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Abstract A mathematical programming formulation of strain-driven path-following
strategies to perform shakedown and limit analysis for perfectly elastoplastic mate-
rials in a FEM context, is presented. From the optimization point of view, standard
arc–length strain driven elastoplastic analysis, recently extended to shakedown, are
identified as particular decomposition strategies used to solve a proximal point al-
gorithm applied to the static shakedown theorem that is then solved by means of
a convergent sequence of safe states. The mathematical programming approach al-
lows: a direct comparison with other nonlinear programming methods, simpler con-
vergence proofs and duality to be exploited. Due to the unified approach in terms of
total stresses, the strain driven algorithms become more effective and less nonlin-
ear with respect to a self equilibrated stress formulation and easier to implement in
existing codes performing elastoplastic analysis.

1 Introduction

The static and kinematic shakedown theorems, including the limit analysis as a spe-
cial case, furnish, in a direct and elegant fashion, a reliable safety factor against
plastic collapse, loss in functionality due to excessive deformation (ratcheting) or
collapse due to low cycle fatigue (plastic shakedown) [1]. Based on these theorems
the so called direct methods evaluate the safety factor solving a nonlinear convex
optimization problem that usually involves hundreds of thousands of unknowns and
constraints when real structures are discretized by means of finite elements.

Nowadays this kind of problems could be efficiently solved using interior point
methods (IPM) especially when the problem is formulated as a conic programming
one and the solution is obtained using primal dual formulations. The work done
in this field is impressive and in rapid development: significant references can be
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found in the works of Boyd [5], Bertsekas [7], Nemirosky and Todd [8] and Wright
[6, 9] among others. As a great number of yield constraints are described as second
order cones efficient interior point algorithms for shakedown and limit analysis have
been proposed (see [11–17] and references therein). Alternatively the limit load
can also be obtained by means of the complete reconstruction of the elasto-plastic
equilibrium path, using standard path-following strain driven strategies (see Armero
[2] for a review). An extension of these consolidated and widely used algorithms for
shakedown analysis was proposed in [3, 4].

In this work it will be show how strain driven elastoplastic analysis based on clos-
est point projection return mapping schemes and Riks arc-length solution, can be
obtained from a mathematical programming problem, consisting in the application
of the proximal point algorithm to the static shakedown theorem and in the solution
of this problem by means of dual decomposition methods [7, 18, 19]. In particular
the pseudo elasto-plastic step coincides with a step of the proximal point algorithm
(see also [10] for a similar formulation) while the optimization subproblems, deriv-
ing from the decomposition techniques, correspond exactly to the standard return
mapping by closest point projection scheme used to evaluate the plastically admis-
sible stress.

To obtain a unified formulation for limit and shakedown analysis, the problem
is formulated in terms of global stress and equivalent reference load. This choice is
particularly advantageous in the strain driven case because it allows a less nonlinear
formulation of the problem and makes it easy to fulfill some convergence require-
ments of the algorithm. The proposed formulation is similar to that presented in
[3] and, due to the requirement, in the shakedown case, of a Multi-Surface Return
Mapping process, will be called MS-RM. The mathematical programming point of
view also enables the formulation of a new decomposition strategy based on a Sin-
gle Surface Return Mapping which will be called SS-RM. It requires the solution of
the same closest point projection problem as in the standard limit analysis case.

Apart from the mathematical programming reformulation, strain driven incre-
mental analysis due to its classical mechanical interpretation, gives other important
information in addition to the shakedown or limit load multiplier evaluation. For
the fixed load case, the extremal paths theory of Ponter and Martin [20], gives a
coherent justification for the holonomic transformation of the incremental constitu-
tive elasto-plastic relationships obtained by means of a backward Euler integration
scheme (closest point return mapping algorithm) and a mechanical sense to the so
evaluated equilibrium path allowing the reuse of the static and kinematic parts of
the solution at each equilibrium point. A similar interpretation also holds for shake-
down where the solution algorithm can be viewed as a step-by-step incremental
process aiming to simulate the case of a proportional increase in the domain of the
loads such that, for each new point of the equilibrium path, the load recycles within
all admissible combinations, up to the achievement of elastic adaptation. This in-
terpretation also allows a possible extension of the strain driven algorithms to the
shakedown analysis of more complex materials.

Strain driven algorithms are compared, in terms of performance, accuracy and
robustness with the solution obtained with the commercial code MOSEK [24] im-
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plementing an Interior Point solution method. The application regards plane stress
problems with von Mises yield functions.

The work is organized as follows: in Sect. 2 shakedown theory is presented and
rewritten in a discrete FEM form for simpler use in a mathematical programming
context; in Sect. 3 shakedown theorems and a mathematical programming version
of the elastoplastic step and its relation with proximal point methods is presented;
in Sect. 4 we illustrate the numerical methods used to evaluate the shakedown load;
in Sect. 5 we give some details on the numerical implementations of the algorithms
proposed; in Sect. 6 the finite element discretization is presented; finally in Sect. 7
an extensive series of numerical tests showing the reliability and effectiveness of the
proposed formulation is reported.

2 The Discrete Equation for Shakedown and Limit Analysis

In the following, limit and shakedown problems are reformulated in terms of finite
element algebraic equations for a better framing in the usual mathematical program-
ming notation.

2.1 The Discrete Representation of Static and Kinematic Fields

Using a mixed finite element format and a vector notation, we assume that the dis-
placement d[x] ∈ �nu and the stress σ [x] ∈ �nσ of a point x of the body domain B
are interpolated as:

σ [x] = Nσ [x]t, d[x] = Nu[x]u (1)

where Nσ [x] and Nu[x] collect the interpolation functions while global vectors u
and t collect the Nσ stress node vectors σ g := σ [xg] and Nu displacement node
vectors di := d[xi] in a finite numbers of points as:

t =
⎡
⎢⎣

σ 1
...

σNσ

⎤
⎥⎦ , u =

⎡
⎢⎣

d1
...

dNu

⎤
⎥⎦

Making D[x] the kinematical operator, the relationship between strain ε[x] ∈ �nσ

and displacements d[x] can be written as:

ε[x] = Nε[x]d, Nε = D[x]Nu[x]
Using the virtual work expression, the finite element representation of the equilib-
rium equations becomes:

QT t = λp with QT ≡
∫

B

Nε[x]T Nσ [x] dV (2)
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and the external force vector, when only mechanical actions are considered, is

p =
∫
B

NT
u b[x]dV +

∫
∂f B

NT
u f[x]dA

b[x] being the external body forces and f[x] the surface force on the boundary ∂f B.
The discrete form of the compatibility condition is

ρ = Qu (3)

where ρ = [ε1, . . . ,εNσ ]T collects the discrete strain conjugate, in the virtual work
sense, to t. Finally linear elastic constitutive law is defined by the elastic operator
E[x] so that

σ [x] = E[x]ε[x], ε[x] = E[x]−1σ [x] (4)

From now on the dependence of quantities on x will be omitted for an easier reading.

2.2 The Elastic Envelope of the Stresses

We assume that the external actions p are expressed as a combination of basic loads
pi belonging to the admissible closed and convex load domain

P :=
{

p ≡
p∑

i=1

aipi : amin
i ≤ ai ≤ amax

i

}
(5)

Denoting with tei the elastic stress solution for pi , the elastic envelope Se

Se :=
{

te ≡
p∑

i=1

aitei : amin
i ≤ ai ≤ amax

i

}
(6)

defines the set of the elastic stresses te produced by each load path contained in P.
By construction Se and P are convex polytopes and each te ∈ Se can be expressed

as a convex combination of the Nv elastic envelope vertexes tEα that can be usefully
referred to the reference stress tE0 so obtaining:

te = tE0 +
Nv∑
α=1

tαtEα, tα ≥ 0,

Nv∑
α=1

tα = 1 (7)

If the external loads increase by a real number λ the elastic envelope becomes
λSe := {λte : te ∈ Se}.

Note that the vertexes of the stress envelope could be a subset of the 2p vertexes
of P, however, to simplify the presentation we assume, from now on, Nv = 2p .
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2.3 The Shakedown Elastic Domain

Assuming elastic perfectly plastic material the stress σ will be plastically admissible
if

f
[
σ [x]] ≡ φ

[
σ [x]]− σy[x] ≤ 0 ∀x ∈ B (8)

where the yield function f is a sum of the homogeneous convex function φ and of
the yield stress σy ∈ R. In a FEM context of analysis the previous condition could
be expressed in a weighted sense on the element, as proposed for example in [22],
or tested in a finite number of points. For the sake of simplicity we assume control
of plastic admissibility in the Nσ stress nodes so that t will be plastically admissible
if

f[t] ≤ 0 ⇐⇒ f [σ g] ≤ 0 ∀g = 1, . . . ,Nσ (9)

where, from now on, vector inequality will be considered in a componentwise fash-
ion and

f[t] = [
f [σ 1] f [σ 2] . . . f [σNσ ]]T , f [σ g] ≡ φ[σ g] − σgy (10)

with σgy := σy[xg].
Finally it is useful to express the plastically admissible condition for all the

stresses contained in the amplified elastic envelope λSe translated by t̄. Due to the
convexity of f and Se this can be easily expressed in terms of the plastic admissibility
of all vertex stresses tα = λ(tEα + tE0) + t̄

f[λte + t̄] ≤ 0, ∀te ∈ Se ⇐⇒ f
[
tα
] ≤ 0, ∀α (11)

From now on we denote with a Greek superscript vertex quantities.

3 Shakedown and Limit Analysis Multipliers

Shakedown theorems used for the evaluation of the larger multiplier λa , called
shakedown safety factor, amplifying the load domain P are rewritten in a unified
format. A particular mathematical programming technique, the proximal point al-
gorithm, to solve the static shakedown theorem will also be introduced. We always
refer to shakedown analysis, the limit analysis case being simply obtained when the
elastic envelope collapses in a single point.

3.1 Shakedown Theorems

Sufficient and necessary conditions for shakedown are given in the classic shake-
down theorems [1] that will be written in a form suitable for FEM numerical imple-
mentations. In particular the Bleich–Melan static theorem is formulated in terms of
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total stress, instead of self-equilibrated ones, making a unified notation for shake-
down and limit analysis possible. The Koiter kinematical theorem is obtained as the
dual, from the optimization point of view, of the primal static theorem so as to en-
sure an easy extension, to these discrete forms, of a series of properties regarding
existence, uniqueness, duality gap, etc.

3.1.1 Static Theorem, Safe Multipliers and Multipliers Bounds

The static theorem states that a load domain multiplier λs will be safe if there exists
a time-independent self-equilibrated stress field t̄ so that each stress in λsSe + {t̄} is
plastically admissible. The multiplier λa can be evaluated as the maximum of these
safe multipliers recasting the static theorems in terms of the reference stress tE0:

maximize λs

subject to QT t = λsp

tα = t + λstEα, α = 1, . . . ,Nv

f
[
tα
] ≤ 0, α = 1, . . . ,Nv

(12a)

with p ≡ QT tE0 and t ≡ t̄ +λstE0. When tE0 = 0 we have the classic form in terms
of the self-equilibrated stress. Furthermore, without any loss in generality, we can set
tE0 as a generic vertex of Se so t becomes the total stress of this vertex. We assume
tE1 ≡ 0 so deleting in (12a) the constraint t ≡ t1. An equivalent formulation for
(12a) is obtained eliminating all the variables tα using the linear equality constraints
and so the admissible conditions become:

fα[t, λ] ≡ f
[
t + λtEα

] ≤ 0. (12b)

When the external load domain collapses in a single point (amin
i = amax

i )
Eqs. (12a) directly transform into the standard form of the static theorem of limit
analysis. From (12a) we have that λa will be no greater than the values of the limit
load multiplier obtained for a generic p ∈ P, and then also of the limit load of each
vertex of P. It is worth noting that the plastic shakedown multiplier λ̄, simply ob-
tained by deleting the equilibrium constraints in Eq. (12a), is not less than λa . Its
evaluation, as will be better shown in the sequel, is obtained by solving a series of
small optimization subproblems.

Finally Eq. (12a) can be rewritten, using a compact notation, in a format similar
to that of the static theorem of the limit analysis:

maximize λs

subject to Q̃T t̃ = λs p̃

f̃[t̃] ≤ 0

(12c)
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where the following quantities have been defined

t̃ :=
⎡
⎢⎣

t1

...

tNv

⎤
⎥⎦ , f̃[t̃] :=

⎡
⎢⎣

f[t1]
...

f[tNv ]

⎤
⎥⎦ , p̃ :=

[
p
tE

]
, tE :=

⎡
⎢⎣

tE2

...

tENv

⎤
⎥⎦ (13)

and

Q̃T :=
[

QT ·
−ΣT Iα

]
, Σ := − [

I · · · I
]

(14)

where ·, I and Iα are respectively zero and identity matrices of the appropriate di-
mension. From now on we denote with a Greek superscript the vertex components
of a ( .̃ ) vector or matrix. The superscript 1, that denotes quantities of the reference
vertex, will be omitted when inessential.

3.1.2 The Dual Problem: The Kinematical Theorem

Static theorem is a primal nonlinear convex optimization problem. The Lagrangian
associated to it is

L [λ, t̃, μ̃,�ũ] = λ + �ũT
(
Q̃T t̃ − λp̃

)− μ̃T f̃[t̃]
where the Lagrange multipliers assume the following expression

μ̃ :=
⎡
⎢⎣

μ1

...

μNv

⎤
⎥⎦ , μα :=

⎡
⎢⎣

μα
1
...

μα
Nσ

⎤
⎥⎦ , ũ :=

[
�u
�ρ

]
, �ρ :=

⎡
⎢⎣

�ρ2

...

�ρNv

⎤
⎥⎦

with each μα ≥ 0. In the optimal values the Lagrangian has a saddle point [5, 7]
making it possible to obtain the following dual problem that, with simple algebra,
becomes the discrete form of the Koiter kinematical theorem:

minimize λc ≡ σ̃ T
y μ̃

subject to μ̃ ≥ 0

ũT p̃ = 1

Q̃ũ − Ã[t̃]μ̃ = 0

(15a)

where σ̃ y collect the yield stress values

σ̃ y =
⎡
⎢⎣

σ y

...

σ y

⎤
⎥⎦ , σ y =

⎡
⎢⎣

σy1
...

σyNσ

⎤
⎥⎦
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and

Ã[t̃] :=
(

∂f[t̃]
∂ t̃

)T

= blockdiag
[
A1 · · · ANv

]
(15b)

Aα = ( ∂f[tα]
∂tα )T being a diagonal matrix.

In the previous equations the Euler theorem for the homogeneous functions of
order one has been used while the extension to homogeneous functions of order n

is simple. Also for kinematical theorem (15a) we have the same format as the limit
analysis case.

The saddle point property of the Lagrangian shows that the primal problem is
convex and the dual is concave. When the first one has an admissible solution, that
is when the elastic limit multiplier is other than zero, both problems have the same
optimal value λa = maxλs = minλc. Due to the convexity of the problem the ob-
tained optimum is global such that the shakedown (limit) load factor is unique.

3.2 The Mathematical Programming Formulation of the Finite
Step Elasto-plastic Analysis

The shakedown multipliers can also be obtained by evaluating a sequence of states,
z(k) := {λ(k), t(k),u(k), . . .} solving a series of problems so defined:

maximize �ξ(k)λ(k) − 1

2
�t̃T F̃�t̃

subject to Q̃T t̃(k) = λ(k)p̃

f̃
[
t̃(k)

] ≤ 0

(16a)

where the superscript (·)(k) will denote quantities evaluated in the kth of problems
(16a) called the kth step, the symbol �(·) = (·)(k) − (·)(k−1) is the increment of a
quantity from the previous step and �ξ(k) > 0 is a real positive number. In the block-
diagonal semi-definite positive matrix F̃ := blockdiag[F1 · · · FNv ] only F1 must be
definite positive and can be evaluated through the following energy equivalence

F1 ≡ F =
∫

B

Nσ [x]T E−1[x]Nσ [x] dV (16b)

Note that, due to the local nature of the stress interpolation in Eq. (1), F also has
a block diagonal structure that, usually, couples only the local finite element stress
variables. In the following we assume, to simplify the notation and according to the
finite element used, each block Fα

g of Fα to be defined at the stress node level.
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Table 1 First order conditions for the proximal point algorithm

Local level:

Kinem. compatib.:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q�u −
Nv∑
β=2

�ρβ − F�t1 − A1μ1 = 0

�ρβ = Fβ�tβ + Aβ(k)μβ(k)

β := 2 · · ·Nv

Yielding: f
[
tα(k)

] ≤ 0 α := 1 · · ·Nv

Consistency:
(
μα(k)

)T f
[
tα(k)

] = 0 α := 1 · · ·Nv

Dual feasibility μα(k) ≥ 0 α := 1 · · ·Nv

Elastic domain: tα(k) = t(k) + λ(k)tEα α := 1 · · ·Nv

Global level:

Equilibrium: QT t(k) = λ(k)p0

Normalization: �uT p +
Nv∑

β=2

(
�ρβ

)T tEβ = �ξ(k)

The first order Kunh–Tucker conditions of (16a) are:

Kinematical compat.: Q̃�ũ = F̃�t̃ + Ã(k)μ̃(k)

Yielding: f̃
[
t̃(k)

] ≤ 0

Consistency: f̃
[
t̃(k)

]T
μ̃(k) = 0

Dual feasibility μ̃(k) ≥ 0

Extended equilibrium: Q̃T t̃(k) − λ(k)p̃ = 0

Arc-length constraint: p̃T �ũ = �ξ(k)

(16c)

which are also explicitly reported in Table 1. Equations (16c), for F̃�t̃ = 0, apart
from the inessential scaling for �ξ(k), are the primal–dual conditions of the shake-
down theorems. Problem (16a) is similar to that presented in [10].

Note as, for assigned values of u and λ, the first group of equations in Table 1, due
to the block structures of f and F, can be solved at the local level (stress node) of the
analysis. Conversely, equilibrium equations and normalization condition, coupling
all the variables of the problem, define the global level of the analysis.
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3.2.1 Convergence Properties of the Sequence of Elasto-plastic Steps

Starting from the known elastic limit z(0), the sequence z(k) generated from suc-
cessive solutions of Eq. (16a) is safe in the sense of the static theorem and
monotonously increasing in λ(k). In fact, due to Eq. (16c), subtracting the equi-
librium equation of the two steps (k) and (k − 1) and multiplying the results by �ũ
we have

�λ�ξ(k) = �t̃T Q̃�ũ

where the condition �ũT p̃ = �ξ(k) was used. Due to the kinematical compatibility
equations, we obtain

�ξ(k)�λ = �t̃T F̃�t̃ + �t̃T Ã(k)μ̃(k)

= �t̃T F̃�t̃︸ ︷︷ ︸
≥0

+
Nv∑
α=1

(
�tα

)T Aα(k)μα(k))︸ ︷︷ ︸
≥0

≥ 0 (17)

The last two terms on the right hand side of Eq. (17) are not negative, the former
due to the semi-definite positiveness of F̃ and the latter due to the convexity of the
elastic domain. As also �ξ(k) > 0 the sequence so generated does not decrease in
λ. In the case λ(k) = λ(k−1) with �ũ 
= 0 Eq. (17) implies �t̃ = 0 and then also
the requirements of the dual theorems (15a) are satisfied from Eq. (16c), that is
the convergence to the desired shakedown multiplier. We call this kind of analysis
pseudo elastoplastic, due to its meaning in the case of fixed loads.

3.2.2 The Mathematical Programming and Mechanical Interpretation of the
Pseudo-elastoplastic Analysis

Each step in Eq. (16a) is obtained, apart from the inessential scaling of λ(k), by sub-
tracting from the objective function of the static theorem a quadratic positive func-
tion in �t̃. In this respect it can be seen as a particular application of the proximal
point algorithm (see Bertesekas [7] pp. 248 and [18, 19]) for solving Eq. (12c), i.e.
the optimum solution of the static theorem is obtained by generating a convergent
sequence of primal admissible solutions. The algorithm becomes competitive with
direct methods if the sequence of steps is efficiently and robustly solved. This is pos-
sible by reusing the consolidated strain driven path-following algorithms adopted in
elasto-plasticity [3].

Independently of this mathematical programming point of view, first order con-
ditions in Eq. (16c) also have an important mechanical sense: in the fixed load case
they define the standard finite step holonomic problem obtained by using a back-
ward Euler scheme for integrating the constitutive elasto-plastic relationships. In
this case �u(k) can be identified with the displacement step increment and the suc-
cession of point z(k) with the equilibrium path. This holonomic transformation, with
the irreversible phenomena that can now occur only at the beginning of each new
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step, is widely adopted in elasto-plastic analysis. Its use is theoretically justified by
the Ponter and Martin [20] extremal path theory that gives a clear mechanical sense
to the so evaluated equilibrium path, allowing also the use of the kinematical part of
the solution. A similar meaning can also be given for the shakedown case when the
following expression of F̃ is used

F̃ := blockdiag
[
F, 0, . . . , 0

]
(18)

In this case Eq. (16c) corresponds to a backward Euler integration scheme of the
elasto-plastic equations for a load moving for all vertexes of the monotonously am-
plified load domain at each step of the analysis so allowing elastic adaptation. In
this sense pseudo elasto-plastic analysis, apart from its mathematical programming
interpretation, assumes a more general meaning overreaching the shakedown theo-
rems and making the extension to more complex materials simple.

Finally note that, when interest is only in the shakedown multiplier, matrices
Fα , according to the global semi-definite property of F̃, can be selected in order to
simplify the computations.

4 Numerical Methods for the Evaluation of the Shakedown
Multiplier

The proximal point algorithm in Eq. (16a)–(16c) can be efficiently solved by means
of decomposition techniques, similar to that employed by Kaneko and Ha [19]. In
this way a standard strain driven arc length formulation based on a return mapping
by closest point projection scheme, such as that currently used to evaluate the equi-
librium path of elasto-plastic structures, is obtained. This mathematical program-
ming approach allows a direct comparison between the strain driven algorithm and
direct global solvers in terms of performance and robustness. For a review of de-
composition methods in optimization refer to Chap. 6 of Bertsekas [7] and Boyd’s
course lectures EE364b [5].

4.1 The Multisurface Decomposition

By selecting F̃ as in Eq. (18) and omitting the index k and dependence on z(k−1) to
simplify the notation, the proximal point algorithm in Eq. (16a) becomes:

max �ξλ − 1

2

Nσ∑
g=1

�σ T
g Fg�σ g

subj. QT t = λp

f α[σ g, λ] ≤ 0 ∀α,g

(19a)

where the linear equality constraints have been directly substituted.
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The complicating equilibrium equation constraints can be eliminated using a dual
decomposition strategy, that is by adding them to the objective function forming the
following partial Lagrangian:

max L ≡ Lλ[λ,u] +
Nσ∑
g=1

Lg[σ g,u]

subj. f α[σ g, λ] ≤ 0 ∀α,g

(19b)

where

Lλ ≡ λ
(
�ξ − pT �u

)
, Lg ≡ σ T

g εg[�u] − 1

2
�σ T

g Fg�σ g

with �u the vector of the Lagrange multiplier and εg[�u] the gth component of
Q�u.

The dual of problem (19b) is obtained maximizing L with respect to the primal
variables:

D[u] := max
λ

(
Lλ[λ,u] +

Nσ∑
g=1

max
σ g,

f α[σ g,λ]≤0

Lg[σ g,u]
)

(19c)

that is now separated for limit analysis while it still has the complicating variables
λ that prevent its decomposition for shakedown. The dual function is evaluated by
fixing λ and performing the maximization with respect to σ g so obtaining the fol-
lowing, strictly convex, minimization problems for each stress point g

Dg[λ,u] :=

⎧⎪⎨
⎪⎩

min
(σ g)

1

2

(
σ g − σ ∗

g

)T Fg

(
σ g − σ ∗

g

)

subj. fs[σ g, λ] := [
f 1[σ g, λ], . . . , f Nv [σ g, λ]]T ≤ 0

(19d)

where the trial stress defined as σ ∗
g = σ

(k−1)
g + F−1

g εg . Equation (19d) is a small
convex problem in nσ := dim{σ g} variables subject to Nv nonlinear constraints and
its solution can be easily performed by means of a Sequential Quadratic Program-
ming method (SQP). Each QP problem is, in this work, efficiently solved with the
Goldfarb-Idnani dual active set method [25] already used in [4].

Finally the solution of (19a) is obtained by solving the following unconstrained
problem:

D := min
�u

D[u] = min
�u

max
λ

(
Lλ[λ,u] −

Nσ∑
g=1

Dg[λ,u]
)

(19e)

In the limit analysis case the objective function is independent of λ and the mini-
mization is performed only with respect to u.

The initial problem in (16a) is solved through its dual (19e) that is a free opti-
mization problem nested within a series of simple convex projections (19d) of the
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trial stresses in the admissible domain. Denoting with a comma the derivation with
respect to the quantity that follows as subscript, and referring to Sect. 6.1 of [7]
for the evaluation of the gradient of the dual function, the first order conditions of
Eq. (19e) are

req ≡ QT t[λ,u] − λp = 0, rλ ≡ pT �u +
∑
g

μT
sgfs[σ g, λ],λ −�ξ = 0 (19f)

where t[λ,u] collects all σ g[λ,u] solutions of problems (19d) while μsg =
[μ1

sg, . . . ,μ
Nv
sg ] are the Lagrange multipliers associated with the inequality con-

straints. The stress is univocally defined in terms of �u and λ, using Eq. (19d) that
so represents an implicit nonlinear elastic constitutive law, the past history being
contained in z(k−1). The strict convexity of the problems (19d) makes the dual func-
tion differentiable and then solvable using a Newton method expressed only in terms
of the configuration variables λ and u. Equations (19f) are the standard equilibrium
equations and the arc-length constraints in Table 1, making it easy to show that

∑
g

μT
sgfs ,λ =

Nv∑
β=2

(�ρ)β tEβ

Finally note that an alternative equivalent formulation for Eq. (19e) is
⎧⎪⎪⎨
⎪⎪⎩

min
�u

D[u]

subj. pT �u +
∑
g

μT
g fs ,λ −�ξ = 0

(19g)

4.2 A Further Decomposition Technique

Another possible decomposition technique is obtained relaxing all the complicating
constraints defined, in Eq. (16c), by the extended equilibrium equations. Letting �ũ
be the Lagrange multiplier associated with the relaxed constraint and now making
Fα = F for all vertexes, with c ∈R

+ a suitable scale factor, we obtain

maximize Lλ[λ,�ũ] +
Nv∑
α=1

Nσ∑
g=1

L α
g [t̃,�ũ]

subject to f α
[
σ α

g

] ≤ 0 ∀α,g

(20a)

where now

Lλ := λ
(
�ξ − �ũT p̃

)
, L α

g [t̃,�ũ] := 1

2

(
σα

g

)T Fgσ
α
g − (

σ α
g

)T
εα

g
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σ α
g and εα

g are the gth component of tα and �ρα respectively and �ρ1 = Q�u.
In this case too the problem is separable and it is possible to maximize function

Lgα , at each stress point sub-level and for each α, as follows

Dα
g [�ũ] :=

⎧⎪⎨
⎪⎩

min
(σα

g )

1

2

(
σ α

g − σ α ∗
g

)T Fg

(
σ α

g − σα ∗
g

)

subj. f
[
σ α

g

] ≤ 0

(20b)

where the trial stress is now defined as σ α ∗
g = (σ α

g )(k−1) + F−1
g �εα

g .
The initial problem in (16a) is then transformed into the following free minimiza-

tion problem

D[ũ] :

⎧⎪⎪⎨
⎪⎪⎩

min
�ũ

{∑
g,α

Dα
g [�ũ]

}

subj. �ũT p̃ = �ξ

(20c)

nested within a series of simple convex projections (20b) of the trial stresses in
the admissible domain. The first order conditions for (20c) represent the extended
equilibrium equation plus the arc–length constraint and are

r̃eq [λ, ũ] := Q̃T t̃[�ũ] − λp̃ = 0, rλ[λ, ũ] := �ξ − �ũT p̃ = 0 (20d)

with the stress t[ũ] univocally defined in terms of �ũ by using (20b). They can
be solved iteratively using a Newton scheme. The other equations in Table 1 are
solved exactly using Eq. (20b) for each assigned value of �ũ. Note also that this
formulation is more decoupled with respect to the previous one and will be called
SS-SD.

4.3 Final Considerations

Strain driven methods, apart from their classic interpretation, can be seen as decom-
position strategies well suited for use within the proximal point algorithm. They
solve, through a Newton method, the free dual problem obtained by means of a se-
ries of very small optimization subproblems (the closest point projection schemes)
for each new estimate of the configuration variables. Stresses and other locally de-
fined quantities then become functions of the configuration variables and the prob-
lem description is always compatible and usually highly nonlinear, even when the
finite element is mixed. For a deeper discussion of how the problem description af-
fects the convergence in Newton methods the reader is referred to [23]. The method
fully exploits the information gained from the previously evaluated step handling
the problem nonlinearity by means of adaptive arc-length selections. In the fixed
load case both the above decomposition strategies are exactly the same.
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5 Numerical Implementation of Strain Driven Methods

The implementational aspects of the numerical strategies previously proposed are
now discussed. Readers are referred to [3, 4, 23] for details of the arc-length path-
following strategies.

5.1 The Global Solution Scheme

Equations (19f) and (20d) are solved using a Newton method that, by means of block
elimination of the local defined variables, can be expressed in a common pseudo-
compatible format in terms of (u, λ) alone:

[
Kj −yj

−yT
j hj

][
u̇
λ̇

]
= −

[
r̂eq

r̂λ

]
(21a)

where subscript j denotes quantities evaluated in the current iteration and

Kj = QT EtQ, yj = p + QT tλ, r̂eq = reqj + rc
eq, r̂λ = rλj + rc

λ (21b)

with Et , tλ, hj , rc
eq and rc

λ having a different expression depending on the algorithm
in use. Et always maintains the following local level block diagonal structure

Et = blockdiag[Et1, . . . ,EtNσ ] (21c)

and is obtained by means of a standard FEM assemblage of local contributions.
The solution of Eq. (21a) is

u̇ = λ̇û + ū, λ̇ = r̂λ − yT
j ū

(yT
j û − hj )

where

⎧⎨
⎩

û = K−1
j yj

ū = −K−1
j r̂eq

(21d)

Equations in (21a)–(21d) have the same format as a standard arc length nonlinear
analysis [3, 23], its solution having the same computational cost for both methods
and in both cases of shakedown or limit analysis. The differences lie only in the
local level operations which, involving only few variables, are cheaper to perform.

5.2 Numerical Implementation of the MS-RM Formulation

Letting z0 := z(k−1), the scheme produces a sequence of plastically admissible esti-
mates zj , convergent to the new state z(k), by recursively updating the configuration
variables as:

uj+1 := uj + u̇j , λj+1 := λj + λ̇j (22)
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with u̇j and λ̇j evaluated according to (21a)–(21d) and the other local variables
using the return mapping process Eq. (19d). From the linearization of the first order
conditions Eq. (19f) with respect to λ and u we obtain:

Et = ∂t
∂ρ

= blockdiag[Et1, . . . ,EtNσ ], Etg := ∂σ g

∂εg

tλ := − ∂t
∂λ

= −
⎡
⎢⎣

σ 1,λ

...

σNσ ,λ

⎤
⎥⎦

σ g,λ := ∂σ g

∂λ
, hj = −

Nσ∑
g=1

(
μT

g fsg,λλ +fsg,Tλ μg,λ
)

(23)

where ρ = Q�uj and εg is its gth component and both rc
eq ≡ 0, rc

λ = 0.
The sequence so generated is locally convergent due to the presence of the arc-

length condition that allows (21a) to be solved even when Kj becomes singular as
happens near the shakedown or the limit load multiplier [3, 23]. For global conver-
gence we can set Kj as equal to the initial elastic matrix KE . In this way while
the quadratic convergence rate of the Newton method is lost we avoid the matrix
decomposition for each zj . Alternatively a line search algorithm can be useful.

5.2.1 Evaluation of the Incremental Quantities for MS-RM

The algorithmic tangent moduli can be obtained from the second derivatives of the
dual function once the internal variables are eliminated or, following an approach
more common in the computational mechanics community, by the consistent lin-
earization of the return mapping process. Making na > 0 the number of active con-
straints, and keeping the notation used to indicate quantities in this active subset
unchanged, the first order condition defined by (19d) can be rewritten as

⎧⎨
⎩

σ̇ g = H−1
g (ε̇g − Asgμ̇sg − λ̇Asg,λ μsg)

AT
sgσ̇ g + λ̇fsg,λ = 0

where μT
sg = [μ1

sg, . . . ,μ
na
sg ] and

Asg =
[

∂f 1

∂σ g

· · · ∂f na

∂σ g

]
, Hg[σ g] = Fg +

na∑
α=1

μα
sg

∂2f α

∂σ 2
g

(24)

Making Wg = (AT
sgH−1

g Asg)
−1 we obtain the required quantities

Etg = H−1
g − H−1

g AsgWgAT
sgH−1

g

σ g,λ = −H−1
g AsgWgfsg,λ −EtgAsg,λ μsg

(25)
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Note that Etg and H−1
j AsgWg are directly furnished by the QP solution scheme

used to solve Eq. (19d) so only fgs,λ, fgs,λλ and Asg,λ need to be evaluated. Also
note that for na = 0, we have the elastic step.

5.3 Numerical Implementation of the SS-RM Algorithm

Starting from z0 := z(k−1), the scheme produces once more a sequence of estimates
zj updating the configuration variables as:

ũj+1 := ũj + ˙̃uj , λj+1 := λj + λ̇j (26a)

where ˙̃uj and λ̇j now satisfy, the first order approximation of (20d):

[
K̃j −p̃

−p̃T 0

][ ˜̇u
λ̇

]
= −

[
r̃c
eq

rλj

]
(26b)

In the previous equation r̃c
eq = r̃eqj and

K̃j = Q̃T Ẽt Q̃, Ẽt := blockdiag
{
E1

t , . . . ,ENv
t

}

where, letting ρ1 = Q�uj , we have:

Eα
t := ∂tα

∂ρα
= blockdiag

{
E1

t1, . . . ,ENv

tNσ

}
, Eα

tg = ∂σ α
g

∂εα
g

Ẽt is a block diagonal matrix with each block Eα
t in turn blockdiagonal and defined

by the consistent linearization of the return mapping algorithm (20b) (or of the dual
function) as:

Eα
tg :=

⎧⎨
⎩

(Hα
g )−1(I − aαaαT (Hα

g )−1

h+(aα)T (Hα
g )−1aα ) if μα

g > 0

F−1
g otherwise

(26c)

where now

aα = ∂f [σα
g ]

∂σ α
g

, Hα
g = Fg + μα

∂2f [σ α
g ]

∂(σ α
g)2

and h � 1.0−4–1.0−6 is used to avoid singularity.
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5.3.1 The Partitioned Solution Scheme

Recalling the definition of Q̃ and of p̃ in Eqs. (13), (14), the system in (26b) becomes

⎡
⎣

Kρρ KT
uρ −tρ

Kuρ Kuu −p
−tTρ −pT 0

⎤
⎦
⎡
⎣

ρ̇

u̇
λ̇

⎤
⎦ = −

⎡
⎣

reqρ

req

rλ

⎤
⎦ (27a)

where

req = QT tj − λj p, rλ = �ξ − pT �uj − �ρT
j tE (27b)

reqρ =
⎡
⎢⎣

t2 − t − λtE2

...

tNv − t − λtENv

⎤
⎥⎦ =

⎡
⎢⎣

r2
eq

...

rNv
eq

⎤
⎥⎦ (27c)

and

Kuu = QT E1
t Q, Kuρ = −QT E1

t Σ, Kρρ = ΣT E1
t Σ + Eρ (27d)

with

Eρ := blockdiag
[
E2

t · · · ENv
t

]
. (27e)

By a block elimination of ρ̇, performed at the local level due to the block diagonal
structure of Kρρ we obtain the global scheme in the form of Eqs. (21a)–(21d). To
avoid the inversion of Kρρ , that could be computationally expensive for high values
of Nv , it is convenient to use the Woodbury matrix identity so obtaining:

K−1
ρρ = E−1

ρ − E−1
ρ ΣT F−1

t ΣE−1
ρ with Ft =

Nv∑
α=1

Fα
t

where

Fα
t ≡ (

Eα
t

)−1 = blockdiag
{(

Eα
t1

)−1
, . . . ,

(
Eα

tNσ

)−1}

Letting

q =
Nv∑

β=2

Fβ
t tEβ, rq =

Nv∑
β=2

Fβ
t rβ

eq (28)
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with some substitutions we obtain the following expression for the quantities in
Eqs. (21a)–(21d)

Et = F−1
t , tλ = Etq, hj = qT Etq −

Nv∑
β=2

(
tEβ

)T Fβ
t tEβ

rc
eq = QT Etrq, rc

λ =
∑
β

(
rβ
eqρ

)T Fβ
t tEβ − qT Etrq

(29)

and from back-substitution

ρ̇β = Fβ
t

(
λ̇tEβ − rβ

eq − Et

(
λ̇q − ρ1 − rq

))

Finally note that for a purely elastic behavior we obtain

Et = 1

c
F−1, c = Nv

that is, with an appropriate selection of F we can use, at the global level, KE as
iteration matrix obtaining, also in this case, a global convergent scheme.

6 The Finite Element Discretization

A finite element suitable for shakedown analysis needs to be accurate with respect
to both the evaluation of the elastic envelope stress tEα necessary for the correct
evaluation of λ̄ and with respect to the description of the ratcheting mechanism that
usually require fine meshes. In this work these rules have been satisfied by using
two finite elements on different discretization grids. In particular, stresses tEα are
evaluated using the standard eight node compatible quadrilateral isoparametric ele-
ment Q8 [26] while the complete shakedown analysis exploits the mixed SIMPLEX
(S) finite element [4], free of volumetric locking and sufficiently simple to be used
with fine mesh. Note that, apart from the mixed interpolation, the element is similar
to that recently proposed in [21].

6.1 The Simplex Finite Element

We briefly recall the SIMPLEX element while referring readers to [4] for details.
Body domain B is subdivided into triangular elements of area Ae and thickness he

with three nodes, located at the vertices of a triangle. A simple bilinear interpolation
for the displacements was adopted while the stresses are kept constant on the nodal
influence area Ag = ∑

e Age/3, sum of the contributions Age/3 of each element
linked to the node g (see Fig. 1).
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Fig. 1 The Simplex finite
element

The compatible strain εge for each of the nge elements linked to the stress node
g is constant and coincident with that of the compatible linear triangle T3. It can be
expressed as

εge = Dede (30)

de = [u1,u2,u3]T being the displacement element vector collecting the element
node displacement vector uk . Denoting with uT

g = [ug1, ug2, . . . ,ugne ] the stress
node displacement vector, collecting the displacement vectors ugi of all the ele-
ments linked to the stress node g and letting Ae be the matrix extracting the element
displacements from dg

de = Agedg

we obtain the following algebraic form for the quantities required in the analysis:

1

2

∫
V

σ T E−1σ dV = 1

2

Ng∑
g=1

σ T
g Fgσ g,

∫
V

σ T ε dV =
Ng∑
g=1

σ T
g Dgug (31)

and the strain work conjugate with σ g is now defined by the compatibility matrix

Qg =
nge∑
e=1

DeAgeVge/3

where Vge = Agehge is the volume of the eth element linked with the stress node g

and Vg = ∑nge

e=1 Vge/3 the total volume related to the stress node and Fg = E−1Vg .
Letting t = [σ 1, . . . ,σNσ ]T and u = [u1, . . . ,uNu ]T be the global vectors col-

lecting the Nσ nodal stresses and the Nu displacements and denoting with

dg = Tugu, σ g = Tσgt

the operators linking local and global quantities we obtain

QT t ≡
∑
g

QT
g σ g, F =

∑
g

TT
σgFgTσg with Qg = TT

ugDg.
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Fig. 2 Geometry and finite element mesh for the square plate

7 Numerical Results

The algorithms presented are compared in terms of accuracy, robustness and effec-
tiveness with the interior point method implemented in the commercial software
MOSEK, using both a SOCP and a quadratic description (QP) of the constraints. We
denote with MS-RM and SS-RM the strain driven return mapping analysis results,
the name of the method is followed by Ke to indicate that the initial elastic stiffness
matrix for each iteration was used (modified Newton method). Due to the linear
convergence rate of the modified Newton method, the tolerance on the equilibrium

equation is set equal to 1.0−3 × (λe

√∑
i pT

i K−1
e pi/Nv), that is not too strict but

adequate to produce results affected by an error in λa no greater than 0.05 %.
For all tests we will denote with λi

c the limit load multiplier for the load com-
bination obtained, for fixed values of αi

k and corresponding to a given load domain
vertex vi . In this case, due to the coincidence of the formulations, we obtain the
same behavior for the MS-RM and SS-RM algorithms.

7.1 Square Plate with a Central Circular Hole

The first test is the classic plate subject to the biaxial uniform loads p1 and p2 (see
Fig. 2) considered in numerical shakedown analysis [27–29]. Letting 0 ≤ α1 ≤ 1
and 0 ≤ α2 ≤ 1, some limit analysis and shakedown cases were investigated.

The (6 × 3), (12 × 6), (24 × 12) and (48 × 24) grids denoted as meshes 1, 2, 3
and 4 respectively were used. The first term indicates the number of elements along
the hole, the second that on the opposite boundary.
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Table 2 Square plate:
discretization error on
different meshes. The λc

values are relative to vertex
v3 = (1,0) while (λa = λ̄).
Results are multiplied by 10

mesh 1 mesh 2 mesh 3 mesh 4

λ3
c λ̄ λ3

c λa λ3
c λa λ3

c λa

Q8 8.060 4.333 8.020 4.315 8.008 4.305 8.003 4.302

Table 3 Comparison of λc and λa values for the square plate

(p1,p2) λc λa

(1, 1) (1, 0.5) (1, 0) (1, 1) (1, 0.5) (1, 0)

Stein et al. [29] – – 0.802 0.453 0.539 0.624

Zhang et al. [30] 0.893 0.907 0.789 0.477 0.549 0.647

Gross-Weege [27] 0.882 0.891 0.782 0.446 0.524 0.614

Silveira [28] 0.894 0.911 0.803 0.429 0.500 0.594

Krabbenhøft et al. [11] 0.430 0.499 0.595

Garcea et al. [4] 0.902 0.912 0.806 0.438 0.508 0.604

Present (mesh 4) 0.895 0.911 0.800 0.430 0.499 0.595

Table 4 Square Plate: comparison of performance between the algorithms. Limit analysis is per-
formed for vertex load v4 = (1.0,1.0). In parentheses the number of steps

MESH 3 MESH 4

λ4
c λa λ4

c λa

CPU loop CPU loop CPU loop CPU loop

MS-RM 5.25 118(31) 0.27 9(2) 31.55 146(39) 1.72 5(2)

MS-RM-Ke 11.26 786(64) 0.10 16(2) 23.19 755(68) 0.38 14(2)

SS-RM 5.25 118(31) 0.40 10(3) 31.55 146(39) 1.96 7(3)

SS-RM-Ke 11.26 786(64) 0.73 32(3) 23.19 755(68) 1.87 31(3)

MOSEK 0.44 15 1.73 14 2.20 13 8.14 10

MOSEK QP 0.62 19 2.02 10 4.64 22 33.70 12

In Table 4 the CPU time, the number of iterations and the number of values of
safe state z(k) (step), evaluated by the proximal point algorithm, are reported. In all
cases the values of both the static and kinematic multiplier are coincident and some
of them are reported in Table 2. A comparison with some of the results existing in
literature is reported in Table 3.

In this example, due to the occurrence λ = λ̄, we have practically the same per-
formance between the MS-RM and SS-RM analysis also in the shakedown case, with
the strain driven procedures more effective than IPM. Obviously this is only due to
the practically elastic behavior of the structures for such values of the multiplier.
With respect to CPU, at least in the evaluation of the limit analysis multiplier, our
implementation pays the greater cost of the single iteration, in MOSEK performed
using carefully tuned and very efficient routines for sparse linear algebra.
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Fig. 3 Geometry and finite element grid for continuous beam

Table 5 Values of the collapse and shakedown multipliers for continuous beam. v2 = (0.6,1),
v3 = (1,0)

mesh 1 mesh 2

λe λa λ̄ λ2
c λ3

c λe λa λ̄ λ2
c λ3

c

1.281 3.143 5.995 5.330 3.198 1.276 3.166 5.971 5.368 3.221

7.2 A Symmetric Continuous Beam

The analysis regards the structure, whose geometry, load domain, material proper-
ties and the two discretization meshes used (mesh 1 and mesh 2) are reported in
Fig. 3. In this case we have ratcheting collapse, that is λa < λi

c < λ̄. Shakedown and
the lower limit load multipliers for the two different meshes are reported in Table 5.

In Table 6 performances of the various implementations are reported. Shakedown
or limit load multipliers are more effectively evaluated using MOSEK and the MS-
RM has an overall better behavior with respect to the SS-RM that exhibits its worst
performances when the tangent matrix is used. Finally the cost of each iteration is
highly affected by the number of constraints when using MOSEK.

8 Conclusions

In this work, it has been shown how standard incremental elastoplastic analysis
based on closest point projection return mapping schemes, can be obtained from a
mathematical programming problem, consisting in the application of the proximal



42 G. Garcea and L. Leonetti

Table 6 Continuous beam: comparison of performance between the algorithms. Limit analysis is
performed for vertex load v2 = (0.6,1.0). In parentheses the number of steps

MESH 1 MESH 2

λ2
c λa λ2

c λa

CPU loop CPU loop CPU loop CPU loop

MS-RM 7.68 81(23) 9.75 99(26) 23.22 97(25) 27.55 108(27)

MS-RM-Ke 14.70 892(92) 25.0 1441(144) 32.00 800(84) 60.21 1409(145)

SS-RM 7.68 81(23) 20.14 184(47) 23.22 97(25) 63.40 230(52)

SS-RM-Ke 14.70 892(92) 55.60 1841(185) 32.00 800(84) 136.07 1915(194)

MOSEK 0.96 15 2.52 17 2.75 15 5.37 16

MOSEK QP 2.36 25 11.42 28 7.61 26 30.70 40

point algorithm to the static shakedown theorem and in its solution by means of dual
decomposition methods.

Two decomposition procedures, called respectively MS-RM and SS-RM have
been presented. The first scheme, that proves to be the more effective, corresponds
to the mathematical programming formulation of that used in [3, 4]. With respect
to the previous proposal it proves to be more efficient also due to the use of a refer-
ence load formulation that makes the problem less nonlinear. The multisurface re-
turn mapping process is performed avoiding any linearization of the elastic domain
exploiting an efficient sequential quadratic programming method and an active set
strategy, so improving both accuracy and performance. The SS-RM is based on a
standard return mapping process but requires a greater number of iterations each of
which is almost as expensive as in the MS-RM case. For both the decomposition
methods the elastic stiffness matrix can be exploited to obtain global convergent
algorithms and to reduce the computational cost for very large dimension problems.

The shakedown strain driven analysis is easy to implement in existing commer-
cial software performing nonlinear incremental elasto-plastic analysis. The lower
efficiency with respect to IPM methods is compensated by its more significant me-
chanical interpretation that allows the reuse of the kinematical part of the solution
and by, nowadays, a greater generality and robustness due to its consolidated and
extensive use in this context of analysis.
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