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Abstract In this paper, the use of an absorbing boundary condition (ABC) is inves-
tigated for the numerical simulation of regular and irregular waves in three dimen-
sional computational domains where Navier-Stokes equations describe the motion
of the fluid. The numerical implementation of the ABC using a staggered grid ar-
rangement is explained in detail. All of the numerical modifications are incorporated
into the CFD simulation tool ComFLOW which employs a volume-of-fluid (VOF)
method. Numerical examples are provided to demonstrate the performance of the
ABC. The reflection character of the ABC is observed and the results of the compu-
tations are discussed and compared.
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1 Introduction

The CFD simulation of ocean waves remains a challenge even today. Although
highly capable numerical features are at the disposal of researchers, particular as-
pects of numerically solving wave problems in unbounded domains cause various
bottlenecks. Typically the phenomena of interest are local but embedded in a vast
spatial domain. At this point, the infinite domain, although sometimes it may not
be truly unbounded, is truncated via artificial boundaries, thus introducing a finite
computational domain and a residual infinite domain. One of the aforementioned
bottlenecks is developing a robust and efficient boundary condition to be imposed
on these artificial boundaries.

The Sommerfeld boundary condition [1] was the cornerstone of non-reflecting
boundary conditions. Engquist and Majda [2] presented a method to develop the
first hierarchy of absorbing boundary conditions. Higdon [3] generalized this theory
and showed that Engquist and Majda boundary condition is a subset of the Higdon
operators. Since high order boundary operators include high order derivatives both
in time and space, Collino and Joly [4] introduced the use of auxiliary variables
to circumvent this difficulty. This idea has found widespread interest and has been
used by Grote and Keller [5], Givoli and Neta [6], and Hagstrom and Warburton
[7] among others. For a general review regarding high order local non-reflecting
boundary conditions, see [8].

In this paper, we present the derivation of an absorbing boundary condition
(ABC) [9, 10] along with the numerical implementation of the analytical operator.
The ABC is applied in three dimensional computational domains where a regular
Stokes wave and an irregular JONSWAP spectrum wave are traveling under an an-
gle of incidence. Here, we focus our attention specifically on the reflection behavior
of the ABC for the duration of the simulations. We end the paper with some con-
cluding remarks.

2 Statement of the Problem

If we consider water as a homogeneous, incompressible, viscous fluid, we can de-
scribe fluid motion in a three-dimensional domain Ω (see Fig. 1) by the continuity
equation and the Navier-Stokes equations in a conservative form as,

∮
Γ

u · ndΓ = 0, (1)

∮
Ω

∂u
∂t

dΩ +
∮

Γ

uuT · ndΓ = − 1

ρ

∮
Γ

(pn − μ∇u · n) dΓ +
∮

Ω

FdΩ. (2)

In (1) and (2), Ω denotes a volume with boundary Γ and normal vector n,
u = (u, v,w)T is the flow velocity, ρ is the fluid density, p is the pressure, μ is
the dynamic viscosity, ∇ is the gradient operator and F = (Fx,Fy,Fz)

T represents
external body forces acting on the fluid such as gravity.
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Fig. 1 A computational domain with ΓN and ΓE as artificial boundaries

To solve the above equations in Ω , we impose four types of boundary conditions:
a free surface, a wall, an inflow and an absorbing boundary condition. On the west
and south boundaries ΓW and ΓS , the incoming wave is prescribed. The incoming
wave propagating at an angle θ (0 < θ < π/2) with the x-axis can be simulated by
using either a regular wave such as Airy wave or Stokes wave, or an irregular wave
such as a superposition of Airy waves. In either case, at every time step starting from
t = 0, free surface elevations, values of the velocity components and the pressure
are provided on ΓW and ΓS . At the bottom ΓB , we specify a no-slip no-penetration
condition which is simply the Dirichlet condition, i.e. u = 0. At the free surface
ΓFS , resulting from the continuity of normal and tangential stresses, the following
conditions are implemented for the velocity components and the pressure,

μ

(
∂un

∂t
+ ∂ut

∂n

)
= 0, (3)

−p + 2μ
∂un

∂n
= −p0 + σκ, (4)

where un and ut correspond to the normal and tangential component of the velocity,
respectively, p0 is the atmospheric pressure, σ is the surface tension and κ is the
total curvature of the free surface. If we describe the position of the free surface by
s(x, t) = 0, the displacement of the free surface can be computed via,

Ds

Dt
= ∂s

∂t
+ (u · ∇)s = 0. (5)

We now introduce two artificial boundaries ΓN and ΓE , see Fig. 1. To complete the
statement of the problem, we shall employ an ABC on these artificial boundaries. In
this study, we will restrict ourselves for a discussion about the behavior of an ABC
in wave simulations where the Navier-Stokes are implemented as the governing
equations.
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3 Absorbing Boundary Condition (ABC)

Consider the following boundary operator on ΓE :
(

cosα
∂

∂t
+ c

∂

∂x

)
Φ = 0 on ΓE. (6)

Higdon [3] showed that (6) is perfectly absorbing if α is equal to the angle of inci-
dence θ (see Fig. 1(a)) for a wave described by the wave or velocity potential Φ and
traveling with phase speed c. Such a wave which satisfies the Laplace equation has
the form

Φ = (
C1e

+kz + C2e
−kz

)
sin(kx cos θ + ky sin θ − ωt + ψ), (7)

where k is the wave number, ω is the wave frequency and ψ is its phase. The un-
knowns C1 and C2 can be determined via the boundary conditions imposed on ΓFS

and ΓB .
If we replace c in (6) by the dispersion relation, namely,

c = √
gh

√
tanh(kh)

kh
, (8)

we can rewrite (6) as

(
cosα

∂

∂t
+ √

gh

√
tanh(kh)

kh

∂

∂x

)
Φ = 0. (9)

The boundary condition (9) is perfectly absorbing for this single component but
recall that any solution to the Laplace equation for the velocity potential can be rep-
resented by a linear superposition of waves which will be referred to as an irregular
wave here and elsewhere. Each individual component of this irregular wave has its
own frequency, amplitude, wave number and phase. Therefore, the boundary condi-
tion (9) cannot annihilate all these wave components simply because it is evidently
designed for only one of them.

The corresponding velocity potential of such an irregular wave can be written as

Φ =
N∑

j=1

(
C1j

e+kj z + C2j
e−kj z

)
sin(kj x cos θ + kjy sin θ − ωj t + ψj ), (10)

where N denotes the number of modes or components. All flow variables can be
calculated by taking derivatives of (10). At this point a question crosses one’s mind:
Is it possible to develop a boundary condition which has the feature of allowing
reflection only to an acceptable threshold for all the wave components which all
together form an irregular wave? One can deduce from the way this question is
asked that we expect some amount of reflection for such a boundary condition but
it will be restricted within certain limits.
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Fig. 2 Approximation of the
dispersion relation

Now we introduce the following rational expression which approximates the dis-
persion relation (8),

ca ≈ √
gh

a0 + a1(kh)2

1 + b1(kh)2
, (11)

where a proper choice of coefficients a0, a1 and b1 would lead to a close approxi-
mation for the largest possible range of kh values, see Fig. 2. Thus, reflection from
the boundary will be minimized over that specific range of kh values.

As a result of strong effect of dispersion especially in deep water, any wave
behaves as the sum of a large number of wave components, each traveling at its
own dispersive phase speed. To compute these local velocities we will exploit the
exponential behavior of (7) and (10) in z direction. After straightforward algebraic
manipulations, one can derive the following relation

k2Φ = ∂2

∂z2
Φ. (12)

By employing (12) the dependency of the boundary condition on the wave number
is removed since it is calculated using the velocity potential Φ .

Finally we substitute (12) and (11) in (6) to reach the final form of the absorbing
boundary condition to be applied on ΓE

(
1 + b1h

2 ∂2

∂z2

)
cosα

∂Φ

∂t
+ √

gh

(
a0 + a1h

2 ∂2

∂z2

)
∂Φ

∂x
= 0 on ΓE. (13)

Following the same method, it is rather easy to write the ABC on ΓN .
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3.1 Numerical Algorithm

Since (1) and (2) are specified as the governing equations, the ABC given in (13)
must be interpreted in terms of the velocity components and pressure. As we have
a staggered grid arrangement for the solution variables inside volume cells (see
Fig. 3), the location of the outflow boundary must also be specified appropriately.

We resort to the linearized Bernoulli equation to replace the time derivative of
the velocity potential in (13), namely, ∂Φ/∂t = −pb − gzp . Here and elsewhere
the subscript b indicates that the quantity is defined at the outflow boundary and
the subscript p indicates that the quantity is evaluated at the elevation of the pres-
sure point within the cell. The spatial derivatives of the velocity potential give the
x- and y-components of velocity, i.e. ∂Φ/∂x = ub and ∂Φ/∂y = vb , while a fur-
ther time derivative gives the acceleration. Here we will use mirror cells adjacent
to the outflow boundary to obtain pb by linear interpolation (see Fig. 3(a)), i.e.
pb,k = (pn+1

I+1,k + pn+1
I,k )/2 for k = 1, . . . ,K . The shaded area contains the mirror

cells which have indices (I + 1, k) for k = 1, . . . ,K . The outflow boundary is sit-
uated at the same position along x-direction as u, therefore we can impose the fol-
lowing, ub = un+1

I,k . Note that velocity components and pressure are discretized at
the same position on the boundary and also at the same instant in time.

Utilizing the momentum equation (2), the velocity component at the new time
step un+1 can be written in terms of the pressure pn+1 and the intermediate velocity
ũn which includes convective and diffusive effects [11]. This modification is nec-
essary to easily plug the ABC into the pressure Poisson equation which is solved
inside the computational domain for the pressure at the new time step pn+1. As a
result, the ABC has the same temporal character as the pressure Poisson equation.
Consequently, we obtain the discrete form of the ABC to be prescribed on ΓE as
follows

[
1

2
cosα + a0

√
gh

�t

�xp(I+1,k)

+
(

1

2
b1h

2 cosα + a1h
2
√

gh
�t

�xp(I+1,k)

)
∂2

∂z2

]
pn+1

I+1,k

+
[

1

2
cosα − a0

√
gh

�t

�xp(I+1,k)

+
(

1

2
b1h

2 cosα − a1h
2
√

gh
�t

�xp(I+1,k)

)
∂2

∂z2

]
pn+1

I,k

=
(

a0
√

gh + a1h
2
√

gh
∂2

∂z2

)
ũn

I,k − gzp(I+1,k) cosα on ΓE, (14)

where

�xp(I+1,k) = xp(I+1,k) − xp(I,k). (15)
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Fig. 3 Discretization of the
ABC in space

Following the same steps, one can easily derive the ABC on ΓN . The discrete ABCs
on ΓE and ΓN are equations for the pressure values in the mirror cells outside the
domain, see Fig. 3(b). The stencil for pn+1

I+1,k is plotted by a double dashed line
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in Fig. 3(a). Observing Figs. 3(a) and 3(b), we realize that a typical stencil for a
pressure point encompasses 9 flow variables 6 of which reside in the computational
domain whereas 3 can be associated with the treatment of the boundary condition.

4 Results and Discussions

We compare the results by introducing three error measures,

e(i, j) = ηn(i, j) − ηr(i, j), (16)

‖e‖2 =

√√√√√
I∑

i=1

J∑
j=1

(
ηn(i, j) − ηr(i, j)

)2
, (17)

‖e‖∞ = max
i=1,2,...,I

max
j=1,2,...,J

{∣∣ηn(i, j) − ηr(i, j)
∣∣}, (18)

where η is the free surface elevation. Here the subscript n indicates the numerical
results and the subscript r indicates the reference solution. For the regular wave
simulation, the reference solution is the analytical results arising from the Stokes
wave theory. For the irregular wave simulation, the reference solution is obtained
by solving the problem in a larger domain with the same discretization in space and
time.

The pointwise error e(i, j) provides information at particular time instances
throughout the simulation. In addition, it demonstrates the exact location of the er-
ror in the computational domain which is not the case for the other error measures.
The common property of the 2-norm ‖e‖2 and the infinity norm ‖e‖∞ is that they
display a complete picture of the error behavior in a single plot. More particularly,
we can examine the length of the error vector using ‖e‖2 whereas ‖e‖∞ captures the
maximum value in the error vector which is useful especially to check if a certain
limit for the error is breached.

4.1 Results of the Regular Wave Simulation

A fully developed fifth-order Stokes wave is generated and initialized everywhere
in the computational domain at t = 0 as depicted in Fig. 4. Since we know the exact
values of the solution variables for a fifth-order Stokes wave [12], we can compare
the numerical results with the theoretical results. The fifth-order Stokes wave with
wave height H = 9 m, wave period T = 10 s, wave length λ = 161 m, phase speed
c = 16.1 m/s is simulated by performing 7143 time-steps at �t = 0.007 s. The
length and the width of the computational domain is the same, lx = ly = 340 m, and
its depth is lz = 179 m with the water depth of h = 170 m. The grid resolution is
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Fig. 4 Initial condition for
the simulation of the
fifth-order Stokes wave.
Angle of incidence θ = 45°

�x ×�y ×�z = 2.26 m × 2.26 m × 0.95 m with 6 % vertical stretching at the free
surface.

Figure 5 shows the absolute pointwise errors e(i, j) corresponding to times
t = 8.589 s, t = 16.667 s, t = 25.256 s, t = 33.334 s, t = 42.427 s and t = 49.994 s.
The amplitudes of the maximum errors increase in time although not substantially.
The reflected waves from the outflow boundaries travel back and perturb the so-
lution in the entire computational domain. Figure 6 demonstrates the 2-norm ‖e‖2
and the infinity norm ‖e‖∞ both of which are normalized by the wave height. Ob-
serving Fig. 5, we notice that large errors are very local whereas in the major part
of the domain we have relatively small errors. This is consistent with the fact that
‖e‖2 has an oscillating character below the maximum value of 2.5 % throughout 5
wave periods. Evidently, ‖e‖∞ shows a similar behavior but it oscillates generally
between the values of 9 % and 4 %. For the maximum values of ‖e‖∞, we believe
that we are encountering the effects of reconstruction of the free surface in the VOF
algorithm.

4.2 Results of the Irregular Wave Simulation

We apply the discrete ABCs to a problem in a three dimensional computational do-
main where an irregular wave is traveling under an angle of incidence, θ = 45°. The
initial condition for the simulation of the irregular wave with 537 Fourier compo-
nents is shown in Fig. 7(a). The domain length in x- and y-direction is the same,
lx = ly = 70 m whereas lz = 8 m with the water depth h = 5 m. The grid reso-
lution is �x × �y × �z = 0.28 m × 0.28 m × 0.23 m. A JONSWAP spectrum
wave with Tp = 10 s and Hs = 1.0 m is simulated by performing 3964 time-steps at
�t = 0.007 s.

As mentioned before, we compute the reference solution by solving the problem
in a large domain ΩL which is twice the size of the small domain ΩS in x- and
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Fig. 6 The relative 2-norm
‖e‖2 and the infinity norm
‖e‖∞ in space as a function
of time for the regular wave
simulation. Both error
measures are normalized by
the wave height H = 9 m

y-direction, see Fig. 7(b) for the illustration of the problem. For each time step, the
computational solution in ΩS is compared to the reference solution in ΩL. In both
ΩS and ΩL the numerical parameters are the same. Since the flow behavior is highly
nonlinear, the linear theory fails to produce correct results under the current cir-
cumstances. Therefore, it is not possible to make a comparison with the analytical
solution for the irregular wave simulation.
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Fig. 7 The setup for the irregular wave simulations

In Fig. 8, we demonstrate the absolute pointwise errors e(i, j) corresponding
to times t = 4.504 s, t = 9.008 s, t = 13.504 s, t = 18.008 s, t = 23.008 s and
t = 27.752 s. Compared to the regular wave simulation, large errors cover wider
parts in the computational domain, thus ‖e‖2 has higher values, see Fig. 9. Grid res-
olution is more significant in irregular wave simulations because short wave compo-
nents may not be represented well on the grid. This is certainly undesirable as these
components contribute to the amount of reflection. The characters of ‖e‖∞ and ‖e‖2
are similar as they increase in time (Fig. 9). The error norms show an exponential
behavior contrary to the regular wave calculation in which they are oscillatory. This
is a result of the absence of a certain beating pattern in irregular waves. Moreover,
it should be mentioned that some amount of error is also present in the reference
solution although ΩL is relatively large. Overall, we find deviations of less than 9 %
for nearly three wave periods.

5 Concluding Remarks

In this paper, we have presented the derivation and the numerical implementation of
an ABC using the computational framework of the CFD simulation tool ComFLOW.
The ABC is applied in three dimensional free surface simulations of regular and
irregular waves propagating under an angle of incidence. For this purpose, a fifth-
order Stokes wave and a JONSWAP spectrum wave are generated at the inflow
boundaries of the computational domains. The results of the numerical computa-
tions are compared to various reference solutions to provide sufficient information
regarding the performance of the proposed boundary condition. Additionally, the
reflection character of the ABC is monitored throughout the calculations and dif-
ferent error measures are exploited to deliver a comprehensive picture for the error
behavior.
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Fig. 9 The relative 2-norm
‖e‖2 and the infinity norm
‖e‖∞ in space as a function
of time for the irregular wave
simulation. Both error
measures are normalized by
the wave height Hs = 1.0 m

Overall, the ABC demonstrated a good performance. In both regular and irregu-
lar wave simulations, we notice that reflections are less than acceptable thresholds.
The numerical results are in reasonable agreement with the reference solutions. Par-
ticularly for the irregular wave simulation, it would be insightful to observe error
behaviors for a longer duration of simulation which will be the subject of the future
work.
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