect to the charts KOT and «, is given by the natural
projection pr; to the first factor in x4 (Uy) x R". Hence, 7 is a submersion of class
C*=1. Third, the charts ! identify the open submanifolds 7 ~!(Uy) of TM with
direct products of an open subset of M with a copy of R”. Under this identification,
both the natural projection and the vector space structure on every tangent space
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TmM, m € Uy, is preserved. To formalize this, for every o € A, define a mapping
Xa : T N (Uy) = Uy x R, Xao(Xm) := (m, X52). (2.1.4)

Then Kg = (ko X 1dRn) 0 xq. In particular, the local representative of x, with respect
to the global charts K(;r on n’l(Ua) and xy x idg» on U, x R" is given by the
identical mapping of R” x R", restricted to the open subset «y (Uy) x R". Hence,
Xe is a C*~1-diffeomorphism. Moreover, PIi © Xa = T}-1(y,,) and the restrictions
Xa T, M are vector space isomorphisms for all m € U, . Let us summarize.

Proposition 2.1.1 Let M be a C*-manifold of dimension n and let TM be defined
by (2.1.1). There exists a unique C*~'-structure on TM such that for every local
chart (U, k) on M, the mapping kT 771 (U) > R" x R, defined by (2.1.2), is a
local chart on TM. With respect to this structure, TM has dimension 2n and the
following holds.

1. The natural projection w : TM — M is a surjective submersion.

2. There exists an open covering {Uy} of M and an associated family of diffeomor-
phisms xq s~ YU, = Uy x R such that
(a) the following diagram commutes,

Xo
7 (Uy) Uy x R"

\ pry

Ua

(b) for every m € Uy, the induced mapping pry o Xo|T
vector space isomorphism.

mM:TuM — R" is a

m

Definition 2.1.2 The triple (TM, M, ) is called the tangent bundle of M. TM is
called the total space or the bundle manifold, M the base manifold and 7 the natural
projection. For m € M, 7~ (m) = T,, M is called the fibre over m. The vector space
R" is called the typical fibre and the pairs (Uy, xq) are called local trivializations of
TM over U,.

By an abuse of notation, the tangent bundle will usually be denoted by TM.

Example 2.1.3 Let M = S' be realized as the unit circle in R?. For every x € S', the
tangent space TxS' can be identified with the subspace of vectors orthogonal to X.
This yields a bijection ® from TS! onto the subset

T = {(X,X) es! XRZ:XJ_X}
of R*. This is the level set of the smooth mapping

F:R* > R?, F(x,X) == (IIx]%, x - X)
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at the regular value ¢ = (1,0). Hence, it carries a smooth structure. One can
check that @ is a diffeomorphism with respect to this structure. (To see this, let
pry R? — R denote the natural projection to the k-th component and choose the
charts on S! and T to be restrictions of pr, and pr;, x pry, respectively, k = 1,2.)
Thus, TS! can naturally be identified with 7. The construction carries over to
higher-dimensional spheres: as a manifold, the tangent bundle TS” can be identified
with the subset {(x, X) € S” x R*t1: x | X} of R2"*D which is the level set of a
function similar to F at the regular value ¢ = (1, 0), see also Remark 2.1.4/2 below.

Remark 2.1.4

1. Let V be a finite-dimensional real vector space and let M be an open subset of V.
The natural identifications of the tangent spaces T, M with V for all v € M, cf.
Example 1.4.3/1, combine to a smooth diffeomorphism x : TM — M x V which
is fibrewise linear. We will refer to x as the natural identification of TM with
M x V. After choosing a basis in V, this bijection coincides with the (global)
trivialization induced via (2.1.4) by the corresponding global chart on M.

2. The construction of Example 2.1.3 generalizes to arbitrary level sets. Let V,
W be finite-dimensional real vector spaces and let M be the level set of a C*-
mapping f : V — W at a regular value ¢ € W. Identifying the tangent space
T, M with ker f'(v) for all v € M, see Remark 1.2.2/1, we obtain a bijection @
from TM onto the subset

T={w.X)eMxV:f(X=0}
of V x V. This is the level set of the C*~!-mapping
F:VxV—->WxW, F,X):=(f), f(v)X)

at the value (c, 0), whose regularity follows from that of ¢ with respect to f.
It follows that T is an embedded C¥~!-submanifold of V x V and that & is a
Ck=1_diffeomorphism (Exercise 2.1.1). Thus, the tangent bundle of a level set in
V can be naturally identified with a level setin V x V.

Just as the tangent spaces of a manifold combine to the tangent bundle, the tan-
gent mappings of a differentiable mapping combine to a mapping of the tangent
bundles.

Definition 2.1.5 (Tangent mapping) Let M, N be C*¥-manifolds andlet @ : M — N
be a C¥-mapping. The tangent mapping of @ is defined by

@' :TM - TN, @' (X,) =, (Xn).

The tangent mapping is of class C¥~! (Exercise 2.1.6). The basic properties of
the tangent mapping are stated in the next section (Proposition 2.2.9).
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Exercises

2.1.1 Prove that the mapping @ of Remark 2.1.4/2 is a diffeomorphism.

Hint. As local charts on M, use those constructed in the proof of the Level
Set Theorem 1.2.1.

2.1.2 Determine the tangent bundle in the form of the level set 7 of Remark 2.1.4/2
for
(a) the spheres S", see Example 1.2.3,

(b) the hyperboloid of Example 1.2.4,

(c) the paraboloid, the ellipsoid and the rotational torus of Exercise 1.2.5,
(d) the classical groups, see Example 1.2.6.

Compare your result for the spheres S” with Example 2.1.3.

2.1.3 Let M be the level set of a differentiable mapping f : R” — R™ at a regular
value ¢ € R”. Identify TM with the level set T of Remark 2.1.4/2. The bundle
of unit tangent vectors of M is definedtobe EM := {(x,X) e TM : || X|| = 1}.
Show that EM is an embedded submanifold of TM. What does one get for
ES! and ES??

2.1.4 Let (U, k) be a local chart on M and let T be the local chart induced by k on
the tangent bundle TM via (2.1.2). Determine the local trivialization (2.1.4)
of the tangent bundle T(TM) of TM induced by kT,

2.1.5 Iterate the construction of Remark 2.1.4/2 by determining the level set T" for
the tangent bundle T(TM) of the tangent bundle TM of a level set M. Write
down the defining equations explicitly for M = S”".

2.1.6 Let @ : M — N be of class C*. Show that @’ is of class CK~1.

2.2 Vector Bundles

The notion of vector bundle arises from the notion of tangent bundle of a manifold
by allowing the fibres to be arbitrary finite-dimensional vector spaces, rather than
the tangent spaces of that manifold.

Definition 2.2.1 (Vector bundle) Let K =R or C and let k > 0. A K-vector bundle
of class C¥ isa triple (E, M, ), where E and M are CK-manifoldsand 7 : E > M
is a surjective CX-mapping satisfying the following conditions.

1. Forevery m € M, E,, := ' (m) carries the structure of a vector space over K.
2. There exists a finite-dimensional vector space F' over K, an open covering {Uy}
of M and an associated family of C*-diffeomorphisms xg : 7~ (Uy) — Uy x F
such that, for all «,
(a) the following diagram commutes,

Xa
7 (Uy) Uy x F

2.2.1)
k4 pry

Ua
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(b) for every m € Uy, the induced mapping xq,m =PI © Xa|E, : Em — F is
linear.

Like in the case of the tangent bundle, by an abuse of notation, a vector bundle
(E, M, ) will usually be denoted by E alone. Like for the tangent bundle, E is
called the total space or the bundle manifold, M the base manifold, 7 the bundle
projection and F the typical fibre. For m € M, E,, is called the fibre over m and
m is called the base point. The pairs (U,, x,) are called local trivializations. A lo-
cal trivialization (U, x) with U = M is called a global trivialization. If a global
trivialization exists, the vector bundle is called (globally) trivial.

Remark 2.2.2

1. By condition 2a, since the x, are diffeomorphisms, the bundle projection 7 is
a submersion (because so is the projection to a factor of a direct product) and
the fibres E,, are embedded submanifolds (because by x, they are mapped onto
the subsets {m} x F of Uy x F). Being bijective and linear, the mappings xu,m
are vector space isomorphisms. Hence, all fibres have the same dimension as
F; this number is called the dimension or the rank of the vector bundle. Thus,
dimE =dimM +dim F for K=R, and dimE =dim M + 2dim F for K= C.
For a K-vector bundle of dimension n, one can always choose F = K".

2. Let A denote the index set of a family of local trivializations {(Uy, x«)}. The
mappings

Xgo Xy :UgNUgx F—UyNUgxF, (a,f)eAXA, (2.2.2)

which are of class C¥, are called the transition mappings of the system of lo-
cal trivializations {(Uy, x«) : o € A}. Since for every (a, B) € A X A, xg o Xa_l
maps the subsets {m} x F, where m € U, N Ug, linearly and bijectively onto
themselves, there exists a mapping pgq : Uy N Ug — GL(F) such that

Xp o Xy (m,u) = (m, ppa(m)u) (2.2.3)

for all m € Uy N Upg and u € F. The mappings pg, are called the transition
functions of the system of local trivializations {(Uy, x4) : & € A}. To see that
they are of class CF it suffices to check that for every (o, ) € A x Aand u € F,
the mapping Uy N Ug — F defined by m > (m, pgo(m)u) is of class Ck. This
follows at once from the differentiability of the transition mappings xg o x, L
One can check that the transition functions satisfy

Pyp (1) ppor () = pya(m) 224)

foralla, B,y e Aandm e U, NUg N U,.
3. A vector bundle is said to be orientable if there exists a family of local trivializa-
tions whose transition mappings have positive determinant.
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Example 2.2.3

1. Let M be a C*¥-manifold, let F be a vector space of dimension r over K and let
pry : M x F — M denote the natural projection to the first component. Then,
(M x F, M, pry,) is a K-vector bundle of class C* and dimension r. It is called
the product vector bundle of M and F. A product vector bundle is obviously
trivial.

2. According to Proposition 2.1.1, the tangent bundle of an n-dimensional C*-
manifold is an n-dimensional real vector bundle of class C*~!.

3. Let (E, M, ) be a vector bundle of class Ck and let U C M be open. Define
Ey :=n~'(U). This is an open subset of E and hence a C*-manifold. By re-
striction, 7 induces a surjective CX-mapping 7y : Ey — U, and a system of
local trivializations {(Uy, xo)} of E induces the system of local trivializations
{(Us NU, xatu,nu)}t of Ey. Thus, (Ey, U, ry) is a K-vector bundle of class
Ck. 1t has the same dimension as E.

Example 2.2.4 (Mobius strip) Let M = S! be realized as the unit circle in C and let
E be the Mobius strip of Example 1.1.12 with the open interval (—1, 1) replaced by
the whole of R. That is, E := RZ/N, where (s1, 1) ~ (s, tp) iff there exists k € Z
such that so =51 + 27k and £, = (—1)k11. Define the projection by

7:E— S 7([(s.0)]) == el

Using the local charts on E constructed in Example 1.1.12 one can easily check that
7 is smooth. The fibres are E.is = 77 1(e") = {[(s,1)] : t € R}. For every s € R,
define

)»[(S, tl)] + [(S, l‘2)] = [(S, At + l‘z)], At eR.

This way, the fibres become real vector spaces of dimension one. To construct local
trivializations, we choose Uy :=S! \ {#1} and define mappings

X+ N (Us) > U xR, x=([(s.0]) = (e¥,1),

where in case of x4 and x_ the representative (s, t) of [(s, 7)] used to compute the
right hand side is chosen from ]0, 27[ x R and from |—m, 7[ x R, respectively. We
leave it to the reader to check that the x4 are diffeomorphisms and satisfy condi-
tions 2a and 2b of Definition 2.2.1. Thus, (£, M, ) is a smooth real vector bundle
of dimension 1. Figure 2.2 shows E together with the product vector bundle S' x R.
It is quite obvious that E is not trivial. We will be able to give a precise argument
for that in the next section.

Remark 2.2.5 Let M be a Ck-manifold, let £ be a set and let 7 : E — M be
a surjective mapping such that conditions 1 and 2 of Definition 2.2.1 are satis-
fied, however, with the following difference. Instead of assuming the y, to be C*-
diffeomorphisms, assume that they are bijective and that their transition mappings
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Fig. 2.2 The product vector
bundle S' x R and the
Mobius strip as a vector
bundle over S!

(2.2.2) are of class C*. Since M is second countable, the open covering {U,} con-
tains a countable subcovering. According to Remark 1.1.10, the corresponding sub-
family of the family {x,} defines a C¥-structure on E. With respect to this structure,
(E, M, ) is a K-vector bundle of class C kK and the (Uq, Xe) are local trivializations.
Conversely, if (E, M, ) is a vector bundle of class C*, then the C¥-structure on E
induced in this way coincides with the original one (Exercise 2.2.1).

Next, we consider mappings of vector bundles.

Definition 2.2.6 (Vector bundle morphism) Let (E1, M1, 1) and (E2, M, ) be
K-vector bundles of class C*. A C¥-mapping @ : E; — E, is called a morphism if
for every m| € M there exists my € M» such that

L ®(E1m) C Ez2m,,
2. the induced mapping @, := @i, ,, : E1,m; = E2,m, is linear.

The rank of @ is defined to be the integer-valued function which assigns to m €
M; the rank of the linear mapping @,,, . In case M1 = My = M, @ is called a vertical
morphism or a morphism over M if conditions 1 and 2 hold with m|; =m, = m.

As usual, together with the notion of morphism there comes the notion of iso-
morphism (a bijective morphism whose inverse is also a morphism), endomorphism
(a morphism of a vector bundle to itself), automorphism (an isomorphism of a vec-
tor bundle onto itself). For a vector bundle morphism @ to be an isomorphism it is
obviously sufficient for @ to be a diffeomorphism. If @ is vertical, it is sufficient
for @ to be bijective, because then the tangent mapping @’ is bijective at any point
and Theorem 1.5.7 yields that the inverse mapping is of class C¥.

Remark 2.2.7

1. Since @ is a mapping, condition 1 implies that the point m, is uniquely de-
termined by m 1. Thus, every morphism @ induces a mapping ¢ : M| — M>,
defined by

pom =mpo0d.

One says that @ covers ¢ and calls ¢ the projection of @. If @ is of class C¥,
so is ¢. Indeed, if (Uy, x1) is a local trivialization of E1, ¢y, coincides with
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the composition of the embedding Uy — U x {0} C U; x F| with the mapping
mpo®do Xl_l. In case M1 = My = M, @ is a vertical morphism iff ¢ =idy,.
2. Let (Uj, x;) be local trivializations of E;, i = 1, 2. The mapping

x20®@ox 1 (UiNg ™ (U)) x Fi — Uz x P (2.2.5)

is called the local representative of @ with respect to (U, x1) and (Ua, x2).
A fibre-preserving and fibrewise linear mapping @ : E1 — E» is a morphism iff
all of its local representatives are of class C*.

3. Let E;, E> be K-vector bundles over M of class C¥. For A € K and vertical
morphisms @, ¥ : E; — E; we can define

OB +W)(x):=AP(X) + ¥ (x), xekEi,

because for all x € Ej, @(x) and ¥ (x) belong to the same fibre of E,. This
provides a K-vector space structure on the set of vertical morphisms from E
to E».

Example 2.2.8 A local trivialization (U, x) of a K-vector bundle (E, M, &) with
typical fibre F is a vertical isomorphism from the vector bundle Ey, see Exam-
ple 2.2.3/3, onto the product vector bundle U x F. Accordingly, a global trivializa-
tion is a vertical isomorphism from E onto M x F. Thus, a vector bundle is trivial
iff it is isomorphic to a product vector bundle.

Probably the most important example of a vector bundle morphism is the tan-
gent mapping. The reader may convince himself that Proposition 1.5.2 implies the
following (Exercise 2.2.4).

Proposition 2.2.9 (Properties of the tangent mapping) Let M and N be C*-
manifolds and let ¢ € CX(M, N). The tangent mapping ¢' : TM — TN has the
following properties.

1. ¢ is a vector bundle morphism of class C*~1 with projection ¢.

2. (idy) =idry-

3. If P is another C*-manifold and W € C¥(N, P), then (Y o ) =y’ 0 ¢/'.
4. If ¢ is a diffeomorphism, then ¢’ is an isomorphism and (¢')~' = (¢™1)'.

Remark 2.2.10 (Partial derivatives and product rule) Let My, M, N be C k_
manifolds and let ¢ € CK(M; x M>, N). We discuss the properties of the tangent
mapping ¢’ which are related to the direct product structure of its domain. Proofs
are left to the reader (Exercise 2.2.5). The induced partial mappings

Om, - M1 — N, Om,(m1) = @(my,mz), my € Mo,
Om, Mz — N, Omy(m2) == @(m,my), my € M,
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are of class C¥. Their tangent mappings combine to C¥~!-mappings

TM; x M, — TN, (Xl,mZ)H((pmz)/(Xl)v
Ml XTMZ-)TN, (ml,X2)|—> (Qoml)/(XZ)»

called the partial derivatives of ¢. They fulfil the product rule,
Py X1 X2) = (@) (X1) + (9m) (X2),  mj € Mi, X; € Ty, M. (2.2.6)

If M = M, = M and if ¢ is composed with the diagonal mapping
A:M— M x M, then

(@0 A),(X) = (@1.m) (X) + (p2.m)'(X), meM, X eTyM. (2.2.7)

In particular, if M = I is some open interval, then ¢ o A, ¢;, and ¢;, are C*-curves
in N. For the corresponding tangent vectors at ¢ € [ there holds

d d d
— @(s,8)=— @@, )+ — o(t,s), tel. (2.2.8)
dS [, ds r[ ds f/

To conclude this section, we show that—up to isomorphy—yvector bundles are
completely determined by the family of transition functions associated with a sys-
tem of local trivializations.

Theorem 2.2.11 (Reconstruction theorem) Let M be a C*-manifold. Assume that
the following data are given:

1. a finite-dimensional vector space F over K,

2. an open covering {Uy 1o € A} of M,

3. a family of C*-mappings Ppa : Uy NUg — GL(F), (o, B) € A x A, satisfying
(2.2.4).

Then, there exists a K-vector bundle E over M of class C* and a family of local
trivializations {(Uy, xo) : & € A} of E whose transition functions are given by the
functions pgq. E is uniquely determined up to vertical isomorphisms.

In particular, the last assertion implies that if the pyg are the transition functions
of a vector bundle, then the vector bundle provided by Theorem 2.2.11 is isomorphic
over M to the original one.

Proof First, we prove existence. Since M is second countable, the covering {U :
«a € A} contains a countable subcovering. Hence, for the following construction
we may assume that A is countable. Moreover, we notice that (2.2.4) implies that
Pae =1 for all @ € A. Take the topological direct sum

%::l_anxF,

acA
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denote its elements by (o, m, u), where o € A, m € U, and u € F, and define a
relation on 2" by (a1, my, uy) ~ (a2, mo, uz) ift my = my and up = pgy,q, (M1)u;.
Due to pyy = 1 and (2.2.4), this is an equivalence relation. Let E denote the set
of equivalence classes. The mapping 7 : E — M, given by w[(o, m, u)] :=m, is
well-defined and surjective. To construct a vector space structure on 7~ ! (m) for
every m € M, choose « such that m € Uy. Every class in 7 ~!(m) has a unique
representative of the form (o, m, u) with u € F. Using this, we transport the linear
structure from F to 7w~ (m),

A[(a,m,ul)] +[((x,m,u2)] = [(a,m,)»u] +u2)], u,upe F, rek.

By linearity of the mappings pgy (m) : F — F, this definition does not depend on
the choice of «. The natural injections Uy x F — 2" induce mappings U, x F —
E. Due to p,, = 1, these mappings are injective and hence induce bijective map-
pings e : 7Y (Uy) — Uy x F. A brief computation shows that the transition
mappings of the family of bijections {x, : & € A} are given by (2.2.3). Therefore,
they are of class C* and hence define a C¥-structure on E with respect to which
(E,M, ) is a K-vector bundle of class Ck and the X« are local trivializations,
see Remark 2.2.5. To prove uniqueness up to vertical isomorphisms, let £ be a K-
vector bundle over M of class C* with projection 7 and let %o : 7 1 (Uy) = Uq X F
be local trivializations whose transition functions coincide with the pg,. Then, on
N U, n Ug) C E we have )Za_l o Xa = )Zﬁ_l o xg and on 7~ LU, n Up) C E there
holds Xa_l 0 Xa = Xﬂ_l o xp- Hence, the mappings )Za_l o xo and Xa_l 0 X, X € A,
combine to mappings E — E and E — E, respectively, which are morphisms and
inverse to one another. O

Remark 2.2.12

1. Given two finite-dimensional vector spaces Fi, F,> and two open coverings
(Ui 1a; € Aj}, i =1,2, of M with associated systems of C*-mappings

Pigia; Ui NUi g — GL(F), (oj,Bi) €A xA;,

there arises the question under which conditions the vector bundles E; and E»,
defined by these data according to Theorem 2.2.11, are isomorphic over M. The
answer is as follows. First, F| and F; have to be isomorphic so that they can
be replaced by K" for some r € N. Second, there exists a common refinement
{Uq : o € A} of the open coverings {U; o, : o; € A;}, i =1, 2. By restriction, the
Pi,p;o; induce mappings

pipo:UsNUs— GL(RK), (a,f)€AXA, i=1,2.

Now, E; and E; are isomorphic iff there exists a system of CX-mappings pq :
Uy, — GL(r,K), a € A, such that

02,pa (M) = pgl (m) - p1,a (M) - pe(m), me Uy NUg. (2.2.9)

The proof is left to the reader (Exercise 2.2.6).
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An open covering {Uy : @ € A} together with an associated family of C-
mappings pgq : Uy NUg — GL(r, K), (o, B) € A x A, with the property (2.2.4)
is called a 1-cocycle on M with values in the structure group GL(r, K). Two
1-cocycles are called cohomologous if there exists a system of C*-mappings
Po : Uy = GL(r, K), o € A, such that (2.2.9) holds. To be cohomologous is an
equivalence relation in the set of 1-cocycles. Passage to equivalence classes, that
is, cohomology classes of 1-cocycles, yields a cohomology theory on M which
is called the first Cech cohomology of M with values in the structure group
GL(r, K). According to point 1, the cohomology classes correspond bijectively
to the isomorphism classes of K-vector bundles over M of class C* and dimen-
sion r.

. One can show that the first Cech cohomology of M and, correspondingly, the set

of isomorphism classes of vector bundles over M do not depend on the degree of
differentiability k, see [130, Ch. 4, Thm. 3.5].

Exercises

2.2.1 Let(E,M,)bea Ck_vector bundle. Consider the C*-structure on E induced

by a system of local trivializations via the method of Remark 2.2.5. Show that
this structure coincides with the original C¥-structure.

2.2.2 Let M be a C*-manifold. Use the system of bijections (2.1.4) associated

with an atlas on M to construct a C¥-structure on TM via the method of
Remark 2.2.5.

2.2.3 Construct a smooth structure on the Mobius strip by means of the method

of Remark 2.2.5, using the local trivializations (U4, x+) of Example 2.2.4.
Show that this structure coincides with the one constructed in Example 1.1.12.

2.2.4 Prove Proposition 2.2.9.
2.2.5 Prove the assertions about partial derivatives stated in Remark 2.2.10.
2.2.6 Prove the criterion for the isomorphy of two vector bundles over M stated in

Remark 2.2.12/1.

2.2.7 Let (Eq,m, M) and (E», o, M3) be K-vector bundles of class C* and of di-

mensions 1 and rp. Define E := E{ x Eo0, M := M| x My and w :=m X 712 :
E1x Ey — My x M. For (m,m2) € My x M2, equip E(uy my) = 7 Ym) =
Ejy m, x E3 p, with the linear structure of the direct sum E1 ,; ® E2 j,. Show
that (E, M, ) is a K-vector bundle of class C¥ and dimension r + r. It is
called the direct product of (E1, w1, M1) and (E2, 72, M3).

2.2.8 Let M; and M5 be C¥-manifolds. Let pr; : M1 x M — M; denote the natural

projections to the factors. Show that the following mapping is a vertical vector
bundle isomorphism:

@ :T(M; x My) — TM; x TM>, @ (X) == (pr} (X), pry(X)).
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2.3 Sections and Frames

The notion of section generalizes the concept of a function on a manifold with values
in a finite-dimensional vector space.

Definition 2.3.1 (Section) Let (E, M, ) be a K-vector bundle of class C¥. A sec-
tion (or cross section) of (E, M, ) is a Ck-mapping s:M — E suchthat w os =
idyy.

A local section of (E, M, ) over an open subset U C M is a section of the
vector bundle (Ey, U, ny).

Remark 2.3.2

1. Let s be a section and let (U, x) be a local trivialization of the K-vector bundle
(E, M, 1) of class C¥. The mapping

prroxosyy:U—F 2.3.1)

is called the local representative of s with respect to (U, x). Since local trivial-
izations are diffeomorphisms, a mapping s : M — E satisfying w os =1idy is of
class C* (and hence a section) iff so are all local representatives of s with respect
to a system of local trivializations.

2. Every vector bundle admits a distinguished section m +— 0,,, called the zero
section.

3. The set of all sections of a K-vector bundle (E, M, i) of class Ck is denoted by
I’ (E). It carries the structure of a real vector space and of a bimodule over the
algebra C*° (M), with all operations defined pointwise (Exercise 2.3.1).

4. A local section need not be extendable to a global section, as is shown by the
exampleof M =R, E=M xR, U =R} and s(x) = (x, %). There holds, how-
ever, the following weaker extension property. For every m € U, there exists an
open neighbourhood V of m in U and a section § of E such that s;y = 5}y
(Exercise 2.3.2).

Example 2.3.3

1. (Local) sections of the tangent bundle TM of a C k_manifold M are called (lo-
cal) vector fields on M. They will usually be denoted by X, Y, ... and the vector
space I'(TM) will be denoted by X(M). To be consistent with the previous no-
tation X,, for a tangent vector at m € M, for the value of the vector field X at
the point m we will often write X,, instead of X (m). Note that since TM is
of class C*¥~1, so are vector fields. If (U, ) is a local chart on M, for every
i=1,...,dim M, the mapping

3f :U— (TM)y, 05 (m) 1= afm,
is a section of (TM)y = TU. Since the representative of this section with respect
to the global trivialization of TU induced by « is given by the constant mapping
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whose value is the i-th standard basis vector in R4imM s 8;‘ is of class Ck—1.
Hence, 8;‘ is a local vector field on M.

2. If the vector bundle E over M is given in terms of a K-vector space F, an open
covering {Uy} of M and a family of C*-mappings Ppa : Uy NUg — GL(F)
satisfying (2.2.4), then its sections of class C* correspond bijectively to fami-
lies {sq} of C*-mappings s, : Uy — F satisfying so (m) = Pap(m)sp(m) for all
a,Be€Aandm e Uy, NUg.

Remark 2.3.4

1. Let V be a finite-dimensional real vector space and let M C V be an open subset.
Via the natural identification of TM with M x V of Remark 2.1.4/1, vector fields
X on M correspond bijectively to smooth mappings” X : M — V. By construc-
tion, for all v € M and f € C*°(M), we have

d
X, (f) = i flv+1X (). (2.3.2)

0

2. Let V and W be finite-dimensional real vector spaces and let M C V be the level
set of a CK-mapping f : V — W at a regular value. Via the natural identification
of TM with the embedded C*¥~1-submanifold {(v, X) e M x V : X € ker(f'(v))}
of V x V, see Remark 2.1.4/2, vector fields X on M correspond bijectively to
C*~!-mappings X : M — V satisfying X (v) € ker f’(v).

By means of a local trivialization, sections are identified locally with the graphs
of their local representatives. This implies

Proposition 2.3.5 Let (E,M,n) be a K-vector bundle of class C* and let
s € I'(E). Then, (M, s) is an embedded C*-submanifold of E.

Proof Let m € M. According to Remark 1.6.13/3, we have to show that there exists
an open neighbourhood V of s(m) in E such that (s, Srs—l(v)) is an embed-
ded CK-submanifold of E. Choose a local trivialization (U, x) of E at m and let
V =7~ 1(U). Then, s~' (V) = U and hence we have to show that (U, S)y) 1s an em-
bedded C*-submanifold of 7 ~1(U). Since  is a diffeomorphism and (U, x o s}y)
is the graph of the local representative of s with respect to the local trivialization
(U, x), the latter follows from Example 1.6.12/2. O

Now let (E1, My, ) and (E,, My, mp) be K-vector bundles of class Ck, let
@ : E; — E; be amorphism and let ¢ : M| — M be the projection of @.

Denoted by the same symbol.
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Definition 2.3.6 (@-relation and transport operator)

1. Sections s1 € I'(E1) and s € I'(E3) are said to be @-related if they satisfy
Dos; =sy00.

2. If ¢ is a C*-diffeomorphism, the following mapping is called the transport oper-
ator of @:

&, :'(E)) — ['(E), Qs =Posog L. (2.3.3)

The following proposition lists the properties of the transport operator (Exer-
cise 2.3.3).

Proposition 2.3.7 Let (E|, M1, 1) and (Ep, M2, ) be K-vector bundles of class
C* and let @ : E\ — E» be a morphism whose projection ¢ : M\ — M5 is a diffeo-
morphism. The transport operator @, has the following properties.

1. @, is linear. If @ is an isomorphism of vector bundles, @, is an isomorphism of
vector spaces and there holds (@~} ) = (@)L

2. Foreverys € I'(Ey), s is ®-related to ®s.

Foreverys e I'(E1) and f € Ck(Ml), there holds ®,(fs) = (((p_l)*f)q)*s.

4. If U : E» — Ej3 is another morphism whose projection is a diffeomorphism, then
Wod),=V,0d,.

»

Remark 2.3.8 In the case of vector fields, it is common to speak of ¢-relation rather
than ¢'-relation. Thus, X; € X(M;), i =1, 2, are ¢-related iff

¢ o X1 =X500. 2.3.4)
Next, we turn to the discussion of (local) frames.

Definition 2.3.9 (Local frame) Let (E, M, ) be a K-vector bundle of class C*
and dimension /, let U C M be open and let = {sy, ..., s,} be a system of local
sections of E over U. & is said to be pointwise linearly independent if the system
{s1(m), ..., s-(m)} is linearly independent in E,, for all m € U. In this case, & is
called a local r-frame (frame if »r =1) in E over U. If U = M, 2 is called a global
r-frame (global frame if r =1).

Local frames provide bases in the fibres over their domain and hence allow for
the expansion of local sections.

Proposition 2.3.10 Let (E, M, ) be a K-vector bundle of class Ck, let U C M
be open and let {s1, ..., s;} be a local frame in E over U. The assignment of f's;

(summation convention) to an I-tuple (f', ..., f!) of K-valued C*-functions on U
defines a bijection from Hi:l Ck(U, K) onto I' (Ey).
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Proof Obviously, for every (fl, R fl) € Hi:l Ck(U, K), the sum fisi isa Ck-
section of Ey. Conversely, let s € I'(Ey). By expanding s(m) with respect to the
basis {s1(m), ..., s;(m)} of E,, for all m € U, we obtain functions f’:U — K
satisfying s;y = fis;. Forevery m € U, (f'(m), ..., fl(m)) is the unique solution
of a system of linear equations whose coefficients depend differentiably of class C*
on m. Hence, fi e CK(U). O

Example 2.3.11

1. Let M be a C¥-manifold of dimension n and let (U, ) be a local chart on M.
Since {Bf’m, <++s O ) is @ basis in T,, M for all m € U, the system {9}, ..., 9}
is alocal frame in TM over U. Thus, over U, vector fields X € X(M) can be rep-
resented as Xy = X! df with X' e ckl (). According to (1.4.15) and (1.4.16),
the coefficient functions X' are given by X'(m) = X,,(k"), where i =1, ..., n.

2. Let (E, M, ) be a K-vector bundle of class C k with typical fibre F, let (U, x)
be alocal trivialization and let {e1, . .., e,} be a linearly independent system in F.

Define local sections s; of E over U by
si(m):=x Y(m,e), i=1,...,r (2.3.5)

These sections are of class C¥, because their local representatives with respect
to (U, x) are the constant mappings m +> e;. Hence, the system {s,...,s;}isa
local r-frame in E over U.

As the second example suggests, local frames are closely related to local trivial-
izations.

Proposition 2.3.12 Let (E, M, ) be a K-vector bundle of class C* with typical
fibre F and let U C M be open. By virtue of (2.3.5), every basis of F defines a
bijection between local trivializations x : 1~ (U) — U x F and local frames in E
over U. In particular,

1. there exists a local trivialization of E over U iff there exists a local frame in E
over U.
2. E is trivial iff there exists a global frame.

Proof Let {ey, ..., e} be a basis of F. That a local trivialization over U defines a
local frame over U has been shown in Example 2.3.11/2. Conversely, for a given
local frame {s1,...,s;} in E over U, expand x € Eyy as x = x's; (7w (x)) and define

a mapping x : 7 W U)—>UxF by x(x) := (m(x),x'e;), x € Ey. The mapping
X is a bijection and satisfies conditions 2a and 2b of Definition 2.2.1. Thus, to show
that x is a local trivialization, it remains to check that x and x —' are of class C*
(Exercise 2.3.4). Finally, assertions 1 and 2 are obvious. O
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Example 2.3.13

1. Let M be a C*¥-manifold of dimension n, let (U, «) be a local chart on M and
let (U, x) be the local trivialization of TM induced by this chart via (2.1.4).
The bijection between local frames over U and local trivializations over U, de-
fined by the standard basis of R” via (2.3.5), assigns to (U, x) the local frame
{or,....ox}.

2. Consider the smooth real vector bundle E given by the Mobius strip, cf. Ex-
ample 2.2.4. Since E has dimension 1, a global frame in E is just a nowhere
vanishing section. Since the base manifold is S!, sections of E correspond to
closed smooth curves in E winding around exactly once.? Since any such curve
must cross the zero section, £ does not admit a global frame and is hence not
globally trivial, cf. Proposition 2.3.12.

Remark 2.3.14 Using the description of vector bundles in terms of coverings and
transition functions as explained in Remark 2.2.12, one can show that, up to iso-
morphy over S', the Mabius strip and the product vector bundle S! x R are the only
real vector bundles of dimension 1 over S!.

The following proposition collects useful extension results. The proof is left to
the reader (Exercise 2.3.5).

Proposition 2.3.15 Ler (E, M, ) be a K-vector bundle of class C k and dimension
lLandletm e M.

1. Let {ey, ..., e} be a basis of E,,. There exists an open neighbourhood U of m
and a local frame {sy, ..., s;} over U such that si(m) =e¢;,i =1,...,1.

2. Let s1,...,8 be local sections over neighbourhoods Uy, ... U, of m such that
the system {si(m),...,s-(m)} is linearly independent in E,,. Then, there ex-
ists an open neighbourhood U C Uy N --- N U, of m such that the system
{siiu, ..., srju} is alocal r-frame in E over U.

3. Let {s1,...,s} be a local r-frame over a neighbourhood U of m. Then, there
exist local sections sy 1, ..., s over V.C U such that the system {s1}v, ..., Sr|v,
Sr41,---,51} is a local frame over V.

As an application, we briefly discuss manifolds whose tangent bundle is trivial.

Definition 2.3.16 A C*-manifold is called parallelizable if its tangent bundle is
trivial.

According to Proposition 2.3.12, a differentiable manifold M of dimension n is
parallelizable iff there exist n pointwise linearly independent vector fields on M.

3And with tangent vectors being nowhere parallel to the fibres, but this is not relevant for the
argument.
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Proposition 2.3.17 The spheres S', S3 and S” are parallelizable.

Proof Since S" is a level set of the smooth function f : R"*! — R, f(x) = |Ix|?,
we can use the natural representation of smooth vector fields on S” by smooth map-
pings X : 8" — R"*+! satisfying x- X (x) = 0, cf. Example 2.1.3 and Remark 2.3.4/2.
In the case of S! we identify R? with C via x = (x1, x2) = X := xq + ixp. Then,
X-y= Re(§§f) and vector fields on S! are represented by mappings X : S! c C — C
satisfying Re(zX (z)) = 0. This condition holds for example for X (z) := zi. Since
this function is nowhere vanishing, the corresponding vector field is nowhere van-
ishing and hence forms a frame in TS!. In the case of S3, we identify R* with the
quaternions H via x — X := x;1 + x2i + x3j + x4k. Then, x - y = Re(Xy), where
% now denotes quaternionic conjugation, and vector fields on S3 are represented
by mappings X : S* ¢ H — H satisfying Re(qX (q)) = 0. For [ = 1,2, 3, define
X;:H— H by

X1(q) =qi, X2(9) = qj, X3(q) =qk.

Then, Re(qX;(q)) =0 and Re(X;(q)X ;(q)) = §;;. Hence, the X; restrict to vector
fields on S and these vector fields are pointwise linearly independent. In the case
of S7, the proof is analogous, with quaternions replaced by octonions.* g

Remark 2.3.18

1. Since TS! is isomorphic to the product vector bundle S! x R, one can rephrase
Remark 2.3.14 as follows. Up to isomorphy over S', the tangent bundle of S'
and the Mdbius strip are the only real vector bundles of dimension 1 over S!.

2. The construction of pointwise linearly independent vector fields on the spheres
S!, 83 and S7 presented in the proof of Proposition 2.3.17 carries over to the
unit spheres of Ck, H* and Q , where O denotes the octonions. Thus, for r =
2,4,8 and k = 1,2, ... there exist r — 1 pointwise linearly independent vector
fields on the sphere S"¥~!. In case k = 1, these vector fields constitute a global
frame, whereas in the other cases they constitute just a global (r — 1)-frame.
While there may exist more than r — 1 pointwise linearly independent vector
fields, there does not exist a global frame for any odd-dimensional sphere except
for S!, S3 and S7. More precisely, Adams showed that the maximum number
of pointwise linearly independent vector fields on an odd-dimensional sphere is
given by the corresponding Radon-Hurwitz number [4]. On the other hand, on
an even-dimensional sphere, every vector field has a zero. This is known as the
Hairy Ball Theorem. For a proof, see for example [6]. As a consequence, S!, S3
and S’ are the only spheres which are parallelizable.

Exercises

2.3.1 Show that I"(E) carries the structure of a real vector space and of a bimodule
over the algebra C*° (M), cf. Remark 2.3.2/3.

4For a guide to octonions, see [29].



2.4  Vector Bundle Operations 71

2.3.2 Prove the statement of Remark 2.3.2/4.

2.3.3 Prove Proposition 2.3.7.

2.3.4 Complete the proof of Proposition 2.3.12 by showing that the mapping x
defined there as well as its inverse are of class CX.

2.3.5 Prove Proposition 2.3.15.

2.4 Vector Bundle Operations

Every operation with vector spaces defines an operation with vector bundles by
fibrewise application. Below, we will discuss the most important of these operations
in the form of examples. The construction uses the method of Remark 2.2.5. It will
be explained in some detail for the dual vector bundle and the direct sum of vector
bundles. The other operations are then given without further explanations.

Throughout this section, let E, E1 and E» be K-vector bundles over M of class
C*. Let, respectively, 7, 1 and 7, be their projections and /, /; and /> their di-
mensions. Choose, respectively, typical fibres F, Fi and F; and local trivializations
Uy, Xa)» WUy, x10) and (Uy, x24) Over an appropriate open covering {U, : « € A}
of M.

Example 2.4.1 (Dual vector bundle) Take the dual vector space E;, of each fibre
E,, of E and define the set E* as the disjoint union

E = | | E}.

meM

Let 7£° : E* — M be the natural projection to the index set. Define mappings
* *\ —1 * —1
Xa (TF) W) > Ua x F*. oy @) = (m, (Xam) ™ ©). Q241

where m = £ (¢) and Xl m . F*— E denotes the dual linear mapping of x4 :
E,, — F.The corresponding transition mappings are given by
E* Er\—1 —1 T
xg o () )y =(m, ((xa o x5 ) ppmyxr) 1)

withm e U, NUg and u € F *. They are of class C k, because so are the transition
mappings Xy © X 5 Uof E. Thus, according to Remark 2.2.5, if we equip E* with the
C*-structure induced by the family of mappings {x£ ", « € A}, then (E*, M, 7*")
is a K-vector bundle of class C*, called the dual vector bundle of E. It has the
same dimension as E, typical fibre F*, and {(Uy, xf*) : € A} is a system of local
trivializations.

Let {s1,...,s;} be a local frame in E over U C M. For m € U, let s(m)*],

...,s(m)* denote the elements of the basis of E;, which is dual to the basis
{si(m), ..., s;(m)} of E,,. Define local sections s* in E* by

s m):=sm)*, i=1,...,1. (2.4.2)
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Using Proposition 2.3.12 it is easy to see that these local sections are of class C*
and form a local frame of E*, called the dual local frame or coframe.
The pointwise evaluation mappings E}; x E, — K combine to a natural pairing

r(E}) x I'(Ey) — CH(U,K), (0,5) > (0, 5),

also denoted by o (s) or s(o). In terms of this pairing, sections of E* can be ex-
panded over U as

o =0(si)s* = (o, s)s™. (2.4.3)

Let E, and E};, be K-vector bundles of class C¥ over M, and M}, respectively, and
let @ : E, — E}, be a morphism projecting to a diffeomorphism ¢ : M, — M. For
every m € My, the linear mappings @y,-1(,,) : E, ,-14n) = Eb,m induce dual linear
mappings which combine to a fibre-preserving and fibrewise linear mapping

o' Ef > EfL (07, x) = (8 Dyoi(y (), (2.4.4)

where m € My, § € Ej, and x € E; ,-1(y),
the C*-diffeomorphism ¢~' (Exercise 2.4.1). It is called the dual morphism of @.
Via (2.3.3), the dual morphism induces a transport operator CD;F of sections. More
generally, by duality, every morphism @ : E, — E}, induces the following operation
on sections, called the pull-back,

which is a morphism projecting to

@*:I'(Ey) > I'(E}),  ((®*0)(m),x):=(00p(m), ®(x)), (24.5)

where m € M, and x € E, ;. Indeed, if @ projects to a diffeomorphism, then the
pull-back is given by

0o =dTooop=0l0, (2.4.6)

that is, it coincides with the transport operator of the dual morphism.>

Example 2.4.2 (Direct sum) Take the direct sum Ey ,, @ E» ,, of the fibres over each
point m € M and define

Ei®Ey= |_| Eim @ Eom.
meM

Let 7% : E; @ E; — M be the natural projection. Define mappings
-1
Xa (%) (Ua) = Ua x (F1 @ F2)
by

XS (x1, x2) = (m, (X1em (X1, X2a,m (x2))).

5Taking into account that & T projects to ¢!
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where m = w®((x1, x2)). By similar arguments as for the dual vector bundle, one

can check that (E| @ E», M, 7®) is a K-vector bundle of class C¥ and that the

mappings x provide a system of local trivializations. E; @ Ej is called the direct

sum of E; and E». It has dimension /1 + I, and typical fibre F; & F;. Next, note

that every local section s; of E; over U can be viewed as a local section of E1 @ E>

in an obvious way. Thus, given local frames {s; 1, ..., s} in E;, the collection
(1,155 81,0, 52,15 -5 82,1 )

constitutes a local frame in E| @ E>. Finally, let E;1, E4» and Ep1, Ep> be K-vector
bundles of class C¥ over M, and M, respectively, and let @; : E;; — Ep;, i = 1,2,
be morphisms projecting to the same mapping ¢ : M, — M},. The linear mappings
D : Egiym —> Ebpi p(m) induce linear mappings

P @ Pom : Eat,m ®© Eaz.m —> Ebt,om) D Eb2,0m),
which combine to a morphism projecting to ¢,
P1® P2 Eq1 ® Eqx —> Ep1 @ Epa, (P1® P2y :=P1m ® Pom, (2.4.7)

where m € M,,. It is called the direct sum of @1 and @;.
Example 2.4.3 (Tensor product) Define

Ei1QE,= |_| Eim ® Eym,
meM

denote the canonical projection by 7® : Ey ® E; — M and take the system of in-
duced local trivializations X(? c(r®) (U, > U, x (F; ® F») defined by

x&(x1 ® x2) = (M, X1am (X1) ® X20.m (x2)),

where m = 7®(x] ® x2). Then, (E; ® E», M, ®) is a C¥-vector bundle, called the
tensor product of E and Ej. Its typical fibre is F; ® F> and its dimension is /1/5.
Every pair of local sections s; of E; over U, i = 1, 2, defines a local section 51 & 57
of E1 ® E; by

(51 ® s2)(m) :=s51(m) @ s2(m), meU, (2.4.8)

which is called the tensor product of sy and s2. If {s; 1, ..., s} are local frames in
E;,i=1,2,then

{51, ®s2,j:i=1,....0,j=1,...,12}

is a local frame in E; ® E;. For K-vector bundle morphisms @; : E;j — Ep;,
Jj = 1,2, projecting to the same mapping ¢ : M, — My, the tensor product is the
morphism @1 @ @3 : E;1 ® E o — Ep1 ® Epp defined by

(D1 ® D) (x1 ®x2) := Py 1 (x1) @ P2 (x2). (2.4.9)
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It projects to ¢ as well.
Example 2.4.4 (Tensor bundles) The tensor bundle of E of type (p, ¢) is defined to
be

TYE:=E*® - QE*® E® - ®F.

Its fibres are the p-fold covariant and g-fold contravariant tensor products 11’(,1, E,.
Hence, the dimension is /719 and the elements of 'JI",I, E,, are linear combinations of
£1®-®8,0x1® - Qxy, where x; € E,, and §; € E};,. The projection is denoted
by 7% : THE — M and the typical fibre is T% F. We will view elements of T% E,,
as (p + g)-linear mappings

p q
u:EpX - XEp x E} x -+« XEr — R,

thus using the natural isomorphism which assigns 0 {1 ® --- ® &, @ x1 ® - - ® x4
the mapping
UYLy oo Ypa s e g) = E1 (V1) -+ - Ep(yp)n1(x1) - - - g (xg).

Then, the tensor product of u; € ’]I‘?,‘;. E,,i=1,2,1s given by

uj ®I/{2(.X1, . '-1xp1+p21 ‘i:ls . ~-s§q1+qz)
=up(xy,... 7xp|,§1y .- -squ)MZ(xp1+lv ce v-xp1+p2»gq1+ly »Sq|+q2)
(2.4.10)

forall x; € E,, and §; € E;;. Accordingly, local sections 7 of T?,E over U can be
viewed as mappings

t:T(Ey)x - xT(Ey) x T(Ef)x -1 x T (Ef) - C*(U) 2.4.11)

which are C¥(U)-linear in every argument. Every pair of local sections z; of T?}i E,

i = 1,2, defines a local section 7 ® 7 in T‘[’}liz,zzE by
(11 @ )(m) :=11(M) ® 12(M).

On the level of the mappings (2.4.11), 71 ® 17 is given by (2.4.10), with u; replaced
by 7; and x; and £; replaced by local sections in E and E*, respectively. In partic-
ular, if {s1, ..., s;} is a local frame in E over U, then

{s*il ®...®s*i”®s’jl ®®S/q Iil,...,ip,jl,...,jq:1,.--,1}
is a local frame in T% E. Every T € I'(T} E) can be decomposed over U as

="M e s ®s; ® @),

i1...0p
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with
J ) .
tllll iy “(m) = t(m)(s,-1 (m),...,si,(m),s™1(m), ... s" (m)) (2.4.12)

(Exercise 2.4.2). Finally, according to (2.4.9), every isomorphism @ : E;, — Ej, of
K-vector bundles of class C¥ induces isomorphisms

®®:TYE, — T Ey, % = (¢—I)T® e @(q)—l)T QPR -1. v,
(2.4.13)
with the same projection. On the level of (p + ¢)-linear mappings, @® takes the
form

(@%u)(x1, ... xp, 61,00 &)
=u(®'(x1), ..., @7 (xp), DTN, ..., DT (&) (2.4.14)

for all u € T?,Ea’m, Xi € Ep ooy and §; € E; o(m)" The corresponding transport
operators @& satisfy

P2(1 @) = (221) ® (¢212) (2.4.15)
forall 7; € I'(T}, E,), and

(QD?TZ)(S],...,SP,O‘1,...,O’q)

=1(D; " s1,..., P sy, PFOy, ..., DFay) 0! (2.4.16)

forall T € F(T‘,’,Ea), si € I'(Ep) and 0; € F(EZ). Here, ¢ : M, — M), is the pro-
jection of @.

Example 2.4.5 (Exterior powers) The r-fold exterior power /\" E* has the vector
spaces \" Ef of antisymmetric r-linear forms on E,, as its fibres. Hence, the di-
mension is () In particular, \" E* = M x K, \' E* = E* and \" E* = M x {0}
(the zero-dimensional vector bundle over M) for r > [. The projection is denoted
by #* : \" E* — M and the typical fibre is /\" F*. The exterior product of
nie /N E} is defined to be the (r1 + r7)-linear form on E,, given by6

(m AMX1s s Xryry)
1 .
= Z Sign(T) N1 (X (1)s - > Xa ()M X (r4+1)5 - -+ Xy 4+r2))
rilr!
7T€Sr1+r2

(2.4.17)

®Beware that there exist different conventions concerning the choice of the factor in For-
mula (2.4.17).
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for all x; € E,,. A local section o in /\r E* over U can be viewed as an antisym-
metric mapping

o T(Ey)x --- xT(Ey) — CKU) (2.4.18)
which is C*(U)-linear in every argument. Every pair of local sections o; of N E*,
i = 1,2, defines a local section oy A 02 of A2 E* by

(o1 ANop)(m) :=01(m) Aoa(m), mel. (2.4.19)

If we view o1 A 07 as a mapping (2.4.18), it is given by (2.4.17) with &; replaced by
o; and x; replaced by local sections in E. If {51, ..., s;} is a local frame in E, then

[s*' A ATl <y << <1 (2.4.20)
is a local frame in /\" E*. Every o € I'(/\" E*) can be decomposed over U as

o= Y i A AT (2.4.21)

i <--<iy

with o;, _;, (m) = o (m)(s;; (m), ..., s;, (m)) (Exercise 2.4.2). Next, every K-vector
bundle morphism @ : E, — E}, projecting to a diffeomorphism ¢ : M, — M) in-
duces a morphism @1 : A" E} — A" E} projecting to ¢!, defined by

(@0 (D) (X1, ..., xp) 1= (Pt (my (X1, - s Pyt () (X1)). (2.4.22)

This generalizes Formula (2.4.4). Via (2.3.3), @™ induces a transport operator
(@), of sections. Moreover, the pull-back operation (2.4.5) generalizes in an ob-
vious way to a mapping ®* : I'(\" E;) — I'(/\" E}), given by

((cb*a)(m))(xl, ey Xp) = (0 o <p(m))(¢(x1), R @(x,)). (2.4.23)
Again, if @ projects to a diffeomorphism, then ®@* = (®T"),.

Example 2.4.6 (Exterior algebra bundle) By composing the operations of exterior
power and direct sum one obtains the exterior algebra bundle A E* = @f’:O N E*,
which has dimension 2. We retain the notations 7" : /\ E — M for the projection
and T : A\ E} — A\ E} for the morphism induced by a morphism @ : E, — Ej.
The local frame in A E* associated with a local frame {s1, ..., s;} in E consists of
the constant mapping U — K given by m — 1 and the local sections (2.4.20) with
r=1,...,1. In addition to being a vector bundle, /\ E* is an associative K-algebra
bundle’ of class CX over M. The exterior product of local sections (2.4.19) induces

7In the definition of vector bundle, replace “K-vector space” by “K-algebra” and “linear mapping”
by “algebra homomorphism”.
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a bilinear mapping

r(Ae)r(Ae)-r( R )

and hence defines on " (/\ E*) the structure of an associative K-algebra. By (2.4.17)
and (2.4.23), the pull-back is a homomorphism with respect to this algebra structure,

D*(01 Aoy) = (D%01) A (D702), 01,00 € F(/\ E;). (2.4.24)

Remark 2.4.7 (Homomorphism and endomorphism bundles) Analogously, one can
construct the homomorphism bundle Hom(E1, E>) of E| and E,, which has the
fibres Hom(E1 ,,, E2,;), and the endomorphism bundle End(E) of E, which has
the fibres End(E,,). For every m, the vector space Hom(E1 j,, E2 ) is naturally
isomorphic to the vector space E} ,, ® E,, and all these isomorphisms combine
to a natural isomorphism of Hom(E 1, E2) with the tensor product £} *® E, (Exer-
cise 2.4.4). Therefore, we may always identify Hom(E, E;) with EY ® E;. Accord-
ingly, we may identify End(E) with the tensor bundle E* @ E = T}E of E. Then,
since vertical Ck-morphisms E1 — E; correspond to C*-sections of Hom(E1, E,),
the vector space of these morphisms is naturally isomorphic to I'(E} ® E3). Ac-
cordingly, since vertical endomorphisms of E correspond to sections of End(E), the
vector space of these endomorphisms is naturally isomorphic to I” (Ti E). The proof
is left to the reader (Exercise 2.4.5).

Exercises

2.4.1 Show that the mapping @ T defined by (2.4.4) is a morphism of vector bundles.

2.4.2 Verify Formulae (2.4.12) and (2.4.21).

243 Let (E, M, ) be a smooth K-vector bundle. Consider the tangent mapping
7' :TE—TM.

(a) Show that (TE, TM, rn’) is a K-vector bundle by determining the linear
structure of the fibres and constructing a system of local trivializations.

(b) Show that in the cases E =TM and E = T*M, local charts on M induce
local trivializations of (TE, TM, r’).

(¢c) If E=TM,then (TE, TM, ') has the same base manifold as the tangent
bundle of E. Are these two vector bundles isomorphic?

2.4.4 Let E, E; and E> be K-vector bundles over M of class C¥. Construct the ho-
momorphism bundle Hom(E, E>) and the endomorphism bundle End(E) as
explained in Remark 2.4.7. Show that Hom(E, E») and End(E) are naturally
isomorphic to E ]" ® E> and T% E, respectively.

2.4.5 Show that the natural isomorphisms of Exercise 2.4.4 induce natural iso-
morphisms between the vector space of vertical CX-morphisms E; — E,
and I'(ET ® E3), as well as between the vector space of vertical ck-
endomorphisms of £ and F(’]I‘%E), cf. Remark 2.4.7.
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2.4.6 The image of the identical mapping idg under the isomorphism from the vec-
tor space of C¥-endomorphisms of E to I" (TiE ) of Exercise 2.4.5 is called
the Kronecker tensor field of E and is denoted by §. Determine the coefficient
functions 8% of 8 with respect to the local frame in ’]I‘} E induced by a local
frame in E.

2.4.7 Show that if E is one-dimensional, the tensor bundles ’IF%E s ']TgE and ’IFiE
are trivial.

2.5 Tensor Bundles and Tensor Fields

Let M be a C*¥-manifold of dimension n. By tensor bundles over M one means the
various vector bundles arising from the tangent bundle TM by applying the vector
bundle operations of Sect. 2.4. These are

(a) the cotangent bundle T*M := (TM)*. Its fibres are the cotangent spaces® T M
introduced in Sect. 1.4. (Local) sections of T* M are called (local) covector fields
or (local) differential 1-forms.

(b) The bundle of alternating r-vectors /\r TM, the bundle of alternating r-forms
/\" T*M and the bundles of exterior algebras

/\TM:é/r\TM, /\T*M:é/r\T*M.
r=0 r=0

Their (local) sections are called (local) multivector fields and (local) differential
forms, respectively. The number r is called the degree. We denote

X (M) = F</r\TM>, Q" (M) = F(/\T*M), Q¥ (M) = F(/\T*M)

and, as before, X(M) = X' (M). One has X°(M) = 2°(M) = Ck(M).

(¢) The tensor bundles T M := T} (TM), p,q =0, 1,2,.... Their (local) sections
are called (local) tensor fields of type (p, ¢). The algebraic operations of sym-
metrization, antisymmetrization and contraction of tensors over a vector space
carry over to tensor fields in an obvious way.

Since TM is of class C¥~1, so are all the tensor bundles over M. Recall from Ex-
ample 2.4.1 that pointwise evaluation T}, M x T,, M — R defines a natural pairing

Q' M) x x(M) — (M), (o, X) — (o, X), (2.5.1)

which depending on the context can also be written as «(X) or X («).

8Like for the tangent bundle we will stick to this notation (instead of writing (T*M),,).
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Example 2.5.1 Let f: U — R, with U C M open, be a real-valued local ck-
function. Then, the differentials (d f),, of f at m € U, defined by (1.4.20), combine
to a local C*¥~!-covector field d f on U, called the differential of f.

Now, let (U, k) be a local chart on M. The differentials of the coordinate func-
tions «’ form a local frame {d«!, ..., d«"} in T*M which is dual to {31, ..., 9,)}, cf.
Examples 2.3.11/1 and 2.4.1 and Formula (1.4.21). The induced local frame in the
tensor bundle T’,’,M consists of the local sections

@ - @Ak ®I; @ ®Dj, 0 dlse..rip jlieaijg=1,....1,

see Example 2.4.4. Using these local frames, a tensor field 7' of type (p, g) can be
represented locally as follows:

TFU — (TK){ll.‘:..ij; dic R ® dictr ® ajl R---® ajq , (2.5.2)
where, according to (2.4.12), pointwise we have

(Tx)jl~-~jq _ T(ail, ey 0

i1...ip

e dic/ L i) (2.5.3)
Remark 2.5.2 'We determine the transformation laws for the local frames and for the
corresponding coefficient functions of tensor fields under a change of local chart.
Thus, let (V, p) be another local chart on M. The following formulae hold over
U NV.From (1.4.17) and (1.4.23) we read off

3 = A{ajk., dp’ = A%dic

where

As- = [(,oo/c_l)/OK];, Al] = [("010_1)/0'0];’

and an according formula for the induced local frames in 'JI“,’,M . Then, (2.5.3) im-
plies
J1eJi “k ~k j Jq I..1
(T”) dg — Al.]’ "'Ai:Alll --~Alq’ (T") Lt 2.5.4)

i1...dp ky..kp

To pass to coefficient functions which depend on the coordinates, denote the ele-
ments of « (U N V) by x and the elements of p(U N V) by y and write

Y i=p ok x), Xy i=kop (y).
Then, from (2.5.4) we read off

(19 oyt byt oy
ayil ayi,, 3)611 ax[q

i1...ip

1., _
(T")kllmlép ox L. (2.5.5)

op
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This formula is well-known from classical tensor analysis. The argument in (2.5.5)
SXZ and (T” ),Jll qu o p~! have to be evaluated at y(x),

ory, in which case -7 an nd (T")f,cl 1o k, © «~! have to be evaluated at x(y).

can be either x, in which case

Next, let M and N be C*-manifolds and let ¢ : M — N be a C¥-mapping. Ac-
cording to Proposition 2.2.9, ¢’ : TM — TN is a vector bundle morphism of class
C*=1 projecting to ¢. The corresponding pull-back operation (2.4.23) applies to dif-
ferential r-forms of class CK~!. It will be denoted by ¢* : 2" (N) - 2"(M). Ac-
cording to Examples 2.4.1-2.4.5, if ¢ is a diffeomorphism, ¢’ induces isomorphisms
of tensor bundles. The corresponding transport operator (2.3.3) will be denoted by
¢ in case the induced isomorphism projects to ¢ and by ¢* in case it projects to
@~ 1. Then, for T € I" (T} M), we have

0T = ((go’)®)*T = ((p’)® oTogp !, (2.5.6)

with (¢")® given by (2.4.13), and Formula (2.4.16) takes the form

@)X, Xpotls oy )

= T(go*_le, e, <p*_1Xp, o*ai, ..., go*(xq) op! 2.5.7)
with X; € ¥(M) and «; € 2 (M). Moreover, Eq. (2.4.15) reads
0x(T1 @ T2) = (¢ T1) @ (0 T2). (2.5.8)

Recall from Example 2.4.5 that for differential forms, the transport operation ¢*
coincides with the pull-back under ¢.

Remark 2.5.3

1. LetT eI’ (T%M ) and let ¢ : M — N be a diffeomorphism. Given local charts
(U, k) and (V, p) on M and N, respectively, the local formula for the transport
(2.5.6) of T is given by (2.5.4), with T replaced by ¢, T on the left hand side and
by 7 o ¢! on the right hand side, and with A and A given by

Al =[(pogor) oxog . A =[(kow T op ) 0n]

The proof of this fact is left to the reader (Exercise 2.5.3).

2. Let (U, k) be a local chart on M. We compare the corresponding local represen-
tative x4 (T}y) of a tensor field T € I (T?,M ) with the local representative of the
mapping T : M — T% M with respect to the induced chart ((x®)~!(U), «®) on
T% M, given by

«® o Ty ok 1ik(U) = k(U) x ’]T?,R”.
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Proofs are left to the reader (Exercise 2.5.4). Since

0 . )
K50 = T *dxt =dict, (2.5.9)
we have
keTo) = (T4, 770 o dx" @ @ - (2.5.10)
On the other hand,

(k®oTyo K_l)(X) = (x, ((T")'l.’]':.'_'iqu o lc_l(x))e*il ®---®ej,),
where, as before, e; denote the elements of the standard basis of R and e* the
elements of the dual basis. The relation to «,(T}y ) is as follows. The natural iden-
tifications of the tangent spaces Tx(k (U)) with R"” and of the cotangent spaces
Tk (U)) with R™* induce a natural identification of tensor fields on « (U) with
C*~!-mappings «(U) — T‘},R”. Since the latter identifies the elements of the
global frames {%} in T(«(U)) and {dx’} in T*(k (U)) with the constant map-
pings x — e; and X — e*/ respectively, it identifies ks (Thy) with k® o Ty okl
Note that for M =R" and x =id, (2.5.9) yields 3; = 5.

Exercises

2.5.1 Let M1 =Ry x S!, with S! realized as the unit sphere in R2, and M, =
R \ {0}. Consider the mapping ¢ : My — Mj, ¢(r, (a, b)) := (ra,rb). Letr
denote the standard coordinate on R and let ¢ denote the angle coordinate
of S!. Determine the coefficient functions of ga*(,f—r and w*% with respect to
the global frame {;, %} in T(R2\ {0}).

252 Let M =Ry x S2, with S? realized as the unit sphere in R3, and M, =
RR3\ {0}. Consider the mapping ¢ : My — Ma, ¢(r, (a,b,c)) = (ra,rb,rc).
Let r denote the natural coordinate on R and let the angle coordinates ¥, ¢
on S? be defined by a = cos¢ sint}, b =sin¢ sin ¥, ¢ = cos . Determine the
coefficient functions of ¢, %, 78 % and ¢, % with respect to the global frame
(3r+ 3y 5} in TR\ {0D).

2.5.3 Prove the transformation formula for the transport of tensor fields under dif-

feomorphisms given in Remark 2.5.3/1.
2.5.4 Prove the assertions of Remark 2.5.3/2.

2.6 Induced Bundles

Let (E, N, ) be a K-vector bundle of class C k let M be a C¥-manifold and let
@ € CK(M, N). Using ¢, one can construct from E a vector bundle ¢* E over M by
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attaching to m € M the fibre E ;) as follows. Define
©*E := {(m,x) EM x E :@(m) =7r(x)}

and consider the surjective mapping 7% : ¢*E — M defined by 7% (m, x) := m.
The fibres are

((p*E)m = (n‘”*)il(m) = {m} x Ep(m)-

They inherit a natural K-vector space structure from E.

Proposition 2.6.1 Under the above assumptions, o*E admits a C*-structure such
that it is an embedded submanifold of M x E. Then,

1. (¢*E, M, 7'[‘/’*) is a K-vector bundle of class C¥,
2. the natural projection M x E — E restricts to a C*-morphism ¢*E — E cov-

ering ¢,
3. every local section s of E induces a local section of ¢* E defined by

(¢*s)(m) := (m,s 0 p(m)).

Proof We apply Proposition 1.7.3 in the formulation of Remark 1.7.4. Choose a
typical fibre F and a system of local trivializations {(Uy, x4) : @ € A} for E. For
every a € A, consider the open subset V, := ¢~ (Uy) of M and the mapping

Yo : Vo X F—>MXE, Yo(m,u) = (m,xa_l(gp(m),u)).

Since ¥, is obtained by composing the diffeomorphism ! with the natural in-
clusion mapping of the graph of ¢y, : Vo — Uy, by Example 1.6.12/2, it is a ck-
embedding. Hence, the image 1 (V,, X F) inherits a C*_structure from V, x F and
with respect to this structure it is an embedded C¥-submanifold of M x E. Since
the image is p*E N (V, x 7~ 1(U,)) and since the V,, x 7~ 1(U,) are open subsets
of M x E covering ¢*E, we conclude that ¢* E is an embedded submanifold. It
remains to prove assertion 1; assertions 2 and 3 are then obvious. Since 79" is the
restriction of the natural projection M x E — M to the C*-submanifold ¢*E, it
is of class C*. Since, by construction, the v, restrict to ck -diffeomorphisms from
Vo x F to 9*EN (Vy x 171 Uy)) = 7)1 (Vy), by inverting them we obtain
C*-diffeomorphisms

Xo(f* : (n‘p*)_l(Va) — Vy x F, X&/’*(m,x) = (m, Xa,(p(m)(x))~ (2.6.1)

The latter satisfy conditions 2a and 2b of Definition 2.2.1. Thus, (¢*E, M, n‘p*) is
a K-vector bundle of class C*. O

Definition 2.6.2 (Induced vector bundle) The K-vector bundle (¢*E, M, %" is
called the vector bundle induced from E by ¢ or the pull-back of E by ¢. For a
local section s of E, the local section ¢*s of ¢*E is said to be induced from s by ¢
or to be the pull-back of s by ¢.
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Another common notation for the induced vector bundle is p*E =M xy E.

Remark 2.6.3

1.

From the proof of Proposition 2.6.1 we note that via (2.6.1), every local triv-
ialization (U, x) of E induces a local trivialization (¢! (U), x¥") of ¢*E.
In particular, the pull-back of a trivial vector bundle is trivial. Moreover, if
Pap : Uy N Ug — GL(F) are the transition functions of a system of local trivi-
alizations of E, then ¢*pyp : <p_1(Ua) N (p_l(Uﬂ) — GL(F) are the transition
functions of the induced system of local trivializations of ¢*E.

. Let (E;, M;, i), i = 1,2, be K-vector bundles of class Ckandlet®: E\ — E»

be a morphism with projection ¢ : M1 — M;. @ naturally decomposes as

E 2% o' 2% Ey, (2.6.2)

where @yer is given by @yer(x) = (m1(x), D(x)), x € Eq, and Py denotes the
induced vector bundle morphism of Proposition 2.6.1/2. One can check that @y,
is a vertical morphism, with differentiability of class C* following from Propo-
sition 1.6.10 and the fact that ¢*FE is an embedded submanifold of M x E.
Using this decomposition, one can derive the following characterization of iso-
morphisms in terms of their projections and fibre mappings (Exercise 2.6.1): a
morphism is an isomorphism iff its projection is a diffeomorphism and its fibre
mappings are bijective.

Example 2.6.4

1.

2.

If ¢ : M — N is constant with ¢(m) = p, then ¢*E coincides with the product
vector bundle M x E),.

If M C N is an open subset and j : M — N is the natural inclusion mapping,
Jj*E can be identified with the restriction E}7, see Example 2.2.3/3.

. Let M = N =S! and let E be the Mobius strip of Example 2.2.4. Realize S'

as the unit circle in C and consider the n-fold covering ¢, : S! — S!, ¢, (z) =
Z". Since ¢} E is a differentiable real vector bundle over S! of dimension 1,
according to Remark 2.3.14, it must be isomorphic to either E or the product
vector bundle S! x R. Indeed, one finds (Exercise 2.6.2)

E | nodd,

*p o
gO”E_{SlxRMeven.

. Let E; and E; be K-vector bundles of class C¥ over M, let E; x E, denote the

product vector bundle over M x M, see Exercise 2.2.7,andlet A: M — M x M
denote the diagonal mapping, A(m) = (m,m). The pull-back A*(E; x E») is
naturally isomorphic to the direct sum E; @ E» (Exercise 2.6.3).

. If E is a K-vector bundle of class C¥ over N and (M, ¢) is a C¥-submanifold of

N, the induced vector bundle ¢* E is referred to as the restriction of E to M and
is usually denoted by E . This applies in particular to E = TN, where ¢*TN
is a real vector bundle over M of class C¥~! and dimension dim N .
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Exercises

2.6.1 Use the natural decomposition (2.6.2) of vector bundle morphisms to show
that a morphism is an isomorphism iff its projection is a diffeomorphism and
the fibre mappings are bijective, cf. Remark 2.6.3/2.

2.6.2 Prove the statement of Example 2.6.4/3 about the pull-back of the Mobius
strip by means of a covering of S!.

2.6.3 Show that A*(E| x E3) = E| & E», see Example 2.6.4/4.

2.7 Subbundles and Quotient Bundles

Definition 2.7.1 (Vector subbundle) Let (E;, M;, m;),i = 1,2, be K-vector bundles
of class C¥k andlet @ : E; — E; be a morphism. The pair (E1, @) is called a sub-
bundle, an initial subbundle or an embedded subbundle of E; if it is, respectively, a
submanifold, an initial submanifold or an embedded submanifold. If M| = My =M
and @ is vertical, (E|, @) is called a vertical subbundle or a subbundle over M.

At the very beginning, we observe that Propositions 1.6.10 and 1.6.14 remain true
if the term submanifold is replaced by subbundle and C*-mapping by morphism.
The following two specific types of subbundles are the building blocks for arbitrary
subbundles.

Example 2.7.2 (Vertical subbundle) If E| and E, are K-vector bundles of class C¥
over M and @ : E; — E3 is an injective vertical morphism, then (Eq, @) is a ver-
tical subbundle of E;. Vertical subbundles are embedded. To see this, it suffices to
show that (E, @) is an embedded submanifold of E,. Let /; denote the dimensions
of E;. Necessarily, [] <I,. Let x € E; and m := m(x). Choose a local frame in
E; at m. By injectivity, the image under @ is a local /;-frame in E;. According to
Proposition 2.3.15/3, the latter can be complemented, over a possibly smaller do-
main U, to a local frame in E, at m. The local representative of @ with respect to
the local trivializations associated with these local frames in £ and E; is given by

UxK'— U x K=, (m, x) = (m, (x,0)).

Hence, it is an embedding. Since nl_l(U) = <1>_1(7t2_1(U)), this implies that the

restriction @ o1 (U)) is an embedding. Since 7, YW)isan open neighbourhood
2

of @ (x) and x was arbitrary, Remark 1.6.13/3 yields the assertion.

Example 2.7.3 (Restriction of the base manifold) Let (E, N, ) be a K-vector bun-
dle of class C¥ and let (M, ¢) be a C¥-submanifold of N. Let ® : ¢*E — E de-
note the induced vector bundle morphism of Proposition 2.6.1/2. Recall from Ex-
ample 2.6.4/5 that ¢* E is referred to as the restriction of E to M and is alternatively
denoted by E} . We show that (¢*E, @) is a C*-subbundle of E. If (M, ¢) is initial
or embedded, so is (¢* E, @). Indeed, the local representatives of @ with respect to
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a system of local trivializations {(Uy, xo) : @ € A} of E and the induced system of
local trivializations of ¢*E are given by

N
Xa © Doty (-1 (1)) © (ng ) ) Y, x F— U, x F,

(m,u) — (p(m), u).

First, this implies that @ is an immersion. Second, since x, and X‘f are diffeomor-
phisms and since

@) o W) =7 (7 (Ua)).

this implies that the submanifolds (@'~ (Uy)), @ g-1(z-1(1,y) inherit the
property of being initial or embedded from (M, ¢). Then, Remark 1.6.13/3 yields
the assertion.

The following proposition states criteria for a morphism to define a subbundle.

Proposition 2.7.4 Let (E;, M;, i), i = 1,2, be K-vector bundles of class Ck, ler
@ : E1 — E3 be a morphism and let ¢ : M\ — M> be the projection. The following
statements are equivalent.

1. (E1, @) is, respectively, a subbundle, initial subbundle or embedded subbundle
of Es.

2. (My, @) is, respectively, a submanifold, initial submanifold or embedded sub-
manifold of M, and the fibre mappings @y, : E1 m — E2 o(m) are injective for all
me M.

3. In the decomposition (2.6.2), (E1, ®@ver) is a vertical subbundle of ¢*E; and
(¢*Ey, ®Pnor) is, respectively, a subbundle, initial subbundle or embedded sub-
bundle of E,.

Item 3 gives a precise meaning to the statement made above that vertical subbun-
dles (Example 2.7.2) and restrictions of the base manifold (Example 2.7.3) provide
the building blocks for arbitrary subbundles.

Proof 1 = 2: The fibre mappings &,,, are obviously injective. Since they are linear,
one has the commutative diagram

Posp, 1
M —— Ep

NE

M;
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where sp ; denotes the zero sections of E;. According to Proposition 2.3.5, so 1 and
50,2 are embeddings. Hence, the assertion follows by applying Proposition 1.6.14.
(We encourage the reader to work out the argument for each case.)

2 = 3: Since the mappings @,, are injective, Py, is injective, hence the asser-
tion on (E7, @ver) holds due to Example 2.7.2. The assertion on (¢*E», ®por) Was
proved in Example 2.7.3.

3 = 1: Since vertical subbundles are embedded, this follows from Proposi-
tion 1.6.14/1. g

In the following proposition we give criteria for a family of fibre subspaces of a
vector bundle to define a vertical subbundle. The proof is left to the reader (Exer-
cise 2.7.1).

Proposition 2.7.5 (Families of fibre subspaces) Let (E>, M, ) be a K-vector bun-
dle of class C*. For every m € M, let Eim C Eam be a linear subspace. Define
E1:=U,epm E1,m- The following statements are equivalent.

1. Ey admits a C*-structure such that it is a vertical subbundle of E; of dimen-
sionr.

2. There exists a covering of M by local r-frames in E> which span E.

3. There exists a covering of M by local frames in E, whose first r elements
span E1.

4. There exists a system of local trivializations {(Uy, Xo) : @ € A} of Ep and a
subspace F1 of dimension r of the typical fibre F, such that the restrictions of
the x, to Eq take values in Uy x Fy.

Example 2.7.6 (Regular distribution) Let M be a C*-manifold. A vertical subbun-
dle (D, @) of TM is called a regular distribution (in the geometrical sense) on M.
According to Proposition 2.7.5, a family of r-dimensional subspaces D,, C T,, M,
m € M, defines a distribution iff for every my € M there exists an open neighbour-
hood U and pointwise linearly independent local vector fields Xi,..., X, on U
such that Dy, is spanned by X ,,, ..., X, m for all m € U. There is a more general
notion of distribution on M which will be defined and studied in Sect. 3.5.

Example 2.7.7 (Kernel and image) Let E; be K-vector bundles over M of class C k
and dimension /;, i = 1,2, and let @: E; — E» be a vertical morphism of constant
rank r. Define the image and the kernel of @ to be

im® = U im®,,, ker® = U ker @,,,

meM meM

respectively. We show that im @ is a vertical subbundle of E; of dimension r and
that ker @ is a vertical subbundle of E; of dimension [; — r.

Let mg € M. Choose a basis {ey, ..., e} of Ey ,, such that e, 11, ..., e, span
ker @,,,,. Extend this basis to a local frame {s1, ..., s, } in Ey, cf. Proposition 2.3.15.
By construction, the vectors @, (e1), ..., Py, (e,) form a basis of the subspace
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im @, C E2 . In particular, the local sections @ osy, ..., @ os, of E are linearly
independent at mg so that, by possibly shrinking the domain of definition of the s;,
we may assume that they form a local r-frame in E»>. Since @ has rank r, this local
r-frame spans im @,,, for all m belonging to the domain of definition. First, in view
of Proposition 2.7.5, this yields the assertion for im@. Second, this implies that there
exist local C*-functions ajj,i=r+1,...,01, j=1,...,r,on M such that

,
q§os,~:2a,~j¢osj, r+1<i<lI.
Jj=1

Then the local sections 5,11, ..., 5, given by

.
5= _Zaijsja r+1<i=<l,
j=1

form alocal (/1 —r)-frame in E spanning ker @,,. Applying Proposition 2.7.5 once
again, we obtain the assertion for ker @.

Example 2.7.8 (Annihilator) Let V be a vector space. The annihilator of a subspace
W C V is the subspace

wo .= {veV*:vrwzo}

of the dual vector space V*. Let E; be a K-vector bundle over M of class C* and
dimension /; and let (E, @) be a vertical subbundle of dimension /;. Then,

EY:= | (@E1m)

meM

is a vertical subbundle of dimension I, — I; of the dual vector bundle EZ*, called
the annihilator of E| in E>. In view of Proposition 2.7.5/3, this follows from the
obvious fact that for every local frame in E, whose first /; elements span (E;, @),
the last [ — [, elements of the corresponding dual local frame in EJ span E (1). The

annihilator of a general vector subbundle (£, @) is defined to be (E ?, (DPhor) I E?),

where E ? is the annihilator of the vertical subbundle (E|, ®@yer) of ¢*E; and ¢ is
the projection of @. It has the same base manifold as Ej.

Remark 2.7.9

1. For every vertical subbundle (E1, @) of E; there exists a complement in E», that
is, a vertical subbundle (El, <Z~>) of Ey such that E) = E| & El. The proof is in
two steps.

(a) Show that for every K-vector bundle (E, M, m) of class Ck there exists a
C*-function h : E ® E — K such that h,, := hg, g, is a scalar product on
E,, for all m € M (Exercise 2.7.2).°

9(E, h) is called a Euclidean vector bundle if K = R and a Hermitian vector bundle if K = C.
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(b) Show that the family of h,-orthogonal complements of the subspaces
E{,m C Ey p defines a vertical subbundle of E; (Exercise 2.7.3).

2. Let M be a compact smooth manifold. The statement of 1 provides part of the
proof that for every smooth vector bundle E over M there exists a smooth vec-
tor bundle E over M such that E @ E is trivial. For the remaining part, see
for example [125, Prop. 1.4].'° This is known as the cancellation property and
is an important ingredient in what is called the K-theory of M. Let us have a
glimpse at the reduced version of the latter. Two smooth K-vector bundles E and
E over M are said to be stably equivalent if £ & (M x K”) is isomorphic to
E & (M x K*) for some r, s. The set of stable equivalence classes is an Abelian
semigroup with respect to the operation of direct sum, where the unit element is
given by the class of trivial bundles. Now, the cancellation property yields that
every element of this semigroup has an inverse, hence the semigroup is in fact
a group, called the reduced real (for K = R) or complex (for K = C) K-group
of M. Together with the operation of tensor product, it is an Abelian ring.

Next, we discuss quotient vector bundles. Let (E», M, ;) be a K-vector bundle
of class C¥ and let (E1, @) be a vertical subbundle of E of rank r with projec-
tion 1. Since vertical subbundles are embedded, we may assume that E; C E>
and @ is the natural inclusion mapping. E1 ,, is a vector subspace of E3 ,, for all
m € M, and we can form the quotient spaces E3 ,,/E1 . Let

Ey/Ev:= | | Exm/Eim
meM

and let 7 : E;/E1 — M denote the natural projection to the index set. By construc-
tion, the fibres 7 ! (m) are vector spaces. According to Proposition 2.7.5, there ex-
ists a family of local trivializations {(Uy, x24) : @ € A} of E; and an r-dimensional
subspace F7 of the typical fibre F; of E7 such that the restrictions of x4 to E7 take
values in U, x F. For any such y»,, we define a mapping

Xa :n_l(Ua) — Uy x P2/ F, Xa([x]) = (mv [le)t,m(x)])5

where m = my(x). To check differentiability of the corresponding transition map-
pings, choose a complement Fl of F1 in F, and let A : F/F; — F, denote the
linear mapping which assigns to each class its unique representative in F;. More-
over, let pr: F, — F/F; be the natural projection. Since xg o x, ! decomposes
as

Xp o Xo ' =(dx pr)o (xap 0 X3, ) © (id x 1),

it is of class C¥. Then, Remark 2.2.5 yields that the family {(Uy, xo) : @ € A} de-
fines a CK-structure on E>/Eq such that (E>/E|, M, ) is a K-vector bundle of
class C* over M. This C*-structure obviously does not depend on the choice of the
subspace F1.

10Compactness of M is necessary here, see Example 3.6 in [125].
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Definition 2.7.10 (Quotient vector bundle) The vector bundle (E»/E, M, ) con-
structed above is called the quotient vector bundle of E; by Ej.

Remark 2.7.11

1. The fibrewise natural projections Ez,, — E2,,/E1 , to classes combine to a
natural projection Ey — E»/E;. The latter is a vertical morphism, because its
local representative with respect to a local trivialization (Uy, x2) of E2 whose
restriction to E takes values in U, x F, and the induced local trivialization of
E>/E; is given by the natural projection F, — F>/F|. By composing a local
section s of Ej with the natural projection E; — E,/E| one obtains a local
section of E,/E1, denoted by [s].

2. Let!; denote the dimension of E;, i = 1, 2. For any local frame {s1, ..., s;,}in E;
with the propertyl1 that s1,...,s, span Ey, {[s;;+1],...,[s5,]} is a local frame
in E>/E7.

3. According to Remark 2.7.9/1, E1 admits a complement E 1 in E3. For any such
complement, the natural projection E, — E»/E] restricts to a vertical isomor-
phism Ei— E» / E1. This follows at once by observing that the induced mapping
is a bijective vertical morphism. Thus, every complement defines a vector bundle
isomorphism

E,2=E1 & (Ex/EY).

4. By a coorientation, or transversal orientation, of £ in E> one means an orien-
tation of the quotient vector bundle E,/E;. Accordingly, E| is said to be coori-
entable, or transversally orientable, in E; if E>/E] is orientable.

Example 2.7.12 (Homomorphism theorem) Let E| and E» be K-vector bundles of
class C¥ over M and let @: E; — E; be a vertical morphism of constant rank.
Then, the induced mapping

@ :Ej/ker® — im®

is an isomorphism. Indeed, @ is obviously bijective and fibrewise linear. To see that
it is of class C*, one may choose a complement Eq of ker® in E| and write @
as the composition of the isomorphism E;/ker @ — Eq and the restriction of @ in
domain to Eg. Thus, @ is a bijective vertical morphism and hence an isomorphism.

Example 2.7.13 (Dual quotient vector bundle) Let E; be a K-vector bundle of class
C* over M and let E| be a vertical subbundle. The dual vector bundle (Ey/E1)*
is called the dual quotient vector bundle. It is naturally isomorphic over M to the
annihilator £ (1). Indeed, the mapping

®:E) > (E2/E)*,  (Pw®)([x]) :=8(x), &€E},. x€Em,

Such local frames exist by Proposition 2.7.5.
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is well-defined, bijective and fibrewise linear. Hence, it remains to show that @ is of

class C¥. To see this, choose a loc_al frame {sy, ..., s1,}, whose first /| elements span
Eq over U. Then, the elements s*,i =11 +1, ..., I, of the dual local frame span E?
over U and, according to Remark 2.7.11/2, the dual local frame {[s;, +11%, ..., [s;,]*}

spans (E2/E1)* over U. By construction, the local representative of @ with respect
to the local trivializations defined by these local frames does not depend on m and
is hence of class C*, as asserted.

To conclude this section, we discuss vector bundle structures induced by sub-
manifolds. Thus, let N be a C¥-manifold and let (M, @) be a Ck_-submanifold of N.

Proposition 2.7.14 (TM, ¢’) is a vector subbundle of TN . It is initial or embedded
iff sois (M, ¢).

Proof Recall from Example 2.6.4/5 that the restriction of TN to the submanifold
(M, ) is defined to be the induced vector bundle (TN) s := ¢*TN. Since ¢ is an
immersion, the vertical morphism (¢')ver : TM — (TN)y in the natural decom-
position (2.6.2) of ¢’ is injective. Hence, (TM, (¢)ver) is a vertical subbundle of
(TN)m. Then, Proposition 2.7.4/3 yields that (TM, ¢’) is a subbundle of TN and
that it is initial or embedded if so is (M, ¢). The converse direction follows from
Proposition 1.6.14 and the fact that the zero sections of the tangent bundles of M
and N are embeddings. The details are left to the reader (Exercise 2.7.4). O

Remark 2.7.15 Let V be a finite-dimensional real vector space and let M C V be an
embedded C*-submanifold. For every v € M, the natural identification of T, V with
V of Example 1.4.3/2 identifies T, M with a subspace of V, which we denote by the
same symbol. In particular, in case M is open in V, one has T,M = V; and in case
M is alevel set of a CX-mapping f, one has T,M = ker f'(v). In the general case,
Ty M is just the tangent plane of M at v, shifted by —v to the origin. Thus, together
with the induced natural identification of TV with V x V, Proposition 2.7.14 yields
a natural identification of TM with the embedded C*~!-submanifold

{v.X)eMxV:XeT,M}

of M x V and a natural representation of vector fields on M by C¥~!-mappings
X : M — V satisfying X (v) € T, M for all v € M. This generalizes Remarks 2.1.4/2
and 2.3.4/2.

A further consequence of the observation that (TM, (¢')yer) is a vertical subbun-
dle of (TN)u is the following. A vector field X on N is said to be tangent to the
submanifold (M, ¢) if Xy(n) € ¢'(T,,M) forallm € M.

Proposition 2.7.16 Let N be a manifold and let (M, ¢) be a submanifold of N. For
every vector field X on N which is tangent to (M, @), there exists a unique vector
field X on M such that ¢ o X=Xo @, that is, X and X are @-related.
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We will say that X is induced from X and call it the restriction of X to M, p).

Proof Due to the assumption, the equation ¢’ o X = X o ¢ defines a mapping X :
M — TM. X is the restriction in range to TM of the section of (TN)y = ¢*TN
induced from X by ¢. Since vertical subbundles are embedded, Proposition 1.6.10
yields that X is differentiable,'? that is, of class C*~!. O

Finally, we introduce

Definition 2.7.17 (Normal and conormal bundle) Let N be a manifold and let
(M, ¢) be a submanifold of N.

1. The quotient vector bundle NM := (TN)p /TM is called the normal bundle of
(M, ¢). Its fibres are called the normal spaces of M at m € M. They are denoted
by N,, M.

2. The dual vector bundle N*M := (NM)* is called the conormal bundle of (M, ¢).
Its fibres are called the conormal spaces of M at m € M. They are denoted by
N*M.

Remark 2.7.18

1. The normal and the conormal bundle of (M, ¢) are real vector bundles over M
of class C¥~! and dimension dim N — dim M. According to Remark 2.7.11/3,
NM is isomorphic to an arbitrary complement of TM in (TN);p, and it is of-
ten realized in this way. For an example, see Exercise 2.7.6. According to Ex-
ample 2.7.13, N*M is naturally isomorphic to the annihilator (TM)? of TM in
(TN)1m.

2. By a coorientation, or a transversal orientation, of (M, ¢) one means an orienta-
tion of NM. Accordingly, (M, ¢) is said to be coorientable, or transversally ori-
entable, if the normal bundle NM of (M, @) is orientable. This is consistent with
the terminology for vector subbundles introduced in Remark 2.7.11/4: a coorien-
tation of (M, @) is the same as a coorientation of TM in (TN) .

3. We discuss local frames in NM and N* M induced by local charts on N adapted
to M. Denote r := dim M and s := dim N. For simplicity, we consider the case of
M being a subset of N. We leave it to the reader to write down the respective local
frames for the general situation. According to Proposition 1.6.7, for every m €
M, there exists an open neighbourhood U of m in M and a local chart (V, p) on
N atm such that U C V and (U, p}y) is a local chart on M, taking values in the
subspace R” x {0} C R®. Then, {9;;y :i =1, ..., s} is a local frame in (TN);y
whose first r elements span TM over U. According to Remark 2.7.11/2, then
{[0;y]l:i=r+1,...,s} is alocal frame in NM. This, in turn, induces a dual
local frame {[9;;y]*:i =r +1,...,s} in N*M, see Example 2.4.1. According

12By construction, X is also the restriction of X in domain to the submanifold (M, ¢) and in range
to the subbundle (TM, ¢’). This does not help for the argument though, because the latter need not
be embedded, so that Proposition 1.6.10 does not apply here.
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to Example 2.7.13, the natural isomorphism N*M — (TM)° maps the latter to
the 1(_)cal frame in (TM)° consisting of the last s — r elements of the local frame
(@) i =1,....s} in (TN)pan)* = (T*N) 1.

Assume that (M, ¢) is embedded. The subset

Ck/(N)={f € CX(N) : ¢* f =0} (2.7.1)

is an ideal of the associative algebra ck (N), called the vanishing ideal of M.
By means of this ideal, for m € M, the subspaces T;, M of Ty, N and Ny M =
(T, M)° of T(’;(m) (N) can be characterized as follows:

¢ (TuM) = {X € TyumN : X(f) =0forall f e Ch,(N)}, (2.7.2)
N'M = {E € T(’;(m)N E= df(cp(m)) for some f € C,]f,I(N)}. (2.7.3)

The proof is left to the reader (Exercise 2.7.5). Beware that (2.7.2) or (2.7.3) need
not hold if M is not embedded. A counterexample is provided by the figure eight
submanifold (R, y+) of Example 1.6.6/2. At the crossing point, the derivative of
any element of C§;(N) vanishes. Hence, for the right hand side of (2.7.2) one
obtains Ty ()N .

Exercises
2.7.1 Prove Proposition 2.7.5 by means of Proposition 2.3.15.
2.7.2 Let (E, M, ) be a K-vector bundle of class C¥. Use a system of local trivial-

izations and a subordinate partition of unity of M to construct a C*-function
h: E® E — Ksuch that h,, := hg,gE, is a scalar product on E,, for all
meM.

2.7.3 Show that every vertical subbundle admits a complement.
2.7.4 Complete the proof of Proposition 2.7.14.
2.7.5 Prove Egs. (2.7.2) and (2.7.3) of Remark 2.7.18, characterizing the tangent

and the conormal spaces of an embedded submanifold.

2.7.6 Using the Euclidean metric, construct the normal bundle of the submanifold

S" of R"*! as a complement of TS" in (TR"*!) g Is this bundle trivial?
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