
Chapter 2
Tensor Fields and Differential Forms

Abstract After providing some definitions and results on tensor fields and differen-
tial forms, this chapter deals with some aspects of general vector bundles, including
the ‘cocycle approach’; other topics are: Tensors and tensor fields, exterior forms,
Lie derivative and the interior product; calculus of differential forms and distribu-
tions. Some examples related to manifolds studied in the previous chapter are also
present, such as the infinite Möbius strip, considered as a vector bundle, and the tau-
tological bundle over the real Grassmannian. Certain problems intend to make the
reader familiar with computations of vector fields, differential forms, Lie derivative,
the interior product, the exterior differential, and their relationships. Other group of
problems tries to develop practical abilities in computing integral distributions and
differential ideals.

L’algorithme du Calcul différentiel absolu, c’est à dire l’instrument
matériel des méthodes (. . . ) se trouve tout entier dans une remarque due a
M. Christoffel (. . . ) Mais les méthodes mêmes et les avantages, qu’ils présen-
tent, ont leur raison d’être et leur source dans les rapports intimes, que les lient
à la notion de variété à n dimensions, qui nous devons aux génies de Gauss
et de Riemann. D’après cette notion une variété Vn est définie intrinséque-
ment dans ses propriétés métriques par n variables indépendants et par toute
une classe de formes quadratiques des différentielles de ces variables, dont
deux quelconques son transformables l’une en l’autre par une transformation
ponctuelle. Par conséquence une Vn reste invariée vis-à-vis de toute transfor-
mation de ses coordonnées. La Calcul differentiel absolu, en agissant sur des
formes covariantes ou contrevariants au ds2 de Vn pour en dériver d’autres de
même nature, est lui aussi dans ses formules et dans ses résultats indépendent
du choix des variables indépendantes. Étant de la sorte essentiellement attaché
à Vn, il est l’instrument naturel de toutes les recherches, qui ont pour object
une telle variété, ou dans lesquelles on rencontre comme élément caractéris-
tique une forme quadratique positive des différentielles de n variables ou de
leurs dérivées.1

1The algorithm of absolute differential Calculus, that is, the material instrument of the methods
(. . . ) is fully included in a remark by Mr. Christoffel (. . . ) But the methods themselves and their
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de calcul differentiel absolu et leurs applications, Math. Annalen 54 (1900),
no. 1–2, 127–128. (With kind permission from Springer.)

However Einstein realised his problems: ‘If all accelerated systems are
equivalent, then Euclidean geometry cannot hold in all of them.’ Einstein then
remembered that he had studied Gauss’ theory of surfaces as a student and
suddenly realised that the foundations of geometry have physical significance.
He consulted his friend [and mathematician] Grossmann who was able to tell
Einstein of the important developments of Riemann, Ricci (Ricci-Curbastro)
and Levi-Civita. Einstein wrote: ‘. . . in all my life I have not laboured nearly
so hard, and I have become imbued with great respect for mathematics, the
subtler part of which I had in my simple-mindedness regarded as pure luxury
until now.’ In 1913 Einstein and Grossmann published a joint paper where
the tensor calculus of Ricci and Levi-Civita is employed to make further ad-
vances. Grossmann gave Einstein the Riemann–Christoffel tensor which, to-
gether with the Ricci tensor which can be derived from it, were to become the
major tools in the future theory. Progress was being made in that gravitation
was described for the first time by the metric tensor but still the theory was
not right. (. . . ) It was the second half of 1915 that saw Einstein finally put the
theory in place. Before that however he had written a paper in October 1914
nearly half of which is a treatise on tensor analysis and differential geometry.
This paper led to a correspondence between Einstein and Levi-Civita in which
Levi-Civita pointed out technical errors in Einstein’s work on tensors. Einstein
was delighted to be able to exchange ideas with Levi-Civita whom he found
much more sympathetic to his ideas on relativity than his other colleagues.

JOHN O’CONNOR AND EDMUND F. ROBERTSON, Article General Rel-
ativity, in ‘The MacTutor History of Mathematics archive,’ School of Math-
ematics and Statistics, University of St. Andrews, Scotland. (With kind per-
mission from the authors.)

advantages have their foundation and their source in the intimate links they have with the notion
of n-dimensional manifold, which we owe to the geniuses of Gauss and Riemann. According
to this notion, a manifold Vn is intrinsically defined with respect to its metric properties by n

independent variables and by a full class of quadratic forms of the differentials of these variables,
such that any two may be mutually transformed by a pointwise transformation. Consequently, a Vn

remains invariant under any transformation of its coordinates. The absolute differential Calculus,
dealing with covariant or contravariant forms of the ds2 of Vn, in order to obtain other ones of the
same nature, is itself independent of the choice of independent variables inside its formulas and its
results. Being so essentially linked to Vn, it is a natural tool of all the researches on such a manifold
(. . . ) or one meets positive quadratic differential forms and their derivatives.”
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2.1 Some Definitions and Theorems on Tensor Fields
and Differential Forms

Definitions 2.1 Let ξ = (E,π,M) be a locally trivial bundle with fibre F over M .
A chart on ξ is a pair (U,Ψ ) consisting of an open subset U ⊂ M and a diffeomor-
phism Ψ : π−1(U) → U × F such that pr1 ◦ Ψ = π , where pr1 : U × F → U is the
first projection map. Ψ is called a trivialisation of ξ over U .

Let V be real vector space of finite dimension n, and let ξ = (E,π,M) be a lo-
cally trivial bundle of fibre V . A structure of vector bundle on ξ is given by a family
A = {(Uα,Ψα)} of charts on ξ satisfying:

(i) Uα is an open covering of the base space M .
(ii) For each pair (α,β) such that Uα ∩ Uβ �= ∅, one has

(
Ψβ ◦ Ψ −1

α

)
(p, v) = (

p,gβα(p)v
)
, (p, v) ∈ (Uα ∩ Uβ) × V,

where gαβ is a C∞ map from Uα ∩ Uβ to the group GL(V ) of automorphisms
of V .

(iii) If A ′ ⊃ A is a family of charts on ξ satisfying properties (i), (ii) above, then
A ′ = A .

Such a bundle ξ = (E,π,M,A ), or simply ξ = (E,π,M), is called a (real)
vector bundle of rank n. The C∞ maps gαβ : M → GL(V ) are called the changes of
charts of the atlas A .

Proposition 2.2 The changes of charts of a vector bundle have the property (called
the cocycle condition)

gαγ (p)gγβ(p) = gαβ(p), p ∈ Uα ∩ Uβ ∩ Uγ .

Definition 2.3 Two vector bundles of rank n are said to be equivalent if they are
isomorphic and have the same base space B .

One has the following converse to Proposition 2.2:

Theorem 2.4 Let U = {Uα} be an open covering of a differentiable manifold M ,
and let V be a finite-dimensional real vector space. Let gαβ : M → GL(V ), Uα ∩
Uβ �= ∅, be a family of C∞ maps satisfying the cocycle condition in Proposition 2.2.
Then there exists a real vector bundle ξ = (E,π,M,A ), unique up to equivalence,
such that the maps gαβ are the changes of charts of the atlas A .

Definition 2.5 The family (Uα,gαβ) is said to be a GL(V )-valued cocycle on M

subordinated to the open covering U .

Definitions 2.6 Let T r
s (M) be the set of tensor fields of type (r, s) on a differen-

tiable manifold M and write T (M) = ⊕∞
r,s=0 T r

s (M). A derivation D of T (M)

is a map of T (M) into itself satisfying:
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(i) D is linear and satisfies

DX(T1 ⊗ T2) = DXT1 ⊗ T2 + T1 ⊗ DXT2, X ∈ X(M), T1, T2 ∈ T (M).

(ii) DX is type-preserving: DX(T r
s (M)) ⊂ T r

s (M).
(iii) DX commutes with every contraction of a tensor field.

Let ΛrM be the space of differential forms of degree r on the n-manifold M ,
that is, skew-symmetric covariant tensor fields of degree r . With respect to the ex-
terior product, Λ∗M = ⊕n

r=0 ΛrM is an algebra over R. A derivation (resp. anti-
derivation) of Λ∗M is a linear map of Λ∗M into itself satisfying

D(ω1 ∧ ω2) = Dω1 ∧ ω2 + ω1 ∧ Dω2, ω1,ω2 ∈ Λ∗M
(
resp. D(ω1 ∧ ω2) = Dω1 ∧ ω2 + (−1)rω1 ∧ Dω2, ω1 ∈ ΛrM, ω2 ∈ Λ∗M.

)

A derivation or anti-derivation D of Λ∗M is said to be of degree k if it maps ΛrM

into Λr+kM for every r .

Theorem 2.7 (Exterior Differentiation) There exists a unique anti-derivation

d : Λ∗M → Λ∗M

of degree +1 such that:

(i) d2 = 0.
(ii) Whenever f ∈ C∞M = Λ0M , df is the differential of f .

Definitions 2.8 Fix a vector field X on M and let ϕt be the local one-parameter
group of transformations associated with X. Let Y be another vector field on M .
The Lie derivative of Y with respect to X at p ∈ M is the vector (LXY)p defined
by

(LXY)p = lim
t→0

Yp − ϕt∗Yϕ−1
t (p)

t
= − d

dt

∣∣∣∣
t=0

(ϕt∗Yϕ−1
t (p)

).

The Lie derivative of a differential form ω with respect to X at p is defined by

(LXω)p = lim
t→0

ωp − ϕ∗−t (ωϕt (p))

t
. (2.1)

The Lie derivative of a tensor field T of type (r, s) with respect to X at p is
defined by

(LXT )p = − d

dt

∣∣∣∣
t=0

(ϕt · T )p,

where the dot denotes, for an arbitrary diffeomorphism Φ of M ,
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Φ · (X1 ⊗ · · · ⊗ Xr ⊗ θ1 ⊗ · · · ⊗ θs)

= Φ · X1 ⊗ · · · ⊗ Φ · Xr ⊗ (
Φ−1)∗

θ1 ⊗ · · · ⊗ (
Φ−1)∗

θs,

Xi ∈X(M), θj ∈ Λ1M .
In particular, the action of Φ on a differential form θ ∈ Λ1M is given by

(Φ · θ)p = θΦ−1(p) ◦ (
Φ−1)

∗ = ((
Φ−1)∗

θ
)
p
, p ∈ M.

For each X ∈ X(M), the interior product with respect to X is the unique anti-
derivation i of degree −1 defined by iXf = 0, f ∈ C∞M , and iXθ = θ(X), θ ∈
Λ1M . We shall use sometimes, to avoid confusion, ι instead of i to denote the
interior product.

Theorem 2.9 Let X ∈X(M). Then:

(i) LXf = Xf , f ∈ C∞M .
(ii) LXY = [X,Y ], Y ∈X(M).

(iii) LX maps Λ∗M to Λ∗M , and it is a derivation which commutes with the exte-
rior differentiation d.

(iv) On Λ∗M , we have

LX = iX ◦ d + d ◦ iX,

where iX denotes the interior product with respect to X.

Proposition 2.10 Let ϕt be a local one-parameter group of local transformations
generated by a vector field X on M . For any tensor field T on M , we have

ϕs · (LXT ) = −
(

d

dt
(ϕt · T )

)

t=s

.

In particular, LXT = 0 if and only if ϕt · T = T for all t .

Definitions 2.11 Let m,n be integers, 1 � m � n. An m-dimensional distribution
D on an n-dimensional manifold M is a choice of an m-dimensional subspace Dp

of TpM for each p ∈ M . D is C∞ if for each p ∈ M , there are a neighbourhood
U of p and m vector fields X1, . . . ,Xm on U which span D at each point in U .
A vector field is said to belong to (or lie in) the distribution D if Xp ∈ Dp for
each p ∈ M . Then one writes X ∈ D . A C∞ distribution is called involutive (or
completely integrable) if [X,Y ] ∈ D whenever X and Y are vector fields lying in D .

A submanifold (N,ψ) of M is an integral manifold of a distribution D on M if

ψ∗(TqN) = Dψ(q), q ∈ N.

Definitions 2.12 Let D be an r-dimensional C∞ distribution on M . A differential
s-form ω is said to annihilate D if, for each p ∈ M ,

ωp(v1, . . . , vs) = 0, v1, . . . , vs ∈ Dp.
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A differential form ω ∈ Λ∗M is said to annihilate D if each of the homogeneous
parts of ω annihilates D . Let

I (D) = {
ω ∈ Λ∗M : ω annihilates D

}
.

A function f ∈ C∞M is said to be a first integral of D if df annihilates D . An
ideal I ⊂ Λ∗M is called a differential ideal if it is closed under exterior differenti-
ation d, that is, dI ⊂ I .

Proposition 2.13 A C∞ distribution D on M is involutive if and only if the ideal
I (D) is a differential ideal.

Theorem 2.14 (Frobenius’ Theorem) Let D be an (n − q)-dimensional, involutive,
C∞ distribution on the n-dimensional manifold M . Let p ∈ M . Then through p

there passes a unique maximal connected integral manifold of D , and every con-
nected integral manifold of D through p is contained in the maximal one.

Definitions 2.15 In the conditions of Theorem 2.14 it is said that the involutive
distribution D defines a foliation, M is said to be a foliated manifold, the unique
maximal connected integral manifold of D through each point is called a leaf of the
foliation, and the foliation is said to be of codimension q .

Definition 2.16 A codimension q foliation F on a differentiable manifold M of di-
mension n is a collection of disjoint, connected, (n − q)-dimensional submanifolds
of M (the leaves of the foliation), whose union is M , and such that for each point
p ∈ M , there is a chart (U,ϕ) containing p such that each leaf of the foliation inter-
sects U in either the empty set or a countable union of (n − q)-dimensional slices
of the form xn−q+1 = cn−q+1, . . . , xn = cn. More formally, a foliation F consists
of a covering U of M by charts (Ui, ϕi) such that on each intersection Ui ∩ Uj , the
changes of charts Φij = ϕj ◦ ϕ−1

i are of the form

Φij

(
x1, . . . , xq, xq+1, . . . , xn

) = (
ϕij

(
x1, . . . , xq

)
,ψij

(
x1, . . . , xq, xq+1, . . . , xn

))

with

ϕij : Rq → R
q, ψij : Rn → R

n−q .

2.2 Vector Bundles

Problem 2.17 Let (E,π,M) be a C∞ vector bundle with fibre F
n, where F =

R,C or H. Prove that the homotheties

h : F× E → E, (λ, y) �→ h(λ, y) = λy,

are C∞.
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Solution Let U be an open subset of M . Let ϕ : π−1(U) → U ×F be a trivialisation
of (E,π,M), that is, a fibre-preserving diffeomorphism linear on the fibres, and ϕ a
chart, that is, a diffeomorphism of the open subset EU = π−1(U) of E onto U ×F

n,
linear on the fibres.

Then, h|U is the composition map

F× EU
idF×ϕ−→ F× U × F

n h′−→ U × F
n ϕ−1

−→ EU

(λ, y) �−→ (λ,p, x) �−→ (p,λx) �−→ λy.

Since ϕ is a diffeomorphism and h′ is C∞, the map h|U is C∞.

Problem 2.18 Show that for a C∞ vector bundle ξ = (E,π,M) with fibre R
n,

triviality is equivalent to the existence of n C∞ global sections, linearly independent
at each point.

Solution Let {ei} be the canonical basis of Rn. If we have a global trivialisation

E
u−−−−→ M ×R

n

π

⏐
⏐�

⏐
⏐�pr1

M
id−−−−→ M

then we have sections ẽi of M × R
n given by ẽi = (id, ei). Thus, we have sections

ξi of E defined by ξi = u−1 ◦ ẽi , which are linearly independent because u−1 is an
isomorphism on each fibre.

Conversely, if ξi are such linearly independent sections of E, we define the triv-
ialisation u by u(α) = (π(α),α1, . . . , αn) with α = ∑

i α
iξi(π(α)) ∈ E. Its inverse

map is given by u−1(p,α1, . . . , αn) = ∑
i α

iξi |p , p ∈ M .

Problem 2.19 Prove that the infinite Möbius strip M (see Problem 1.31) can be
considered as the total space of a vector bundle over S1. Specifically:

(i) Determine the base space, the fibre and the projection map π .
(ii) Prove that the vector bundle (M,π,S1) is locally trivial but not trivial.

Solution

(i) With the notations of Problem 1.31, we have that the base space is S1 ≡ ([0,1]×
{0})/∼ ⊂ M , the fibre is R (see Fig. 2.1), and the projection map is defined by

π
([

(x, y)
]) =

{
[(x,0)] if 0 < x < 1,

[(0,0)] = [(1,0)] if x = 0 or x = 1.

(ii) The charts in Problem 1.31 are in fact trivialisations that cover S1 entirely. Now
suppose that there exists a non-vanishing global section σ : S1 → M , i.e. a con-
tinuous map such that π ◦ σ = idS1 . This is equivalent to a continuous function
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Fig. 2.1 The Möbius strip as
the total space of a vector
bundle

s : [0,1] → R such that s(0) = −s(1). Since s must vanish somewhere, σ must
also vanish somewhere, so getting a contradiction.

Problem 2.20

(i) Consider

E = {
(u, v) = (x, y, z, a, b, c) ∈ R

3 ×R
3 : |u| = 1, 〈u,v〉 = 0

}

and the projection map on the unit sphere S2 given by π : E → S2, π(u, v) = u.
Prove that ξ = (E,π,S2) is a locally trivial bundle over S2 with fibre R

2.
(ii) Let A = {(Ui,Φi)}, i = 1,2,3, be as in the solution of (i) below. Prove that

T S2 = (E,π,S2,A ) is a vector bundle (see Definitions 2.1) with fibre R
2.

Solution

(i) The open subsets U1,U2,U3 of S2 given by |x| < 1, |y| < 1, |z| < 1, respec-
tively, are an open covering of S2. Define local trivialisations by

Φ1 : π−1(U1) → U1 ×R
2, (x, y, z, a, b, c) �→ (x, y, z, bz − cy, a),

Φ2 : π−1(U2) → U2 ×R
2, (x, y, z, a, b, c) �→ (x, y, z, cx − az, b),

Φ3 : π−1(U3) → U3 ×R
2, (x, y, z, a, b, c) �→ (x, y, z, ay − bx, c).

It is immediate that they are diffeomorphisms.
(ii) As a computation shows, the changes of charts are given, for each u =

(x, y, z) ∈ S2, by

g21(u) = −1

y2 + z2

(
xy z

−z xy

)
, g32(u) = −1

z2 + x2

(
yz x

−x yz

)
,

g13(u) = −1

x2 + y2

(
zx y

−y zx

)
.
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The cocycle condition is thus satisfied. Indeed, one has

g21(u)g13(u) = 1

x2 + y2

(−yz x

−x −yz

)
= (

g32(u)
)−1 = g23(u)

and the similar identities for g12(u)g23(u) and g13(u)g32(u).
Moreover, for

Ê = {(
(u, v),

(
u′, v′)) ∈ E × E : u = u′, 〈u,v〉 = 〈

u,v′〉 = 0
}
,

the maps

s : Ê → E,
(
(u, v),

(
u′, v′)) �→ (

u,v + v′),

h : R× E → E,
(
λ, (u, v)

) �→ (u,λv),

are C∞ (as for h, see Problem 2.17), and they induce a structure of two-
dimensional vector space on each fibre of T S2.

Problem 2.21

(i) Let {(Uα,ϕα)} be an atlas on a manifold M , where ϕα : Uα → R
n, ϕα =

(x1
α, . . . , xn

α), n = dimM . Let gαβ : Uα ∩ Uβ → GL(n,R) be the map

(
gαβ(p)

)h

i
= ∂xh

α

∂xi
β

(p), p ∈ Uα ∩ Uβ.

Prove that {gαβ} is a cocycle on M whose associated vector bundle is the tangent
bundle T M .

(ii) Similarly, if the map g∗
αβ : Uα ∩ Uβ → GL(n,R) is given by

(
g∗

αβ(p)
)h

i
= ∂xi

β

∂xh
α

(p), p ∈ Uα ∩ Uβ,

prove that {g∗
αβ} is a cocycle on M whose associated vector bundle is the cotan-

gent bundle T ∗M .

Solution

(i) Let us define two linear frames at p:

uα =
(

∂

∂x1
α

∣∣
∣∣
p

, . . . ,
∂

∂xn
α

∣∣
∣∣
p

)
, uβ =

(
∂

∂x1
β

∣∣
∣∣
p

, . . . ,
∂

∂xn
β

∣∣
∣∣
p

)
.

According to the definition of gαβ(p), we have

∂

∂xi
β

∣∣∣∣
p

=
n∑

h=1

(
gαβ(p)

)h

i

∂

∂xh
α

∣∣∣∣
p

.
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Hence uβ = uα ·gαβ(p), where the dot on the right-hand side stands for the right
action of GL(n,R) on the bundle of linear frames FM (see Definitions 5.3).
Accordingly,

uβ = uγ · gγβ(p) = (
uα · gαγ (p)

) · gγβ(p) = uα · (gαγ (p)gγβ(p)
)
.

As GL(n,R) acts freely on FM , we conclude that

gαβ(p) = gαγ (p)gγβ(p),

thus proving that {gαβ} is a cocycle.
Moreover, if π : T M → M is the tangent bundle, for every index α, we have

a trivialisation

Φα : π−1(Uα) → Uα ×R
n, Φα(X) = (

p,λ1, . . . , λn
)
,

X = ∑n
i=1 λi(∂/∂xi

α)p ∈ TpUα , or in other words,

Φα(X) = (
p,u−1

α (X)
)
,

where uα is understood as a linear isomorphism uα : Rn → TpM .
In order to prove that the cocycle {gαβ} defines T M , it suffices to see that the

cocycle associated to these trivialisations is {gαβ}. In fact, if {ei} is the standard
basis of Rn, for v = ∑

i λ
iei , p ∈ Uα ∩ Uβ , we have

(
Φα ◦ Φ−1

β

)
(p, v) = Φα

(
uβ(v)

) = (
p,u−1

α

(
uβ(v)

))

=
(

p,u−1
α

(
n∑

i=1

λi ∂

∂xi
β

∣∣∣∣
p

))

=
(

p,u−1
α

(
n∑

i,h=1

λi ∂xh
α

∂xi
β

(p)
∂

∂xh
α

∣
∣∣∣
p

))

=
(

p,

n∑

i,h=1

λi ∂xh
α

∂xi
β

(p)u−1
α

(
∂

∂xh
α

∣∣∣∣
p

))

=
(

p,
∑

i,h

λi
(
gαβ(p)

)h

i
eh

)
= (

p,gαβ(p) · v)
.

(ii) We have

n∑

j=1

(
g∗

αβ(p)
)h

j

(
t gαβ(p)

)j

i
=

n∑

j=1

∂x
j
β

∂xh
α

(p)
∂xi

α

∂x
j
β

(p) =
n∑

j=1

∂x
j
β

∂xh
α

(p)
∂

∂x
j
β

∣∣∣
∣
p

(
xi
α

)

= ∂

∂xh
α

∣∣
∣∣
p

(
xi
α

) = δi
h.
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Hence g∗
αβ(p) = (tgαβ)−1(p), and then

g∗
αγ (p)g∗

γβ(p) = (
tgαγ

)−1
(p)

(
tgγβ

)−1
(p) = (

tgαβ

)−1
(p) = g∗

αβ(p),

thus proving that {g∗
αβ} is a cocycle.

Finally, by proceeding as in (i) above, it is easily checked that {g∗
αβ} is the

cocycle attached to the trivialisations of the cotangent bundle π : T ∗M → M

defined as follows:

Ψα : π−1(Uα) → Uα ×R
n,

Ψα(ω) = (
p,u∗

α(ω)
) =

(
p,ω

(
∂

∂x1
α

∣
∣∣∣
p

)
, . . . ,ω

(
∂

∂xn
α

∣
∣∣∣
p

))
,

ω ∈ T ∗
p M, p ∈ Uα ∩ Uβ,

where u∗
α : T ∗

p M → (Rn)∗ is the dual map to uα : Rn → TpM .

Problem 2.22 (The Tautological Bundle Over the Real Grassmannian) Denote
by γ k(Rn) the subset of pairs (V , v) ∈ Gk(R

n) × R
n such that v ∈ V and let

π : γ k(Rn) → Gk(R
n) be the projection π(V,v) = V . Prove that γ k(Rn) is a C∞

vector bundle of rank k.

Solution The fibres of π are endowed with a natural structure of vector space as
π−1(V ) = V . Hence rankπ−1(V ) = k for all V ∈ Gk(R

n). The maps

γ k
(
R

n
) ×Gk(R

n) γ k
(
R

n
) → γ k

(
R

n
)
,

(
(V , v), (V ,w)

) �→ (V , v + w),

R× γ k
(
R

n
) → γ k

(
R

n
)
,

(
λ, (V, v)

) �→ (V ,λv),

are differentiable as they are induced by the corresponding operations in R
n. It re-

mains to prove that γ k(Rn) is locally trivial. Let us fix a point V0 ∈ Gk(R
n), and

let U be the set of k-planes V such that kerp|V = 0, where p is the orthogonal
projection onto V0 relative to the decomposition R

n = V0 ⊕ V ⊥
0 . Certainly, V0 ∈ U

as p|V0 = id.
If {v0

1, . . . , v0
k } is an orthonormal basis of V0 and {v1, . . . , vk} is a basis of V , then

V ∈ U if and only if

det
(〈

v0
i , vj

〉)
i,j=1,...,k

�= 0,

thus proving that U is an open neighbourhood of V0. For every V ∈ U , the restric-
tion p|V : V → V0 is an isomorphism as kerp|V = 0 and dimV = dimV0. Hence
we can define a C∞ trivialisation

U × V0
τ→ π−1(U ) ⊂ γ k

(
R

n
)

(V , v0) �→ (
V, (p|V )−1(v0)

)
.
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Problem 2.23 Let Φ : E → E′ be a homomorphism of vector bundles over M with
constant rank. Prove that kerΦ and imΦ are vector sub-bundles of E and E′, re-
spectively.

Solution As the problem is local, we can assume that E,E′ are trivial: E = M ×
R

n, E′ = M ×R
m. Then Φ is given by

Φ(p,v) = (
p,A(p)v

)
,

where A = (ai
j ), 1 � i � m, 1 � j � n, ai

j ∈ C∞M , is a C∞ m × n matrix. Set
r = rankp Φ for all p ∈ M . Given p0 ∈ M , by permuting rows and columns in A,
we can suppose that

det

⎛

⎜
⎝

a1
1(p0) . . . a1

r (p0)
...

...

ar
1(p0) . . . ar

r (p0)

⎞

⎟
⎠ �= 0.

Hence there exists an open neighbourhood U of p0 such that

det

⎛

⎜
⎝

a1
1(p) . . . a1

r (p)
...

...

ar
1(p) . . . ar

r (p)

⎞

⎟
⎠ �= 0, p ∈ U.

As rankA(p) = r for all p ∈ U , it is clear that ker(Φ|U) is defined by the equations

n∑

j=1

ai
j (p)vj = 0, 1 � i � r,

where v = ∑
j vj ej , {e1, . . . , en} is a basis of Rn. By using Cramer’s formulas we

conclude that the previous system is equivalent to

vh =
n∑

k=r+1

bh
k (p)vk, 1 � h � r.

Hence (p, v) ∈ kerΦ if and only if

v =
n∑

k=r+1

vk

(

ek +
r∑

h=1

bh
k (p)eh

)

.

Define sections of E over U by

σk(p) =
{

ek, 1 � k � r,

ek + ∑r
h=1 bh

k (p)eh, r + 1 � k � n.

Then, {σ1(p), . . . , σn(p)} is a basis of Ep , and {σr+1(p), . . . , σn(p)} is a basis of
(kerΦ)p for all p ∈ U , thus proving that kerΦ is a sub-bundle of E.
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Moreover, if F ⊂ E is a sub-bundle, then F 0 = {w ∈ E∗ : w|F = 0} is a sub-
bundle of E∗, as if {σ1, . . . , σn} is a basis of sections of E over U and {σr+1, . . . , σn}
is a basis of sections of F , then the dual basis {σ ∗

1 , . . . , σ ∗
n } is a basis of sections of

E∗|U , and {σ ∗
1 , . . . , σ ∗

r } is a basis of sections of F 0. Furthermore, as Φ has constant
rank, then the same holds for Φ∗ : E′∗ → E∗, as a matrix and its transpose have the
same rank. We can conclude by remarking that imΦ = (kerΦ∗)0.

Finally, we give the following counterexample. Let E = E′ = R×R be the trivial
bundle over R with fibre R, and let Φ : E → E′ be defined by Φ(p,λ) = (p,λp).
Then

(kerΦ)p =
{

0 if p �= 0,

R if p = 0.

2.3 Tensor and Exterior Algebras. Tensor Fields

Problem 2.24 Let V be a finite-dimensional vector space. An element θ ∈ Λ∗V ∗
is said to be homogeneous of degree k if θ ∈ ΛkV ∗, and a homogeneous element of
degree k � 1 is said to be decomposable if there exist θ1, . . . , θk ∈ Λ1V ∗ such that
θ = θ1 ∧ · · · ∧ θk .

(i) Assume that θ ∈ ΛkV ∗ is decomposable. Calculate θ ∧ θ .
(ii) If dimV > 3 and θ1, θ2, θ3, θ4 are linearly independent, is θ1 ∧ θ2 + θ3 ∧ θ4

decomposable?
(iii) Prove that if dimV = n � 3, then every homogeneous element of degree k � 1

is decomposable.
(iv) If dimV = 4, give an example of a non-decomposable homogeneous element

of Λ∗V ∗.

Solution

(i) It is immediate that θ ∧ θ = 0.
(ii) No, since

(
θ1 ∧ θ2 + θ3 ∧ θ4) ∧ (

θ1 ∧ θ2 + θ3 ∧ θ4) = 2θ1 ∧ θ2 ∧ θ3 ∧ θ4 �= 0,

so by virtue of (i) it is not decomposable.
(iii) If dimV = 1 or 2, the result is trivial. Suppose then that dimV = 3, and let

{α1, α2, α3} be a basis of V ∗. If θ ∈ Λ1V ∗, the result follows trivially. If θ ∈
Λ3V ∗, then θ = aα1 ∧ α2 ∧ α3, and hence it is decomposable. Then suppose
that θ ∈ Λ2V ∗, so that θ = aα1 ∧ α2 + bα1 ∧ α3 + cα2 ∧ α3. Assume that
a �= 0. Then

θ = aα1 ∧
(

α2 + b

a
α3

)
+ cα2 ∧ α3 = (

aα1 − cα3) ∧
(

α2 + b

a
α3

)
.

If a = 0, then θ = (bα1 + cα2) ∧ α3.
(iv) The one given in (ii) in the statement is such an example.
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Problem 2.25

1. Let A, B be two (1,1) tensor fields on a C∞ manifold M . Define S by

S(X,Y ) = [AX,BY ] + [BX,AY ] + AB[X,Y ] + BA[X,Y ] − A[X,BY ]
− A[BX,Y ] − B[X,AY ] − B[AX,Y ], X,Y ∈ X(M).

Prove that S is a (1,2) skew-symmetric tensor field on M , called the Nijenhuis
torsion of A and B .

2. Let J be a tensor field of type (1,1) on the C∞ manifold M . The Nijenhuis
tensor of J is defined by

NJ (X,Y ) = [JX,JY ] − J [JX,Y ] − J [X,JY ] + J 2[X,Y ], X,Y ∈X(M).

(a) Prove that NJ is a tensor field of type (1,2) on M .
(b) Find its local expression in terms of that of J .

The relevant theory is developed, for instance, in Kobayashi and Nomizu [2, vol. 2,
Chap. IX]. However, for the sake of simplicity we omit the factor 2 of the Nijenhuis
tensor in that reference.

Solution

1. From the formula

[f X,gY ] = fg[X,Y ] + f (Xg)Y − g(Yf )X

it follows that S(f X,gY ) = fgS(X,Y ), f,g ∈ C∞M . Since the Lie bracket is
skew-symmetric, so is S.

2. (a) The proof is similar to the one in the case 1.
(b) Let x1, . . . , xn be local coordinates in which J = ∑

i,j J i
j

∂
∂xi ⊗ dxj and

NJ = ∑
i,j,k Ni

jk
∂

∂xi ⊗ dxj ⊗ dxk , so

J
∂

∂xk
=

n∑

i=1

J i
k

∂

∂xi
, NJ

(
∂

∂xi
,

∂

∂xj

)
=

n∑

k=1

Nk
ij

∂

∂xk
.

From the definition of the Nijenhuis tensor we obtain

Ni
jk =

n∑

l=1

(
J l

j

∂J i
k

∂xl
− J l

k

∂J i
j

∂xl
+ J i

l

∂J l
j

∂xk
− J i

l

∂J l
k

∂xj

)
.

Problem 2.26 Write the tensor field J ∈ T 1
1 R

3 given by

J = dx ⊗ ∂

∂x
+ dy ⊗ ∂

∂y
+ dz ⊗ ∂

∂z

in the system of spherical coordinates given by

x = r cosϕ cos θ, y = r cosϕ sin θ, z = sinϕ,

r > 0, ϕ ∈ (−π/2,π/2), θ ∈ (0,2π).
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Solution We have

J = dr ⊗ ∂

∂r
+ dϕ ⊗ ∂

∂ϕ
+ dθ ⊗ ∂

∂θ
,

as J represents the identity map in the natural isomorphism T ∗
R

3 ⊗ TR
3 ∼=

EndTR
3, and hence it has the same expression in any coordinate system.

2.4 Differential Forms. Exterior Product

Problem 2.27 Consider on R
2:

X = (
x2 + y

) ∂

∂x
+ (

y2 + 1
) ∂

∂y
, Y = (y − 1)

∂

∂x
,

θ = (
2xy + x2 + 1

)
dx + (

x2 − y
)

dy,

and let f be the map

f : R3 →R
2, (u, v,w) �→ (x, y) = (

u − v, v2 + w
)
.

Compute:

(i) [X,Y ](0,0).
(ii) θ(X)(0,0).

(iii) f ∗θ .

Solution

(i)

[X,Y ] = (
y2 − 2xy + 2x + 1

) ∂

∂x
, so [X,Y ](0,0) = ∂

∂x

∣∣∣∣
(0,0)

.

(ii)

θ(X)(0,0) = ((
2xy + x2 + 1

)(
x2 + y

) + (
x2 − y

)(
y2 + 1

))
(0,0) = 0.

(iii)

f ∗θ = {
2(u − v)

(
v2 + w

) + (u − v)2 + 1
}

du

+ {
2v

(
(u − v)2 − v2 − w

) − 2(u − v)
(
v2 + w

) − (u − v)2 − 1
}

dv

+ {
(u − v)2 − v2 − w

}
dw.

Problem 2.28 Consider the vector fields on R
2:

X = x
∂

∂x
+ 2xy

∂

∂y
, Y = y

∂

∂y
,
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and let ω be the differential form on R
2 given by

ω = (
x2 + 2y

)
dx + (

x + y2)dy.

Show that ω satisfies the relation

dω(X,Y ) = Xω(Y ) − Yω(X) − ω
([X,Y ]),

between the bracket product and the exterior differential.

Solution We have [X,Y ] = 0 and

dω =
(

∂(x2 + 2y)

∂x
dx + ∂(x2 + 2y)

∂y
dy

)
∧ dx

+
(

∂(x + y2)

∂x
dx + ∂(x + y2)

∂y
dy

)
∧ dy

= −dx ∧ dy.

From

Xω(Y ) = xy + 2x2y + 6xy3, Yω(X) = 2xy + 2x2y + 6xy3,

dω(X,Y ) = −(dx ∧ dy)

(
x

∂

∂x
+ 2xy

∂

∂y
, y

∂

∂y

)
= −xy

one easily concludes.

Problem 2.29 Find the subset of R2 where the differential forms

α = x dx + y dy, β = y dx + x dy

are linearly independent and determine the field of dual frames {X,Y } on this set.

Solution We have det
( x y

y x

) = x2 − y2 �= 0 on R
2 \ {(x, y) : x = ±y}. Thus α and

β are linearly independent on the subset of R
2 complementary to the diagonals

x + y = 0 and x − y = 0.
The dual field of frames

X = a
∂

∂x
+ b

∂

∂y
, Y = c

∂

∂x
+ d

∂

∂y
, a, b, c, d ∈ C∞

R
2

must satisfy X(α) = Y(β) = 1, X(β) = Y(α) = 0. Hence,

{
ax + by = 1

ay + bx = 0
and

{
cx + dy = 0

cy + dx = 1.
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Solving these systems, we obtain

X = x

x2 − y2

∂

∂x
− y

x2 − y2

∂

∂y
, Y = − y

x2 − y2

∂

∂x
+ x

x2 − y2

∂

∂y
.

Remark The result also follows (here and in other problems below) from the
general fact that, {ei = ∑

k λk
i

∂
∂xk } being a basis of vector fields on a manifold

and {θj = ∑
l μ

j
l dxl} its dual basis, from (

∑
l μ

j
l dxl)(

∑
kλ

k
i

∂
∂xk ) = δij one has

(μi
j ) = t (λi

j )
−1.

Problem 2.30 Consider the three vector fields on R
3:

e1 = (
2 + y2)ez ∂

∂x
, e2 = 2xy

∂

∂x
+ (

2 + y2) ∂

∂y
,

e3 = −2xy2 ∂

∂x
− y

(
2 + y2) ∂

∂y
+ (

2 + y2) ∂

∂z
.

(i) Show that these vector fields are a basis of the module of C∞ vector fields
on R

3.
(ii) Write the elements θi of its dual basis in terms of dx,dy, dz.

(iii) Compute the Lie brackets [ei, ej ] and express them in the basis {ei}.

Solution

(i) The determinant of the matrix of coefficients is (2 + y2)3ez, which is never
null; hence the three fields are indeed a basis of X(R3).

(ii) We proceed by direct computation. One has θi(ej ) = δi
j , where δi

j is the Kro-
necker delta. Hence, if

θ1 = A(x,y, z)dx + B(x, y, z)dy + C(x, y, z)dz,

we have

1 = θ1(e1) = A
(
2 + y2)ez, 0 = θ1(e2) = A2xy + B

(
2 + y2),

0 = θ1(e3) = A
(−2xy2) + B

(−y
(
2 + y2)) + C

(
2 + y2).

Solving the system, we have

A = 1
(
2 + y2

)
ez

, B = − 2xy

(2 + y2)ez
, C = 0.

Similarly, if θ2 = D(x,y, z)dx + E(x,y, z)dy + F(x, y, z)dz, we deduce

D = 0, E = 1

2 + y2
, F = y

2 + y2
.
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Finally, if θ3 = G(x,y, z)dx + H(x,y, z)dy + I (x, y, z)dz, we similarly
obtain

G = 0, H = 0, I = 1

2 + y2
.

Hence,

θ1 = 1
(
2 + y2

)
ez

dx − 2xy

(2 + y2)2ez
dy,

θ2 = 1

2 + y2
dy + y

2 + y2
dz, θ3 = 1

2 + y2
dz.

(iii) Applying the formula

[f X,gY ] = f (Xg)Y − g(Yf )X + fg[X,Y ],
we deduce [e1, e2] = 0. Similarly, one gets

[e1, e3] = −(
2 + y2)e1, [e2, e3] = (

y2 − 2
)
e2 + 2ye3.

Problem 2.31 Consider the three vector fields on R
3:

e1 = ∂

∂x
, e2 = ∂

∂x
+ ∂

∂y
, e3 = ∂

∂x
+ ∂

∂y
+ (

1 + x2) ∂

∂z
.

(i) Show that these vector fields are a basis of the module of C∞ vector fields
on R

3.
(ii) Write the elements of the dual basis {θi} of {ei} in terms of dx, dy, dz.

Solution

(i)

det

⎛

⎝
1 0 0
1 1 0
1 1 1 + x2

⎞

⎠ = 1 + x2 �= 0.

(ii)

1 = θ1(e1) = (Adx + B dy + C dz)(e1) = A, 0 = θ1(e2) = A + B,

0 = θ1(e3) = A + B + (
1 + x2)C.

Solving the system, we have A = 1, B = −1, C = 0. Hence θ1 = dx − dy.
Similarly, we obtain θ2 = dy − dz/(1 + x2) and θ3 = dz/(1 + x2).

Problem 2.32 Consider the vector fields

X = x
∂

∂x
+ y

∂

∂y
, Y = −y

∂

∂x
+ x

∂

∂y
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on R
2, and let ψ : R2 →R

4 be defined by

u = x2 − y2, v = x2 + y2, w = x + y, t = x − y.

(i) Compute [X,Y ].
(ii) Show that X, Y are linearly independent on the open subset R2 \ {(0,0)} of R2

and write the basis {α,β} dual to {X,Y } in terms of the standard basis {dx,dy}.
(iii) Find vector fields on R

4, ψ -related to X and Y , respectively.

Solution

(i) [X,Y ] = 0.
(ii)

det

(
x y

−y x

)
= x2 + y2 �= 0, (x, y) ∈ R

2 \ {
(0,0)

}
.

Let

α = a(x, y)dx + b(x, y)dy, β = c(x, y)dx + d(x, y)dy.

We thus have

1 = α(X) = a(x, y)dx

(
x

∂

∂x
+ y

∂

∂y

)
+ b(x, y)dy

(
x

∂

∂x
+ y

∂

∂y

)
,

0 = α(Y ) = a(x, y)dx

(
−y

∂

∂x
+ x

∂

∂y

)
+ b(x, y)dy

(
−y

∂

∂x
+ x

∂

∂y

)
.

That is, 1 = a(x, y)x + b(x, y)y and 0 = a(x, y)(−y) + b(x, y)x, and one has
a(x, y) = x/(x2 + y2), b(x, y) = y/(x2 + y2). Hence,

α = x

x2 + y2
dx + y

x2 + y2
dy.

Similarly, we obtain β = − y

x2+y2 dx + x

x2+y2 dy.
(iii)

ψ∗X ≡

⎛

⎜⎜
⎝

2x −2y

2x 2y

1 1
1 −1

⎞

⎟⎟
⎠

(
x

y

)

≡ (
2x2 − 2y2)

(
∂

∂u
◦ ψ

)
+ (

2x2 + 2y2)
(

∂

∂v
◦ ψ

)

+ (x + y)

(
∂

∂w
◦ ψ

)
+ (x − y)

(
∂

∂t
◦ ψ

)
,

ψ∗Y = −4xy

(
∂

∂u
◦ ψ

)
+ (x − y)

(
∂

∂w
◦ ψ

)
+ (−y − x)

(
∂

∂t
◦ ψ

)
.
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Taking

X̃ = 2u
∂

∂u
+ 2v

∂

∂v
+ w

∂

∂w
+ t

∂

∂t
, Ỹ = (

t2 − w2) ∂

∂u
+ t

∂

∂w
− w

∂

∂t
,

we have

ψ∗X = X̃ ◦ ψ, ψ∗Y = Ỹ ◦ ψ.

Problem 2.33 Prove that the differential 1-forms ω1, . . . ,ωk on an n-manifold M

are linearly independent if and only if ω1 ∧ · · · ∧ ωk �= 0.

Solution If ω1, . . . ,ωk are linearly independent, then each TpM , p ∈ M , has a basis
{v1, . . . , vk, . . . , vn} such that its dual basis {ϕ1, . . . , ϕk, . . . , ϕn} satisfies ϕi = ωi |p ,
1 � i � k; hence ω1 ∧ · · · ∧ ωk is an element of a basis of ΛkM , and so it does not
vanish.

Conversely, suppose that such differential forms are linearly dependent. Then
there exist a point p ∈ M and i ∈ {1, . . . , n} such that ωi |p = ∑

j �=i ajω
j |p , and

thus, at the point p,

ω1 ∧ ω2 ∧ · · · ∧ ωi ∧ · · · ∧ ωk = ω1 ∧ ω2 ∧ · · · ∧
∑

j �=i

ajω
j ∧ · · · ∧ ωk = 0.

Problem 2.34 Prove that the restriction to the sphere S3 of the differential form

α = x dy − y dx + zdt − t dz

on R
4, does not vanish.

Solution Given p ∈ S3, (α|S3)p = 0 if and only if αp(X) = 0 for all

X ∈ TpS3 = {
X ∈ TpR

4 : 〈X,N〉 = 0
}
,

where 〈 , 〉 stands for the Euclidean metric of R4, and

N = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
+ t

∂

∂t

is the outward-pointing unit normal vector field to S3. Define the differential form
β by β(X) = 〈X,N〉. Thus β = x dx + y dy + zdz + t dt .

If (α|S3)p = 0, then αp and βp vanish on TpS3. But two linear forms vanishing
on the same hyperplane are proportional, and thus αp = λβp , λ ∈ R, or equivalently,

−y

x
= x

y
= −t

z
= z

t
= λ.

We find x2 +y2 = 0, z2 + t2 = 0, and hence x = y = z = t = 0, which is not possible
because p ∈ S3.
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Problem 2.35 Let ω1, . . . ,ωr be differential 1-forms on a C∞ n-manifold M that
are independent at each point. Prove that a differential form θ belongs to the ideal
I generated by ω1, . . . ,ωr if and only if

θ ∧ ω1 ∧ · · · ∧ ωr = 0.

Solution If θ ∈ I , then θ is a linear combination of exterior products where those
forms appear as factors, and hence θ ∧ ω1 ∧ · · · ∧ ωr = 0.

Conversely, given a fixed point, complete ω1, . . . ,ωr to a basis

ω1, . . . ,ωr ,ωr+1, . . . ,ωn,

so

θ =
∑

1�i1<···<ik�n

fi1...ikω
i1 ∧ · · · ∧ ωik .

If θ ∧ ω1 ∧ · · · ∧ ωr = 0, then for each {i1, . . . , ik}, we have

fi1...ikω
i1 ∧ · · · ∧ ωik ∧ ω1 ∧ · · · ∧ ωr = 0.

Then

{1, . . . , r} ∩ {i1, . . . , ik} �= ∅ =⇒ ωi1 ∧ · · · ∧ ωik ∧ ω1 ∧ · · · ∧ ωr = 0,

{1, . . . , r} ∩ {i1, . . . , ik} = ∅ =⇒ fi1...ik = 0.

Hence,

θ =
∑

{1,...,r}∩{i1,...,ik}�=∅
fi1...ikω

i1 ∧ · · · ∧ ωik .

Problem 2.36 Let M be a C∞ manifold. If {ω1, . . . ,ωn} is a basis of T ∗
p M , p ∈ M ,

prove that there are coordinate functions x1, . . . , xn around p such that (dxi)p = ωi

for all i.

Solution Let (U,y1, . . . , yn) be a coordinate system around p. Since the differ-
entials {(dy1)q, . . . , (dyn)q} are a basis of T ∗

q M for each q ∈ U , we can write

ωi = ∑
j f i

j (dyj )p . Since {ω1, . . . ,ωn} is a basis of T ∗
p M , we have det(f i

j ) �= 0.

Thus the system (U,x1, . . . , xn) defined by xi(q) = ∑
j f i

j yj (q) is a coordinate

system, and one has (dxi)p = ∑
j f i

j (dyj )p = ωi .

Problem 2.37 Determine which of the following differential forms on R
3 are clo-

sed and which are exact:

(i) α = yzdx + xzdy + xy dz. (ii) β = x dx + x2y2 dy + yzdz.

(iii) γ = 2xy2 dx ∧ dy + zdy ∧ dz.
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Solution

(i) α = d(xyz); thus α is exact and hence closed.
(ii) dβ = 2xy2 dx ∧ dy + z dy ∧ dz; thus β is not closed, hence it is not exact.

(iii) γ = dω, where ω = (x2y2 − 1
2z2)dy; thus γ is exact, hence closed.

Recall that, by the Poincaré lemma, every closed differential form on R
n is exact.

Thus, another way to prove (i) and (iii) is:

(i) dα = 0, and thus α is closed and hence exact.
(iii) dγ = 0, and thus γ is closed and hence exact.

Problem 2.38 Let π : M → M ′ be a surjective submersion of manifolds M and
M ′. Suppose that the set π−1(p′) is connected for all p′ ∈ M ′. Let ω ∈ Λ∗(M).

Prove that there exists a unique differential form ω′ ∈ Λ∗(M ′) such that ω =
π∗(ω′) if and only if iY ω = 0 and LY ω = 0 for all vector fields Y belonging to the
smooth distribution kerπ∗ ⊂ T M of vectors annihilated by π∗.

Solution The distribution kerπ∗ is an involutive smooth distribution (see Prob-
lem 2.57). Since the map π : M → M ′ is a submersion, by the Theorem of the
Rank 1.11, for any point p ∈ M , there exist a connected neighbourhood U of p,
coordinates x1, . . . , xn on U and coordinates x1, . . . , xn′

(n � n′) on the open set
U ′ = π(U) ⊂ M ′ such that the restriction π |U in these coordinates has the form

π : (
x1, x2, . . . , xn

) → (
x1, x2, . . . , xn′)

,

i.e. in the neighbourhood U the restriction kerπ∗|U is spanned by the vector fields
∂/∂xn′+1, . . . , ∂/∂xn. Now let ω ∈ ΛqM . Let iY ω = 0 and LY ω = 0 for all vector
fields Y ∈ kerπ∗. Since

LY = iY ◦ d + d ◦ iY

(see formula (7.3)), we obtain that iY dω = 0. Then in the local coordinates
(x1, . . . , xn) on U we have

dω|U =
∑

1�j1<···<jq+1�n′
bj1...jq+1

(
x1, . . . , xn′

, . . . , xn
)

dxj1 ∧ · · · ∧ dxjq+1

and, consequently,

ω|U =
∑

1≤i1<···<iq≤n′
ai1...iq

(
x1, . . . , xn′)

dxi1 ∧ · · · ∧ dxiq ,

where ai1...iq are functions only of the variables x1, . . . , xn′
. Hence, there is a unique

local differential q-form ω′ ∈ ΛqU ′ such that ω|U = p∗ω′.
Let p1 ∈ U and p2 ∈ π−1(π(p1)), i.e. π(p1) = π(p2). Since the set π−1(π(p1))

is a connected closed submanifold of M (by the Implicit map Theorem for Submer-
sions), the points p1,p2 belong to the same leaf of the distribution kerπ∗. Then
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there exists a smooth vector field Z ∈ kerπ∗ such that for the corresponding (local)
one-parameter group ϕt we have ϕT (p1) = p2, T ∈ R. But LZω = 0, and therefore
ϕ∗

t ω = ω for all t (see Proposition 2.10). Thus, for ϕ−T = ϕ−1
T ,

ωp2 = ϕ∗−T ωp1 = ϕ∗−T

(
π∗ω′

π(p1)

) = (π ◦ ϕ−T )∗ω′
π(p2)

= π∗ω′
π(p2)

,

i.e. ω|π−1(U ′) = π∗(ω′). From the uniqueness of the local form ω′ ∈ ΛqU ′ it follows
that there is a smooth global differential q-form ω′ ∈ ΛqM ′ such that ω = π∗ω′.
Since the map π is a surjective submersion, such a form ω′ is unique.

Problem 2.39 Let α be a closed differential 2-form of constant rank 2� on a mani-
fold M . Denote by kerα the kernel of α, i.e. the distribution on M which is formed
by the set of all vector fields X ∈X(M) satisfying iXα = 0.

Prove that the distribution kerα is a smooth involutive distribution.

Solution Let p0 ∈ M be an arbitrary point. Locally, in a coordinate system
(U,x1, . . . , xn), where U ⊂ M is an open subset containing p0, the form α is deter-
mined by the expression

∑

1�i<j�n

aij

(
x1, . . . , xn

)
dxi ∧ dxj .

Since the two-form α is smooth, the map p �→ A(p) = (aij (x
1(p), . . . , xn(p)))

(aij = −aji ) determines a smooth matrix function on the set U . Moreover, there
exists some 2� × 2� minor of the matrix A(p) nowhere vanishing on some open
subset O ⊂ U containing p0. Therefore in O the kernel of the form αp , which
coincides with the kernel of A(p), is generated by n − 2� smooth vector fields.
Thus kerα is a smooth distribution of dimension n − 2�.

By the definition of dα (see formula (7.2)), for arbitrary vector fields X,Y,Z ∈
X(M), we have

dα(X,Y,Z) = X
(
α(Y,Z)

) − Y
(
α(X,Z)

) + Z
(
α(X,Y )

)

− α
([X,Y ],Z) + α

([X,Z], Y ) − α
([Y,Z],X)

.

Suppose now, in addition, that X,Y ∈ kerα. Then in the right-hand side of the ex-
pression above all terms vanish with the exception of the fourth term. Since dα = 0,
we obtain that α([X,Y ],Z) = 0. Thus

X,Y ∈ kerα ⇒ [X,Y ] ∈ kerα,

i.e. kerα is involutive.

Problem 2.40 Let M̃ be a submanifold of a manifold M . Suppose that X,Y are
smooth vector fields on M which are tangent to M̃ at each point belonging to M̃ ,
i.e. Xp,Yp ∈ TpM̃ ⊂ TpM if p ∈ M̃ .
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Prove:

(i) The map M̃ → T M̃ , p �→ Xp (resp. p �→ Yp), defines a smooth vector field X̃

(resp. Ỹ ) on M̃ .
(ii) The bracket [X,Y ] of the vector fields X,Y has the same property as X and Y :

[X,Y ]p ∈ TpM̃ ⊂ TpM if p ∈ M̃ .
(iii) We have [X̃, Ỹ ]p = [X,Y ]p for each p ∈ M̃ ⊂ M .

Solution It is clear that it is only necessary to prove all three assertions (i), (ii), (iii)
locally.

(i) Fix some point p0 ∈ M̃ ⊂ M . Since M̃ is a submanifold of M , by the Theo-
rem of the Rank 1.11 there exist neighbourhoods O ⊂ M and Õ ⊂ M̃ ∩ O of
the point p0, and coordinates (x1, . . . , xn) in O such that a point p ∈ O is an
element of the subset Õ if and only if xi(p) = 0 for all i > dim M̃ , i � n. In
particular, x1(p), . . . , xl(p), where l = dim M̃ , are coordinate functions in the
open subset Õ . We have

(X|O)p =
n∑

i=1

ai(p)
∂

∂xi
.

But for each p̃ ∈ Õ ⊂ O , the vector Xp̃ is an element of Tp̃M̃ , i.e.

ai(p̃ ) = ai

(
x1(p̃ ), . . . , xl(p̃ ),0, . . . ,0

) = 0, i > l, (�)

and, consequently,

∂ai

∂xj
(p̃ ) = ∂ai

∂xj

(
x1(p̃ ), . . . , xl(p̃ ),0, . . . ,0

) = 0, i > l, j � l. (��)

Thus,

(X̃|Õ )p̃ =
l∑

i=1

ãi (p̃ )
∂

∂xi

for all p̃ ∈ Õ ⊂ O , where ãi = ai |Õ . Since ãi (x
1, . . . , xl) = ai(x

1, . . . , xl,

0, . . . ,0), the vector field X̃|Õ is smooth.
Similarly,

(Y |O)p =
n∑

i=1

bi(p)
∂

∂xi

for all p ∈ O ⊂ M , and the vector field Ỹ |Õ ,

(Ỹ |Õ )p̃ =
l∑

i=1

b̃i (p̃ )
∂

∂xi
,

is smooth.
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(ii) and (iii) We shall see (ii) and (iii) giving two proofs. The first proof using the
local representations of the vector fields:

[X,Y ]p̃ =
n∑

j=1

n∑

i=1

(
ai(p̃ )

∂bj

∂xi
(p̃ ) − bi(p̃ )

∂aj

∂xi
(p̃ )

)
∂

∂xj
(by definition)

=
n∑

j=1

l∑

i=1

(
ai(p̃ )

∂bj

∂xi
(p̃ ) − bi(p̃ )

∂aj

∂xi
(p̃ )

)
∂

∂xj
(by (�))

=
l∑

j=1

l∑

i=1

(
ai(p̃ )

∂bj

∂xi
(p̃ ) − bi(p̃ )

∂aj

∂xi
(p̃ )

)
∂

∂xj
(by (��))

=
l∑

j=1

l∑

i=1

(
ãi (p̃ )

∂b̃j

∂xi
(p̃ ) − b̃i (p̃ )

∂ãj

∂xi
(p̃ )

)
∂

∂xj
.

Hence assertions (ii) and (iii) hold.
As to the second proof, consider the one-to-one immersion π : M̃ → M ,

p �→ p, defining the submanifold M̃ ⊂ M . Then the vector fields X̃ and X,
Ỹ and Y are π -related, i.e.

π∗ ◦ X̃ = X ◦ π, π∗ ◦ Ỹ = Y ◦ π.

By Theorem 1.21 the vector fields (brackets) [X̃, Ỹ ] and [X,Y ] are also π -
related. Thus,

[X,Y ]p = π∗
([X̃, Ỹ ]p

) = [X̃, Ỹ ]p, p ∈ M̃,

and, in particular, [X,Y ]p ∈ TpM̃ .

Problem 2.41 Let ω be a differential 1-form on a manifold M and consider a
nowhere-vanishing function f : M → R such that d(f ω) = 0. Prove that ω ∧
dω = 0.

Solution We have d(f ω) = df ∧ ω + f dω, and since f (x) �= 0 for all x ∈ M ,
one has dω = −(1/f )df ∧ ω. As ω is a differential 1-form, we have ω ∧ dω =
−(1/f )ω ∧ df ∧ ω = 0.

2.5 Lie Derivative. Interior Product

Problem 2.42 Let X and Y be vector fields on a C∞ manifold M . Prove that if ϕt

is the local 1-parameter group generated by X, we have for all p ∈ M :

ϕs∗
(
(LXY)

ϕ−1
s (p)

) = lim
t→0

1

t
(ϕs∗Yϕ−1

s (p)
− ϕs+t∗Yϕ−1

s+t (p)
). (�)
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Solution Since ϕt is the local one-parameter group of X, one has ϕs · X = X,
where by definition (ϕs · X)p = ϕs∗(Xϕ−1

s (p)
). Then, applying Problem 1.107, we

have

ϕs · LXY = ϕs · [X,Y ] = [ϕs · X,ϕs · Y ] = [X,ϕs · Y ] = LX(ϕs · Y).

Thus,

ϕs∗
(
(LXY)

ϕ−1
s (p)

) = LX(ϕs∗Yϕ−1
s (p)

)

= lim
t→0

1

t

(
ϕs∗Yϕ−1

s (p)
− ϕt∗

(
(ϕs∗Yϕ−1

s (p)
)
ϕ−1

t (p)

))

= lim
t→0

1

t
(ϕs∗Yϕ−1

s (p)
− ϕt∗ϕs∗Yϕ−1

s (ϕ−1
t (p))

)

= lim
t→0

1

t
(ϕs∗Yϕ−1

s (p)
− ϕs+t∗Yϕ−1

s+t (p)
).

Problem 2.43 Let f denote a diffeomorphism of the C∞ manifold M . Prove that

iX
(
f ∗α

) = f ∗(if ·Xα), X ∈X(M), α ∈ Λ∗M.

Solution If α ∈ ΛrM , then for X1, . . . ,Xr−1 ∈X(M), one has
(
iX

(
f ∗α

))
p
(X1|p, . . . ,Xr−1|p)

= (
f ∗α

)
p
(Xp,X1|p, . . . ,Xr−1|p)

= αf (p)

(
f∗Xp,f∗(X1|p), . . . , f∗(Xr−1|p)

)

= αf (p)

(
(f · X)f (p), (f · X1)f (p), . . . , (f · Xr−1)f (p)

)

and
(
f ∗(if ·Xα)

)
p
(X1|p, . . . ,Xr−1|p)

= (if ·Xα)f (p)

(
f∗(X1|p), . . . , f∗(Xr−1|p)

)

= αf (p)

(
(f · X)f (p), (f · X1)f (p), . . . , (f · Xr−1)f (p)

)
.

Problem 2.44 Consider on an open subset of R3 the differential 1-form

α = P1(x)dx1 + P2(x)dx2 + P3(x)dx3,

where x = (x1, x2, x3).

(i) Find the conditions under which iX dα = 0 for

X = X1∂/∂x + X2∂/∂y + X3∂/∂z.

(ii) When do we have iXα = 0 and iX dα = 0?
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Solution

(i) Let us compute dα. If we write Pij = ∂Pi/∂xj and Qji = Pji − Pij , then

dα = (P21 − P12)dx1 ∧ dx2 + (P31 − P13)dx1 ∧ dx3

+ (P32 − P23)dx2 ∧ dx3

=
∑

i<j

Qji dxi ∧ dxj .

Hence,

iX dα = 0 ⇔ iX dα(Y ) = 0, Y ∈X
(
R

3)

⇔ dα

(
X,

∂

∂xk

)
= 0, k = 1,2,3

⇔
∑

i<j

Qji dxi ∧ dxj

(∑

l

Xl

∂

∂xl
,

∂

∂xk

)

=
∑

l

∑

i<j

Qji

(
Xlδ

i
l δ

j
k − Xlδ

i
kδ

j
l

)

=
∑

l

(∑

l<k

QklXl −
∑

k<l

QlkXl

)

=
∑

l

QklXl = 0, k = 1,2,3.

(ii) By (i),

iX dα = 0 ⇔
3∑

l=1

QklXl = 0, k = 1,2,3,

and

iXα =α(X)=0 ⇔
(∑

i

Pi dxi

)(∑

j

Xj ∂

∂xj

)
= 0 ⇔

∑

i

PiX
i =0.

2.6 Distributions and Integral Manifolds. Frobenius Theorem.
Differential Ideals

Problem 2.45 Consider on the octant of R3 of positive coordinates the vector fields

X = x
∂

∂x
− 2y

∂

∂y
, Y = xy

∂

∂y
− xz

∂

∂z
.
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(i) Prove that they span an involutive distribution on this octant of R3.
(ii) Find the integral surfaces.

Hint (to (ii)) Substitute Y by x−1Y .

Solution

(i) [X,Y ] = Y .
(ii) Since in the given domain x does not vanish, we can substitute x−1Y for Y ,

which, jointly with X, determines the same distribution. The integral curves of
X are (x0et , y0e−2t , z0), and those of x−1Y are (x0, y0es , z0e−s), so that the
respective local flows are

ϕt (x, y, z) = (
xet , ye−2t , z

)
, ψs(x, y, z) = (

x, yes , ze−s
)
.

The map

(t, s) ∈ R
2 �→ (ψs ◦ ϕt )(x0, y0, z0) = ψs

(
x0et , y0e−2t , z0

)

= (
x0et , y0e−2t+s , z0e−s

)

is the integral surface through (x0, y0, z0). In fact, the point (ψs ◦ϕt )(x0, y0, z0)

is obtained from (x0, y0, z0) as follows: We first run an interval “t” from
p = (x0, y0, z0) along the integral curve of X through p for t = 0 and then
an interval “s” from ϕt (p) along the integral curve of x−1Y through ϕt (p) for
s = 0. If we put

x(t, s) = x0et , y(t, s) = y0e−2t+s , z(t, s) = z0e−s ,

then we see that x2yz is constant. Hence the integral surfaces are defined by
x2yz = const. As a verification, observe that X(x2yz) = Y(x2yz) = 0.

Problem 2.46 Consider on R
3 the distribution D determined by

X = ∂

∂x
+ 2xz

1 + x2 + y2

∂

∂z
, Y = ∂

∂y
+ 2yz

1 + x2 + y2

∂

∂z
.

(i) Calculate [X,Y ] and find whether D is involutive or not.
(ii) Calculate the local flows of X and Y .

(iii) If D is involutive, find its integral surfaces.

Solution

(i) [X,Y ] = 0, and thus D is involutive.
(ii) We have

{
x′ = 1

y′ = 0
⇔

{
x = x0 + t

y = y0
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and

z′

z
= 2(x0 + t)

1 + (x0 + t)2 + y2
0

if and only if log z = logA(1 + (x0 + t)2 + y2
0) if and only if z = A(1 + (x0 +

t)2 + y2
0). For t = 0, z0 = A(1 + x2

0 + y2
0), so

z = z0
1 + (x0 + t)2 + y2

0

1 + x2
0 + y2

0

.

Hence the local flow of X is

ϕt (x, y, z) =
(

x + t, y, z
1 + (x + t)2 + y2

1 + x2 + y2

)
.

Similarly, the local flow of Y is

ψs(x, y, z) =
(

x, y + s, z
1 + x2 + (y + s)2

1 + x2 + y2

)
.

(iii) The integral manifolds can be written as ψ(t, s) �→ (ψs ◦ϕt )(x0, y0, z0). But let
us see a better solution. We are looking for a differential 1-form annihilating X

and Y . For example, we have as a solution:

α = 2xzdx + 2yzdy − (
1 + x2 + y2)dz

= zd
(
1 + x2 + y2) − (

1 + x2 + y2)dz

= −(
1 + x2 + y2)2 d

(
z

1 + x2 + y2

)
.

Hence, the integral manifolds are z

1+x2+y2 = const.

Problem 2.47 The vector field X = x ∂
∂x

+ xy ∂
∂y

+ z ∂
∂z

, defined on x > 0, y > 0,

z > 0 in R
3, determines a two-dimensional distribution given by the vector fields

orthogonal to X. Is this distribution involutive?

Solution The vector fields U = −y ∂
∂x

+ ∂
∂y

and V = −z ∂
∂x

+x ∂
∂z

are orthogonal to

X and linearly independent at each point. They span that distribution, but [U,V ] =
−y ∂

∂z
. Since

∣∣∣∣∣∣

−y 1 0
−z 0 x

0 0 −y

∣∣∣∣∣∣
= −yz

is not identically zero, we have [U,V ]p /∈ 〈Up,Vp〉. Hence the distribution is not
involutive.
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Fig. 2.2 An example of
foliation with non-Hausdorff
quotient manifold

Problem 2.48 Prove that

X = − cos2 x
∂

∂x
+ sinx

∂

∂y

determines a foliation with non-Hausdorff quotient.

Solution This vector field determines an integrable distribution of codimension 1
of R2. We have two kind of solutions:

Integrating the equation that X determines, i.e.

dx

cos2 x
= − dy

sinx
,

we obtain the curves

y = − secx + A

(see Fig. 2.2) for x �= (2k + 1)π/2, k ∈ Z.
Moreover, we have the solutions with initial conditions of the type ((2k +1)π/2,

y0), that is, the straight lines t �→ ((2k+1)π/2, (−1)kt). Actually, if p and q are two
non-separable points of the quotient, then each of them corresponds to a solution of
this kind.

Take, for instance, the integral curve x = −π/2; a point on it, say (−π/2, y0);
and an open disk around this point. This open disk intersects all the integral curves
intersecting the y-axis at the points with ordinate greater than or equal to A0 > 0.
This is also true for open disks around the point (π/2, y1). Such an open disk inter-
sects all the integral curves that intersect the y-axis at points with ordinate greater
than or equal to A1 > 0. Now, the integral curves intersecting the y-axis at points
with ordinate greater than max(A0,A1) intersect both open disks. Hence the pro-
jections of the two open disks on the quotient intersect, so that the projections of
x = −π/2 and of x = π/2 cannot be separated. Consequently, the quotient mani-
fold is not Hausdorff.
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Problem 2.49 Consider on R
3 the vector fields

X = z
∂

∂x
+ ∂

∂z
, Y = ∂

∂y
+ ∂

∂z
, Z = z

∂

∂x
− ∂

∂y
.

(i) Prove that X,Y,Z define a C∞ distribution D on R
3. Which dimension is it?

Is it involutive?
(ii) Compute the set I (D) of forms which annihilate D . Is it a differential ideal?

Is the ideal I generated by ex dy a differential ideal?

Solution

(i) X,Y,Z are not linearly independent because Z = X − Y . Hence D is a two-
dimensional C∞ distribution spanned, for instance, by X and Y , which are
linearly independent. D is not involutive, as [X,Y ] = − ∂

∂x
and − ∂

∂x
/∈ D , since

if it were

− ∂

∂x
= az

∂

∂x
+ a

∂

∂z
+ b

∂

∂y
+ b

∂

∂z
,

we would have az = −1, b = 0, b + a = 0, which would lead us to a contradic-
tion.

(ii) {X,Y, ∂/∂x} is a basis of X(R3). Therefore, if {α,β,ω} is its dual basis of 1-
forms, then I (D) = 〈ω〉, where 〈ω〉 stands for the ideal generated by ω.

Let us determine ω = f dx + g dy + hdz, f,g,h ∈ C∞
R

3. From

0 = ω(X) = f z + h, 0 = ω(Y ) = g + h, 1 = ω

(
∂

∂x

)
= f

it follows that f = 1. Thus h = −z, and hence g = z; that is, ω = dx + zdy −
zdz. Since D is not involutive, I (D) cannot be a differential ideal.

We can also prove this directly. One has dω = dz ∧ dy = −dy ∧ dz. If it
were, for a, b, c ∈ C∞

R
3,

dω = ω ∧ (a dx + b dy + c dz)

= (b − az)dx ∧ dy + (c + az)dx ∧ dz + (zc + zb)dy ∧ dz,

we would have b−az = 0, c+az = 0, zc+ zb = −1. From the first and second
equations one has b + c = 0, in contradiction with the third equation. One can
also conclude by applying Problem 2.35, as ω ∧ dω = −dx ∧ dy ∧ dz �= 0.
Finally, I is a differential ideal since

d
(
ex dy

) = ex dx ∧ dy = ex dy ∧ (−dx).

Problem 2.50 Given on R
4 = {(x, y, z, t)} the 1-forms α = dx + zdt and β =

dz + dt , let I be the ideal generated by α and β , and let D be the distribution
associated to I .
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(i) Compute a basis for D .
(ii) Is D involutive?

(iii) If p = (1,0,1,0) ∈ R
4, do we have

vp = −3
∂

∂y

∣∣∣∣
p

+ z
∂

∂x

∣∣∣∣
p

∈ Dp?

(iv) If ω = dx ∧ dz + dx ∧ dt + dz ∧ dt , is ω ∈ I ?
(v) Is y = const, z = const an integral manifold of D?

Solution

(i) For X,Y ∈ D given by

X = a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z
+ d

∂

∂t
, Y = e

∂

∂x
+ f

∂

∂y
+ g

∂

∂z
+ h

∂

∂t
,

for a, b, c, d, e, f, g,h ∈ C∞
R

4, it must be

α(X) = a + zd = 0, α(Y ) = e + zh = 0,

β(X) = c + d = 0, β(Y ) = g + h = 0.

Thus, for instance, we can consider

X = z
∂

∂x
+ ∂

∂z
− ∂

∂t
, Y = ∂

∂y
.

(ii) [X,Y ] = 0, and hence D is involutive.
(iii) No, as

αp(vp) = (dx + zdt)p

(
−3

∂

∂y
+ z

∂

∂x

)

p

= 1 �= 0.

(iv) ω = dx ∧ β + dz ∧ β , and hence ω ∈ I .
(v) The tangent space is 〈 ∂

∂x
, ∂

∂t
〉, but α( ∂

∂x
) = 1, so y = const, z = const is not an

integral manifold of D .

Problem 2.51 Prove that the 1-form α = (1+y2)(x dy +y dx), defined on R
2 \{0},

generates a rank-1 differential ideal and find the integral manifolds.

Solution Since 1 + y2 does not vanish, α generates the same annihilator ideal as

α

1 + y2
= x dy + y dx = d(xy).

As d(x dy + y dx) = 0, the ideal is differential.
The integral manifolds are xy = const (see Fig. 2.3).
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Fig. 2.3 Integral manifolds
of α = (1 + y2)(x dy + y dx)

Fig. 2.4 The component in
the first octant of an integral
surface of the distribution
α = yz dx + zx dy + xy dz

Problem 2.52 Let U = R
3 \ {axes}. Compute the integral surfaces of the distribu-

tion determined by the ideal of Λ∗U generated by

α = yzdx + zx dy + xy dz.

Solution We have α = d(xyz). If X is annihilated by α, then we have α(X) =
X(xyz) = 0. Thus the integral surfaces are the surfaces xyz = const (see Fig. 2.4).

Problem 2.53 Consider the (1,1) tensor field

J = 1

coshx

∂

∂y
⊗ dx + coshx

∂

∂x
⊗ dy

on R
2 and the distribution D defined by the condition: X ∈ D if and only if JX =

X.

(i) Compute the integral curves of D .
(ii) Compute the fields X ∈ D for which LXJ = 0.
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Solution

(i) If X = f ∂
∂x

+ h ∂
∂y

∈ D , f,h ∈ C∞
R

2, then

(
1

coshx

∂

∂y
⊗ dx + coshx

∂

∂x
⊗ dy

)(
f

∂

∂x
+ h

∂

∂y

)

= f

coshx

∂

∂y
+ h coshx

∂

∂x
= f

∂

∂x
+ h

∂

∂y
.

Thus f = h coshx. Denoting by (x, y) the integral curves of D , we have
dx/dt = (dy/dt) coshx. Hence dy = dx/ coshx, and thus

y = arctan sinhx + A. (�)

That is, the integral curves of D are given by (�).
(ii)

LXJ =
(

hx coshx − fy

coshx

)(
∂

∂x
⊗ dx − ∂

∂y
⊗ dy

)

+ (hy coshx + f sinhx − fx coshx)

(
∂

∂x
⊗ dy − 1

cosh2 x

∂

∂y
⊗ dx

)

= 0. (��)

Moreover, if X ∈ D , then we have f = g coshx, and from this equation and
from (��) we conclude that we have to solve only the following equation:

∂h

∂x
coshx = ∂h

∂y
.

Let u = 2 arctan ex . Then we have

∂h

∂x
= 1

coshx

∂h

∂u
,

and hence ∂h
∂u

= ∂h
∂y

. Taking t = u + y, w = u − y, we obtain

0 = ∂h

∂u
− ∂h

∂y
= 2

∂h

∂w
.

Thus h = h(u + y) = h(2 arctan ex + y), and we finally have

f = h
(
2 arctan ex + y

)
coshx,

where h(2 arctan ex +y) is an arbitrary differentiable function in that argument.

Problem 2.54 (A Reeb Foliation of S3) The three-sphere S3 can be decomposed as
two solid 2-tori joint along their common 2-torus boundary. In fact, if one removes
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Fig. 2.5 Left: The two core
circles of S3 (here actually
the part in S3 \ {∞}), this
viewed as the union of two
solid 2-tori. Right: Some
curves y = f (x) + c′

the solid torus of rotation from R
3 = S3 \ {∞}, what remains is homeomorphic to a

solid torus minus an interior point. Consider the vertical coordinate axis as the core
circle (see Fig. 2.5, left).

Find a foliation of the strip

{
(x, y) ∈R

2 : −1 � x � 1
}

originating a foliation in (each) solid torus and so a codimension 1 foliation of the
three-sphere S3.

For the development of the relevant theory, see Reeb [4] and Lawson [3].

Solution Consider the C∞-foliation of the (x, y)-plane given by the lines x = c for
|c| � 1 together with the graphs of the functions

y = f (x) + c′, −1 < x < 1, c′ ∈ R,

where f has the property that its derivatives f (r) satisfy lim|x|→1 f (r) = ∞ for all
r (see Fig. 2.5, right).

Consider now the foliation of the solid cylinder obtained by rotating the strip
given in the statement about the y-axis in R

3. This foliation is invariant by vertical
translations, and so we can obtain a foliation of the solid torus where each noncom-
pact leaf has the form that one can see in Fig. 2.6, left. Gluing together two copies
of the foliated solid torus gives a Reeb foliation of S3 (see Fig. 2.6, right, showing
part of a transversal cutting of two leaves). Note that both the “interior” and the
“exterior” leaves approach their common 2-torus boundary after turning around it.

Problem 2.55 Let M be a C∞ n-manifold, and let D ⊂ T M be an integrable dis-
tribution of rank p. By Frobenius’ theorem, D is spanned by ∂/∂x1, . . . , ∂/∂xp on
an open subset U of M , for a certain coordinate system (U,xi). We can consider
local frames of M of the type

(
∂

∂x1
, . . . ,

∂

∂xp
,X1, . . . ,Xq

)
, p + q = n = dimM,
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Fig. 2.6 Left: The foliation (generated by curves as the previous ones) of the “interior” solid torus
in S3. Right: Transversal cut of a Reeb foliation of S3 showing two sections of an “interior” leaf
and part of an “exterior” leaf

where

Xu = ∂

∂xp+u
−

∑

a

f a
u

∂

∂xa
, 1 � a � p, 1 � u � q, f a

u ∈ C∞M.

Write the integrability condition of the complementary distribution H generated
by X1, . . . ,Xq on the open subset where these vector fields are defined.

Solution In order for H to be integrable, it must be [Xu,Xv] ∈ H for any
Xu,Xv ∈ H , u,v = 1, . . . , q . Then

[Xu,Xv] =
[

∂

∂xp+u
−

∑

a

f a
u

∂

∂xa
,

∂

∂xp+v
−

∑

b

f b
v

∂

∂xb

]

=
∑

a

(
∂f a

u

∂xp+v
− ∂f a

v

∂xp+u
+

∑

b

(
f b

u

∂f a
v

∂xb
− f b

v

∂f a
u

∂xb

))
∂

∂xa
∈ D .

As [Xu,Xv] ∈ H , the last expression in parentheses must be zero, that is, the con-
dition is

∂f a
u

∂xp+v
− ∂f a

v

∂xp+u
+

∑

b

(
f b

u

∂f a
v

∂xb
− f b

v

∂f a
u

∂xb

)
= 0.

Problem 2.56 Let X be a vector field on a smooth manifold M , and let ϕt be its
local one-parameter group (local flow) on M . Let D ⊂ T M be a smooth distribution.

Prove that the following conditions are equivalent:

(i) For any vector field Y lying in D , the bracket [X,Y ] belongs to D (the distri-
bution D is preserved by the vector field X).

(ii) For any vector field Y lying in D , the local vector field ϕt · Y belongs to D (the
distribution D is preserved by the local flow ϕt of X).

For a development of the relevant theory, see, for instance, Gawedzki [1].
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Solution Let p ∈ M and suppose that D is preserved by the vector field X. Let
us choose a scalar product in TpM . Let Pt be the orthogonal projection onto
ϕt∗(Dϕ−t (p)) ⊂ TpM . The operator function Pt : TpM → TpM smoothly depends
on the parameter t . Let Y ∈ D , and let

Yt = (ϕt · Y)p, i.e. by definition Yt = ϕt∗(Yφ−t (p)).

We have by Proposition 2.10

dYt

dt
= −(

ϕt · [X,Y ])
p

∈ Pt(TpM),

because [X,Y ] ∈ D . Now Yt = Pt (Yt ) by the definition of Pt , and consequently,

dYt

dt
= d(PtYt )

dt
= dPt

dt
Yt + Pt

dYt

dt
= dPt

dt
Yt + dYt

dt
.

Thus,

dPt

dt
Yt = 0.

Since varying Y,Yt span the range of Pt , we get

dPt

dt
Pt = 0.

Let P ∗
t denote the transpose operator of Pt (with respect to the scalar product in

TpM). From Pt = P ∗
t and P 2

t = Pt one obtains

(
dPt

dt

)∗
= dPt

dt
and

dPt

dt
Pt + Pt

dPt

dt
= dPt

dt
.

Hence,

dPt

dt
= Pt

dPt

dt
=

(
dPt

dt
Pt

)∗
= 0.

Consequently, Pt = P0, and ϕt preserves D .
Clearly, from the definition of the Lie bracket (see also Proposition 2.10) we have

that if ϕt · Y ∈ D , then [X,Y ] ∈ D .

Problem 2.57 Let π : M → M ′ be a surjective submersion of manifolds M

and M ′.

(i) Prove that kerπ∗ ⊂ T M (the set of vectors annihilated by π∗) is an involutive
smooth distribution on M .

Let the set π−1(p′) be connected for all p′ ∈ M ′, and let D ⊂ T M be a smooth
distribution on M containing the distribution kerπ∗. Suppose that D is preserved
by kerπ∗, i.e. [Z,Y ] ∈ D for all vector fields Z ∈ kerπ∗ and Y ∈ D .
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Prove:

(ii) There exists a unique smooth distribution D ′ on M ′ such that D ′
π(p) = π∗Dp

for all p ∈ M . Moreover, for any point p ∈ M , there exist a neighbourhood
U ⊂ M and vector fields {Yl} lying in D |U such that the restriction D ′|U ′ ,
where U ′ = π(U), is spanned by vector fields {Y ′

l }, and the vector fields Yl, Y
′
l

are π -related for each l.
(iii) If the distribution D is involutive, then so is D ′.

Solution

(i) Since the map π : M → M ′ is a submersion, by the Theorem of the Rank 1.11,
for any point p ∈ M , there exist a neighbourhood U of p, coordinates
x1, . . . , xn on U , −1 < xj < 1, j = 1, . . . , n, and coordinates x1, . . . , xn′

(n′ � n) on the open subset U ′ = π(U) ⊂ M ′ such that the point p has co-
ordinates (0, . . . ,0) and the restriction π |U in these coordinates has the form

π : (
x1, x2, . . . , xn

) → (
x1, x2, . . . , xn′)

, (�)

i.e. in the neighbourhood U the restriction kerπ∗|U is spanned by the commut-
ing vector fields ∂/∂xn′+1, . . . , ∂/∂xn. Therefore D is an involutive smooth
distribution on M .

(ii) Let p1,p2 ∈ π−1(p′) ⊂ M for some point p′ ∈ M ′. Since the set π−1(p′) is
connected, the points p1,p2 belong to the same leaf of the distribution kerπ∗.
Then there exists a smooth vector field Z ∈ kerπ∗ such that for a correspond-
ing (local) one-parameter group ϕt , we have ϕt0(p1) = p2, t0 ∈ R (we can use
a partition of unity to construct such a field). But π ◦ ϕt = π for all t , and
therefore it follows (see Problem 2.56) that

π∗(Dp1) = (π∗ ◦ ϕt0∗)(Dp1) = π∗(Dp2).

Hence the distribution D ′ is well defined. To prove the smoothness of D ′,
choose a point p ∈ M and neighbourhoods U ⊂ M , U ′ ⊂ M ′, with the co-
ordinates as above. Let Y be any local vector field belonging to D |U :

Y
(
x1, . . . , xn

) =
n∑

j=1

aj

(
x1, . . . , xn

) ∂

∂xj
.

The sub-bundle kerπ∗ is spanned on U by ∂/∂xk, k = n′ + 1, . . . , n, and the
distribution D |U is preserved by these vector fields ∂/∂xk and, consequently
(see Problem 2.56), by the corresponding local flows

ϕk
t : (

x1, . . . , xk−1, xk, xk+1, . . . , xn
) �→ (

x1, . . . , xk−1, xk + t, xk+1, . . . , xn
)
.

Therefore the vector field

Y ′′(x1, . . . , xn
) =

n∑

j=1

aj

(
x1, . . . , xn′

,0, . . . ,0
) ∂

∂xj
=

n∑

j=1

bj

(
x1, . . . , xn′) ∂

∂xj
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(recall that xj (p) = 0, j = 1, . . . , n) is a smooth vector field belonging to D |U .
Thus,

Y ′ = π∗Y ′′(x1, . . . , xn′) =
n′∑

j=1

bj

(
x1, . . . , xn′) ∂

∂xj

is a smooth vector field belonging to D ′|U ′ , and the vector fields Y ′′, Y ′ are π -
related. Thus there are vector fields {Y ′′

l } and {Y ′
l } belonging to the restrictions

D |U and D ′|U ′ , respectively, such that D ′|U ′ is spanned by the vector fields
{Y ′

l } and the vector fields Y ′′
l , Y ′

l are π -related for each l.
(iii) By Proposition 1.21, if the distribution D is involutive, then so is D ′.

Problem 2.58 Let π : M → M ′ be a surjective submersion of manifolds M and M ′.
Let the set π−1(p′) be connected for all p′ ∈ M ′, and let X ∈ X(M) be a smooth
vector field which preserves the distribution kerπ∗.

Prove that there exists a unique smooth vector field X′ on M ′ such that the vector
fields X,X′ are π -related.

Solution We will use the notation of the solution of the previous Problem 2.57.
As above, consider the vector field Z (belonging to the distribution kerπ∗) with its
local one-parametric group ϕt connecting points p1,p2 for which π(p1) = π(p2).
For the vector field X, we have (see Proposition 2.10)

d

dt
(ϕt · X) = −ϕt · [Z,X].

Since the bracket [Z,X] belongs to the distribution kerπ∗ and the local flow ϕt of
Z ∈ kerπ∗ preserves the (involutive) distribution kerπ∗, the difference ϕt · X − X

is a vector field belonging to kerπ∗ for all t . Thus π∗Xp1 = π∗Xp2 and X′,
X′

π(p) = π∗Xp is a well-defined vector field on the manifold M ′. Therefore in

the coordinate system (U,x1, . . . , xn) around p ∈ M , the smooth vector field X|U
has the following form (see the local expression (�) for π in the solution of Prob-
lem 2.57):

(X|U)
(
x1, . . . , xn

) =
n′∑

j=1

aj

(
x1, . . . , xn′) ∂

∂xj

+
n∑

j=n′+1

aj

(
x1, . . . , xn′

, . . . , xn
) ∂

∂xj
.

Now it is clear that the vector field

X′∣∣
U ′ =

n′∑

j=1

aj

(
x1, . . . , xn′) ∂

∂xj

is also smooth. The vector fields X,X′ are π -related.
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