
Chapter 2
Modeling Collagen-Proteoglycan Structural
Interactions in the Human Cornea

Xi Cheng, Hamed Hatami-Marbini, and Peter M. Pinsky

Abstract The cornea is a supremely organized connective tissue making it ideal
for modeling and probing possible roles of collagen-PG interactions in the extra-
cellular matrix. The cornea can be viewed as a reinforced electrolyte gel involving
molecular-scale interactions between collagen fibrils, proteoglycans (PGs) and the
mobile ions in the interfibrillar space. The swelling property of the tissue cannot
be adequately predicted by Donnan theory for osmotic pressure. We propose an
alternative unit cell approach based on a thermodynamic framework that employs
a mean-field approximation for the electrostatic free energy and which accounts
for a non-uniform electrostatic potential. The model is used to show that the equi-
librium swelling pressure can be explained when the geometrical effect of elec-
trolyte exclusion due to collagen fibril volume is considered. The model is further
refined by dividing the PGs into collagen fibril coating and volumetric partitions.
The model suggests that the PG coatings overlap at low hydration and set up re-
pulsive forces that may act to maintain the collagen lattice order. Finally, we intro-
duce a molecular-level unit cell in which volumetric domains within the unit cell
are associated with the macromolecular GAGs and results from the continuum and
molecular-level models are compared.
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Fig. 2.1 Collagen-PG
arrangement in the corneal
stroma; some of the GAG
chains may bridge fibrils by
antiparallel duplexing (Scott,
1992)

2.1 Introduction

The extracellular matrix of the cornea is composed of two principal molecular com-
ponents: type I collagen in the form of 25 nm diameter fibrils and small leucine-rich
repeat proteoglycans (PGs). The corneal stroma is organized into approximately 500
lamellae (or fibers) through its thickness and within each lamella the collagen fib-
rils are maintained in almost perfect parallel arrays with a quasi-regular hexagonal
packing arrangement. The collagen is responsible for carrying the tensile forces that
are produced by the intraocular pressure. The corneal PGs consist of linear chains
of disaccharide units covalently bound to a core protein. Predominant corneal gly-
cosaminoglycan (GAG) components are dermatan sulfate (DS), chondroitin sulfate
(CS) and keratan sulfate (KS). Scott (1992) proposed that some GAGs form inter-
fibrillar bridges by duplexing and this has been supported by some evidence from
imaging (Muller et al., 2004; Lewis et al., 2010). These arrangements are illustrated
in Fig. 2.1. The DS, CS and KS disaccharide units are ionized at physiological
pH and carry two negative charges per unit. The electrostatic interaction of these
charges with ionic species gives rise to strong intermolecular forces that are respon-
sible for the tissue osmotic pressure.

The transparency of the cornea requires that the collagen fibrils be maintained in
their lattice-like arrangement. Modeling the forces of interaction between the colla-
gen fibrils and GAGs may provide insights into the mechanisms underlying corneal
transparency and is a primary goal of this work. The polyelectrolyte nature of the
corneal stroma is well illustrated by its remarkable capacity for swelling when im-
mersed in water or dilute salt solution. The tendency of the corneal stroma to swell
can be characterized by the equilibrium swelling pressure. The equilibrium swelling
pressure may be measured by compressing a piece of isolated corneal stroma in an
ionic bath solution between permeable plates until equilibrium is reached (Hedbys
and Dohlman, 1963). During the past several decades, the swelling pressure on var-
ious species have been measured experimentally (Hedbys and Dohlman, 1963; Fatt,
1968; Olsen and Sperling, 1987), and it has been observed that the swelling pressure
is highly dependent on the tissue hydration.

Several previous investigations have aimed to create theoretical models for
corneal swelling (Hart and Farrell, 1971; Hodson, 1971; Olsen and Sperling, 1987).
It has been demonstrated that Donnan theory for osmotic pressure is incapable of
fully explaining swelling pressure (Olsen and Sperling, 1987). In this work we pro-
pose a swelling pressure theory that is derived from a molecular-level description of
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the polyelectrolyte system that recognizes the spatial heterogeneity of charge den-
sity that exists in the tissue. A similar thermodynamic approach was employed by
Hart and Farrell (1971), but the present work uses an entirely different description
of the electrostatic free energy. The electrostatic free energy of a polyelectrolyte
found through a mean-field approximation can be expressed as a functional of the
electrostatic potential, fixed charge density and local ionic concentrations (Che et
al., 2008). The electrostatic potential is determined from solution of the Poisson-
Boltzmann equation over a unit cell and the swelling pressure is found as the gra-
dient of the free energy with respect to the swelling volume. By considering the
volumetric domains of polyelectrolyte excluded by the collagen fibrils, the model
finds excellent agreement with the experimental swelling pressure data.

In order to improve the model for low levels of hydration, we were lead by ex-
perimental observations to postulate that the stromal PGs are partitioned into two
sets. One set is associated with PGs that bridge (perhaps by duplexing of the longer
DS and CS GAGs) between neighboring collagen fibrils; these supply the charge
density responsible for the osmotic pressure at physiological hydration. A second
set produces a charge-rich coating around the collagen fibrils (perhaps formed pri-
marily by the shorter KS GAGs). At physiological hydration, the coatings do not
interact and add very little to the osmotic pressure. As hydration is reduced, the col-
lagen fibrils come into closer proximity and the coatings will overlap producing a
significant increase in local charge density and a concomitant increase in swelling
pressure and electrostatic repulsion. We conclude that the PG-coatings may rep-
resent a mechanism to order the collagen fibril lattice as required in order for the
cornea to be a good transmitter of light.

2.2 Comparison of Donnan and Poisson-Boltzmann Theories
Applied to the Cornea

2.2.1 Donnan Theory

If a polyelectrolyte phase is in equilibrium with an external bath ionic solution, os-
motic pressure will result from the polyelectrolyte fixed charges and the disparity of
ionic concentrations in the two phases. Donnan theory may be employed to model
the osmotic pressure under the assumption that the fixed charge density is spatially
invariant. Consider a sample of isolated corneal stroma placed in a NaCl bath. As-
suming ideal Donnan equilibrium, the distribution of mobile ions satisfies

C̄Na+C̄Cl− = C2
0 , (2.1)

where C̄Na+ and C̄Cl− are the mobile ion concentrations in the stroma and C0 the
ionic concentration in the bath. The GAG disaccharide units provide a fixed (non-
mobile) negative charge density ρf and electroneutrality within the polyelectrolyte
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phase requires,

C̄Na+ − C̄Cl− + ρf

F
= 0, (2.2)

where F is the Faraday constant. Equations (2.1) and (2.2) can be solved for the
equilibrium mobile ion concentration (Buschmann and Grodzinsky, 1995) giving

C̄Na+/Cl− = ∓ ρf

2F
+

√
ρ2

f

4F 2
+ C2

0 . (2.3)

The osmotic pressure in the two phases is given by

Ppoly = RT (C̄Na+ − C̄Cl−), Pbath = 2RT C0, (2.4)

where R is the gas constant and T is the absolute temperature. The osmotic pressure
difference Pos between the two phases is then computed as

Pos = Ppoly − Pbath = 2RT C0

(√
ρ2

f

4F 2C2
0

+ 1 − 1

)
. (2.5)

In Fig. 2.2 we depict experimental measurements and fitting curves for the equi-
librium swelling pressure of human corneal stroma with a bath concentration of
C0 = 0.15 M as reported by Hedbys and Dohlman (1963) and Olsen and Sper-
ling (1987). Letting ρ0 represent the fixed charge density at physiological sample
thickness t0 = 0.5 mm, and letting ρf represent the charge density at tissue sample
thickness t , we find by conservation of fixed charge that ρf = ρ0(t0/t). Using this
result in Eq. (2.5), the osmotic pressure difference at thickness t may be estimated
in terms of the physiological fixed charge density ρ0. It has been shown that ρ0 de-
pends on the salt concentration in the bath through a process of ion binding. Hodson
(1971) has estimated ρ0/F for human stroma at physiological hydration and bath
ionic concentration C0 = 0.15 M to be approximately 48 mM. Values of ρ0/F for
bovine cornea have been measured at around 36 mM; see Elliott and Hodson (1998)
for a review. The osmotic pressure difference Pos based on Donnan theory Eq. (2.5)
with ρ0/F = 48 mM is shown in Fig. 2.2. The prediction agrees well with the ex-
perimental data at physiological thickness t = 0.5 mm but deviates significantly for
all other values, particularly for t < 0.5 mm. We conclude that Donnan theory is
incapable of predicting swelling pressure accurately for lower thicknesses, which
correspond to hydration levels lower than physiological.

2.2.2 Poisson-Boltzmann Theory

We now consider a thermodynamic framework for describing the swelling pressure
experiment on corneal stroma. Consider a sample of isolated corneal stroma of area
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Fig. 2.2 Swelling pressure vs. thickness by Hedbys and Dohlman (1963) and Olsen and Sper-
ling (1987), the Donnan model and the Poisson-Boltzmann (PB) model. Data plotted on the
normal axis (a) and a log-log axis (b). Fitting curve by Olsen: Ps = 7.56 × t−3.48 mmHg and
the fitting curve based on Hedbys’ data (Fatt, 1968) Ps = 1810 × exp(−H) mmHg. The hydra-
tion data from Hedbys and Dohlman (1963) is transformed to thickness by the linear relation
H = 7.00t − 0.64 (Hedbys and Mishima, 1966). Charge density for Donnan model and the PB
model is ρ0/F = 48 mM

As immersed in an ionic solution and constrained by a porous piston to a thickness t .
The total Gibbs free energy of the system is defined as

G = F + PV + PsAst, (2.6)

where F is the Helmholtz free energy, P and V are the atmosphere pressure and
total system volume, respectively, and Ps is the pressure exerted by the piston on the
sample (Katchalsky and Michaeli, 1955; Hart and Farrell, 1971). At equilibrium we
require

Ps = − 1

As

∂

∂t
(F + PV ). (2.7)

At fixed temperature T and atmosphere pressure P , the PV term may be dropped
and the swelling pressure is then expressed as

Ps = − 1

As

∂F

∂t

∣∣∣∣
T ,P

= −∂F

∂Vt

∣∣∣∣
T ,P

, (2.8)

which is simply the derivative of the Helmholtz free energy with respect to the tissue
volume Vt .

In general, the Helmholtz free energy F will have electrostatic Fel and chemo-
mechanical components Fcm (Jin and Grodzinsky, 2001). The effective electrostatic
free energy of a polyelectrolyte solution in a mean-field approximation can be ex-
pressed as a functional of the electrostatic potential ϕ and local ionic concentrations



16 X. Cheng et al.

C1, . . . ,CM (Che et al., 2008)

Fel[ϕ,C1, . . . ,CM ] =
∫

Ω

{
−ε

2
|∇ϕ|2 + ρ(r)ϕ + RT

M∑
i=1

C∞
i

+ RT

M∑
i=1

Ci

[
ln

(
Λ3NACi

) − 1
] −

M∑
i=1

μiNACi

}
dΩ,

(2.9)

where ε is the dielectric permittivity of the solution, NA is the Avogadro constant,
C∞

i and μi are the bath concentration and chemical potential of the ith ionic species,
respectively, and Λ is the thermal de Broglie wavelength. The local charge density
ρ(r) is given by

ρ(r) = ρf(r) +
M∑
i=1

FziCi(r), (2.10)

where ρf is the fixed charge density from the GAG disaccharide units and zi is the
valence number for the ith ionic species. In Eq. (2.9), the first two terms are the
internal electrostatic energy, the third term is the osmotic pressure from the mobile
ions, the fourth term constitutes the ideal gas entropy and the last term accounts for
the chemical potential. Setting the first variation of the free energy G with respect
to the concentration Ci to zero leads to

Ci(r) = C∞
i exp

(
−zi

Fϕ(r)

RT

)
, (2.11)

which is the Boltzmann distribution for the concentrations at equilibrium. The vari-
ation of Fel with respect to the potential ϕ yields the Poisson equation

∇ · ε∇ϕ(r) = −ρ(r). (2.12)

The Poisson-Boltzmann equation (PBE) is obtained by combining Eqs. (2.10)–
(2.12),

−ε∇2ϕ(r) = ρf(r) +
M∑
i=1

FziC
∞
i exp

(
−zi

Fϕ(r)

RT

)
. (2.13)

Substituting Eqs. (2.10), (2.11) into (2.9), the free energy at equilibrium is obtained
as

Fel[ϕ] =
∫

Ω

{
−ε

2
|∇ϕ|2 + ρfϕ − RT

M∑
j=1

C∞
j

[
exp

(
−zj

Fϕ(r)

RT

)
− 1

]}
dΩ.

(2.14)
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It is remarked that this expression defines a concave functional; it has a unique
equilibrium potential ϕ at which the functional is maximized (Fogolari and Briggs,
1997).

Specializing (2.13) and (2.14) to a binary electrolyte we find:

−∇2ϕ = ρf

ε
− 2FC0

ε
sinh

(
Fϕ(r)

RT

)
, (2.15)

and

Fel =
∫

Ω

{
−ε

2
|∇ϕ|2 + ρfϕ − 2RT C0

[
cosh

(
Fϕ

RT

)
− 1

]}
dΩ. (2.16)

Returning to the equilibrium swelling pressure problem and taking (as in the Don-
nan solution) a uniform fixed charge density of ρf/F = 48 mM and bath ionic con-
centration of C0 = 0.15 M, the swelling pressure was computed using Eq. (2.8)
and the results are shown for varying sample thickness t in Fig. 2.2. The deriva-
tive of the free energy Fel with respect to t was computed using central differ-
ence. As expected for this case of uniform charge density, the results are consistent
with the Donnan prediction and confirm the thermodynamic framework provided by
Eqs. (2.8) and (2.16).

2.2.3 An Unit Cell Model Based on Collagen Fibril Volume
Exclusion

Both the Donnan and Poisson-Boltzmann (PB) theories confirm that the assumption
of a spatially uniform charge distribution results in an unsatisfactory prediction of
stromal swelling, especially for low levels of hydration. However, it is observed that
the collagen fibrils occupy approximately 30 % of the stroma by volume (Meek and
Leonard, 1993). As the tissue is compressed during the swelling pressure experi-
ment, we argue that (i) the volume occupied of the collagen fibrils is unaffected by
the change in stromal thickness, and (ii) the collagen fibrils maintain very few net
ionized groups and contribute little or nothing to the electric balance within the tis-
sue (Elliott and Hodson, 1998). Therefore, the GAG charges, which are conserved,
must be restricted to the volumetric region between the collagen fibrils. Clearly, as
the tissue is compressed, there will be a nonlinear increase in charge density due to
the geometric effect of the collagen fibril volume exclusion.

Experimental estimation of the interfibrillar spacing lc and radius of collagen
fibril rf in the human cornea suggest they lie in the ranges of 45 ∼ 60 nm and
11.5 ∼ 15.0 nm, respectively (Fratzl and Daxer, 1993; Elliott and Hodson, 1998;
Muller et al., 2004). Consider a perfect hexagonal collagen lattice with lc = 53.0 nm
and rf = 12.5 nm as shown in Fig. 2.3(a). Charge is now assumed to be uniformly
distributed in the interfibrillar region Ωs ∈R

3 only and is zero in the fibril domains.
The PB equation (2.13) was solved on a sequence of unit domains {Ωi

f } in which
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Fig. 2.3 (a) 2D illustration of the unit cell, charge distribution is uniform over the interstitial region
Ωs. The tissue is deformed by pressing the porous piston and the deformed unit cell is calculated
from affine mapping; (b) Swelling pressure computed by PB-unit cell model based on collagen
volume exclusion. The charge density is calibrated to be ρeff/F = 42 ∼ 55 mM. The lower and
upper bound of the ρeff are determined by fitting the result at physiological situation (t = 0.5 mm)
and the low hydration situation (t = 0.2 mm) respectively. The interfibril spacing lc = 53 nm and
the collagen radius rf = 12.5 nm

the total fixed charge Qf is conserved and the charge density computed from ρi
f =

Qf/V i
f , where V i

f is the volume of Ωi
f . The results are shown in Fig. 2.3(b) and

labeled in terms of effective charge density ρeff defined by

ρeff = ρfVf

V0
, (2.17)

where V0 is the total volume of the unit cell including the fibril volume at physiolog-
ical thickness. Values of ρeff/F = 42 mM and 55 mM give best fits at physiological
and low hydration, respectively, and produce predictions that are dramatically better
than those of Donnan theory.

2.3 The Case for a PG-Coating of the Collagen Fibrils

Fratzl and Daxer (1993) describe X-ray scattering studies to measure the structural
transformation of collagen fibrils under varying hydration produced by drying the
tissue. The data strongly suggests that stromal PGs are heterogeneously distributed
in the interfibrillar space. They appear in relatively high density in the vicinity of
the fibrils where they may form a charge-rich effective PG coating surrounding each
fibril. Hodson (1971) and Twersky (1975) have, much earlier, speculated on the ex-
istence of a such a fibril coating. Fratzl and Daxer (1993) estimated the radius of
the coating as rc = 18 nm. Interestingly, they showed that the coating radius rc is
insensitive to hydration over a wide range and this suggests that the charge density
associated with the coating PGs will not change with variations in hydration. How-
ever, at low levels of hydration the coatings may overlap and interact, as described
below.
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Fig. 2.4 (a) 2D illustration of the coating unit cell. Charges are distributed into the coating region
Ωc and the non-coating region Ωi\Ωc. (b) Swelling pressure computed by the coating model
under overall charge density ρeff/F = 55 mM. The coating radius is set to be 18 nm, and the charge
fraction λ for the bridging GAGs varies from 0.0 to 0.6. The optimal fitting occurs at λ = 0.6

We propose a coating model in which the total unit cell charge Q is partitioned
into two GAG-based classes: one based on charge derived from long interfibrillar
bridging GAGs and one based on charge derived from short GAGs that form the
coating. As in the previous model, we exclude the volume of the collagen fibrils in
our analysis. A sequence of unit cell domains is defined by symmetry of the lattice
and is denoted Ωi with volume V i . Here i is a configuration index corresponding
to tissue thickness (and thus hydration). The coating subregion of the unit cell is
denoted Ωc and has volume Vc, which is independent of V i in accordance with
the findings of Fratzl and Daxer (1993). The setup is shown in Fig. 2.4(a). Letting
λ ∈ [0,1] denote the charge fraction parameter, the unit cell has two charge densities
computed as follows

ρi
s = λ

Q

V i
(2.18)

over Ωi , and

ρc = (1 − λ)
Q

Vc
(2.19)

over Ωc. Clearly, the total charge in the unit cell Ωi is conserved. Further, the coat-
ing charge density ρc is invariant with respect to hydration (i.e. index i). If the
coating subdomains overlap at low thickness values, we assume that the charge den-
sity is additive in the overlap region in order to conserve total charge. The boundary
value problem to be solved on each unit cell domain Ωi is then

−∇2ϕ = ρ

ε
− 2FC0

ε
sinh

(
Fϕ

RT

)
, in Ωi, (2.20)
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with the boundary conditions:[|ϕ|] = 0,
[|∇ϕ · n|] = 0, on Γinner, (2.21)

∇ϕ · n = 0, on Γouter, (2.22)

and where Γinner and Γouter denote the inner and outer boundaries of the unit cell,
respectively. The electrostatic free energy takes the form

Fel =
∫

Ωi

[
−ε

2
|∇ϕ|2 + ρϕ − 2RT C0

(
cosh

(
Fϕ

RT

)
− 1

)]
dΩi, (2.23)

where the charge density distribution ρ in Eqs. (2.20) and (2.23) is given by

ρ(i) =

⎧⎪⎨
⎪⎩

ρi
s, in Ωi\Ωc,

ρi
s + ρc, on Ωc,

2(ρi
s + ρc), on Ωc-c.

(2.24)

Here Ωc-c refers to the subdomain of Ωc resulting from the possible geometric
intersection of coating domains as Ωi is mapped to correspond to lower thickness
values with increasing index i.

In this model, the coating radius is taken to be rc = 18.0 nm. The effective charge
density is again defined by ρeff = Q/V0 and used for reporting results. The influ-
ence of the charge fraction λ on the swelling pressure is shown in Fig. 2.4 at the
physiologically plausible ρeff/F = 55 nm. At λ = 0, all charge is concentrated in
the coatings and the swelling pressure is zero until the coatings begin to interact at
around t = 0.3 mm. As λ is increased the swelling pressure increases monotonically
toward the experimental curve. At a value of λ = 0.6, the computed swelling pres-
sure finds excellent agreement with the experimental curve and further improves on
the result of the previous section.

2.4 Molecular-Level Unit Cell Model

Here we present a molecular-level unit cell model which explicitly considers the
GAG chains that are bridging neighboring collagen fibrils. In this model, the bridg-
ing GAGs domains are approximated by an effective cylindrical volume (Hart and
Farrell, 1971; Jin and Grodzinsky, 2001). The non-bridging GAGs that constitute the
collagen fibril coating are modeled, as above, with a continuum description of the
charge density. The charge density within the cylindrical GAG domain is denoted
ρg and is determined by three parameters: the half length of the GAG disaccharide
unit b = 0.64 nm (Jin and Grodzinsky, 2001), the cylinder radius rg and a molecular
ratio factor α = Lc/Ld, where Lc is the contour length of the GAG chains and Ld
is end-to-end distance. Then ρg may be computed from

ρg = αe

πbr2
g
, (2.25)
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Fig. 2.5 Illustration of the molecular-level unit cell. The collagen fibrils are connected by the
GAGs via next-nearest neighbor connectivity. The subdomains are: Ωc ∩Ωg—the overlapping do-
main of the coating and interconnecting GAGs; Ωg—the region occupied only by interconnecting
GAGs; Ωc—the region occupied only by the coating GAGs

where e is the unit charge supplied by the disaccharide unit. The uniform charge
density for the coating GAGs is

ρc = (1 − λ)
ρeffAh

Vc
, (2.26)

where h is the length and Ah the volume of the unit cell, respectively. The bridg-
ing GAGs repeat along the axis of collagen fibrils with period h, which may be
determined using the conservation of total charge

ρeffAhλ =
∑Ngag

i=1 ligαe

b
, (2.27)

where λ is the charge fraction for the bridging GAGs and
∑Ngag

i=1 lig is the total length
of the GAG rods over the unit cell. As an example, we employ a next-nearest neigh-
bor topology for the interconnecting GAGs proposed by Muller et al. (2004). The
3-D unit cell model has uniform charge density ρc in the coating domain and ρg in
the bridging GAG cylinders (Fig. 2.5).

The Poisson-Boltzmann equation is solved for the electrostatic potential ϕ over
the cell subdomains with boundary conditions as described by Eqs. (2.21) and (2.22)
and with fixed charge density ρf prescribed as,

ρf =

⎧⎪⎨
⎪⎩

ρc on Ωc,

ρg on Ωg,

ρc + ρg on Ωc ∩ Ωg,

(2.28)

and ρf = 0 elsewhere. Charge conservation is applied to the bridging and coatings
GAGs domains independently. As the unit cell is deformed, the charge density ρg

changes due to the cylinder length change. The coating charge density ρc will not
change, as discussed above. For simplicity, the GAG radius rg is invariant during
cell deformation.
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Fig. 2.6 Swelling pressure
vs. corneal thickness around
the physiological condition
(t = 0.5 mm) by the
molecular-level unit cell
model. The average charge
density ρeff/F = 48 mM and
the radius of the GAGs rod
varies from 3 to 5 nm, the
ratio α = 4.0 and charge
fraction λ = 0.5

Figure 2.6 shows the computed swelling pressure versus the tissue thickness.
The cell effective charge density is taken to be ρeff/F = 48 mM. The interfibrillar
spacing lc = 53 nm, radius of the collagen fibril rc = 12.5 nm, and the coating radius
rc = 18 nm have the same values used in the previous models. The molecular length
ratio is taken to be α = 4.0, and the charge partition fraction λ = 0.5. We have
studied the model under GAGs radii varying from 3 to 5 nm. The sensitivity of the
results with respect to rg is presented in Fig. 2.6. An increase in the effective GAG
radius leads to a decrease in the computed swelling pressure, as expected, because
the charge density ρg in the GAG cylinders drops. From Fig. 2.6, we observe that
rg = 3 ∼ 4 nm gives a result that matches the experimental curve well.

2.5 Discussion

In this work we have compared predictions for equilibrium swelling pressure of the
human stroma using three models. Each model provides a representation of the elec-
trostatic forces arising from the charges associated with the linear GAG chains of
the tissue PGs and with the mobile ions in the polyelectrolyte phase. The first to be
considered was a continuum model based on Donnan equilibrium which requires
the electrostatic potential to be spatially invariant. This allows no representation of
molecular-level or microstructural-level information. This model was based on a
uniform fixed charge density that has been reported from independent experimental
measurement. The model equates the Donnan osmotic pressure difference between
the polyelectrolyte phase and bath with the swelling pressure. The prediction for
equilibrium swelling pressure at physiological hydration is reasonable but the ap-
proach severely underestimates swelling pressure at lower hydration levels.

The second model is also a continuum model. It is a unit cell approach and based
on a thermodynamic derivation for the swelling pressure in which the swelling pres-
sure emerges as the derivative of the electrostatic free energy with respect to the
swelling volume. In this model, the electrostatic potential is found from the Poisson-
Boltzmann equation. This model contains no molecular-level information but does
describe the microstructure of the tissue. In particular, it accounts for the polyelec-
trolyte phase being excluded from the volume occupied by collagen fibrils. As the
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hydration reduces, the volume containing the fixed charges decreases due to a geo-
metrical effect. This model provides an accurate swelling pressure prediction over
all ranges of hydration. The model is further improved by partitioning the charge
into two GAG-based groups: one associated with a charge-dense coating of the
collagen fibrils, in accordance with experimental evidence, and one dispersed over
the interfibrillar volume and associated with GAGs which bridge fibrils, possibly
by duplexing. This refinement gives a surprisingly accurate prediction for swelling
pressure at λ = 0.6, when 40 % of the charge is in the coating region. This result
implies that around physiological hydration (t = 0.5 mm), the swelling pressure pri-
marily results from the bridging GAGs in the interfibrillar region. As the tissue is
compressed toward t ∼ 0.25 nm, the coatings start to play a role by mutually inter-
acting and producing a local increase in charge density and a concomitant increase
in swelling pressure.

The third model employs a molecular-level unit cell in which volumetric do-
mains within the unit cell are associated with the macromolecular GAGs. The model
is a hybrid approach in that it represents the fibril coating as a charge-dense re-
gion around the fibrils using a continuum description. The approach accounts for
the spatially varying electrostatic potential between the explicit GAG domains and
the mobile ions, again using the Poisson-Boltzmann equation. The results of this
model applied to the case of next-nearest neighbor GAG connectivity, as proposed
by Muller et al. (2004), are also quite accurate. This approach does introduce ad-
ditional variables that are not readily estimated, including the GAG length ratio α,
which describes the waviness of the GAG chains, and the radius of the effective
GAG cylinder rg. However, the length ratio α for the bridging GAGs is also a rel-
evant parameter for estimating the entropic elasticity of the polymer chain using a
theory such as the wormlike chain model.

In the present study, we have addressed the swelling problem in terms of the
electrostatic component of the free energy alone. However, the chemomechanical
free energy, which includes the entropic elasticity of the GAGs and the molecular
mixing energy, will certainly have some influence on the swelling pressure (Hart
and Farrell, 1971; Jin and Grodzinsky, 2001). Indeed, the GAG entropic elasticity
will produce expansion-resisting forces that will contribute a ‘negative’ swelling
pressure component (Hart and Farrell, 1971). These non-electrostatic components
will be the subject of a future study.
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