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Abstract In order to find overlapping community structure of complex networks,
many researchers make endeavours. Here, we first discuss some existing functions
proposed for measuring the quality of overlapping community structure. Second, we
propose a novel algorithm called fuzzy detection for overlapping community detec-
tion. Our new method benefits from an existing partition detection technique and
aims at identifying modular overlaps. A modular overlap is a group of overlapping
nodes. Therefore, the overlaps shared by several communities are possibly grouped
into several different modular overlaps. The results in synthetic networks and real
networks demonstrate that our method can uncover and characterize meaningful
overlapping nodes.
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1 Introduction

The empirical information of networks can be used to study structural characteris-
tics, like heavy-tailed degree distributions [1], small-world property [3] and rumour
spreading. These characteristics are related to the property of community structure.
In the study of complex networks, a network is said to have community structure if
the nodes of the network can be easily grouped into sets of nodes such that each set
of nodes is densely connected internally, between which connections are sparse.

Communities may thus overlap with each other. For example, people may share
the same hobbies in social networks [28], some predator species have the same prey
species in food webs [13] and different sciences are connected by their interdisci-
plinary domain in co-citation networks [20]. However, most of heuristic algorithms
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are proposed for partition detection, whose results are disjoint communities or par-
titions. A partition is a division of a graph into disjoint communities, such that each
node belongs to a unique community. A division of a graph into overlapping (or
fuzzy) communities is called a cover. We devote this paper to the detection of over-
lapping community structure.

In order to provide the exhaustive information about overlapping community
structure of a graph, we introduce a novel quality function to measure the quality
of the overlapping community structure. This quality function is derived from Re-
ichardt and Bornholdt’s work [25] and explains the quality of community structure
through the energy of spin system.

Moreover, we propose a novel method called fuzzy detection for identifying over-
lapping nodes and detecting overlapping communities. It applies an existing and
very efficient partition detection technique called Louvain algorithm [6]. When run-
ning the Louvain algorithm in a graph, we observe that some nodes are grouped
together with different community members in distinct partitions. These oscillating
nodes are possible overlapping nodes.

This paper is organized as following: we introduce related work in Sect. 2; next,
we discuss the modified modularity for covers in Sect. 3; in Sect. 4, we describe
our fuzzy detection in details, and applied to networks in Sect. 5 for which the com-
munity structure is already known from other studies, our method appears to give
excellent agreement with the expected results; in Sect. 6, when applied to networks
for which we do not have other information about communities, it gives promis-
ing results which may help us to understand better the interplay between network
structure and function; finally, we give the conclusion and our future work in Sect. 7.

2 Related Work

2.1 Definition and Notation

Many real world problems (biological, social, web) can be effectively modeled as
networks or graphs where nodes represent entities of interest and edges mimic the
interactions or relationships among them. A graph G = (V ,E) consists of two sets
V and E, where V = {v1, v2, . . . , vn} are the nodes (or vertices, or points) of the
graph G and E ⊆ V × V are its links (or edges, or lines). The number of elements
in V and E are denoted by n and m, respectively.

In the context of graph theory, an adjacency (or connectivity) matrix A is often
used to describe a graph G. Specifically, the adjacency matrix of a finite graph G on
n vertices is the n × n matrix A = [Aij ]n×n, where an entry Aij of A is equal to 1 if
the link eij = (vi, vj ) ∈ E exists, and zero otherwise.

A partition is a division of a graph into disjoint communities, such that each node
belongs to a unique community. A division of a graph into overlapping (or fuzzy)
communities is called a cover. We use P = {C1, . . . ,Cnc } to denote the partition,
which is composed of nc communities. In P , the community to which the node v
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belongs to is denoted by σv . By definition we have V = ∪nc

1 Ci and ∀i �= j , Ci ∩
Cj = ∅. We denote a cover composed of nc communities by S = {S1, . . . , Snc }. In
S , we may find a pair of community Si and Sj such that Si ∩ Sj �= ∅.

Given a community C ⊆ V of a graph G = (V ,E), we define the internal degree
kint
v (respectively the external degree kext

v ) of a node v ∈ C , as the number of edges
connecting v to other nodes belonging to C (respectively to the rest of the graph).
If kext

v = 0, the node v has only neighbors within C : assigning v to the current
community C is likely to be a good choice. If kint

v = 0 instead, the node is disjoint
from C and it should better be assigned to a different community. Classically, we
note kv = kint

v +kext
v the degree of node v. The internal degree kint of C is the sum of

the internal degrees of its nodes. Likewise, the external degree kext of C is the sum
of the external degrees of its nodes. The total degree kC is the sum of the degrees of
the nodes of C . By definition: kC = kint

C + kext
C .

2.2 Current Work

We then review existing methods for detecting overlapping community structure
and discuss the shortcomings of these approaches.

Baumes et al. [4] proposed a density metric for clustering nodes. In their method,
nodes are added into clusters if and only if their fusion improves the cluster density.
Under this condition, the results really depend on seeds for network clustering. The
seed can be a random node or a disjoint community. As shown in their results, there
is a huge difference in the number of communities based on different types of seeds.

Lancichinetti et al. has made many efforts in cover detection including fitness-
based function [14] and OSLOM (Order Statistics Local Optimization Method) [16].
The former is based on the local optimization of a k-fitness function, whose result is
limited by the tunable parameter k, and the later uses the statistical significance [15]
of clusters with an expansive computational cost as it sweeps all nodes for each
“worst” node. For the optimization, Lancichinetti et al. [16] propose to detect sig-
nificant communities based on a partition. They detect a community by adding
nodes, between which the togetherness is high. This is one of popular techniques
for overlapping community detection. There are similar endeavours like greedy
clique expansion technique [17] and community strength-based overlapping com-
munity detection [29]. However, as they applied Lancichinetti et al. [14]’s k-fitness
function, the results are limited by the tunable parameter k.

Some cover detection approaches are based on other basis. For example, Re-
ichardt et al. [25] introduced the energy landscape survey method, and Sales Pardo
et al. [26] proposed the modularity-landscape survey method to construct a hier-
archical tree. They aim at detecting fuzzy community structure, whose communi-
ties consist of nodes having high probability together with each other. As indicated
in [26], they are limited by scales of networks.

Evans et al. [7] proposed to construct a line graph (a line graph is constructed by
using nodes to represent edges of the original graphs) which transforms the problem
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of node clustering to the link clustering and allows nodes shared by several commu-
nities. The main drawback is that, in their results, overlapping communities always
exist.

The problem of overlapping community detection remains.

3 Modularity Extensions

Modularity has been employed by a large number of community detection methods.
However, it only evaluates the quality of partitions. Here, we first introduce a novel
extension for covers, which is combined with the energy model Hamiltonian for the
spin system [25]. Second, we review some existing modularity extensions for covers
and discuss the cases which these existing extensions may fail to capture. Studies
show that our proposed modularity extension is able to avoid their shortcomings.

3.1 A Novel Modularity

Many scientists deal with the problems in the area of computer science based on
principles from statistical mechanics or analogies with physical models. When us-
ing spin models for clustering of multivariate data, the similarity measures are trans-
lated into coupling strengths and either dynamical properties such as spin-spin cor-
relations are measured or energies are interpreted as quality functions. A ferromag-
netic Potts model has been applied successfully by Blatt et al. [24]. Bengtsson and
Roivainen [5] have used an antiferromagnetic Potts model with the number of clus-
ters as input parameter and the assignment of spins in the ground state of the system
defines the clustering solution. These works have motivated Reichardt and Born-
holdt [25] to interpret the modularity of the community structure by an energy func-
tion of the spin glass with the spin states. The energy of the spin system is equivalent
to the quality function of the clustering with the spins states being the community
indices.

Let a community structure be represented by a spin configuration {σ } associated
to each node u of a graph G. Each spin state represents a community, and the num-
ber of spin states represents the number of communities of the graph. The quality
of a community structure can thus be represented through the energy of spin glass.
In [25], a function of community structure is proposed, whose expression is writ-
ten as:

H
({σ }) = −

∑

i �=j

(Aij − γpij )δ(σi, σj ). (1)

This function (Eq. 1) can be written in the following two ways:

H
({σ }) = −

∑

s

(
mss − γ [mss]pij

) = −
∑

s

cs (2)
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Fig. 1 Example of [·]pij
,

where the union of clusters n1
and n2 is nr such that
n1 ∪ n2 = nr and the cluster
ns belongs to the rest of the
graph

and

H
({σ }) =

∑

s<r

(
msr − γ [msr ]pij

) =
∑

s

asr , (3)

where for each community Cs , we note mss the number of links within Cs , msr

represents the number of links between a community Cs and another community
Cr , [mss]pij

and [msr ]pij
are the expected number of links given a link distribu-

tion pij . The cohesion of Cs is noted cs and asr represents the adhesion between a
community Cs and another community Cr .

We can assume diverse expressions of [·]pij
, which is an expectation under the

link distribution pij . In case of Fig. 1 for disjoint clusters n1 and n2, the choice
should satisfy the following:

1. when ns is a cluster belonging to the rest of the graph, [m1s]pij
+ [m2s]pij

=
[m1+2,s]pij

;
2. when nr is an union cluster composed of n1 and n2, [mrr ]pij

= [m11]pij
+

[m22]pij
+ [m12]pij

.

Similarly, we give a relation for the cohesion of a community n3 (the whole
graph) and two sub-communities n1 and n2 with an empty intersection such as n1 ∪
n2 = n3 and n1 ∩ n2 = ∅ (see Fig. 2(a)). From Eqs. 2 and 3, we can easily prove:

c3 = c1 + c2 + a12 (4)

where c3 denotes the cohesion of n3 that is the union of n1 and n2 with an empty in-
tersection, a12 denotes the adhesion between n1 and n2, c1 and c2 are the cohesions
of sub-communities n1 and n2 respectively.

Furthermore, we can give the relations for the cohesion of n3 and two sub-
communities n1 and n2 in other cases (see Fig. 2).

In the subdivision (see Fig. 2(b)), there is an overlapping cluster n0 between n01
and n02. We write the cohesions for sub-communities n01 and n02 as:

{
c0

01 = c0
0 + c1 + a0

01,

c0
02 = c0

0 + c2 + a0
02,

where c0
01 and c0

02 denote the cohesion of the sub-communities n01 and n02

respectively, a0
01 and a0

02 denote the adhesion between n0 and n1, n2. Here, n0 is
shared by n01 and n02.
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Fig. 2 Let us denote the union of the clusters n0 and n1 by n01. Similarly, we denote the union
of the clusters n0 and n2 by n02, the union of the clusters nr and ns by nrs , the union of the
clusters n1, nr and ns by nrs1 and the union of the clusters n2, nr and ns by nrs2. Three different
subdivisions of the community n3: (a) two disjoint sub-communities n1, n2; (b) two overlapping
sub-communities n01, n02 sharing a cluster n0; and (c) two overlapping sub-communities nrs1, nrs2
sharing two clusters nr , ns , where nr , ns are disjoint sub-communities of n0 such as nr ∩ ns = ∅
and nr ∪ ns = n0

For the adhesion, we have:

a0
01,02 = a0

01 + a0
02 + a12

between n01 and n02.
For the union of n3 = n01 ∪ n02, we obtain

c3 = c0 + c1 + c2 + a01 + a02 + a12

= 2c0
0 + c1 + c2 + 2a0

01 + 2a0
02 + a12.

So we derive

c0
0 = 1

2
c0, a0

01 = 1

2
a01 and a0

02 = 1

2
a02. (5)

In the subdivision (see Fig. 2(c)) such as nr ∪ ns = n0, we replace c0 and c0
0 by

{
c0 = cr + cs + ars,

c0
0 = cr

r + cs
s + ars

rs ,
(6)

where cr
r and cs

s denote the cohesion of overlapping sub-communities nr and ns

respectively. ars
rs denotes the adhesion between overlapping sub-communities nr and

ns , which satisfies ars
rs = 1

2ars due to Eq. 5.
Therefore, we propose the contribution of ars for all communities {C1, . . . ,Ck}:

k∑

1

1

|dr ∪ ds |ars = |dr ∩ ds |
|dr ∪ ds |ars, (7)

where dr and ds denote the community memberships of nr and ns , respectively.
The widest used modularity [22] is given by:

Q = 1

2m

∑

i �=j

(
Aij − kikj

2m

)
δ(σi, σj ). (8)

We rewrite the modularity Q Eq. 8 as:

Q = − 1

m
H

({σ }). (9)
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Consequently, we can write the quality of an overlapping community structure in
the form of the modularity function:

Qov = 1

2m

∑

i �=j

(
Aij − kikj

2m

) |di ∩ dj |
|di ∪ dj | , (10)

where di and dj are memberships of nodes i and j , respectively. For a pair of nodes
i and j always belonging to the same community such as di ∩ dj = di ∪ dj , their

contribution to the modularity is (Aij − kikj

2m
). For a pair of nodes i and j never

belonging to the same community such as di ∩ dj = ∅, their contribution is 0. Oth-

erwise, their contribution is within the range of [0, (Aij − kikj

2m
)]. Furthermore, if the

found community structure is a strict partition, its quality Qov is equal to the initial
modularity Q defined by Eq. 8.

3.2 Existing Modularity for Covers

There are other extensions of modularity designed to evaluate the quality of overlap-
ping community structure. However, we are going to prove that they fail to satisfy
above necessary constraints.

In the case Fig. 2(c), we assume that nr is an overlapping node vi . Similarly
for ns , ns is an another overlapping node vj which connects to vi . The union of vi

and vj is n0 such that n0 = vi ∪ vj . The overlapping communities n01 and n02 are
denoted by Cx and Cy of a graph Gexample, respectively.

Let Ov be the number of communities to which node v belongs. Shen et al. [27]
have introduced an extended modularity:

Qshen = 1

2m

nc∑

i=1

∑

v∈Ci ,w∈Cj ,v �=w

1

OvOw

(
Avw − kvkw

2m

)
δ(σv, σw). (11)

From Eq. 9, it is easy to obtain a0
01shen

derived from Qshen (Eq. 11):

a0
01shen

= 1

2

∑

v∈n0,w∈Cx\n0

(
Avw − kvkw

2m

)
+ 1

2

(
Avivj

− kvi
kvj

2m

)
.

It fails to satisfy a0
01 = 1

2a0 (Eq. 5), where

a01shen =
∑

v∈n0,w∈Cx\n0

(
Avw − kvkw

2m

)
+ 2

(
Avivj

− kvi
kvj

2m

)
.

In other words, through the definition of Qshen, we obtain different values of the
quality in views of Figs. 2(b) and 2(c) although they represent the same cover.

In [21], Tamas Nepusz et al. haved proposed a variant of modularity measure,
which is defined by:

Qfuzzy = 1

2m

∑

i,j

(
Aij − kikj

2m

)
sij
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where sij = ∑nc

k=1 ukiukj . The membership degree between node i and community
k, uki satisfies

∑nc

k=1 uik = 1.
As we did previously, for node vk ∈ n0 in Gexample, under the assumption:

uviCx
= uviCy

= uvjCx
= uvjCy

= 1
2 , it is easy to obtain

svkvw =
⎧
⎨

⎩

0 vw /∈ Cx ∪ Cy,

0.5 vw ∈ Cx ∪ Cy, vw /∈ n0,

0.25 vk �= vw.

(12)

We obtain that

a0
01fuzzy

= 1

2

∑

v∈n0,w∈Cx\n0

(
Avw − kvkw

2m

)
+ 1

2

(
Avivj

− kvi
kvj

2m

)
.

It also does not satisfy a0
01 = 1

2a0 (Eq. 5) with a01fuzzy = a01shen .
By using the novel proposed modified modularity (Eq. 10), we obtain

a0
01ov

= 1

2

∑

v∈n0,w∈Cx\n0

(
Avw − kvkw

2m

)
+

(
Avivj

− kvi
kvj

2m

)
.

It satisfies a0
01 = 1

2a0 (Eq. 5), therefore we consider that our novel modified mod-
ularity is more reasonable to evaluate the quality of overlapping community struc-
ture. However, we can not detect covers by optimizing it since overlapping nodes
may degenerate the modularity value. For example, in the case Fig. 2(b), the quality
can be represented by

Qcover
ov = − 1

m
H

({σ }) = − 1

m

(
c0 + c1 + c2 + a0

01 + a0
02

)
,

where a0
01 = 1

2a01 and a0
02 = 1

2a02. And the quality of the partition is

Q
partition
ov =

{− 1
m

(c0 + c1 + c2 + a01) , when P = {n01, n2},
− 1

m
(c0 + c1 + c2 + a02) , when P = {n1, n02}.

We find Qcover
ov = Q

partition
ov when a01 = a02; otherwise, Qcover

ov < Q
partition
ov due

to min(a01, a02) < a0
01 + a0

02 = 1
2a01 + 1

2a02 < max(a01, a02). Thus, even in a toy
example where clearly there is a clear overlap (see Fig. 2(b)), if the number of links
between n0 and n1 differs from the number of links between n0 and n2 the quality
of the cover will be less than the quality of the partition once the difference between
the number of links is greater than 0.

To overcome this optimization issue, we propose the method named fuzzy detec-
tion not based on modularity like function.

4 Our Method

In this section, we will introduce our method for cover detection named fuzzy de-
tection. This novel cover detection heuristic aims at identifying modular overlaps.
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Each modular overlap is a group of nodes shared by communities. More precisely,
each modular overlap is a possible sub-community shared by several communities.
For better understanding, we give two definitions of overlapping nodes: granular
overlaps and modular overlaps. The traditional cover detection methods [4, 14, 16]
aims at identifying granular overlaps, which are fine grain scale approaches. Each
granular overlap is a node connected to distinct communities and it is highly con-
nected to each community. Roughly speaking, a granular overlap is shared by sev-
eral distinct communities while being intrinsically a member of each of them. As
opposed to granular overlaps, modular overlaps imply the hierarchical organization
of the graph: each modular overlap is a sub-community shared by several commu-
nities.

4.1 Motivation

Our fuzzy detection algorithm is based on the Louvain algorithm [6]. The Lou-
vain algorithm is an efficient partition detection algorithm that provides good par-
titions with high modularity. It consists of two phases that are iteratively repeated
until no more positive gain of modularity is obtained. Initially, all nodes are as-
signed into a single community. Then, for each node whose move improves the
modularity, it will be removed from its current community to the neighbor com-
munity which offers the largest gain of modularity. The first phase repeatedly and
sequentially sweeps all nodes until no further improvement of modularity can be
gained. The second phase builds a new meta graph based on communities found
in the first phase. It aggregates nodes of the same community and builds a new
network whose nodes are the communities. Once the second phase is completed,
the first phase is reapplied to the new network. The two phases are iteratively
applied until no more change in community structure or maximum modularity is
achieved. In the following, we use iteration to denote the combination of these
two phases. The partition found by this algorithm is hierarchical organized, the
hierarchy height is determined by the number of iterations. The Louvain algo-
rithm is extremely fast and provides highly optimized partitions with high modu-
larity.

When running several times the Louvain algorithm on the same given network,
we observe from a run to another that nodes may be grouped together with differ-
ent community members in distinct partitions. Since the Louvain algorithm sweeps
nodes in a non deterministic fashion (a random permutation of V ), it naturally in-
troduces instability which may be a weakness. It turns out that we can take benefit
of this instability. By detecting nodes that jump from one community to another be-
tween distinct runs, we are in fact able to uncover overlapping nodes. Therefore, we
propose a fuzzy detection algorithm which detects groups of nodes having strong
probability of appearing in several communities.
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4.2 Fuzzy Detection Algorithm

To have the benefit of the potential Louvain algorithm instability [2], we force the
algorithm to use a random seed at each run. The random seed makes the nodes be
swept in a random permutation during the modularity optimization. Thus, different
runs may produce different partitions. By repeating Louvain algorithm, we are able
to compute, a co-appearance matrix P = [pij ]n×n. For each pair of nodes (i, j), pij

of P represents the probability for the pair nodes i and j appearing in the same
community. Having pij = 1 implies that nodes i and j are always in the same com-
munity while edges e = (i, j) having a pij close to 0 implies that edge e connects
two different communities. The underlying idea of fuzzy detection approach is thus
to detect overlapping communities from a classical partition approach.

Detecting overlapping nodes also allows to detect more stable nodes that always
belong together in the same community. In this algorithm, we use the notion of
community cores to denote communities. Given a community, its core is a group
of nodes offering high stability against random perturbation. To detect community
cores, we’re going to remove edges in order to keep only core nodes. First we re-
move all external edges, i.e., all edges e = (i, j), having a connection probability
pij less than a threshold α∗. After this pruning phase, a set of disjoint robust clus-
ters is obtained. A robust cluster is a group of nodes connected by edges having
in-cluster probability larger than or equal to α∗. Note that a given community may
have several robust clusters. We choose the community core corresponding to the
robust cluster having the maximum size. The notion of external edges was used
in [8] where authors add a random noise over the weight of the edges of the network
(equally distributed between [−σ,σ ]). Once community cores are identified, we
continue iteratively, following the Louvain approach. Similarly, in our method, we
replace the robust clusters by supernodes and connect them through the connection
between robust clusters. In this case, the weight of the edge between the supernodes
is the sum of the weights of the edges between the identified robust clusters. We run
again the Louvain algorithm to compute the probability of robust clusters and com-
munity cores to appear in the same community. Finally, we add each robust cluster
to the community if they have a high community membership degree such as their
probability of appearing in the same community is high.

The global algorithm is shown in Algorithm 2. First, (lines 2–9) we compute
the co-appearance matrix P = [pij ]n×n by running the Louvain algorithm of Algo-
rithm 1 several times with a random seed. The number of runs is determined by the
convergence criteria (line 9):

∥∥Pk+1 − Pk
∥∥ =

√√√√
1

m

∑

(i,j)∈E

(
pk+1

ij − pk
ij

)2
< ε, (13)

where Pk represents the result after kth run and pk
ij denotes the statistical probability

of nodes i and j to belong to the same community after kth runs (line 5) and ε is
a small threshold. Figure 3 illustrates the convergence of the norm when running
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Algorithm 1 Louvain algorithm
Require: G = (V ,E), l∗ a level threshold
Ensure: P a partition

1: l ← 0;G0 ← G

2: repeat
3: l ← l + 1
4: Initialize a partition Pl of Gl(Vl,El)

// First phase: Partition update
5: repeat
6: Nodes in a random permutation
7: for all Nodes: v ∈ Vl do
8: Move from σv to one selected σv′ (v′ is a neighbor of v)
9: end for

10: until no more change increases modularity
// Second phase: Construct a new meta graph

11: Replace each community by a node
12: Replace connections between a pair of communities by one weighted edge
13: until Pl is not updated or l = l∗.
14: Return P corresponding to the roots of the hierarchical tree.

fuzzy detection algorithm. We observe that ‖Pk+1 − Pk‖ decreases as the number k

of runs increases.
Then, we detect robust clusters {c1, c2, . . . , cs} = Psc (lines 10–13). Given a

partition Popt which has the maximum modularity among all computed partitions
obtained during the first phase, the robust clusters are detected by removing all edges
having a probability pij lower that a given threshold α∗ (typically α∗ = 0.9). A
simple illustration is given in Fig. 4.

Finally in the second phase, we identify modular overlaps which have high
community membership degrees with several communities. Given a community
Ci ∈ Popt, its core ĉi is the robust cluster cj ⊆ Ci having the maximum size, such
as:

ĉi = arg max
cj ⊆Ci

|cj |. (14)

We assign each robust cluster cj to the community Ci if and only if their com-
munity membership degree pcj ,ĉi

is larger than a threshold β∗ such as pcj ,ĉi
� β∗

(typically β∗ = 0.1). If one robust cluster is assigned to at least two communities,
we call it a modular overlap.

In cases where a community consists of several robuster clusters of comparable
size, one may tune and increase the value of α∗ in order to refine the core identifi-
cation.

Since fuzzy detection is used to identify modular overlaps, which are sub-
communities shared by several communities, we restrict the modular overlaps to
have a size greater than 3. We can now introduce the notion of unstable nodes, which
are nodes connecting communities with few links but are observed to have high co-
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Algorithm 2 Fuzzy detection
Require: G = (V ,E), α∗, β∗
Ensure: S an overlapping community covering of V

// STEP 1: Detect robust clusters
1: P0 ← 0; k ← 0; modularitymax ← −∞
2: repeat
3: k ← k + 1
4: P ← Run the Louvain algorithm on G

5: Update Pk

6: if modularity of P greater than modularitymax then
7: Save the partition P in Popt and update modularitymax
8: end if
9: until ‖Pk − Pk−1‖ ≤ ε

10: Psc = Popt
11: for all edge e = (i, j) such that pij < α∗ do
12: Remove the external edge e from Psc
13: end for

// STEP 2: Adjust the membership of robust clusters
Require: G = (V ,E), Psc, S ← Popt
14: for all Ci ∈ Popt do
15: Identify community core: ĉi = arg maxcj ⊆Ci

|cj |
16: end for
17: Compute Pci ,cj

18: for all cj ∈ Psc and cj /∈ {ĉ1, . . . , } do
19: if pcj ,ĉi

≥ β∗ then
20: Si ← Si ∪ cj

21: end if
22: end for
23: Return S

Fig. 3 As the number of runs
increases, the shape of the
function value Eq. 13 gets
closer and closer to 0. The
figure shows results on
College football [9], Karate
club [30] and Word
adjacencies [23]
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Fig. 4 Illustration of our fuzzy detection on a toy graph which consists of two overlapping cliques.
After removing all edges in low probability pij = 50 % (which connect to the node v0), robust
clusters are obtained, concluding {v1, v2, v3, v4, v5}, {v6, v7, v8, v9, v10}, and a single v0

Fig. 5 An example graph
that contains a unstable
node 5. Node 5 has relatively
high membership degrees
with two communities
(p = 0.5). However, it is
connected to each community
with only 1 link

appearance probability with several communities. Figure 5 illustrates such case. Due
to unstable nodes, we only use fuzzy detection to identify modular overlaps.

The running time of fuzzy detection mainly depends on the co-appearance matrix
calculation. The complexity to find a partition by the Louvain algorithm is estimated
by authors in [6] to be in O(m), where m is the number of edges in the network (the
worst complexity is much higher, but in practice, on real network, Louvain algo-
rithm performs very well). Thus the computational complexity of fuzzy detection
is in O(Km), where K is the number of runs of Louvain algorithm needed before
reaching an acceptable convergence of P. Once more, in practice, we take bene-
fit of the efficient Louvain algorithm running time and our fuzzy detection is fast.
We experiment storage limitation due to the matrices Pk and Pk+1 more than time
computing one.

4.3 Discussion

Our fuzzy detection has applied β∗ to determine community memberships. If the
threshold β∗ increased, the number of modular overlaps decreased; otherwise, more
robust clusters are identified as modular overlaps. The criterion we used to fix the
optimal β∗ value should be based on finding a community structure having the good
quality. In the following, we apply our method to a real network and study the mod-
ularity by increasing the value of β∗.

Wikipedia is a free encyclopedia written collaboratively by volunteers around the
world. A small part of Wikipedia contributors are administrators, who are users with
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Fig. 6 Performance of fuzzy
detection in testing Wikipedia
vote network, where the value
of the modularity corresponds
to the community structure
obtained by the relevant β∗.
The critical point which
corresponds to the maximum
modularity is observed

access to additional technical features that aid in maintenance. In order for a user to
become an administrator a Request for adminship (RfA) is issued and the Wikipedia
community via a public discussion or a vote decides who to promote to adminship.
Using the dump of Wikipedia page edit history, 2,794 elections with 103,663 total
votes and 7,066 users participating in the elections (either casting a vote or being
voted on) are extracted. About half of the votes in the dataset are by existing admins,
while the other half comes from ordinary Wikipedia users.1

By applying our method to the Wikipedia vote network, we show the modularity
by increasing the value of β∗. We observe the critical point: β∗ = 18 % in Fig. 6,
which corresponds to the maximum modularity Eq. 10. In practice, we use the value
corresponding to the critical point to set β∗ which is approximate 10 %. Note that we
do not set a high value upon β∗ since the obtained membership degree is obtained
by modularity optimization. Such that the membership degree pcj ,ĉi

value must
be very high if the robust cluster cj obtains the highest modularity gain with the
community Ci than others. (Even if the modularity gain variance between Ci and
another community is very slight.)

5 Tests of the Method

In the following, we test the performances of fuzzy detection. We have considered
a set of synthetic networks and a real network for which the community structure
is known. The results show that our fuzzy detection algorithm extracts communities
while preserving the hierarchical organization and also providing overlaps.

A community structure can be hierarchically ordered when the graph offers sev-
eral levels of organization/structure at different scales. In this case, the community
structure is hierarchically constructed by small communities at each level, all nested

1http://snap.stanford.edu/data/wiki-Vote.html.

http://snap.stanford.edu/data/wiki-Vote.html
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Fig. 7 The co-appearance matrix of artificial networks containing hierarchical structure. The color
corresponds to the probability of nodes in the same community: the deep color represents the high
probability; the color is white if the probability is 0 %

within large communities at higher levels. As an example, one may consider in a so-
cial network the granularity of the living place (town), the working place (school)
and refine it toward the graduate or class level.

5.1 Synthetic Graphs Containing Hierarchical Structure

First, we apply the fuzzy detection algorithm to an artificial graph containing hier-
archical structure [14] and a modular overlap.

The result is shown in Fig. 7. We observe that fuzzy detection extracts com-
munities in hierarchical organization. The graph is composed of 512 nodes, which
belong to 16 groups, arranged into 4 supergroups and one group is shared by two
supergroups. Every node has an average of k1 = 30 links with nodes in the same
micro-community, k2 = 13 links with nodes in the same macro-community but dif-
ferent micro-community. In addition, each node has k3 = 5 links with the rest of
the networks. As the modular overlaps has macro-links with two communities, its
nodes have a total degree k = 61 while the other nodes only have a total degree
k = 48. This process constructs two hierarchical levels: one consisting of 16 small
groups, and the other one composed of 4 supergroups. Figure 7(a) illustrates the
co-appearance matrix by running the Louvain algorithm without fixing the level
threshold l∗ (see Algorithm 1), while Fig. 7(b) provides the result by running the
Louvain algorithm with l∗ = 1. In both figures, the nodes are sorted in the same
order corresponding to the robust clusters and the selected partition Popt. As the
distinction among robust clusters is not clear in Fig. 7(a), we use Fig. 7(b) for the
visualization. We observe 4 communities and 16 robust clusters, where one robust
cluster is shared by two communities. The result agrees with the ground truth.

Remark that, when running our fuzzy detection to identify modular overlaps,
we may need to increase the value of α∗ to obtain a reasonable community core
whose size is larger than the others within the same community. It occurs when one
community contains several large robust clusters having comparable size.
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Fig. 8 The co-appearance matrix of college football network by running our fuzzy detection. We
order the nodes corresponding to their conferences and mark the conference indices. The color
corresponds to the probability of nodes in the same community: the deep color represents the high
probability; the color is white if the probability is 0 %

5.2 College Football Network

We also run the fuzzy detection algorithm to real networks. A famous real but small
and tractable network is the US college football [9] . This network records the sched-
ule of Division I games for the 2000 season: 115 nodes represent teams (identified
by their college names) and 613 edges represent regular season games between the
two teams they connect. What makes this network interesting [9] is that it incor-
porates a known community structure. The teams are divided into “conferences”
containing around 8 to 12 teams each. Games are more frequent between mem-
bers of the same conference than between members of different conferences, with
teams playing an average of about 7 intra-conference games and 4 inter-conference
games fraction of vertices classified correctly in the 2000 season. Inter-conference
play is not uniformly distributed; teams that are geographically close to one another
but belong to different conferences are more likely to play one another than teams
separated by large geographic distances.

In Fig. 8, we illustrate the results: the community “Mountain West Sunbelt” is
split into “Mountain West” and “Sunbelt1”, the community “Sunbelt SEC” has a
possible subdivision into “Sunbelt2”2 and “SEC”, and a node “CentralFlorida” is
split from the community “Pac 10”. Among them, only “Sunbelt1” is identified

2We do not mark “Sunbelt2” due to the visualization, since its position is too close to “Cen-
tralFlorida” in the figure.
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Fig. 9 The community structure of Complex System Science, in which communities are identified
by complex systems fields

as a modular overlaps. “CentralFlorida” has high membership degree with differ-
ent communities, too. But it is a granular overlapping node rather than a modular
overlap. In reality, the team “CentralFlorida” did not belong to any conference, and
the teams in the “Sunbelt” conference played nearly as many games against West-
ern Athletic teams as they did within their own conference. Therefore, we consider
fuzzy detection has a good performance in detecting modular overlaps for this real
network.

6 Application to a Real Network: Complex System Science

In this section we consider the application of fuzzy detection to a real network called
Complex System Science. It is a co-citation network, whose dataset is composed of
articles extracted from the ISI Web of knowledge. Article were published between
2000 and 2009. The network is composed of 141,163 nodes and 19,603,888 links.
The nodes correspond to articles containing a set of keywords relevant to the field of
complex systems. The weight of the links between articles is calculated through their
common references (bibliographic coupling [12]). A link exists between two articles
if they share references, meaning that they cite common work which may implies
that they are dealing with a same scientific object/domain. More precisely, given two
articles (nodes) i and j , each one having a set of references Ri (respectively Rj ),
there exists a link e = (i, j) between i and j if i and j share at least one reference
and the weight is measured by: wij = |Ri∩Rj |√|Ri | |Rj | .
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Fig. 10 Results of fuzzy detection on Complex System Science. Robust clusters are marked by
the highest frequent topic keywords. Their colors correspond to the relevant communities as shown
in Fig. 9

For the visualization, we only show clusters which contain at least 100 nodes.3

The partition of the graph is shown in Fig. 9. Each community corresponds to a
unique color. Our obtained robust clusters are shown in Fig. 10. The color of each
robust cluster corresponds to the relevant community in the partition shown in Fig. 9.
Only robust clusters belonging to the same community in the partition share the
same color.

Figure 9 shows 12 communities (fields or disciplines). Through studies in topic
keywords,4 see Table 1, we observe nearly all important fields of complex systems
such as: complex networks, neural networks, self-organization criticality, dynami-
cal systems (chaos theory, dynamics turbulence) and so on [10]. It shows that the
community structure of this network reveals the complex systems fields. For more

3In [18], the community which has size roughly 100 nodes is good.
4We compute the frequency of topic keywords by aggregating the number of units (article), i.e., if
only one unite contains the topic keywords “Neurons”, the corresponding frequency is 1.
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Table 1 Results of communities in the partition. The shown high frequent topic keywords are
sorted in descending order and each topic keyword is contained in at least 20 articles

Community Highest
frequent topic
keywords

High frequent topic keywords

Neuroscience:
Biological Psychology

Brain Brain, Neurons, Long-Term Potentiation,
Association, Expression, Performance, Disease,
Model, Synaptic Plasticity, Activation, Complex,
Children, Central-Nervous-System, Rat

Chaos Theory Chaos Chaos, Dynamics, Systems, Model, Stability,
Complexity, Synchronization, Time-Series,
Bifurcation, Self-Organization

Chemistry:
Spectroscopy

Complexes Complexes, Self-Organization, Crystal-Structure,
Chemistry, Derivatives, Behavior, Films,
Polymers, Systems, Phase-Transition,
Spectroscopy, Dynamics, Thin-Films, Molecules,
Nonlinear-Optical Properties

Complex Networks Complex
Networks

Complex Networks, Dynamics, Small-World
Networks, Model, Internet, Evolution, Systems,
Organization, Topology, Scale-Free Networks,
Metabolic Networks, Web, Graphs

Ecosystems Ecology Ecology, Systems, Model, Complexity, Evolution,
Dynamics, Management, Growth, Behavior,
Self-Organization, Patterns, Simulation,
Biodiversity, Models

Molecular Biology Expression Expression, Complex, Gene-Expression, Protein,
In-Vivo, Activation, Saccharomyces-Cerevisiae,
Identification, Gene, Escherichia-Coli, Cells,
In-Vitro, Binding, Crystal-Structure,
Messenger-Rna, Phosphorylation, Proteins

Semiconductor
Superlattice Materials
and Growth Technology

Growth Growth, Gaas, Islands, Molecular-Beam Epitaxy,
Self-Organization, Quantum Dots, Surfaces,
Films, Photoluminescence, Silicon,
Nanostructures, Si(001)

Clinical Psychology Management Management, Therapy, Trauma, Experience,
Hemorrhage, Surgery, Inhibitors, Optimization,
Recombinant Factor Viia, Damage Control,
Mortality, Cancer

Neural Networks Neural
Networks

Neural Networks, Model, Systems, Classification,
Optimization, Algorithm, Identification, Design,
Prediction, Self-Organizing Maps

Soc Self-
Organized
Criticality

Self-Organized Criticality, Model, Dynamics,
Econophysics, Evolution, Systems, Fluctuations,
Behavior, Growth, Turbulence, Noise, Transport,
Avalanches, Earthquakes, Patterns, Time-Series

Computer Science:
Communication Systems

Systems Systems, Design, Performance, Channels,
Algorithm, Networks, Capacity, Ofdm, Stability,
Optimization, Fading Channels, Algorithms,
Model, Signals, Codes, Transmission

Dynamics Turbulence Turbulence Turbulence, Model, Flow, Simulation, Dynamics,
Behavior, Large-Eddy Simulation, Complex
Terrain, Plasticity, Flows, Boundary-Layer
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Table 2 Results of fuzzy detection: ten high frequent topic keywords contained by modular over-
laps between pairs of communities. These high frequent topic keywords are contained in at least
20 articles and are shown in order of descending frequency. The highest frequent topic keywords
are shown in bold font

Modular
overlaps

High frequent topic keywords Involving communities

Genetic
Association

Association, Susceptibility, Polymorphism, Linkage
Disequilibrium, Disease, Major Histocompatibility
Complex, Linkage, Complex Traits, Risk,
Population

Molecular Biology,
Neuroscience:
Biological Psychology

Discrete-event
Systems

Systems, Supervisory Control, Petri Nets,
Complexity, Discrete-Event Systems, Verification,
Design, Automata, Synchronization, Discrete Event
Systems

Computer Science:
Communication
Systems, Ecosystems

Computational
Complexity

Complexity, Algorithms, Computational
Complexity, Algorithm, Networks, Optimization,
Time, Systems, Search, Computational-Complexity

Computer Science:
Communication
Systems, Ecosystems

Astronomy-
ISM
(Interstellar
Medium)

Turbulence, Ism: Clouds, Star-Formation, Stars:
Formation, Molecular Clouds, Ism: Structure, Ism:
Kinematics And Dynamics, Evolution, Radio
Lines: Ism, Intergalactic Medium

Dynamics Turbulence,
Clinical Psychology

Multi-Agent
Systems

Systems, Multi-Agent Systems, Multiagent
Systems, Design, Agents, Architecture,
Multi-Agent System, Framework, Model,
Intelligent Agents

Computer Science:
Communication
Systems, Ecosystems

Visual Cortex Complex Cells, Lateral Geniculate-Nucleus, Cat
Striate Cortex, Primary Visual-Cortex, Striate
Cortex, Cortical-Neurons, Receptive-Fields,
Contrast, Orientation Selectivity, Simple Cells

Neuroscience:
Biological Psychology,
Neural Networks

details, we analyze robust clusters, which can be considered as sub-communities
(subfields or subdisciplines). The result is depicted on Fig. 10, whose description is
listed in Table 3. It is no surprise to observe the connection between subfields and
fields. For example, the community identified by neuroscience: biology psychology
is composed of several clusters, which are also characterized by research topics or
theoretical areas. Note that, the study in neuroplasticity supports the treatments of
brain damage, long-term potentiation concerns learning and memory, pre-Botzinger
complex is essential for respiratory rhythm, and the activities in prefrontal cortex
are considered to be orchestration of thoughts and actions in accordance with in-
ternal goals. All these subfields refer to the study in neuroscience and biological
psychology. It reveals that fuzzy detection extracts communities in hierarchical or-
ganization.

In terms of modular overlaps, our results are shown in Table 2. Except
astronomy-ISM (Interstellar medium) which acts like a unstable cluster, the rest has
a good agreement compared to the reality: discrete-event systems and multi-agents
are very common for modeling and analyzing general systems, computational com-
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Table 3 Results of fuzzy detection: ten high frequent topic keywords contained by robust clusters.
These high frequent topic keywords are contained in at least 20 articles and are shown in order of
descending frequency. The highest frequent topic keywords are shown in bold font

Community Cluster High frequent topic keywords

Dynamics
Turbulence

Flow Over Complex
Terrain

Turbulence, Model, Flow, Simulation,
Complex Terrain, Large-Eddy
Simulation, Flows, Behavior,
Boundary-Layer, Plasticity

Astronomy-Ism
(Interstellar Medium)

Turbulence, Ism: Clouds, Star-Formation,
Stars: Formation, Ism: Structure,
Molecular Clouds, Ism: Kinematics and
Dynamics, Evolution, Radio Lines: Ism,
Intergalactic Medium

Computer
Science:
Communication
Systems

Telecommunication
System

Systems, Performance, Channels,
Synchronization, Fading Channels,
Capacity, Ofdm, Equalization, Networks,
Multiuser Detection

Control Theory Systems, Stability, Design, Robust
Control, Optimization, Linear-Systems,
Model-Predictive Control, Stabilization,
H-Infinity Control, Model Predictive
Control

Wireless Network Ad Hoc Networks, Sensor Networks,
Wireless Sensor Networks,
Self-Organization, Networks, Wireless
Networks, Clustering

Cryptography Stream Ciphers, Cryptanalysis, Linear
Complexity, Stream Cipher, Sequences

Molecular
Biology

Expression Expression, Complex, Gene-Expression,
Protein, Saccharomyces-Cerevisiae,
Gene, Activation, In-Vivo, Identification,
In-Vitro

Dendritic Cells Dendritic Cells, In-Vivo, Expression,
T-Cells, Infection, Complex, Mice,
Activation, Major Histocompatibility
Complex, Antigen

Crystal structure of
Escherichia Coli

Crystal-Structure , Complex,
Escherichia-Coli, Binding, Protein,
Recognition, Mechanism, Proteins,
Molecular-Dynamics, Complexes

Gene Expression In
Escherichia Coli

Escherichia-Coli, Gene-Expression,
Systems, Expression, Model, Networks,
Systems Biology, Protein, Transcription,
Rhythms

Atherosclerosis Atherosclerosis, Inflammation,
Expression, Disease,
Myocardial-Infarction, In-Vivo,
C-Reactive Protein,
Smooth-Muscle-Cells, Activation,
Low-Density-Lipoprotein
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Table 3 (Continued)

Community Cluster High frequent topic keywords

Molecular
Biology

Membrane Fusion And
Exocytosis

Membrane-Fusion, Neurotransmitter
Release, Exocytosis, Syntaxin, Snare,
Complex, Protein, Snare Complex,
Transmitter Release

Proteomics Identification, Proteomics,
Mass-Spectrometry, Proteins, Peptides,
Protein Identification

Chaos Theory Chaotic Dynamics Chaos, Dynamics, Systems, Complexity,
Stability, Model, Time-Series,
Synchronization, Nonlinear Dynamics,
Bifurcation

Quantum Chaos And
Universality

Universality, Quantum Chaos, Systems,
Chaos, States, Model, Random- Matrix
Theory, Complex Systems, Fluctuations,
Spectra

Chaos In Population
dynamics

Chaos, Stability, Dynamics, Population,
Permanence, Models, Systems,
Bifurcation, Predator-Prey System, Birth
Pulses

Neuroscience:
Biological
Psychology

Neuroplasticity RAT, Neurons, Plasticity, Hippocampus,
Brain, Central-Nervous-System, Synaptic
Plasticity, Long-Term Potentiation,
Food-Intake, Memory

Long-Term Potentiation Long-Term Potentiation, Synaptic
Plasticity, Plasticity, Hippocampus,
Nmda Receptor, Glutamate Receptors,
Expression, Neurons, In-Vivo,
Hippocampal-Neurons

Genetic Association Association, Susceptibility,
Polymorphism, Linkage Disequilibrium,
Disease, Major Histocompatibility
Complex, Linkage, Complex Traits, Risk,
Population

Pre-Botzinger Complex Pre-Botzinger Complex, In-Vitro,
Pre-Botzinger Complex, Brain-Stem,
Respiratory Rhythm Generation, Rhythm
Generation, Rat, Control of Breathing,
Neurons, Pacemaker Neurons

Prefrontal Cortex Performance, Attention, Fmri, Children,
Prefrontal Cortex, Brain,
Working-Memory, Cortex, Memory,
Activation

Diabetes Mellitus Mellitus, Glycemic Control,
Complications, Hypertension,
Randomized Controlled-Trial, Diabetes,
Therapy, Risk, Diabetes Mellitus,
Management
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Table 3 (Continued)

Community Cluster High frequent topic keywords

Chemistry:
Spectroscopy

Crystal Structure Complexes, Self-Organization,
Crystal-Structure, Derivatives,
Chemistry, Polymers, Behavior, Films,
Nonlinear-Optical Properties,
Phase-Transition

Anodic Alumina Fabrication, Arrays, Films, Anodic
Alumina, Anodization,
Self-Organization, Growth,
Self-Organized Formation, Hexagonal
Pore Arrays, Titanium

Soc Soc Self-Organized Criticality, Model,
Dynamics, Econophysics, Evolution,
Systems, Fluctuations, Models, Behavior,
Turbulence

Ecosystems Innovation Management Management, Innovation, Economics,
Performance, Model, Complexity,
Systems, Technology, Firm, Knowledge

Discrete-Event Systems Systems, Supervisory Control, Petri Nets,
Complexity, Discrete-Event Systems,
Verification, Design, Automata, Discrete
Event Systems, Synchronization

Computational
Complexity

Complexity, Algorithms, Computational
Complexity, Algorithm, Networks,
Optimization, Time, Systems, Search,
Computational-Complexity

Ecosystems Ecology, Dynamics, Evolution,
Biodiversity, Patterns, Diversity, Growth,
Model, Management, Conservation

Absorption Adsorption, Sorption, Speciation,
Complexation, Humic Substances, Water,
Natural-Waters, Kinetics, Ph, Copper

Cellular Automaton Cellular Automata, Systems, Simulation,
Self-Organization, Model,
Cellular-Automata, Flow,
Cellular-Automaton Model, Traffic Flow,
Dynamics

Multi-agent Systems Systems, Multi-Agent Systems,
Multiagent Systems, Design, Agents,
Architecture, Multi-Agent System,
Framework, Model, Intelligent Agents

Division of Labor in
Insect Societies

Self-Organization, Behavior,
Division-Of-Labor, Hymenoptera, Ants,
Colonies, Formicidae, Social Insects,
Swarm Intelligence, Evolution

Complex Adaptive
Systems

Complexity, Self-Organization, Chaos,
Emergence, Science, Complex Adaptive
Systems, Complexity Theory
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Table 3 (Continued)

Community Cluster High frequent topic keywords

Ecosystems Malaria Malaria, Culicidae, Identification,
Transmission, Complex, Diptera, Africa,
Mosquitos, Anopheles-Gambiae
Complex, Gambiae Complex

Neural
Networks

Neural Networks Neural Networks, Classification,
Systems, Model, Self-Organizing Map,
Neural Network, Algorithm,
Identification, Artificial Neural
Networks, Prediction

Genetic Algorithm Optimization, Genetic Algorithms,
Genetic Algorithm, Design, Systems,
Neural Networks, Model, Algorithm,
Algorithms, Simulation

Simulated Annealing Optimization, Simulated Annealing,
Algorithm, Model

Gene Expression
Patterns

Patterns, Self-Organizing Maps,
Gene-Expression, Microarray,
Identification, Gene Expression,
Saccharomyces-Cerevisiae, Cancer,
Expression, Classification

Complex
Systems

Complex Systems Complex Networks, Dynamics,
Small-World Networks, Model, Internet,
Networks, Evolution, Scale-Free
Networks, Systems, Organization

plexity is a common property of complex systems, and genetic expression [11, 19]
studies are often used to determine whether a genetic variant is associated with a
disease or trait. Visual cortex is one part of visual systems, which receives visual
information for processing images. These results can be validated from the trivial.
This also suggests that the interdisciplinarity is important in studies of complex
systems.

7 Conclusion

In this paper, we introduce a new extension of modularity for covers and a new
method for overlapping community detection. Our definition of modularity is de-
rived from Reichardt and Bornholdt’s work [25] and explains the quality of com-
munity structure through the energy of spin system. The proposed fuzzy detection
benefits from the Louvain algorithm and detects modular overlaps. Modular over-
laps are groups of nodes shared by several communities. We have tested our fuzzy
detection on synthetic networks and observed its good performances by comparing
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to the ground truth. Its application to a real network also hints that our algorithm
provides insights in characterizing overlapping nodes.

We hope that our idea and method will provide useful information in the analysis
of other types of networks. Possible further applications to dynamic networks will
be done for studying effects of overlaps in community changes. We hope to see such
applications in the future.
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