
Chapter 2
Vector Bundles

Vector bundles constitute a special class of manifolds, which is of great importance
in physics. In particular, all sorts of tensor fields occurring in physical models may
be viewed in a coordinate-free manner as sections of certain vector bundles. We start
with the observation that the tangent spaces of a manifold combine in a natural way
into a bundle, which is called tangent bundle. Next, by taking its typical properties as
axioms, we arrive at the general notion of vector bundle. In Sect. 2.2, we discuss el-
ementary aspects of this notion, including the proof that—up to isomorphy—vector
bundles are completely determined by families of transition functions. In Sect. 2.3
we discuss sections and frames,1 and in Sect. 2.4 we present the tool kit for vec-
tor bundle operations. We will see that, given some vector bundles over the same
base manifold, by applying fibrewise the standard algebraic operations of taking the
dual vector space, of building the direct sum and of taking the tensor product, we
obtain a universal construction recipe for building new vector bundles. In Sect. 2.5,
by applying these operations to the tangent bundle of a manifold, we get the whole
variety of tensor bundles over this manifold. The remaining two sections contain fur-
ther operations, which will be frequently used in this book. In Sect. 2.6, we discuss
the notion of induced bundle and Sect. 2.7 is devoted to subbundles and quotient
bundles. There is a variety of special cases occurring in applications: regular distri-
butions, kernel and image bundles, annihilators, normal and conormal bundles.

2.1 The Tangent Bundle

Let M be a Ck-manifold, let I ⊂ R be an open interval and let γ : I → M be a
Ck-curve. According to Example 1.5.6, for every t ∈ I , the tangent vector γ̇ (t) of γ

at t is an element of the tangent space Tγ (t)M . Hence, while t runs through I , γ̇ (t)

runs through the tangent spaces along γ , see Fig. 2.1.

1Here, as well as in Sect. 2.5, in order to keep in touch with the physics literature, the local de-
scription is presented in some detail. In particular, we discuss transformation properties. This way,
we make contact with classical tensor analysis.
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Fig. 2.1 Tangent vectors along a curve γ in M

To follow the tangent vectors along γ it is convenient to consider the totality of
all tangent spaces of M . This leads to the notion of tangent bundle of a manifold M ,
denoted by TM . As a set, TM is given by the disjoint union of the tangent spaces at
all points of M , that is,

TM :=
⊔

m∈M

TmM. (2.1.1)

Let π : TM → M be the canonical projection which assigns to an element of TmM

the point m for every m ∈ M . TM can be equipped with a manifold structure as
follows. Denote n = dimM . Choose a countable atlas {(Uα, κα) : α ∈ A} on M and
define the mappings

κT
α : π−1(Uα) → R

n ×R
n, κT

α (Xm) := (
κα(m),Xκα

m

)
. (2.1.2)

The image of κT
α is given by κα(Uα) × R

n and is hence open in R
n × R

n. Using
(1.4.9), for the transition mappings we obtain

κT
β ◦ (

κT
α

)−1
(x,X) = (

κβ ◦ κ−1
α (x),

(
κβ ◦ κ−1

α

)′
(x) · X

)
, (2.1.3)

where (x,X) ∈ κα(Uα ∩ Uβ) × R
n. Since κα ◦ κ−1

β is of class Ck , the transition

mappings are of class Ck−1. Finally, it is obvious that the subsets π−1(Uα) cover
TM . Thus, according to Remark 1.1.10, the family of bijections {(π−1(Uα), κT

α ) :
α ∈ A} defines a differentiable structure of class Ck−1 and dimension 2n on TM ,
which has the following properties. First, due to (2.1.3), it is independent of the
choice of an atlas on M used to construct it. Second, the local representative of the
projection π : TM → M with respect to the charts κT

α and κα is given by the natural
projection pr1 to the first factor in κα(Uα) ×R

n. Hence, π is a submersion of class
Ck−1. Third, the charts κT

α identify the open submanifolds π−1(Uα) of TM with
direct products of an open subset of M with a copy of Rn. Under this identification,
both the natural projection and the vector space structure on every tangent space
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TmM , m ∈ Uα , is preserved. To formalize this, for every α ∈ A, define a mapping

χα : π−1(Uα) → Uα ×R
n, χα(Xm) := (

m,Xκα
m

)
. (2.1.4)

Then κT
α = (κα × idRn)◦χα . In particular, the local representative of χα with respect

to the global charts κT
α on π−1(Uα) and κα × idRn on Uα × R

n is given by the
identical mapping of Rn × R

n, restricted to the open subset κα(Uα) × R
n. Hence,

χα is a Ck−1-diffeomorphism. Moreover, pr1 ◦ χα = π�π−1(Uα) and the restrictions
χα�TmM are vector space isomorphisms for all m ∈ Uα . Let us summarize.

Proposition 2.1.1 Let M be a Ck-manifold of dimension n and let TM be defined
by (2.1.1). There exists a unique Ck−1-structure on TM such that for every local
chart (U,κ) on M , the mapping κT : π−1(U) → R

n × R
n, defined by (2.1.2), is a

local chart on TM . With respect to this structure, TM has dimension 2n and the
following holds.

1. The natural projection π : TM → M is a surjective submersion.
2. There exists an open covering {Uα} of M and an associated family of diffeomor-

phisms χα : π−1(Uα) → Uα ×R
n such that

(a) the following diagram commutes,

π−1(Uα)
χα

π

Uα ×R
n

pr1

Uα

(b) for every m ∈ Uα , the induced mapping pr2 ◦ χα�TmM : TmM → R
n is a

vector space isomorphism.

Definition 2.1.2 The triple (TM,M,π) is called the tangent bundle of M . TM is
called the total space or the bundle manifold, M the base manifold and π the natural
projection. For m ∈ M , π−1(m) ≡ TmM is called the fibre over m. The vector space
R

n is called the typical fibre and the pairs (Uα,χα) are called local trivializations of
TM over Uα .

By an abuse of notation, the tangent bundle will usually be denoted by TM .

Example 2.1.3 Let M = S1 be realized as the unit circle in R
2. For every x ∈ S1, the

tangent space TxS1 can be identified with the subspace of vectors orthogonal to x.
This yields a bijection Φ from TS1 onto the subset

T = {
(x,X) ∈ S1 ×R

2 : x ⊥ X
}

of R4. This is the level set of the smooth mapping

F :R4 → R
2, F (x,X) := (‖x‖2,x · X

)
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at the regular value c = (1,0). Hence, it carries a smooth structure. One can
check that Φ is a diffeomorphism with respect to this structure. (To see this, let
prk : R2 → R denote the natural projection to the k-th component and choose the
charts on S1 and T to be restrictions of prk and prk × prk , respectively, k = 1,2.)
Thus, TS1 can naturally be identified with T . The construction carries over to
higher-dimensional spheres: as a manifold, the tangent bundle TSn can be identified
with the subset {(x,X) ∈ Sn × R

n+1 : x ⊥ X} of R2(n+1) which is the level set of a
function similar to F at the regular value c = (1,0), see also Remark 2.1.4/2 below.

Remark 2.1.4

1. Let V be a finite-dimensional real vector space and let M be an open subset of V .
The natural identifications of the tangent spaces TvM with V for all v ∈ M , cf.
Example 1.4.3/1, combine to a smooth diffeomorphism χ : TM → M ×V which
is fibrewise linear. We will refer to χ as the natural identification of TM with
M × V . After choosing a basis in V , this bijection coincides with the (global)
trivialization induced via (2.1.4) by the corresponding global chart on M .

2. The construction of Example 2.1.3 generalizes to arbitrary level sets. Let V ,
W be finite-dimensional real vector spaces and let M be the level set of a Ck-
mapping f : V → W at a regular value c ∈ W . Identifying the tangent space
TvM with kerf ′(v) for all v ∈ M , see Remark 1.2.2/1, we obtain a bijection Φ

from TM onto the subset

T = {
(v,X) ∈ M × V : f ′(v)X = 0

}

of V × V . This is the level set of the Ck−1-mapping

F : V × V → W × W, F(v,X) := (
f (v), f ′(v)X

)

at the value (c,0), whose regularity follows from that of c with respect to f .
It follows that T is an embedded Ck−1-submanifold of V × V and that Φ is a
Ck−1-diffeomorphism (Exercise 2.1.1). Thus, the tangent bundle of a level set in
V can be naturally identified with a level set in V × V .

Just as the tangent spaces of a manifold combine to the tangent bundle, the tan-
gent mappings of a differentiable mapping combine to a mapping of the tangent
bundles.

Definition 2.1.5 (Tangent mapping) Let M , N be Ck-manifolds and let Φ : M → N

be a Ck-mapping. The tangent mapping of Φ is defined by

Φ ′ : TM → TN, Φ ′(Xm) := Φ ′
m(Xm).

The tangent mapping is of class Ck−1 (Exercise 2.1.6). The basic properties of
the tangent mapping are stated in the next section (Proposition 2.2.9).
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Exercises
2.1.1 Prove that the mapping Φ of Remark 2.1.4/2 is a diffeomorphism.

Hint. As local charts on M , use those constructed in the proof of the Level
Set Theorem 1.2.1.

2.1.2 Determine the tangent bundle in the form of the level set T of Remark 2.1.4/2
for
(a) the spheres Sn, see Example 1.2.3,
(b) the hyperboloid of Example 1.2.4,
(c) the paraboloid, the ellipsoid and the rotational torus of Exercise 1.2.5,
(d) the classical groups, see Example 1.2.6.
Compare your result for the spheres Sn with Example 2.1.3.

2.1.3 Let M be the level set of a differentiable mapping f : Rn → R
m at a regular

value c ∈R
m. Identify TM with the level set T of Remark 2.1.4/2. The bundle

of unit tangent vectors of M is defined to be EM := {(x,X) ∈ TM : ‖X‖ = 1}.
Show that EM is an embedded submanifold of TM . What does one get for
ES1 and ES2?

2.1.4 Let (U,κ) be a local chart on M and let κT be the local chart induced by κ on
the tangent bundle TM via (2.1.2). Determine the local trivialization (2.1.4)
of the tangent bundle T(TM) of TM induced by κT.

2.1.5 Iterate the construction of Remark 2.1.4/2 by determining the level set T for
the tangent bundle T(TM) of the tangent bundle TM of a level set M . Write
down the defining equations explicitly for M = Sn.

2.1.6 Let Φ : M → N be of class Ck . Show that Φ ′ is of class Ck−1.

2.2 Vector Bundles

The notion of vector bundle arises from the notion of tangent bundle of a manifold
by allowing the fibres to be arbitrary finite-dimensional vector spaces, rather than
the tangent spaces of that manifold.

Definition 2.2.1 (Vector bundle) Let K =R or C and let k ≥ 0. A K-vector bundle
of class Ck is a triple (E,M,π), where E and M are Ck-manifolds and π : E → M

is a surjective Ck-mapping satisfying the following conditions.

1. For every m ∈ M , Em := π−1(m) carries the structure of a vector space over K.
2. There exists a finite-dimensional vector space F over K, an open covering {Uα}

of M and an associated family of Ck-diffeomorphisms χα : π−1(Uα) → Uα ×F

such that, for all α,
(a) the following diagram commutes,

π−1(Uα)
χα

π

Uα × F

pr1

Uα

(2.2.1)



58 2 Vector Bundles

(b) for every m ∈ Uα , the induced mapping χα,m := pr2 ◦ χα�Em
: Em → F is

linear.

Like in the case of the tangent bundle, by an abuse of notation, a vector bundle
(E,M,π) will usually be denoted by E alone. Like for the tangent bundle, E is
called the total space or the bundle manifold, M the base manifold, π the bundle
projection and F the typical fibre. For m ∈ M , Em is called the fibre over m and
m is called the base point. The pairs (Uα,χα) are called local trivializations. A lo-
cal trivialization (U,χ) with U = M is called a global trivialization. If a global
trivialization exists, the vector bundle is called (globally) trivial.

Remark 2.2.2

1. By condition 2a, since the χα are diffeomorphisms, the bundle projection π is
a submersion (because so is the projection to a factor of a direct product) and
the fibres Em are embedded submanifolds (because by χα they are mapped onto
the subsets {m} × F of Uα × F ). Being bijective and linear, the mappings χα,m

are vector space isomorphisms. Hence, all fibres have the same dimension as
F ; this number is called the dimension or the rank of the vector bundle. Thus,
dimE = dimM + dimF for K = R, and dimE = dimM + 2 dimF for K = C.
For a K-vector bundle of dimension n, one can always choose F = K

n.
2. Let A denote the index set of a family of local trivializations {(Uα,χα)}. The

mappings

χβ ◦ χ−1
α : Uα ∩ Uβ × F → Uα ∩ Uβ × F, (α,β) ∈ A × A, (2.2.2)

which are of class Ck , are called the transition mappings of the system of lo-
cal trivializations {(Uα,χα) : α ∈ A}. Since for every (α,β) ∈ A × A, χβ ◦ χ−1

α

maps the subsets {m} × F , where m ∈ Uα ∩ Uβ , linearly and bijectively onto
themselves, there exists a mapping ρβα : Uα ∩ Uβ → GL(F ) such that

χβ ◦ χ−1
α (m,u) = (

m,ρβα(m)u
)

(2.2.3)

for all m ∈ Uα ∩ Uβ and u ∈ F . The mappings ρβα are called the transition
functions of the system of local trivializations {(Uα,χα) : α ∈ A}. To see that
they are of class Ck it suffices to check that for every (α,β) ∈ A × A and u ∈ F ,
the mapping Uα ∩ Uβ → F defined by m �→ (m,ρβα(m)u) is of class Ck . This
follows at once from the differentiability of the transition mappings χβ ◦ χ−1

α .
One can check that the transition functions satisfy

ργβ(m)ρβα(m) = ργα(m) (2.2.4)

for all α,β, γ ∈ A and m ∈ Uα ∩ Uβ ∩ Uγ .
3. A vector bundle is said to be orientable if there exists a family of local trivializa-

tions whose transition mappings have positive determinant.
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Example 2.2.3

1. Let M be a Ck-manifold, let F be a vector space of dimension r over K and let
prM : M × F → M denote the natural projection to the first component. Then,
(M × F,M,prM) is a K-vector bundle of class Ck and dimension r . It is called
the product vector bundle of M and F . A product vector bundle is obviously
trivial.

2. According to Proposition 2.1.1, the tangent bundle of an n-dimensional Ck-
manifold is an n-dimensional real vector bundle of class Ck−1.

3. Let (E,M,π) be a vector bundle of class Ck and let U ⊂ M be open. Define
EU := π−1(U). This is an open subset of E and hence a Ck-manifold. By re-
striction, π induces a surjective Ck-mapping πU : EU → U , and a system of
local trivializations {(Uα,χα)} of E induces the system of local trivializations
{(Uα ∩ U,χα�Uα∩U)} of EU . Thus, (EU ,U,πU) is a K-vector bundle of class
Ck . It has the same dimension as E.

Example 2.2.4 (Möbius strip) Let M = S1 be realized as the unit circle in C and let
E be the Möbius strip of Example 1.1.12 with the open interval (−1,1) replaced by
the whole of R. That is, E := R

2/∼, where (s1, t1) ∼ (s2, t2) iff there exists k ∈ Z

such that s2 = s1 + 2πk and t2 = (−1)kt1. Define the projection by

π : E → S1, π
([

(s, t)
]) := eis .

Using the local charts on E constructed in Example 1.1.12 one can easily check that
π is smooth. The fibres are Eeis = π−1(eis) = {[(s, t)] : t ∈ R}. For every s ∈ R,
define

λ
[
(s, t1)

] + [
(s, t2)

] := [
(s, λt1 + t2)

]
, λ, t1, t2 ∈R.

This way, the fibres become real vector spaces of dimension one. To construct local
trivializations, we choose U± := S1 \ {±1} and define mappings

χ± : π−1(U±) → U± ×R, χ±
([

(s, t)
]) := (

eis , t
)
,

where in case of χ+ and χ− the representative (s, t) of [(s, t)] used to compute the
right hand side is chosen from ]0,2π [ ×R and from ]−π,π[ ×R, respectively. We
leave it to the reader to check that the χ± are diffeomorphisms and satisfy condi-
tions 2a and 2b of Definition 2.2.1. Thus, (E,M,π) is a smooth real vector bundle
of dimension 1. Figure 2.2 shows E together with the product vector bundle S1 ×R.
It is quite obvious that E is not trivial. We will be able to give a precise argument
for that in the next section.

Remark 2.2.5 Let M be a Ck-manifold, let E be a set and let π : E → M be
a surjective mapping such that conditions 1 and 2 of Definition 2.2.1 are satis-
fied, however, with the following difference. Instead of assuming the χα to be Ck-
diffeomorphisms, assume that they are bijective and that their transition mappings
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Fig. 2.2 The product vector
bundle S1 ×R and the
Möbius strip as a vector
bundle over S1

(2.2.2) are of class Ck . Since M is second countable, the open covering {Uα} con-
tains a countable subcovering. According to Remark 1.1.10, the corresponding sub-
family of the family {χα} defines a Ck-structure on E. With respect to this structure,
(E,M,π) is a K-vector bundle of class Ck and the (Uα,χα) are local trivializations.
Conversely, if (E,M,π) is a vector bundle of class Ck , then the Ck-structure on E

induced in this way coincides with the original one (Exercise 2.2.1).

Next, we consider mappings of vector bundles.

Definition 2.2.6 (Vector bundle morphism) Let (E1,M1,π1) and (E2,M2,π2) be
K-vector bundles of class Ck . A Ck-mapping Φ : E1 → E2 is called a morphism if
for every m1 ∈ M1 there exists m2 ∈ M2 such that

1. Φ(E1,m1) ⊂ E2,m2 ,
2. the induced mapping Φm1 := Φ�E1,m1

: E1,m1 → E2,m2 is linear.

The rank of Φ is defined to be the integer-valued function which assigns to m1 ∈
M1 the rank of the linear mapping Φm1 . In case M1 = M2 = M , Φ is called a vertical
morphism or a morphism over M if conditions 1 and 2 hold with m1 = m2 = m.

As usual, together with the notion of morphism there comes the notion of iso-
morphism (a bijective morphism whose inverse is also a morphism), endomorphism
(a morphism of a vector bundle to itself), automorphism (an isomorphism of a vec-
tor bundle onto itself). For a vector bundle morphism Φ to be an isomorphism it is
obviously sufficient for Φ to be a diffeomorphism. If Φ is vertical, it is sufficient
for Φ to be bijective, because then the tangent mapping Φ ′ is bijective at any point
and Theorem 1.5.7 yields that the inverse mapping is of class Ck .

Remark 2.2.7

1. Since Φ is a mapping, condition 1 implies that the point m2 is uniquely de-
termined by m1. Thus, every morphism Φ induces a mapping ϕ : M1 → M2,
defined by

ϕ ◦ π1 = π2 ◦ Φ.

One says that Φ covers ϕ and calls ϕ the projection of Φ . If Φ is of class Ck ,
so is ϕ. Indeed, if (U1, χ1) is a local trivialization of E1, ϕ�U1 coincides with
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the composition of the embedding U1 → U1 × {0} ⊂ U1 × F1 with the mapping
π2 ◦ Φ ◦ χ−1

1 . In case M1 = M2 = M , Φ is a vertical morphism iff ϕ = idM .
2. Let (Ui,χi) be local trivializations of Ei , i = 1,2. The mapping

χ2 ◦ Φ ◦ χ−1
1 : (U1 ∩ ϕ−1(U2)

) × F1 → U2 × F2 (2.2.5)

is called the local representative of Φ with respect to (U1, χ1) and (U2, χ2).
A fibre-preserving and fibrewise linear mapping Φ : E1 → E2 is a morphism iff
all of its local representatives are of class Ck .

3. Let E1, E2 be K-vector bundles over M of class Ck . For λ ∈ K and vertical
morphisms Φ,Ψ : E1 → E2 we can define

(λΦ + Ψ )(x) := λΦ(x) + Ψ (x), x ∈ E1,

because for all x ∈ E1, Φ(x) and Ψ (x) belong to the same fibre of E2. This
provides a K-vector space structure on the set of vertical morphisms from E1

to E2.

Example 2.2.8 A local trivialization (U,χ) of a K-vector bundle (E,M,π) with
typical fibre F is a vertical isomorphism from the vector bundle EU , see Exam-
ple 2.2.3/3, onto the product vector bundle U × F . Accordingly, a global trivializa-
tion is a vertical isomorphism from E onto M × F . Thus, a vector bundle is trivial
iff it is isomorphic to a product vector bundle.

Probably the most important example of a vector bundle morphism is the tan-
gent mapping. The reader may convince himself that Proposition 1.5.2 implies the
following (Exercise 2.2.4).

Proposition 2.2.9 (Properties of the tangent mapping) Let M and N be Ck-
manifolds and let ϕ ∈ Ck(M,N). The tangent mapping ϕ′ : TM → TN has the
following properties.

1. ϕ′ is a vector bundle morphism of class Ck−1 with projection ϕ.
2. (idM)′ = idTM .
3. If P is another Ck-manifold and ψ ∈ Ck(N,P ), then (ψ ◦ ϕ)′ = ψ ′ ◦ ϕ′.
4. If ϕ is a diffeomorphism, then ϕ′ is an isomorphism and (ϕ′)−1 = (ϕ−1)′.

Remark 2.2.10 (Partial derivatives and product rule) Let M1,M2,N be Ck-
manifolds and let ϕ ∈ Ck(M1 × M2,N). We discuss the properties of the tangent
mapping ϕ′ which are related to the direct product structure of its domain. Proofs
are left to the reader (Exercise 2.2.5). The induced partial mappings

ϕm2 : M1 → N, ϕm2(m1) := ϕ(m1,m2), m2 ∈ M2,

ϕm1 : M2 → N, ϕm1(m2) := ϕ(m1,m2), m1 ∈ M1,
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are of class Ck . Their tangent mappings combine to Ck−1-mappings

TM1 × M2 → TN, (X1,m2) �→ (ϕm2)
′(X1),

M1 × TM2 → TN, (m1,X2) �→ (ϕm1)
′(X2),

called the partial derivatives of ϕ. They fulfil the product rule,

ϕ′
(m1,m2)

(X1,X2) = (ϕm2)
′(X1) + (ϕm1)

′(X2), mi ∈ Mi, Xi ∈ Tmi
Mi. (2.2.6)

If M1 = M2 = M and if ϕ is composed with the diagonal mapping
Δ : M → M × M , then

(ϕ ◦ Δ)′m(X) = (ϕ1,m)′(X) + (ϕ2,m)′(X), m ∈ M, X ∈ TmM. (2.2.7)

In particular, if M = I is some open interval, then ϕ ◦ Δ, ϕt1 and ϕt2 are Ck-curves
in N . For the corresponding tangent vectors at t ∈ I there holds

d

ds �t

ϕ(s, s) = d

ds �t

ϕ(s, t) + d

ds �t

ϕ(t, s), t ∈ I. (2.2.8)

To conclude this section, we show that—up to isomorphy—vector bundles are
completely determined by the family of transition functions associated with a sys-
tem of local trivializations.

Theorem 2.2.11 (Reconstruction theorem) Let M be a Ck-manifold. Assume that
the following data are given:

1. a finite-dimensional vector space F over K,
2. an open covering {Uα : α ∈ A} of M ,
3. a family of Ck-mappings ρβα : Uα ∩ Uβ → GL(F ), (α,β) ∈ A × A, satisfying

(2.2.4).

Then, there exists a K-vector bundle E over M of class Ck and a family of local
trivializations {(Uα,χα) : α ∈ A} of E whose transition functions are given by the
functions ρβα . E is uniquely determined up to vertical isomorphisms.

In particular, the last assertion implies that if the ραβ are the transition functions
of a vector bundle, then the vector bundle provided by Theorem 2.2.11 is isomorphic
over M to the original one.

Proof First, we prove existence. Since M is second countable, the covering {Uα :
α ∈ A} contains a countable subcovering. Hence, for the following construction
we may assume that A is countable. Moreover, we notice that (2.2.4) implies that
ραα = 1 for all α ∈ A. Take the topological direct sum

X :=
⊔

α∈A

Uα × F,
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denote its elements by (α,m,u), where α ∈ A, m ∈ Uα and u ∈ F , and define a
relation on X by (α1,m1, u1) ∼ (α2,m2, u2) iff m1 = m2 and u2 = ρα2α1(m1)u1.
Due to ραα = 1 and (2.2.4), this is an equivalence relation. Let E denote the set
of equivalence classes. The mapping π : E → M , given by π[(α,m,u)] := m, is
well-defined and surjective. To construct a vector space structure on π−1(m) for
every m ∈ M , choose α such that m ∈ Uα . Every class in π−1(m) has a unique
representative of the form (α,m,u) with u ∈ F . Using this, we transport the linear
structure from F to π−1(m),

λ
[
(α,m,u1)

] + [
(α,m,u2)

] := [
(α,m,λu1 + u2)

]
, u1, u2 ∈ F, λ ∈K.

By linearity of the mappings ρβα(m) : F → F , this definition does not depend on
the choice of α. The natural injections Uα × F → X induce mappings Uα × F →
E. Due to ραα = 1, these mappings are injective and hence induce bijective map-
pings χα : π−1(Uα) → Uα × F . A brief computation shows that the transition
mappings of the family of bijections {χα : α ∈ A} are given by (2.2.3). Therefore,
they are of class Ck and hence define a Ck-structure on E with respect to which
(E,M,π) is a K-vector bundle of class Ck and the χα are local trivializations,
see Remark 2.2.5. To prove uniqueness up to vertical isomorphisms, let Ẽ be a K-
vector bundle over M of class Ck with projection π̃ and let χ̃α : π̃−1(Uα) → Uα ×F

be local trivializations whose transition functions coincide with the ρβα . Then, on
π−1(Uα ∩Uβ) ⊂ E we have χ̃−1

α ◦χα = χ̃−1
β ◦χβ and on π̃−1(Uα ∩Uβ) ⊂ Ẽ there

holds χ−1
α ◦ χ̃α = χ−1

β ◦ χ̃β . Hence, the mappings χ̃−1
α ◦ χα and χ−1

α ◦ χ̃α , α ∈ A,

combine to mappings E → Ẽ and Ẽ → E, respectively, which are morphisms and
inverse to one another. �

Remark 2.2.12

1. Given two finite-dimensional vector spaces F1, F2 and two open coverings
{Ui,αi

: αi ∈ Ai}, i = 1,2, of M with associated systems of Ck-mappings

ρi,βiαi
: Ui,αi

∩ Ui,βi
→ GL(F ), (αi, βi) ∈ Ai × Ai,

there arises the question under which conditions the vector bundles E1 and E2,
defined by these data according to Theorem 2.2.11, are isomorphic over M . The
answer is as follows. First, F1 and F2 have to be isomorphic so that they can
be replaced by K

r for some r ∈ N. Second, there exists a common refinement
{Uα : α ∈ A} of the open coverings {Ui,αi

: αi ∈ Ai}, i = 1,2. By restriction, the
ρi,βiαi

induce mappings

ρi,βα : Uα ∩ Uβ → GL(r,K), (α,β) ∈ A × A, i = 1,2.

Now, E1 and E2 are isomorphic iff there exists a system of Ck-mappings ρα :
Uα → GL(r,K), α ∈ A, such that

ρ2,βα(m) = ρ−1
β (m) · ρ1,βα(m) · ρα(m), m ∈ Uα ∩ Uβ. (2.2.9)

The proof is left to the reader (Exercise 2.2.6).
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2. An open covering {Uα : α ∈ A} together with an associated family of Ck-
mappings ρβα : Uα ∩ Uβ → GL(r,K), (α,β) ∈ A × A, with the property (2.2.4)
is called a 1-cocycle on M with values in the structure group GL(r,K). Two
1-cocycles are called cohomologous if there exists a system of Ck-mappings
ρα : Uα → GL(r,K), α ∈ A, such that (2.2.9) holds. To be cohomologous is an
equivalence relation in the set of 1-cocycles. Passage to equivalence classes, that
is, cohomology classes of 1-cocycles, yields a cohomology theory on M which
is called the first Čech cohomology of M with values in the structure group
GL(r,K). According to point 1, the cohomology classes correspond bijectively
to the isomorphism classes of K-vector bundles over M of class Ck and dimen-
sion r .

3. One can show that the first Čech cohomology of M and, correspondingly, the set
of isomorphism classes of vector bundles over M do not depend on the degree of
differentiability k, see [130, Ch. 4, Thm. 3.5].

Exercises

2.2.1 Let (E,M,π) be a Ck-vector bundle. Consider the Ck-structure on E induced
by a system of local trivializations via the method of Remark 2.2.5. Show that
this structure coincides with the original Ck-structure.

2.2.2 Let M be a Ck-manifold. Use the system of bijections (2.1.4) associated
with an atlas on M to construct a Ck-structure on TM via the method of
Remark 2.2.5.

2.2.3 Construct a smooth structure on the Möbius strip by means of the method
of Remark 2.2.5, using the local trivializations (U±, χ±) of Example 2.2.4.
Show that this structure coincides with the one constructed in Example 1.1.12.

2.2.4 Prove Proposition 2.2.9.
2.2.5 Prove the assertions about partial derivatives stated in Remark 2.2.10.
2.2.6 Prove the criterion for the isomorphy of two vector bundles over M stated in

Remark 2.2.12/1.
2.2.7 Let (E1,π1,M1) and (E2,π2,M2) be K-vector bundles of class Ck and of di-

mensions r1 and r2. Define E := E1 ×E2, M := M1 ×M2 and π := π1 ×π2 :
E1 ×E2 → M1 ×M2. For (m1,m2) ∈ M1 ×M2, equip E(m1,m2) := π−1(m) ≡
E1,m1 ×E2,m2 with the linear structure of the direct sum E1,m1 ⊕E2,m2 . Show
that (E,M,π) is a K-vector bundle of class Ck and dimension r1 + r2. It is
called the direct product of (E1,π1,M1) and (E2,π2,M2).

2.2.8 Let M1 and M2 be Ck-manifolds. Let pri : M1 ×M2 → Mi denote the natural
projections to the factors. Show that the following mapping is a vertical vector
bundle isomorphism:

Φ : T(M1 × M2) → TM1 × TM2, Φ(X) := (
pr′1(X),pr′2(X)

)
.



2.3 Sections and Frames 65

2.3 Sections and Frames

The notion of section generalizes the concept of a function on a manifold with values
in a finite-dimensional vector space.

Definition 2.3.1 (Section) Let (E,M,π) be a K-vector bundle of class Ck . A sec-
tion (or cross section) of (E,M,π) is a Ck-mapping s : M → E such that π ◦ s =
idM .

A local section of (E,M,π) over an open subset U ⊂ M is a section of the
vector bundle (EU ,U,πU).

Remark 2.3.2

1. Let s be a section and let (U,χ) be a local trivialization of the K-vector bundle
(E,M,π) of class Ck . The mapping

prF ◦ χ ◦ s�U : U → F (2.3.1)

is called the local representative of s with respect to (U,χ). Since local trivial-
izations are diffeomorphisms, a mapping s : M → E satisfying π ◦ s = idM is of
class Ck (and hence a section) iff so are all local representatives of s with respect
to a system of local trivializations.

2. Every vector bundle admits a distinguished section m �→ 0m, called the zero
section.

3. The set of all sections of a K-vector bundle (E,M,π) of class Ck is denoted by
Γ (E). It carries the structure of a real vector space and of a bimodule over the
algebra C∞(M), with all operations defined pointwise (Exercise 2.3.1).

4. A local section need not be extendable to a global section, as is shown by the
example of M = R, E = M ×R, U = R+ and s(x) = (x, 1

x
). There holds, how-

ever, the following weaker extension property. For every m ∈ U , there exists an
open neighbourhood V of m in U and a section s̃ of E such that s�V = s̃�V
(Exercise 2.3.2).

Example 2.3.3

1. (Local) sections of the tangent bundle TM of a Ck-manifold M are called (lo-
cal) vector fields on M . They will usually be denoted by X,Y, . . . and the vector
space Γ (TM) will be denoted by X(M). To be consistent with the previous no-
tation Xm for a tangent vector at m ∈ M , for the value of the vector field X at
the point m we will often write Xm instead of X(m). Note that since TM is
of class Ck−1, so are vector fields. If (U,κ) is a local chart on M , for every
i = 1, . . . ,dimM , the mapping

∂κ
i : U → (TM)U, ∂κ

i (m) := ∂κ
i,m,

is a section of (TM)U = TU . Since the representative of this section with respect
to the global trivialization of TU induced by κ is given by the constant mapping
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whose value is the i-th standard basis vector in R
dimM , ∂κ

i is of class Ck−1.
Hence, ∂κ

i is a local vector field on M .
2. If the vector bundle E over M is given in terms of a K-vector space F , an open

covering {Uα} of M and a family of Ck-mappings ρβα : Uα ∩ Uβ → GL(F )

satisfying (2.2.4), then its sections of class Ck correspond bijectively to fami-
lies {sα} of Ck-mappings sα : Uα → F satisfying sα(m) = ραβ(m)sβ(m) for all
α,β ∈ A and m ∈ Uα ∩ Uβ .

Remark 2.3.4

1. Let V be a finite-dimensional real vector space and let M ⊂ V be an open subset.
Via the natural identification of TM with M ×V of Remark 2.1.4/1, vector fields
X on M correspond bijectively to smooth mappings2 X : M → V . By construc-
tion, for all v ∈ M and f ∈ C∞(M), we have

Xv(f ) = d

dt �0

f
(
v + tX(v)

)
. (2.3.2)

2. Let V and W be finite-dimensional real vector spaces and let M ⊂ V be the level
set of a Ck-mapping f : V → W at a regular value. Via the natural identification
of TM with the embedded Ck−1-submanifold {(v,X) ∈ M×V : X ∈ ker(f ′(v))}
of V × V , see Remark 2.1.4/2, vector fields X on M correspond bijectively to
Ck−1-mappings X : M → V satisfying X(v) ∈ kerf ′(v).

By means of a local trivialization, sections are identified locally with the graphs
of their local representatives. This implies

Proposition 2.3.5 Let (E,M,π) be a K-vector bundle of class Ck and let
s ∈ Γ (E). Then, (M, s) is an embedded Ck-submanifold of E.

Proof Let m ∈ M . According to Remark 1.6.13/3, we have to show that there exists
an open neighbourhood V of s(m) in E such that (s−1(V ), s�s−1(V )) is an embed-
ded Ck-submanifold of E. Choose a local trivialization (U,χ) of E at m and let
V = π−1(U). Then, s−1(V ) = U and hence we have to show that (U, s�U ) is an em-
bedded Ck-submanifold of π−1(U). Since χ is a diffeomorphism and (U,χ ◦ s�U)

is the graph of the local representative of s with respect to the local trivialization
(U,χ), the latter follows from Example 1.6.12/2. �

Now let (E1,M1,π1) and (E2,M2,π2) be K-vector bundles of class Ck , let
Φ : E1 → E2 be a morphism and let ϕ : M1 → M2 be the projection of Φ .

2Denoted by the same symbol.
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Definition 2.3.6 (Φ-relation and transport operator)

1. Sections s1 ∈ Γ (E1) and s2 ∈ Γ (E2) are said to be Φ-related if they satisfy

Φ ◦ s1 = s2 ◦ ϕ.

2. If ϕ is a Ck-diffeomorphism, the following mapping is called the transport oper-
ator of Φ:

Φ∗ : Γ (E1) → Γ (E2), Φ∗s := Φ ◦ s ◦ ϕ−1. (2.3.3)

The following proposition lists the properties of the transport operator (Exer-
cise 2.3.3).

Proposition 2.3.7 Let (E1,M1,π1) and (E2,M2,π2) be K-vector bundles of class
Ck and let Φ : E1 → E2 be a morphism whose projection ϕ : M1 → M2 is a diffeo-
morphism. The transport operator Φ∗ has the following properties.

1. Φ∗ is linear. If Φ is an isomorphism of vector bundles, Φ∗ is an isomorphism of
vector spaces and there holds (Φ−1)∗ = (Φ∗)−1.

2. For every s ∈ Γ (E1), s is Φ-related to Φ∗s.
3. For every s ∈ Γ (E1) and f ∈ Ck(M1), there holds Φ∗(f s) = ((ϕ−1)∗f )Φ∗s.
4. If Ψ : E2 → E3 is another morphism whose projection is a diffeomorphism, then

(Ψ ◦ Φ)∗ = Ψ∗ ◦ Φ∗.

Remark 2.3.8 In the case of vector fields, it is common to speak of ϕ-relation rather
than ϕ′-relation. Thus, Xi ∈X(Mi), i = 1,2, are ϕ-related iff

ϕ′ ◦ X1 = X2 ◦ ϕ. (2.3.4)

Next, we turn to the discussion of (local) frames.

Definition 2.3.9 (Local frame) Let (E,M,π) be a K-vector bundle of class Ck

and dimension l, let U ⊂ M be open and let B = {s1, . . . , sr } be a system of local
sections of E over U . B is said to be pointwise linearly independent if the system
{s1(m), . . . , sr (m)} is linearly independent in Em for all m ∈ U . In this case, B is
called a local r-frame (frame if r = l) in E over U . If U = M , B is called a global
r-frame (global frame if r = l).

Local frames provide bases in the fibres over their domain and hence allow for
the expansion of local sections.

Proposition 2.3.10 Let (E,M,π) be a K-vector bundle of class Ck , let U ⊂ M

be open and let {s1, . . . , sl} be a local frame in E over U . The assignment of f isi
(summation convention) to an l-tuple (f 1, . . . , f l) of K-valued Ck-functions on U

defines a bijection from
∏l

i=1 Ck(U,K) onto Γ (EU).
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Proof Obviously, for every (f 1, . . . , f l) ∈ ∏l
i=1 Ck(U,K), the sum f isi is a Ck-

section of EU . Conversely, let s ∈ Γ (EU). By expanding s(m) with respect to the
basis {s1(m), . . . , sl(m)} of Em for all m ∈ U , we obtain functions f i : U → K

satisfying s�U = f isi . For every m ∈ U , (f 1(m), . . . , f l(m)) is the unique solution
of a system of linear equations whose coefficients depend differentiably of class Ck

on m. Hence, f i ∈ Ck(U). �

Example 2.3.11

1. Let M be a Ck-manifold of dimension n and let (U,κ) be a local chart on M .
Since {∂κ

1,m, . . . , ∂κ
n,m} is a basis in TmM for all m ∈ U , the system {∂κ

1 , . . . , ∂κ
n }

is a local frame in TM over U . Thus, over U , vector fields X ∈X(M) can be rep-
resented as X�U = Xi∂κ

i with Xi ∈ Ck−1(U). According to (1.4.15) and (1.4.16),
the coefficient functions Xi are given by Xi(m) = Xm(κi), where i = 1, . . . , n.

2. Let (E,M,π) be a K-vector bundle of class Ck with typical fibre F , let (U,χ)

be a local trivialization and let {e1, . . . , er} be a linearly independent system in F .
Define local sections si of E over U by

si(m) := χ−1(m, ei), i = 1, . . . , r. (2.3.5)

These sections are of class Ck , because their local representatives with respect
to (U,χ) are the constant mappings m �→ ei . Hence, the system {s1, . . . , sr} is a
local r-frame in E over U .

As the second example suggests, local frames are closely related to local trivial-
izations.

Proposition 2.3.12 Let (E,M,π) be a K-vector bundle of class Ck with typical
fibre F and let U ⊂ M be open. By virtue of (2.3.5), every basis of F defines a
bijection between local trivializations χ : π−1(U) → U × F and local frames in E

over U . In particular,

1. there exists a local trivialization of E over U iff there exists a local frame in E

over U .
2. E is trivial iff there exists a global frame.

Proof Let {e1, . . . , el} be a basis of F . That a local trivialization over U defines a
local frame over U has been shown in Example 2.3.11/2. Conversely, for a given
local frame {s1, . . . , sl} in E over U , expand x ∈ EU as x = xisi(π(x)) and define
a mapping χ : π−1(U) → U × F by χ(x) := (π(x), xiei), x ∈ EU . The mapping
χ is a bijection and satisfies conditions 2a and 2b of Definition 2.2.1. Thus, to show
that χ is a local trivialization, it remains to check that χ and χ−1 are of class Ck

(Exercise 2.3.4). Finally, assertions 1 and 2 are obvious. �
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Example 2.3.13

1. Let M be a Ck-manifold of dimension n, let (U,κ) be a local chart on M and
let (U,χ) be the local trivialization of TM induced by this chart via (2.1.4).
The bijection between local frames over U and local trivializations over U , de-
fined by the standard basis of Rn via (2.3.5), assigns to (U,χ) the local frame
{∂κ

1 , . . . , ∂κ
n }.

2. Consider the smooth real vector bundle E given by the Möbius strip, cf. Ex-
ample 2.2.4. Since E has dimension 1, a global frame in E is just a nowhere
vanishing section. Since the base manifold is S1, sections of E correspond to
closed smooth curves in E winding around exactly once.3 Since any such curve
must cross the zero section, E does not admit a global frame and is hence not
globally trivial, cf. Proposition 2.3.12.

Remark 2.3.14 Using the description of vector bundles in terms of coverings and
transition functions as explained in Remark 2.2.12, one can show that, up to iso-
morphy over S1, the Möbius strip and the product vector bundle S1 ×R are the only
real vector bundles of dimension 1 over S1.

The following proposition collects useful extension results. The proof is left to
the reader (Exercise 2.3.5).

Proposition 2.3.15 Let (E,M,π) be a K-vector bundle of class Ck and dimension
l and let m ∈ M .

1. Let {e1, . . . , el} be a basis of Em. There exists an open neighbourhood U of m

and a local frame {s1, . . . , sl} over U such that si(m) = ei , i = 1, . . . , l.
2. Let s1, . . . , sr be local sections over neighbourhoods U1, . . .Ur of m such that

the system {s1(m), . . . , sr (m)} is linearly independent in Em. Then, there ex-
ists an open neighbourhood U ⊂ U1 ∩ · · · ∩ Ur of m such that the system
{s1�U , . . . , sr�U } is a local r-frame in E over U .

3. Let {s1, . . . , sr} be a local r-frame over a neighbourhood U of m. Then, there
exist local sections sr+1, . . . , sl over V ⊂ U such that the system {s1�V , . . . , sr�V ,

sr+1, . . . , sl} is a local frame over V .

As an application, we briefly discuss manifolds whose tangent bundle is trivial.

Definition 2.3.16 A Ck-manifold is called parallelizable if its tangent bundle is
trivial.

According to Proposition 2.3.12, a differentiable manifold M of dimension n is
parallelizable iff there exist n pointwise linearly independent vector fields on M .

3And with tangent vectors being nowhere parallel to the fibres, but this is not relevant for the
argument.
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Proposition 2.3.17 The spheres S1, S3 and S7 are parallelizable.

Proof Since Sn is a level set of the smooth function f : Rn+1 → R, f (x) = ‖x‖2,
we can use the natural representation of smooth vector fields on Sn by smooth map-
pings X : Sn →R

n+1 satisfying x ·X(x) = 0, cf. Example 2.1.3 and Remark 2.3.4/2.
In the case of S1 we identify R

2 with C via x = (x1, x2) �→ x̂ := x1 + ix2. Then,
x ·y = Re(x̂ŷ) and vector fields on S1 are represented by mappings X : S1 ⊂C→C

satisfying Re(zX(z)) = 0. This condition holds for example for X(z) := zi. Since
this function is nowhere vanishing, the corresponding vector field is nowhere van-
ishing and hence forms a frame in TS1. In the case of S3, we identify R

4 with the
quaternions H via x �→ x̂ := x11 + x2i + x3j + x4k. Then, x · y = Re(x̂ŷ), where
x̂ now denotes quaternionic conjugation, and vector fields on S3 are represented
by mappings X : S3 ⊂ H → H satisfying Re(qX(q)) = 0. For l = 1,2,3, define
Xl : H →H by

X1(q) = qi, X2(q) = qj, X3(q) = qk.

Then, Re(qXl(q)) = 0 and Re(Xl(q)Xj (q)) = δlj . Hence, the Xl restrict to vector
fields on S3 and these vector fields are pointwise linearly independent. In the case
of S7, the proof is analogous, with quaternions replaced by octonions.4 �

Remark 2.3.18

1. Since TS1 is isomorphic to the product vector bundle S1 × R, one can rephrase
Remark 2.3.14 as follows. Up to isomorphy over S1, the tangent bundle of S1

and the Möbius strip are the only real vector bundles of dimension 1 over S1.
2. The construction of pointwise linearly independent vector fields on the spheres

S1, S3 and S7 presented in the proof of Proposition 2.3.17 carries over to the
unit spheres of Ck , Hk and O

k , where O denotes the octonions. Thus, for r =
2,4,8 and k = 1,2, . . . there exist r − 1 pointwise linearly independent vector
fields on the sphere Srk−1. In case k = 1, these vector fields constitute a global
frame, whereas in the other cases they constitute just a global (r − 1)-frame.
While there may exist more than r − 1 pointwise linearly independent vector
fields, there does not exist a global frame for any odd-dimensional sphere except
for S1, S3 and S7. More precisely, Adams showed that the maximum number
of pointwise linearly independent vector fields on an odd-dimensional sphere is
given by the corresponding Radon-Hurwitz number [4]. On the other hand, on
an even-dimensional sphere, every vector field has a zero. This is known as the
Hairy Ball Theorem. For a proof, see for example [6]. As a consequence, S1, S3

and S7 are the only spheres which are parallelizable.

Exercises
2.3.1 Show that Γ (E) carries the structure of a real vector space and of a bimodule

over the algebra C∞(M), cf. Remark 2.3.2/3.

4For a guide to octonions, see [29].
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2.3.2 Prove the statement of Remark 2.3.2/4.
2.3.3 Prove Proposition 2.3.7.
2.3.4 Complete the proof of Proposition 2.3.12 by showing that the mapping χ

defined there as well as its inverse are of class Ck .
2.3.5 Prove Proposition 2.3.15.

2.4 Vector Bundle Operations

Every operation with vector spaces defines an operation with vector bundles by
fibrewise application. Below, we will discuss the most important of these operations
in the form of examples. The construction uses the method of Remark 2.2.5. It will
be explained in some detail for the dual vector bundle and the direct sum of vector
bundles. The other operations are then given without further explanations.

Throughout this section, let E, E1 and E2 be K-vector bundles over M of class
Ck . Let, respectively, π , π1 and π2 be their projections and l, l1 and l2 their di-
mensions. Choose, respectively, typical fibres F , F1 and F2 and local trivializations
(Uα,χα), (Uα,χ1α) and (Uα,χ2α) over an appropriate open covering {Uα : α ∈ A}
of M .

Example 2.4.1 (Dual vector bundle) Take the dual vector space E∗
m of each fibre

Em of E and define the set E∗ as the disjoint union

E∗ =
⊔

m∈M

E∗
m.

Let πE∗ : E∗ → M be the natural projection to the index set. Define mappings

χE∗
α : (πE∗)−1

(Uα) → Uα × F ∗, χE∗
α (ξ) = (

m,
(
χT

α,m

)−1
(ξ)

)
, (2.4.1)

where m = πE∗
(ξ) and χT

α,m : F ∗ → E∗
m denotes the dual linear mapping of χα,m :

Em → F . The corresponding transition mappings are given by

χE∗
β ◦ (

χE∗
α

)−1
(m,μ) = (

m,
((

χα ◦ χ−1
β

)
�{m}×F

)T
μ

)

with m ∈ Uα ∩ Uβ and μ ∈ F ∗. They are of class Ck , because so are the transition
mappings χα ◦χ−1

β of E. Thus, according to Remark 2.2.5, if we equip E∗ with the

Ck-structure induced by the family of mappings {χE∗
α ,α ∈ A}, then (E∗,M,πE∗

)

is a K-vector bundle of class Ck , called the dual vector bundle of E. It has the
same dimension as E, typical fibre F ∗, and {(Uα,χE∗

α ) : α ∈ A} is a system of local
trivializations.

Let {s1, . . . , sl} be a local frame in E over U ⊂ M . For m ∈ U , let s(m)∗1,

. . . , s(m)∗l denote the elements of the basis of E∗
m which is dual to the basis

{s1(m), . . . , sl(m)} of Em. Define local sections s∗i in E∗ by

s∗i (m) := s(m)∗i , i = 1, . . . , l. (2.4.2)
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Using Proposition 2.3.12 it is easy to see that these local sections are of class Ck

and form a local frame of E∗, called the dual local frame or coframe.
The pointwise evaluation mappings E∗

m × Em → K combine to a natural pairing

Γ
(
E∗

U

) × Γ (EU) → Ck(U,K), (σ, s) �→ 〈σ, s〉,
also denoted by σ(s) or s(σ ). In terms of this pairing, sections of E∗ can be ex-
panded over U as

σ = σ(si)s
∗i ≡ 〈σ, si〉s∗i . (2.4.3)

Let Ea and Eb be K-vector bundles of class Ck over Ma and Mb , respectively, and
let Φ : Ea → Eb be a morphism projecting to a diffeomorphism ϕ : Ma → Mb . For
every m ∈ Mb , the linear mappings Φϕ−1(m) : Ea,ϕ−1(m) → Eb,m induce dual linear
mappings which combine to a fibre-preserving and fibrewise linear mapping

ΦT : E∗
b → E∗

a ,
〈
ΦT(ξ), x

〉 := 〈
ξ,Φϕ−1(m)(x)

〉
, (2.4.4)

where m ∈ Mb , ξ ∈ E∗
b,m and x ∈ Ea,ϕ−1(m), which is a morphism projecting to

the Ck-diffeomorphism ϕ−1 (Exercise 2.4.1). It is called the dual morphism of Φ .
Via (2.3.3), the dual morphism induces a transport operator ΦT∗ of sections. More
generally, by duality, every morphism Φ : Ea → Eb induces the following operation
on sections, called the pull-back,

Φ∗ : Γ (
E∗

b

) → Γ
(
E∗

a

)
,

〈(
Φ∗σ

)
(m), x

〉 := 〈
σ ◦ ϕ(m),Φ(x)

〉
, (2.4.5)

where m ∈ Ma and x ∈ Ea,m. Indeed, if Φ projects to a diffeomorphism, then the
pull-back is given by

Φ∗σ = ΦT ◦ σ ◦ ϕ = ΦT∗ σ, (2.4.6)

that is, it coincides with the transport operator of the dual morphism.5

Example 2.4.2 (Direct sum) Take the direct sum E1,m ⊕E2,m of the fibres over each
point m ∈ M and define

E1 ⊕ E2 =
⊔

m∈M

E1,m ⊕ E2,m.

Let π⊕ : E1 ⊕ E2 → M be the natural projection. Define mappings

χ⊕
α : (π⊕)−1

(Uα) → Uα × (F1 ⊕ F2)

by

χ⊕
α (x1, x2) := (

m,
(
χ1α,m(x1),χ2α,m(x2)

))
,

5Taking into account that ΦT projects to ϕ−1.
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where m = π⊕((x1, x2)). By similar arguments as for the dual vector bundle, one
can check that (E1 ⊕ E2,M,π⊕) is a K-vector bundle of class Ck and that the
mappings χ⊕

α provide a system of local trivializations. E1 ⊕ E2 is called the direct
sum of E1 and E2. It has dimension l1 + l2 and typical fibre F1 ⊕ F2. Next, note
that every local section si of Ei over U can be viewed as a local section of E1 ⊕ E2
in an obvious way. Thus, given local frames {si,1, . . . , si,li } in Ei , the collection

{s1,1, . . . , s1,l1 , s2,1, . . . , s2,l2}
constitutes a local frame in E1 ⊕E2. Finally, let Ea1, Ea2 and Eb1, Eb2 be K-vector
bundles of class Ck over Ma and Mb , respectively, and let Φi : Eai → Ebi , i = 1,2,
be morphisms projecting to the same mapping ϕ : Ma → Mb . The linear mappings
Φi,m : Eai,m → Ebi,ϕ(m) induce linear mappings

Φ1,m ⊕ Φ2,m : Ea1,m ⊕ Ea2,m → Eb1,ϕ(m) ⊕ Eb2,ϕ(m),

which combine to a morphism projecting to ϕ,

Φ1 ⊕ Φ2 : Ea1 ⊕ Ea2 → Eb1 ⊕ Eb2, (Φ1 ⊕ Φ2)m := Φ1,m ⊕ Φ2,m, (2.4.7)

where m ∈ Ma . It is called the direct sum of Φ1 and Φ2.

Example 2.4.3 (Tensor product) Define

E1 ⊗ E2 =
⊔

m∈M

E1,m ⊗ E2,m,

denote the canonical projection by π⊗ : E1 ⊗ E2 → M and take the system of in-
duced local trivializations χ⊗

α : (π⊗)−1(Uα) → Uα × (F1 ⊗ F2) defined by

χ⊗
α (x1 ⊗ x2) = (

m,χ1α,m(x1) ⊗ χ2α,m(x2)
)
,

where m = π⊗(x1 ⊗ x2). Then, (E1 ⊗E2,M,π⊗) is a Ck-vector bundle, called the
tensor product of E1 and E2. Its typical fibre is F1 ⊗ F2 and its dimension is l1l2.
Every pair of local sections si of Ei over U , i = 1,2, defines a local section s1 ⊗ s2
of E1 ⊗ E2 by

(s1 ⊗ s2)(m) := s1(m) ⊗ s2(m), m ∈ U, (2.4.8)

which is called the tensor product of s1 and s2. If {si,1, . . . , si,li } are local frames in
Ei , i = 1,2, then

{s1,i ⊗ s2,j : i = 1, . . . , l1, j = 1, . . . , l2}
is a local frame in E1 ⊗ E2. For K-vector bundle morphisms Φj : Eaj → Ebj ,
j = 1,2, projecting to the same mapping ϕ : Ma → Mb , the tensor product is the
morphism Φ1 ⊗ Φ2 : Ea1 ⊗ Ea2 → Eb1 ⊗ Eb2 defined by

(Φ1 ⊗ Φ2)m(x1 ⊗ x2) := Φ1,m(x1) ⊗ Φ2,m(x2). (2.4.9)
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It projects to ϕ as well.

Example 2.4.4 (Tensor bundles) The tensor bundle of E of type (p, q) is defined to
be

T
q
pE := E∗⊗ p· · · ⊗E∗ ⊗ E⊗ q· · · ⊗E.

Its fibres are the p-fold covariant and q-fold contravariant tensor products T
q
pEm.

Hence, the dimension is lp+q and the elements of Tq
pEm are linear combinations of

ξ1 ⊗· · ·⊗ ξp ⊗x1 ⊗· · ·⊗xq , where xi ∈ Em and ξi ∈ E∗
m. The projection is denoted

by π⊗ : Tq
pE → M and the typical fibre is T

q
pF . We will view elements of Tq

pEm

as (p + q)-linear mappings

u : Em× p· · · ×Em × E∗
m× q· · · ×E∗

m → R,

thus using the natural isomorphism which assigns to ξ1 ⊗ · · · ⊗ ξp ⊗ x1 ⊗ · · · ⊗ xq

the mapping

u(y1, . . . , yp, η1, . . . , ηq) = ξ1(y1) · · · ξp(yp)η1(x1) · · ·ηq(xq).

Then, the tensor product of ui ∈ T
qi
pi

Em, i = 1,2, is given by

u1 ⊗ u2(x1, . . . , xp1+p2 , ξ1, . . . , ξq1+q2)

:= u1(x1, . . . , xp1, ξ1, . . . , ξq1)u2(xp1+1, . . . , xp1+p2 , ξq1+1, . . . , ξq1+q2)

(2.4.10)

for all xj ∈ Em and ξj ∈ E∗
m. Accordingly, local sections τ of Tq

pE over U can be
viewed as mappings

τ : Γ (EU)× p· · · ×Γ (EU) × Γ
(
E∗

U

)× q· · · ×Γ
(
E∗

U

) → Ck(U) (2.4.11)

which are Ck(U)-linear in every argument. Every pair of local sections τi of Tqi
pi

E,
i = 1,2, defines a local section τ1 ⊗ τ2 in T

q1+q2
p1+p2

E by

(τ1 ⊗ τ2)(m) := τ1(m) ⊗ τ2(m).

On the level of the mappings (2.4.11), τ1 ⊗ τ2 is given by (2.4.10), with ui replaced
by τi and xj and ξj replaced by local sections in E and E∗, respectively. In partic-
ular, if {s1, . . . , sl} is a local frame in E over U , then

{
s∗i1 ⊗ · · · ⊗ s∗ip ⊗ sj1 ⊗ · · · ⊗ sjq : i1, . . . , ip, j1, . . . , jq = 1, . . . , l

}

is a local frame in T
q
pE. Every τ ∈ Γ (T

q
pE) can be decomposed over U as

τ�U = τ
j1...jq

i1...ip
s∗i1 ⊗ · · · ⊗ s∗ip ⊗ sj1 ⊗ · · · ⊗ sjq
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with

τ
j1...jq

i1...ip
(m) = τ(m)

(
si1(m), . . . , sip (m), s∗j1(m), . . . , s∗jq (m)

)
(2.4.12)

(Exercise 2.4.2). Finally, according to (2.4.9), every isomorphism Φ : Ea → Eb of
K-vector bundles of class Ck induces isomorphisms

Φ⊗ : Tq
pEa → T

q
pEb, Φ⊗ := (

Φ−1)T⊗ p· · · ⊗(
Φ−1)T ⊗ Φ⊗ q· · · ⊗Φ,

(2.4.13)
with the same projection. On the level of (p + q)-linear mappings, Φ⊗ takes the
form

(
Φ⊗u

)
(x1, . . . , xp, ξ1, . . . , ξq)

= u
(
Φ−1(x1), . . . ,Φ

−1(xp),ΦT(ξ1), . . . ,Φ
T(ξq)

)
(2.4.14)

for all u ∈ T
q
pEa,m, xi ∈ Eb,ϕ(m) and ξi ∈ E∗

b,ϕ(m). The corresponding transport
operators Φ⊗∗ satisfy

Φ⊗∗ (τ1 ⊗ τ2) = (
Φ⊗∗ τ1

) ⊗ (
Φ⊗∗ τ2

)
(2.4.15)

for all τi ∈ Γ (T
qi
pi

Ea), and

(
Φ⊗∗ τ

)
(s1, . . . , sp, σ1, . . . , σq)

= τ
(
Φ−1∗ s1, . . . ,Φ

−1∗ sp,Φ∗σ1, . . . ,Φ
∗σq

) ◦ ϕ−1 (2.4.16)

for all τ ∈ Γ (T
q
pEa), si ∈ Γ (Eb) and σi ∈ Γ (E∗

b ). Here, ϕ : Ma → Mb is the pro-
jection of Φ .

Example 2.4.5 (Exterior powers) The r-fold exterior power
∧r

E∗ has the vector
spaces

∧r
E∗

m of antisymmetric r-linear forms on Em as its fibres. Hence, the di-
mension is

(
l
r

)
. In particular,

∧0
E∗ = M ×K,

∧1
E∗ = E∗ and

∧r
E∗ = M × {0}

(the zero-dimensional vector bundle over M) for r > l. The projection is denoted
by π∧ : ∧r

E∗ → M and the typical fibre is
∧r

F ∗. The exterior product of
ηi ∈ ∧ri E∗

m is defined to be the (r1 + r2)-linear form on Em given by6

(η1 ∧ η2)(x1, . . . , xr1+r2)

:= 1

r1!r2!
∑

π∈Sr1+r2

sign(π)η1(xπ(1), . . . , xπ(r1))η2(xπ(r1+1), . . . , xπ(r1+r2)),

(2.4.17)

6Beware that there exist different conventions concerning the choice of the factor in For-
mula (2.4.17).
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for all xi ∈ Em. A local section σ in
∧r

E∗ over U can be viewed as an antisym-
metric mapping

σ : Γ (EU)× r· · · ×Γ (EU) → Ck(U) (2.4.18)

which is Ck(U)-linear in every argument. Every pair of local sections σi of
∧ri E∗,

i = 1,2, defines a local section σ1 ∧ σ2 of
∧r1+r2 E∗ by

(σ1 ∧ σ2)(m) := σ1(m) ∧ σ2(m), m ∈ U. (2.4.19)

If we view σ1 ∧ σ2 as a mapping (2.4.18), it is given by (2.4.17) with ξi replaced by
σi and xi replaced by local sections in E. If {s1, . . . , sl} is a local frame in E, then

{
s∗i1 ∧ · · · ∧ s∗ir : 1 ≤ i1 < · · · < ir ≤ l

}
(2.4.20)

is a local frame in
∧r

E∗. Every σ ∈ Γ (
∧r

E∗) can be decomposed over U as

σ�U =
∑

i1<···<ir

σi1...ir s
∗i1 ∧ · · · ∧ s∗ir (2.4.21)

with σi1...ir (m) = σ(m)(si1(m), . . . , sir (m)) (Exercise 2.4.2). Next, every K-vector
bundle morphism Φ : Ea → Eb projecting to a diffeomorphism ϕ : Ma → Mb in-
duces a morphism ΦT∧ : ∧r

E∗
b → ∧r

E∗
a projecting to ϕ−1, defined by

(
ΦT∧

m (η)
)
(x1, . . . , xr ) := η

(
Φϕ−1(m)(x1), . . . ,Φϕ−1(m)(xr )

)
. (2.4.22)

This generalizes Formula (2.4.4). Via (2.3.3), ΦT∧ induces a transport operator
(ΦT∧)∗ of sections. Moreover, the pull-back operation (2.4.5) generalizes in an ob-
vious way to a mapping Φ∗ : Γ (

∧r
E∗

b ) → Γ (
∧r

E∗
a ), given by

((
Φ∗σ

)
(m)

)
(x1, . . . , xr ) := (

σ ◦ ϕ(m)
)(

Φ(x1), . . . ,Φ(xr)
)
. (2.4.23)

Again, if Φ projects to a diffeomorphism, then Φ∗ = (ΦT∧)∗.

Example 2.4.6 (Exterior algebra bundle) By composing the operations of exterior
power and direct sum one obtains the exterior algebra bundle

∧
E∗ = ⊕l

i=0
∧i

E∗,
which has dimension 2l . We retain the notations π∧ : ∧E → M for the projection
and ΦT∧ : ∧E∗

b → ∧
E∗

a for the morphism induced by a morphism Φ : Ea → Eb .
The local frame in

∧
E∗ associated with a local frame {s1, . . . , sl} in E consists of

the constant mapping U → K given by m �→ 1 and the local sections (2.4.20) with
r = 1, . . . , l. In addition to being a vector bundle,

∧
E∗ is an associative K-algebra

bundle7 of class Ck over M . The exterior product of local sections (2.4.19) induces

7In the definition of vector bundle, replace “K-vector space” by “K-algebra” and “linear mapping”
by “algebra homomorphism”.
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a bilinear mapping

Γ

( r1∧
E∗

)
× Γ

( r2∧
E∗

)
→ Γ

(r1+r2∧
E∗

)

and hence defines on Γ (
∧

E∗) the structure of an associative K-algebra. By (2.4.17)
and (2.4.23), the pull-back is a homomorphism with respect to this algebra structure,

Φ∗(σ1 ∧ σ2) = (
Φ∗σ1

) ∧ (
Φ∗σ2

)
, σ1, σ2 ∈ Γ

(∧
E∗

b

)
. (2.4.24)

Remark 2.4.7 (Homomorphism and endomorphism bundles) Analogously, one can
construct the homomorphism bundle Hom(E1,E2) of E1 and E2, which has the
fibres Hom(E1,m,E2,m), and the endomorphism bundle End(E) of E, which has
the fibres End(Em). For every m, the vector space Hom(E1,m,E2,m) is naturally
isomorphic to the vector space E∗

1,m ⊗ E2,m and all these isomorphisms combine
to a natural isomorphism of Hom(E1,E2) with the tensor product E∗

1 ⊗ E2 (Exer-
cise 2.4.4). Therefore, we may always identify Hom(E1,E2) with E∗

1 ⊗E2. Accord-
ingly, we may identify End(E) with the tensor bundle E∗ ⊗ E ≡ T

1
1E of E. Then,

since vertical Ck-morphisms E1 → E2 correspond to Ck-sections of Hom(E1,E2),
the vector space of these morphisms is naturally isomorphic to Γ (E∗

1 ⊗ E2). Ac-
cordingly, since vertical endomorphisms of E correspond to sections of End(E), the
vector space of these endomorphisms is naturally isomorphic to Γ (T1

1E). The proof
is left to the reader (Exercise 2.4.5).

Exercises

2.4.1 Show that the mapping ΦT defined by (2.4.4) is a morphism of vector bundles.
2.4.2 Verify Formulae (2.4.12) and (2.4.21).
2.4.3 Let (E,M,π) be a smooth K-vector bundle. Consider the tangent mapping

π ′ : TE → TM .
(a) Show that (TE,TM,π ′) is a K-vector bundle by determining the linear

structure of the fibres and constructing a system of local trivializations.
(b) Show that in the cases E = TM and E = T∗M , local charts on M induce

local trivializations of (TE,TM,π ′).
(c) If E = TM , then (TE,TM,π ′) has the same base manifold as the tangent

bundle of E. Are these two vector bundles isomorphic?
2.4.4 Let E, E1 and E2 be K-vector bundles over M of class Ck . Construct the ho-

momorphism bundle Hom(E1,E2) and the endomorphism bundle End(E) as
explained in Remark 2.4.7. Show that Hom(E1,E2) and End(E) are naturally
isomorphic to E∗

1 ⊗ E2 and T
1
1E, respectively.

2.4.5 Show that the natural isomorphisms of Exercise 2.4.4 induce natural iso-
morphisms between the vector space of vertical Ck-morphisms E1 → E2

and Γ (E∗
1 ⊗ E2), as well as between the vector space of vertical Ck-

endomorphisms of E and Γ (T1
1E), cf. Remark 2.4.7.
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2.4.6 The image of the identical mapping idE under the isomorphism from the vec-
tor space of Ck-endomorphisms of E to Γ (T1

1E) of Exercise 2.4.5 is called
the Kronecker tensor field of E and is denoted by δ. Determine the coefficient
functions δi

j of δ with respect to the local frame in T
1
1E induced by a local

frame in E.
2.4.7 Show that if E is one-dimensional, the tensor bundles T

2
0E, T0

2E and T
1
1E

are trivial.

2.5 Tensor Bundles and Tensor Fields

Let M be a Ck-manifold of dimension n. By tensor bundles over M one means the
various vector bundles arising from the tangent bundle TM by applying the vector
bundle operations of Sect. 2.4. These are

(a) the cotangent bundle T∗M := (TM)∗. Its fibres are the cotangent spaces8 T∗
mM

introduced in Sect. 1.4. (Local) sections of T∗M are called (local) covector fields
or (local) differential 1-forms.

(b) The bundle of alternating r-vectors
∧r TM , the bundle of alternating r-forms∧r T∗M and the bundles of exterior algebras

∧
TM =

n⊕

r=0

r∧
TM,

∧
T∗M =

n⊕

r=0

r∧
T∗M.

Their (local) sections are called (local) multivector fields and (local) differential
forms, respectively. The number r is called the degree. We denote

X
r (M) := Γ

( r∧
TM

)
, Ωr(M) := Γ

( r∧
T∗M

)
, Ω∗(M) := Γ

(∧
T∗M

)

and, as before, X(M) ≡X1(M). One has X0(M) = Ω0(M) = Ck(M).
(c) The tensor bundles Tq

pM := T
q
p(TM), p,q = 0,1,2, . . . . Their (local) sections

are called (local) tensor fields of type (p, q). The algebraic operations of sym-
metrization, antisymmetrization and contraction of tensors over a vector space
carry over to tensor fields in an obvious way.

Since TM is of class Ck−1, so are all the tensor bundles over M . Recall from Ex-
ample 2.4.1 that pointwise evaluation T∗

mM × TmM → R defines a natural pairing

Ω1(M) ×X(M) → Ck−1(M), (α,X) �→ 〈α,X〉, (2.5.1)

which depending on the context can also be written as α(X) or X(α).

8Like for the tangent bundle we will stick to this notation (instead of writing (T∗M)m).
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Example 2.5.1 Let f : U → R, with U ⊂ M open, be a real-valued local Ck-
function. Then, the differentials (df )m of f at m ∈ U , defined by (1.4.20), combine
to a local Ck−1-covector field df on U , called the differential of f .

Now, let (U,κ) be a local chart on M . The differentials of the coordinate func-
tions κi form a local frame {dκ1, . . . ,dκn} in T∗M which is dual to {∂1, . . . , ∂n}, cf.
Examples 2.3.11/1 and 2.4.1 and Formula (1.4.21). The induced local frame in the
tensor bundle T

q
pM consists of the local sections

dκi1 ⊗ · · · ⊗ dκip ⊗ ∂j1 ⊗ · · · ⊗ ∂jq : i1, . . . , ip, j1, . . . , jq = 1, . . . , n,

see Example 2.4.4. Using these local frames, a tensor field T of type (p, q) can be
represented locally as follows:

T�U = (
T κ

)j1...jq

i1...ip
dκi1 ⊗ · · · ⊗ dκip ⊗ ∂j1 ⊗ · · · ⊗ ∂jq , (2.5.2)

where, according to (2.4.12), pointwise we have

(
T κ

)j1...jq

i1...ip
= T

(
∂i1, . . . , ∂ip ,dκj1, . . . ,dκjq

)
. (2.5.3)

Remark 2.5.2 We determine the transformation laws for the local frames and for the
corresponding coefficient functions of tensor fields under a change of local chart.
Thus, let (V ,ρ) be another local chart on M . The following formulae hold over
U ∩ V . From (1.4.17) and (1.4.23) we read off

∂
ρ
i = Ã

j
i ∂

κ
j , dρi = Ai

j dκj

where

Ai
j := [(

ρ ◦ κ−1)′ ◦ κ
]i
j
, Ãi

j := [(
κ ◦ ρ−1)′ ◦ ρ

]i
j
,

and an according formula for the induced local frames in T
q
pM . Then, (2.5.3) im-

plies
(
T ρ

)j1...jq

i1...ip
= Ã

k1
i1

· · · Ãkp

ip
A

j1
l1

· · ·Ajq

lq

(
T κ

)l1...lq
k1...kp

. (2.5.4)

To pass to coefficient functions which depend on the coordinates, denote the ele-
ments of κ(U ∩ V ) by x and the elements of ρ(U ∩ V ) by y and write

yi(x) := ρi ◦ κ−1(x), xi(y) := κ ◦ ρ−1(y).

Then, from (2.5.4) we read off

(
T ρ

)j1...jq

i1...ip
◦ ρ−1 = ∂xk1

∂yi1
· · · ∂xkp

∂yip

∂yj1

∂xl1
· · · ∂yjq

∂xlq

(
T κ

)l1...lq
k1...kp

◦ κ−1. (2.5.5)
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This formula is well-known from classical tensor analysis. The argument in (2.5.5)

can be either x, in which case ∂xia

∂yka
and (T ρ)

j1...jq

i1...ip
◦ρ−1 have to be evaluated at y(x),

or y, in which case ∂yla

∂xja
and (T κ)

l1...lq
k1...kp

◦ κ−1 have to be evaluated at x(y).

Next, let M and N be Ck-manifolds and let ϕ : M → N be a Ck-mapping. Ac-
cording to Proposition 2.2.9, ϕ′ : TM → TN is a vector bundle morphism of class
Ck−1 projecting to ϕ. The corresponding pull-back operation (2.4.23) applies to dif-
ferential r-forms of class Ck−1. It will be denoted by ϕ∗ : Ωr(N) → Ωr(M). Ac-
cording to Examples 2.4.1–2.4.5, if ϕ is a diffeomorphism, ϕ′ induces isomorphisms
of tensor bundles. The corresponding transport operator (2.3.3) will be denoted by
ϕ∗ in case the induced isomorphism projects to ϕ and by ϕ∗ in case it projects to
ϕ−1. Then, for T ∈ Γ (T

q
pM), we have

ϕ∗T ≡ ((
ϕ′)⊗)

∗T = (
ϕ′)⊗ ◦ T ◦ ϕ−1, (2.5.6)

with (ϕ′)⊗ given by (2.4.13), and Formula (2.4.16) takes the form

(ϕ∗T )(X1, . . . ,Xp,α1, . . . , αq)

= T
(
ϕ−1∗ X1, . . . , ϕ

−1∗ Xp,ϕ∗α1, . . . , ϕ
∗αq

) ◦ ϕ−1 (2.5.7)

with Xi ∈ X(M) and αi ∈ Ω1(M). Moreover, Eq. (2.4.15) reads

ϕ∗(T1 ⊗ T2) = (ϕ∗T1) ⊗ (ϕ∗T2). (2.5.8)

Recall from Example 2.4.5 that for differential forms, the transport operation ϕ∗
coincides with the pull-back under ϕ.

Remark 2.5.3

1. Let T ∈ Γ (T
q
pM) and let ϕ : M → N be a diffeomorphism. Given local charts

(U,κ) and (V ,ρ) on M and N , respectively, the local formula for the transport
(2.5.6) of T is given by (2.5.4), with T replaced by ϕ∗T on the left hand side and
by T ◦ ϕ−1 on the right hand side, and with A and Ã given by

Ai
j = [(

ρ ◦ ϕ ◦ κ−1)′ ◦ κ ◦ ϕ−1]i
k
, Ãi

j = [(
κ ◦ ϕ−1 ◦ ρ−1)′ ◦ ρ

]i
j
.

The proof of this fact is left to the reader (Exercise 2.5.3).
2. Let (U,κ) be a local chart on M . We compare the corresponding local represen-

tative κ∗(T�U) of a tensor field T ∈ Γ (T
q
pM) with the local representative of the

mapping T : M → T
q
pM with respect to the induced chart ((π⊗)−1(U), κ⊗) on

T
q
pM , given by

κ⊗ ◦ T�U ◦ κ−1 : κ(U) → κ(U) ×T
q
pR

n.



2.6 Induced Bundles 81

Proofs are left to the reader (Exercise 2.5.4). Since

κ∗∂i = ∂

∂xi
, κ∗dxi = dκi, (2.5.9)

we have

κ∗(T�U) = ((
T κ

)j1...jq

i1...ip
◦ κ−1)dxi1 ⊗ · · · ⊗ ∂

∂xjq
. (2.5.10)

On the other hand,

(
κ⊗ ◦ T�U ◦ κ−1)(x) = (

x,
((

T κ
)j1...jq

i1...ip
◦ κ−1(x)

)
e∗i1 ⊗ · · · ⊗ ejq

)
,

where, as before, ei denote the elements of the standard basis of Rn and e∗i the
elements of the dual basis. The relation to κ∗(T�U) is as follows. The natural iden-
tifications of the tangent spaces Tx(κ(U)) with R

n and of the cotangent spaces
T∗

x(κ(U)) with R
n∗ induce a natural identification of tensor fields on κ(U) with

Ck−1-mappings κ(U) → T
q
pR

n. Since the latter identifies the elements of the
global frames { ∂

∂xi } in T(κ(U)) and {dxi} in T∗(κ(U)) with the constant map-

pings x �→ ei and x �→ e∗i , respectively, it identifies κ∗(T�U) with κ⊗ ◦T�U ◦κ−1.
Note that for M = R

n and κ = id, (2.5.9) yields ∂i = ∂
∂xi .

Exercises

2.5.1 Let M1 = R+ × S1, with S1 realized as the unit sphere in R
2, and M2 =

R
2 \ {0}. Consider the mapping ϕ : M1 → M2, ϕ(r, (a, b)) := (ra, rb). Let r

denote the standard coordinate on R+ and let φ denote the angle coordinate
of S1. Determine the coefficient functions of ϕ∗ ∂

∂r
and ϕ∗ ∂

∂φ
with respect to

the global frame { ∂
∂x

, ∂
∂y

} in T(R2 \ {0}).
2.5.2 Let M1 = R+ × S2, with S2 realized as the unit sphere in R

3, and M2 =
R

3 \ {0}. Consider the mapping ϕ : M1 → M2, ϕ(r, (a, b, c)) = (ra, rb, rc).
Let r denote the natural coordinate on R+ and let the angle coordinates ϑ , φ

on S2 be defined by a = cosφ sinϑ , b = sinφ sinϑ , c = cosϑ . Determine the
coefficient functions of ϕ∗ ∂

∂r
, ϕ∗ ∂

∂φ
and ϕ∗ ∂

∂θ
with respect to the global frame

{ ∂
∂x

, ∂
∂y

, ∂
∂z

} in T(R3 \ {0}).
2.5.3 Prove the transformation formula for the transport of tensor fields under dif-

feomorphisms given in Remark 2.5.3/1.
2.5.4 Prove the assertions of Remark 2.5.3/2.

2.6 Induced Bundles

Let (E,N,π) be a K-vector bundle of class Ck , let M be a Ck-manifold and let
ϕ ∈ Ck(M,N). Using ϕ, one can construct from E a vector bundle ϕ∗E over M by
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attaching to m ∈ M the fibre Eϕ(m) as follows. Define

ϕ∗E := {
(m,x) ∈ M × E : ϕ(m) = π(x)

}

and consider the surjective mapping πϕ∗ : ϕ∗E → M defined by πϕ∗
(m,x) := m.

The fibres are
(
ϕ∗E

)
m

≡ (
πϕ∗)−1

(m) = {m} × Eϕ(m).

They inherit a natural K-vector space structure from E.

Proposition 2.6.1 Under the above assumptions, ϕ∗E admits a Ck-structure such
that it is an embedded submanifold of M × E. Then,

1. (ϕ∗E,M,πϕ∗
) is a K-vector bundle of class Ck ,

2. the natural projection M × E → E restricts to a Ck-morphism ϕ∗E → E cov-
ering ϕ,

3. every local section s of E induces a local section of ϕ∗E defined by
(
ϕ∗s

)
(m) := (

m,s ◦ ϕ(m)
)
.

Proof We apply Proposition 1.7.3 in the formulation of Remark 1.7.4. Choose a
typical fibre F and a system of local trivializations {(Uα,χα) : α ∈ A} for E. For
every α ∈ A, consider the open subset Vα := ϕ−1(Uα) of M and the mapping

ψα : Vα × F → M × E, ψα(m,u) := (
m,χ−1

α

(
ϕ(m),u

))
.

Since ψα is obtained by composing the diffeomorphism χ−1
α with the natural in-

clusion mapping of the graph of ϕ�Vα
: Vα → Uα , by Example 1.6.12/2, it is a Ck-

embedding. Hence, the image ψα(Vα ×F) inherits a Ck-structure from Vα ×F and
with respect to this structure it is an embedded Ck-submanifold of M × E. Since
the image is ϕ∗E ∩ (Vα × π−1(Uα)) and since the Vα × π−1(Uα) are open subsets
of M × E covering ϕ∗E, we conclude that ϕ∗E is an embedded submanifold. It
remains to prove assertion 1; assertions 2 and 3 are then obvious. Since πϕ∗

is the
restriction of the natural projection M × E → M to the Ck-submanifold ϕ∗E, it
is of class Ck . Since, by construction, the ψα restrict to Ck-diffeomorphisms from
Vα × F to ϕ∗E ∩ (Vα × π−1(Uα)) = (πϕ∗

)−1(Vα), by inverting them we obtain
Ck-diffeomorphisms

χϕ∗
α : (πϕ∗)−1

(Vα) → Vα × F, χϕ∗
α (m,x) = (

m,χα,ϕ(m)(x)
)
. (2.6.1)

The latter satisfy conditions 2a and 2b of Definition 2.2.1. Thus, (ϕ∗E,M,πϕ∗
) is

a K-vector bundle of class Ck . �

Definition 2.6.2 (Induced vector bundle) The K-vector bundle (ϕ∗E,M,πϕ∗
) is

called the vector bundle induced from E by ϕ or the pull-back of E by ϕ. For a
local section s of E, the local section ϕ∗s of ϕ∗E is said to be induced from s by ϕ

or to be the pull-back of s by ϕ.
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Another common notation for the induced vector bundle is ϕ∗E ≡ M ×N E.

Remark 2.6.3

1. From the proof of Proposition 2.6.1 we note that via (2.6.1), every local triv-
ialization (U,χ) of E induces a local trivialization (ϕ−1(U),χϕ∗

) of ϕ∗E.
In particular, the pull-back of a trivial vector bundle is trivial. Moreover, if
ραβ : Uα ∩ Uβ → GL(F ) are the transition functions of a system of local trivi-
alizations of E, then ϕ∗ραβ : ϕ−1(Uα) ∩ ϕ−1(Uβ) → GL(F ) are the transition
functions of the induced system of local trivializations of ϕ∗E.

2. Let (Ei,Mi,πi), i = 1,2, be K-vector bundles of class Ck and let Φ : E1 → E2
be a morphism with projection ϕ : M1 → M2. Φ naturally decomposes as

E1
Φver−→ ϕ∗E2

Φhor−→ E2, (2.6.2)

where Φver is given by Φver(x) = (π1(x),Φ(x)), x ∈ E1, and Φhor denotes the
induced vector bundle morphism of Proposition 2.6.1/2. One can check that Φver
is a vertical morphism, with differentiability of class Ck following from Propo-
sition 1.6.10 and the fact that ϕ∗E is an embedded submanifold of M × E.
Using this decomposition, one can derive the following characterization of iso-
morphisms in terms of their projections and fibre mappings (Exercise 2.6.1): a
morphism is an isomorphism iff its projection is a diffeomorphism and its fibre
mappings are bijective.

Example 2.6.4

1. If ϕ : M → N is constant with ϕ(m) = p, then ϕ∗E coincides with the product
vector bundle M × Ep .

2. If M ⊂ N is an open subset and j : M → N is the natural inclusion mapping,
j∗E can be identified with the restriction E�M , see Example 2.2.3/3.

3. Let M = N = S1 and let E be the Möbius strip of Example 2.2.4. Realize S1

as the unit circle in C and consider the n-fold covering ϕn : S1 → S1, ϕn(z) =
zn. Since ϕ∗

nE is a differentiable real vector bundle over S1 of dimension 1,
according to Remark 2.3.14, it must be isomorphic to either E or the product
vector bundle S1 ×R. Indeed, one finds (Exercise 2.6.2)

ϕ∗
nE ∼=

{
E | n odd,

S1 ×R | n even.

4. Let E1 and E2 be K-vector bundles of class Ck over M , let E1 × E2 denote the
product vector bundle over M ×M , see Exercise 2.2.7, and let Δ : M → M ×M

denote the diagonal mapping, Δ(m) = (m,m). The pull-back Δ∗(E1 × E2) is
naturally isomorphic to the direct sum E1 ⊕ E2 (Exercise 2.6.3).

5. If E is a K-vector bundle of class Ck over N and (M,ϕ) is a Ck-submanifold of
N , the induced vector bundle ϕ∗E is referred to as the restriction of E to M and
is usually denoted by E�M . This applies in particular to E = TN , where ϕ∗TN

is a real vector bundle over M of class Ck−1 and dimension dimN .
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Exercises
2.6.1 Use the natural decomposition (2.6.2) of vector bundle morphisms to show

that a morphism is an isomorphism iff its projection is a diffeomorphism and
the fibre mappings are bijective, cf. Remark 2.6.3/2.

2.6.2 Prove the statement of Example 2.6.4/3 about the pull-back of the Möbius
strip by means of a covering of S1.

2.6.3 Show that Δ∗(E1 × E2) ∼= E1 ⊕ E2, see Example 2.6.4/4.

2.7 Subbundles and Quotient Bundles

Definition 2.7.1 (Vector subbundle) Let (Ei,Mi,πi), i = 1,2, be K-vector bundles
of class Ck and let Φ : E1 → E2 be a morphism. The pair (E1,Φ) is called a sub-
bundle, an initial subbundle or an embedded subbundle of E2 if it is, respectively, a
submanifold, an initial submanifold or an embedded submanifold. If M1 = M2 = M

and Φ is vertical, (E1,Φ) is called a vertical subbundle or a subbundle over M .

At the very beginning, we observe that Propositions 1.6.10 and 1.6.14 remain true
if the term submanifold is replaced by subbundle and Ck-mapping by morphism.
The following two specific types of subbundles are the building blocks for arbitrary
subbundles.

Example 2.7.2 (Vertical subbundle) If E1 and E2 are K-vector bundles of class Ck

over M and Φ : E1 → E2 is an injective vertical morphism, then (E1,Φ) is a ver-
tical subbundle of E2. Vertical subbundles are embedded. To see this, it suffices to
show that (E1,Φ) is an embedded submanifold of E2. Let li denote the dimensions
of Ei . Necessarily, l1 ≤ l2. Let x ∈ E1 and m := π1(x). Choose a local frame in
E1 at m. By injectivity, the image under Φ is a local l1-frame in E2. According to
Proposition 2.3.15/3, the latter can be complemented, over a possibly smaller do-
main U , to a local frame in E2 at m. The local representative of Φ with respect to
the local trivializations associated with these local frames in E1 and E2 is given by

U ×K
l1 → U ×K

l2 , (m,x) �→ (
m,(x,0)

)
.

Hence, it is an embedding. Since π−1
1 (U) = Φ−1(π−1

2 (U)), this implies that the
restriction Φ�Φ−1(π−1

2 (U))
is an embedding. Since π−1

2 (U) is an open neighbourhood

of Φ(x) and x was arbitrary, Remark 1.6.13/3 yields the assertion.

Example 2.7.3 (Restriction of the base manifold) Let (E,N,π) be a K-vector bun-
dle of class Ck and let (M,ϕ) be a Ck-submanifold of N . Let Φ : ϕ∗E → E de-
note the induced vector bundle morphism of Proposition 2.6.1/2. Recall from Ex-
ample 2.6.4/5 that ϕ∗E is referred to as the restriction of E to M and is alternatively
denoted by E�M . We show that (ϕ∗E,Φ) is a Ck-subbundle of E. If (M,ϕ) is initial
or embedded, so is (ϕ∗E,Φ). Indeed, the local representatives of Φ with respect to
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a system of local trivializations {(Uα,χα) : α ∈ A} of E and the induced system of
local trivializations of ϕ∗E are given by

χα ◦ Φ�(πϕ∗
)−1(ϕ−1(Uα)) ◦ (

χϕ∗
α

)−1 : ϕ−1(Uα) × F → Uα × F,

(m,u) �→ (
ϕ(m),u

)
.

First, this implies that Φ is an immersion. Second, since χα and χ
ϕ∗
α are diffeomor-

phisms and since

(
πϕ∗)−1(

ϕ−1(Uα)
) = Φ−1(π−1(Uα)

)
,

this implies that the submanifolds (Φ−1(π−1(Uα)),Φ�Φ−1(π−1(Uα))) inherit the
property of being initial or embedded from (M,ϕ). Then, Remark 1.6.13/3 yields
the assertion.

The following proposition states criteria for a morphism to define a subbundle.

Proposition 2.7.4 Let (Ei,Mi,πi), i = 1,2, be K-vector bundles of class Ck , let
Φ : E1 → E2 be a morphism and let ϕ : M1 → M2 be the projection. The following
statements are equivalent.

1. (E1,Φ) is, respectively, a subbundle, initial subbundle or embedded subbundle
of E2.

2. (M1, ϕ) is, respectively, a submanifold, initial submanifold or embedded sub-
manifold of M2 and the fibre mappings Φm : E1,m → E2,ϕ(m) are injective for all
m ∈ M1.

3. In the decomposition (2.6.2), (E1,Φver) is a vertical subbundle of ϕ∗E2 and
(ϕ∗E2,Φhor) is, respectively, a subbundle, initial subbundle or embedded sub-
bundle of E2.

Item 3 gives a precise meaning to the statement made above that vertical subbun-
dles (Example 2.7.2) and restrictions of the base manifold (Example 2.7.3) provide
the building blocks for arbitrary subbundles.

Proof 1 ⇒ 2: The fibre mappings Φm are obviously injective. Since they are linear,
one has the commutative diagram

M1

Φ◦s0,1

ϕ

E2

M2

s0,2



86 2 Vector Bundles

where s0,i denotes the zero sections of Ei . According to Proposition 2.3.5, s0,1 and
s0,2 are embeddings. Hence, the assertion follows by applying Proposition 1.6.14.
(We encourage the reader to work out the argument for each case.)

2 ⇒ 3: Since the mappings Φm are injective, Φver is injective, hence the asser-
tion on (E1,Φver) holds due to Example 2.7.2. The assertion on (ϕ∗E2,Φhor) was
proved in Example 2.7.3.

3 ⇒ 1: Since vertical subbundles are embedded, this follows from Proposi-
tion 1.6.14/1. �

In the following proposition we give criteria for a family of fibre subspaces of a
vector bundle to define a vertical subbundle. The proof is left to the reader (Exer-
cise 2.7.1).

Proposition 2.7.5 (Families of fibre subspaces) Let (E2,M,π) be a K-vector bun-
dle of class Ck . For every m ∈ M , let E1,m ⊂ E2,m be a linear subspace. Define
E1 := ⋃

m∈M E1,m. The following statements are equivalent.

1. E1 admits a Ck-structure such that it is a vertical subbundle of E2 of dimen-
sion r .

2. There exists a covering of M by local r-frames in E2 which span E1.
3. There exists a covering of M by local frames in E2 whose first r elements

span E1.
4. There exists a system of local trivializations {(Uα,χα) : α ∈ A} of E2 and a

subspace F1 of dimension r of the typical fibre F2 such that the restrictions of
the χα to E1 take values in Uα × F1.

Example 2.7.6 (Regular distribution) Let M be a Ck-manifold. A vertical subbun-
dle (D,Φ) of TM is called a regular distribution (in the geometrical sense) on M .
According to Proposition 2.7.5, a family of r-dimensional subspaces Dm ⊂ TmM ,
m ∈ M , defines a distribution iff for every m0 ∈ M there exists an open neighbour-
hood U and pointwise linearly independent local vector fields X1, . . . ,Xr on U

such that Dm is spanned by X1,m, . . . ,Xr,m for all m ∈ U . There is a more general
notion of distribution on M which will be defined and studied in Sect. 3.5.

Example 2.7.7 (Kernel and image) Let Ei be K-vector bundles over M of class Ck

and dimension li , i = 1,2, and let Φ : E1 → E2 be a vertical morphism of constant
rank r . Define the image and the kernel of Φ to be

imΦ :=
⋃

m∈M

imΦm, kerΦ :=
⋃

m∈M

kerΦm,

respectively. We show that imΦ is a vertical subbundle of E2 of dimension r and
that kerΦ is a vertical subbundle of E1 of dimension l1 − r .

Let m0 ∈ M . Choose a basis {e1, . . . , el1} of E1,m0 such that er+1, . . . , el1 span
kerΦm0 . Extend this basis to a local frame {s1, . . . , sl1} in E1, cf. Proposition 2.3.15.
By construction, the vectors Φm0(e1), . . . ,Φm0(er ) form a basis of the subspace
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imΦm0 ⊂ E2,m0 . In particular, the local sections Φ ◦s1, . . . ,Φ ◦sr of E2 are linearly
independent at m0 so that, by possibly shrinking the domain of definition of the si ,
we may assume that they form a local r-frame in E2. Since Φ has rank r , this local
r-frame spans imΦm for all m belonging to the domain of definition. First, in view
of Proposition 2.7.5, this yields the assertion for imΦ . Second, this implies that there
exist local Ck-functions aij , i = r + 1, . . . , l1, j = 1, . . . , r , on M such that

Φ ◦ si =
r∑

j=1

aijΦ ◦ sj , r + 1 ≤ i ≤ l1.

Then the local sections s̃r+1, . . . , s̃l1 given by

s̃i := si −
r∑

j=1

aij sj , r + 1 ≤ i ≤ l1,

form a local (l1 − r)-frame in E1 spanning kerΦm. Applying Proposition 2.7.5 once
again, we obtain the assertion for kerΦ .

Example 2.7.8 (Annihilator) Let V be a vector space. The annihilator of a subspace
W ⊂ V is the subspace

W 0 := {
ν ∈ V ∗ : ν�W = 0

}

of the dual vector space V ∗. Let E2 be a K-vector bundle over M of class Ck and
dimension l2 and let (E1,Φ) be a vertical subbundle of dimension l1. Then,

E0
1 :=

⋃

m∈M

(
Φ(E1,m)

)0

is a vertical subbundle of dimension l2 − l1 of the dual vector bundle E∗
2 , called

the annihilator of E1 in E2. In view of Proposition 2.7.5/3, this follows from the
obvious fact that for every local frame in E2 whose first l1 elements span (E1,Φ),
the last l2 − l1 elements of the corresponding dual local frame in E∗

2 span E0
1 . The

annihilator of a general vector subbundle (E1,Φ) is defined to be (E0
1 , (Φhor)�E0

1
),

where E0
1 is the annihilator of the vertical subbundle (E1,Φver) of ϕ∗E2 and ϕ is

the projection of Φ . It has the same base manifold as E1.

Remark 2.7.9

1. For every vertical subbundle (E1,Φ) of E2 there exists a complement in E2, that
is, a vertical subbundle (Ẽ1, Φ̃) of E2 such that E2 = E1 ⊕ Ẽ1. The proof is in
two steps.
(a) Show that for every K-vector bundle (E,M,π) of class Ck there exists a

Ck-function h : E ⊗ E → K such that hm := h�Em⊗Em
is a scalar product on

Em for all m ∈ M (Exercise 2.7.2).9

9(E,h) is called a Euclidean vector bundle if K = R and a Hermitian vector bundle if K = C.
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(b) Show that the family of hm-orthogonal complements of the subspaces
E1,m ⊂ E2,m defines a vertical subbundle of E2 (Exercise 2.7.3).

2. Let M be a compact smooth manifold. The statement of 1 provides part of the
proof that for every smooth vector bundle E over M there exists a smooth vec-
tor bundle Ẽ over M such that E ⊕ Ẽ is trivial. For the remaining part, see
for example [125, Prop. 1.4].10 This is known as the cancellation property and
is an important ingredient in what is called the K-theory of M . Let us have a
glimpse at the reduced version of the latter. Two smooth K-vector bundles E and
Ẽ over M are said to be stably equivalent if E ⊕ (M × K

r ) is isomorphic to
Ẽ ⊕ (M ×K

s) for some r, s. The set of stable equivalence classes is an Abelian
semigroup with respect to the operation of direct sum, where the unit element is
given by the class of trivial bundles. Now, the cancellation property yields that
every element of this semigroup has an inverse, hence the semigroup is in fact
a group, called the reduced real (for K = R) or complex (for K = C) K-group
of M . Together with the operation of tensor product, it is an Abelian ring.

Next, we discuss quotient vector bundles. Let (E2,M,π2) be a K-vector bundle
of class Ck and let (E1,Φ) be a vertical subbundle of E2 of rank r with projec-
tion π1. Since vertical subbundles are embedded, we may assume that E1 ⊂ E2
and Φ is the natural inclusion mapping. E1,m is a vector subspace of E2,m for all
m ∈ M , and we can form the quotient spaces E2,m/E1,m. Let

E2/E1 :=
⊔

m∈M

E2,m/E1,m

and let π : E2/E1 → M denote the natural projection to the index set. By construc-
tion, the fibres π−1(m) are vector spaces. According to Proposition 2.7.5, there ex-
ists a family of local trivializations {(Uα,χ2α) : α ∈ A} of E2 and an r-dimensional
subspace F1 of the typical fibre F2 of E2 such that the restrictions of χ2α to E1 take
values in Uα × F1. For any such χ2α , we define a mapping

χα : π−1(Uα) → Uα × F2/F1, χα

([x]) := (
m,

[
χ2α,m(x)

])
,

where m = π2(x). To check differentiability of the corresponding transition map-
pings, choose a complement F̃1 of F1 in F2 and let λ : F2/F1 → F2 denote the
linear mapping which assigns to each class its unique representative in F̃1. More-
over, let pr : F2 → F2/F1 be the natural projection. Since χβ ◦ χ−1

α decomposes
as

χβ ◦ χ−1
α = (id × pr) ◦ (

χ2β ◦ χ−1
2α

) ◦ (id × λ),

it is of class Ck . Then, Remark 2.2.5 yields that the family {(Uα,χα) : α ∈ A} de-
fines a Ck-structure on E2/E1 such that (E2/E1,M,π) is a K-vector bundle of
class Ck over M . This Ck-structure obviously does not depend on the choice of the
subspace F1.

10Compactness of M is necessary here, see Example 3.6 in [125].
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Definition 2.7.10 (Quotient vector bundle) The vector bundle (E2/E1,M,π) con-
structed above is called the quotient vector bundle of E2 by E1.

Remark 2.7.11

1. The fibrewise natural projections E2,m → E2,m/E1,m to classes combine to a
natural projection E2 → E2/E1. The latter is a vertical morphism, because its
local representative with respect to a local trivialization (Uα,χ2α) of E2 whose
restriction to E1 takes values in Uα × F1, and the induced local trivialization of
E2/E1 is given by the natural projection F2 → F2/F1. By composing a local
section s of E2 with the natural projection E2 → E2/E1 one obtains a local
section of E2/E1, denoted by [s].

2. Let li denote the dimension of Ei , i = 1,2. For any local frame {s1, . . . , sl2} in E2
with the property11 that s1, . . . , sl1 span E1, {[sl1+1], . . . , [sl2 ]} is a local frame
in E2/E1.

3. According to Remark 2.7.9/1, E1 admits a complement Ẽ1 in E2. For any such
complement, the natural projection E2 → E2/E1 restricts to a vertical isomor-
phism Ẽ1 → E2/E1. This follows at once by observing that the induced mapping
is a bijective vertical morphism. Thus, every complement defines a vector bundle
isomorphism

E2 ∼= E1 ⊕ (E2/E1).

4. By a coorientation, or transversal orientation, of E1 in E2 one means an orien-
tation of the quotient vector bundle E2/E1. Accordingly, E1 is said to be coori-
entable, or transversally orientable, in E2 if E2/E1 is orientable.

Example 2.7.12 (Homomorphism theorem) Let E1 and E2 be K-vector bundles of
class Ck over M and let Φ : E1 → E2 be a vertical morphism of constant rank.
Then, the induced mapping

Φ̃ : E1/kerΦ → imΦ

is an isomorphism. Indeed, Φ̃ is obviously bijective and fibrewise linear. To see that
it is of class Ck , one may choose a complement E0 of kerΦ in E1 and write Φ̃

as the composition of the isomorphism E1/kerΦ → E0 and the restriction of Φ̃ in
domain to E0. Thus, Φ̃ is a bijective vertical morphism and hence an isomorphism.

Example 2.7.13 (Dual quotient vector bundle) Let E2 be a K-vector bundle of class
Ck over M and let E1 be a vertical subbundle. The dual vector bundle (E2/E1)

∗
is called the dual quotient vector bundle. It is naturally isomorphic over M to the
annihilator E0

1 . Indeed, the mapping

Φ : E0
1 → (E2/E1)

∗,
(
Φm(ξ)

)([x]) := ξ(x), ξ ∈ E∗
2,m, x ∈ E2,m,

11Such local frames exist by Proposition 2.7.5.
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is well-defined, bijective and fibrewise linear. Hence, it remains to show that Φ is of
class Ck . To see this, choose a local frame {s1, . . . , sl2}, whose first l1 elements span
E1 over U . Then, the elements s∗i , i = l1 +1, . . . , l2, of the dual local frame span E0

1
over U and, according to Remark 2.7.11/2, the dual local frame {[sl1+1]∗, . . . , [sl2 ]∗}
spans (E2/E1)

∗ over U . By construction, the local representative of Φ with respect
to the local trivializations defined by these local frames does not depend on m and
is hence of class Ck , as asserted.

To conclude this section, we discuss vector bundle structures induced by sub-
manifolds. Thus, let N be a Ck-manifold and let (M,ϕ) be a Ck-submanifold of N .

Proposition 2.7.14 (TM,ϕ′) is a vector subbundle of TN . It is initial or embedded
iff so is (M,ϕ).

Proof Recall from Example 2.6.4/5 that the restriction of TN to the submanifold
(M,ϕ) is defined to be the induced vector bundle (TN)�M := ϕ∗TN . Since ϕ is an
immersion, the vertical morphism (ϕ′)ver : TM → (TN)�M in the natural decom-
position (2.6.2) of ϕ′ is injective. Hence, (TM,(ϕ′)ver) is a vertical subbundle of
(TN)�M . Then, Proposition 2.7.4/3 yields that (TM,ϕ′) is a subbundle of TN and
that it is initial or embedded if so is (M,ϕ). The converse direction follows from
Proposition 1.6.14 and the fact that the zero sections of the tangent bundles of M

and N are embeddings. The details are left to the reader (Exercise 2.7.4). �

Remark 2.7.15 Let V be a finite-dimensional real vector space and let M ⊂ V be an
embedded Ck-submanifold. For every v ∈ M , the natural identification of TvV with
V of Example 1.4.3/2 identifies TvM with a subspace of V , which we denote by the
same symbol. In particular, in case M is open in V , one has TvM = V ; and in case
M is a level set of a Ck-mapping f , one has TvM = kerf ′(v). In the general case,
TvM is just the tangent plane of M at v, shifted by −v to the origin. Thus, together
with the induced natural identification of TV with V ×V , Proposition 2.7.14 yields
a natural identification of TM with the embedded Ck−1-submanifold

{
(v,X) ∈ M × V : X ∈ TvM

}

of M × V and a natural representation of vector fields on M by Ck−1-mappings
X : M → V satisfying X(v) ∈ TvM for all v ∈ M . This generalizes Remarks 2.1.4/2
and 2.3.4/2.

A further consequence of the observation that (TM,(ϕ′)ver) is a vertical subbun-
dle of (TN)�M is the following. A vector field X on N is said to be tangent to the
submanifold (M,ϕ) if Xϕ(m) ∈ ϕ′(TmM) for all m ∈ M .

Proposition 2.7.16 Let N be a manifold and let (M,ϕ) be a submanifold of N . For
every vector field X on N which is tangent to (M,ϕ), there exists a unique vector
field X̃ on M such that ϕ′ ◦ X̃ = X ◦ ϕ, that is, X̃ and X are ϕ-related.
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We will say that X̃ is induced from X and call it the restriction of X to (M,ϕ).

Proof Due to the assumption, the equation ϕ′ ◦ X̃ = X ◦ ϕ defines a mapping X̃ :
M → TM . X̃ is the restriction in range to TM of the section of (TN)�M = ϕ∗TN

induced from X by ϕ. Since vertical subbundles are embedded, Proposition 1.6.10
yields that X̃ is differentiable,12 that is, of class Ck−1. �

Finally, we introduce

Definition 2.7.17 (Normal and conormal bundle) Let N be a manifold and let
(M,ϕ) be a submanifold of N .

1. The quotient vector bundle NM := (TN)�M/TM is called the normal bundle of
(M,ϕ). Its fibres are called the normal spaces of M at m ∈ M . They are denoted
by NmM .

2. The dual vector bundle N∗M := (NM)∗ is called the conormal bundle of (M,ϕ).
Its fibres are called the conormal spaces of M at m ∈ M . They are denoted by
N∗

mM .

Remark 2.7.18

1. The normal and the conormal bundle of (M,ϕ) are real vector bundles over M

of class Ck−1 and dimension dimN − dimM . According to Remark 2.7.11/3,
NM is isomorphic to an arbitrary complement of TM in (TN)�M , and it is of-
ten realized in this way. For an example, see Exercise 2.7.6. According to Ex-
ample 2.7.13, N∗M is naturally isomorphic to the annihilator (TM)0 of TM in
(TN)�M .

2. By a coorientation, or a transversal orientation, of (M,ϕ) one means an orienta-
tion of NM . Accordingly, (M,ϕ) is said to be coorientable, or transversally ori-
entable, if the normal bundle NM of (M,ϕ) is orientable. This is consistent with
the terminology for vector subbundles introduced in Remark 2.7.11/4: a coorien-
tation of (M,ϕ) is the same as a coorientation of TM in (TN)�M .

3. We discuss local frames in NM and N∗M induced by local charts on N adapted
to M . Denote r := dimM and s := dimN . For simplicity, we consider the case of
M being a subset of N . We leave it to the reader to write down the respective local
frames for the general situation. According to Proposition 1.6.7, for every m ∈
M , there exists an open neighbourhood U of m in M and a local chart (V ,ρ) on
N at m such that U ⊂ V and (U,ρ�U) is a local chart on M , taking values in the
subspace R

r × {0} ⊂ R
s . Then, {∂i�U : i = 1, . . . , s} is a local frame in (TN)�M

whose first r elements span TM over U . According to Remark 2.7.11/2, then
{[∂i�U ] : i = r + 1, . . . , s} is a local frame in NM . This, in turn, induces a dual
local frame {[∂i�U ]∗ : i = r + 1, . . . , s} in N∗M , see Example 2.4.1. According

12By construction, X̃ is also the restriction of X in domain to the submanifold (M,ϕ) and in range
to the subbundle (TM,ϕ′). This does not help for the argument though, because the latter need not
be embedded, so that Proposition 1.6.10 does not apply here.
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to Example 2.7.13, the natural isomorphism N∗M → (TM)0 maps the latter to
the local frame in (TM)0 consisting of the last s − r elements of the local frame
{(dρi)�U : i = 1, . . . , s} in ((TN)�M)∗ ≡ (T∗N)�M .

4. Assume that (M,ϕ) is embedded. The subset

Ck
M(N) = {

f ∈ Ck(N) : ϕ∗f = 0
}

(2.7.1)

is an ideal of the associative algebra Ck(N), called the vanishing ideal of M .
By means of this ideal, for m ∈ M , the subspaces TmM of Tϕ(m)N and N∗

mM ∼=
(TmM)0 of T∗

ϕ(m)(N) can be characterized as follows:

ϕ′(TmM) = {
X ∈ Tϕ(m)N : X(f ) = 0 for all f ∈ Ck

M(N)
}
, (2.7.2)

N∗
mM = {

ξ ∈ T∗
ϕ(m)N : ξ = df

(
ϕ(m)

)
for some f ∈ Ck

M(N)
}
. (2.7.3)

The proof is left to the reader (Exercise 2.7.5). Beware that (2.7.2) or (2.7.3) need
not hold if M is not embedded. A counterexample is provided by the figure eight
submanifold (R, γ±) of Example 1.6.6/2. At the crossing point, the derivative of
any element of C∞

M (N) vanishes. Hence, for the right hand side of (2.7.2) one
obtains Tϕ(m)N .

Exercises
2.7.1 Prove Proposition 2.7.5 by means of Proposition 2.3.15.
2.7.2 Let (E,M,π) be a K-vector bundle of class Ck . Use a system of local trivial-

izations and a subordinate partition of unity of M to construct a Ck-function
h : E ⊗ E → K such that hm := h�Em⊗Em

is a scalar product on Em for all
m ∈ M .

2.7.3 Show that every vertical subbundle admits a complement.
2.7.4 Complete the proof of Proposition 2.7.14.
2.7.5 Prove Eqs. (2.7.2) and (2.7.3) of Remark 2.7.18, characterizing the tangent

and the conormal spaces of an embedded submanifold.
2.7.6 Using the Euclidean metric, construct the normal bundle of the submanifold

Sn of Rn+1 as a complement of TSn in (TRn+1)�Sn . Is this bundle trivial?
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