
Preface

Theme

Developing efficient software in a timely manner continues to be a struggle for
many students and software developers in the real world. As both the size and
scope of software systems continues to grow, the complexity of the solutions
required to fill the needs of clients, too, increases. Software development has
exceeded the mere practice of programming to involve much more planning,
analyzing, designing, and delivering; as a result, students must learn how to
approach software projects and complete them from start to finish. In light of this
trend, a plethora of tools and solutions to any given problem now exists, and
developers must know when and how to appropriately use these tools to accom-
plish the various tasks that come with software engineering projects.

It is not unusual, though, for students to complete many courses only having
applied lessons to small problem sets that have limited complexity and freedom. It
is also not uncommon for students to learn the science of software engineering
without significant hands-on experience. This book aims to ameliorate such gaps
in the education of those studying Software Engineering. It recognizes the need to
teach key principles, but to also allow the students to gain deeper knowledge that
only direct practice can teach. The project-based approach taken by this book
reflects the needs observed amongst the students who will one day be a part of
teams completing large software projects.

Tools

While many tools for software engineering exist, this book uses some of the most
widely used and effective tools available. Most significantly, the object-oriented
paradigm and its fundamental principles are used as the primary way to organize
and design software. Introduced in phases, the completion of the hands-on project
laid out in this book uses various tools for the completion of each phase built on
this foundation. UML (Unified Modeling Language), for example, is a choice tool

vii



used to model software and is put into practice by the student for their hands-on
project. Also extending the object-oriented paradigm are key object-oriented
design patterns and analysis tools that will aid the student during requirements
specification, system design, and implementation phases of the project. Lastly,
standard documentation for each project phase is presented, exposing students to
organizational tools often lacking by those new to software engineering.

Principles

In order to better teach software engineering from a practical approach, this book
is written with the following principles as a foundation:

Hands-On Learning: Some skills applicable to software engineering are only
learned by being fully engrossed in a project with others. Hands-on learning is
very important to bridge the gap between academia and the real world as it gives
students the chance to learn from mistakes and successes. Professional skills that
are both useful and marketable will be learned by students by working with group
members, interacting with clients, and applying the tools and techniques taught
throughout the book.

Teamwork: The complex software systems of today do not allow any one
developer to create solutions on their own; hence, working in teams is a necessary
skill all students must learn and experience. Teamwork requires students to work
together to define goals and responsibilities, organize tasks, and provide open
communication and feedback. These traits of successful teamwork are just as
important as the technical knowledge acquired in this book.

Problem Solving: Every software project begins with a problem that must be
defined and solved. The solution to such problems will inherently bring about
other subsequent problems along the way. A good developer, while knowing the
available approaches and methods, must also know how to solve problems that
will likely arise as software engineering projects move from phase to phase. The
practice of software engineering is always changing solutions to improve to
accommodate the endless number of potential problems and ways to solve them.

The Book

This book covers the process, core concepts, and tools of software engineering,
from a primarily object-oriented approach, with a hands-on project as the back-
bone to support the learning and skill development of the student. Divided into
parts, the first set of chapters introduce software engineering principles before the
subsequent chapters describe the development of a software project from start to
finish. A more detailed description of this book’s parts and chapters is given
below:

viii Preface



Part I: What Is Software Engineering?

In this first part of the text, a brief history and introduction into the science of
software engineering and object-oriented principles used in its process are
described.

Chapter 1: In this chapter, Introduction to Software Engineering, a summary of
the definition and need for software engineering is laid out in a historical context;
the complexity of software and lack of success rates are detailed as support. The
people, tasks, and activities involved in software engineering are also described to
provide evidence that software engineering is not merely limited to programming.
Lastly, the life cycles of the development process are depicted.

Chapter 2: In Object-Oriented Concepts, object-orientation is introduced and
underlying concepts such as classes, modularity, inheritance, and abstraction are
discussed. This chapter defines key ideas used by more complex tasks described
later in this book.

Chapter 3: Entitled Modeling with UML, this chapter describes and depicts the
variety of diagrams the Unified Modeling Language provides developers. Class,
use case, sequence, component diagrams, and others are discussed as well as the
basic parts and association types used by many of them.

Part II: The Software Engineering Project

Part II of this book covers the various phases common to software engineering
projects. From defining the problem and requirements to implementing designs
and models, these chapters describe the tools and methods used by developers to
systematically complete a software project.

Chapter 4: Starting the Project provides an overview of the project and non-
technical activities such as scheduling, communicating, handling problems, and
documenting. The skills covered in this section are practical as they help teams to
stay on task, work with each other, and quickly adapt to change.

Chapter 5: The topic of this chapter, Requirements Elicitation, is the process of
defining the different types of requirements that exist for software projects. First,
what exactly a requirement is and the difference between functional versus non-
functional, and domain requirements versus constraints is described. Next, the
methods of requirements elicitation are discussed as well as the issues and prob-
lems concerning requirements. Finally, the production of use case models from
requirements is outlined.

Chapter 6: This chapter, Object-Oriented Analysis, uses object-oriented con-
cepts to cover the analysis phase of the software development process. In this
intermediary phase before design, system requirements are evaluated and refined
by identifying objects and their relations, identifying use cases, developing

Preface ix

http://dx.doi.org/10.2991/978-94-6239-006-5_1
http://dx.doi.org/10.2991/978-94-6239-006-5_2
http://dx.doi.org/10.2991/978-94-6239-006-5_3
http://dx.doi.org/10.2991/978-94-6239-006-5_4
http://dx.doi.org/10.2991/978-94-6239-006-5_5
http://dx.doi.org/10.2991/978-94-6239-006-5_6


scenarios, diagramming, and more. The process and issues in analysis are dis-
cussed and demonstrated in this chapter.

Chapter 7: In System Design, a chapter covering the transition from analysis to
design, different design approaches are detailed for the reader. After learning the
categories of system design, approaches detailed include function-oriented,
structure-oriented, and finally object-oriented. The key design concepts for each
approach are covered and differences between them are analyzed. This phase of
the process is important to learn as it allows developers to define how various
components will provide functionality to the system.

Chapter 8: The Object-Oriented Design chapter is concerned with filling the
gaps left by analysis and system design. It describes how object design precisely
defines objects, subsystems, and constraints to be used by the software to provide a
detailed object model. This stage is the important precursor to implementation in
the object-oriented paradigm.

Chapter 9: This chapter, Implementation, is about the last phase of the system
development life cycle. Described in its contents is the process of planning and
executing system design plans using the various tasks of implementation. These
tasks are divided amongst the different roles and responsibilities of the stake-
holders involved. Furthermore, this chapter uncovers some of the standards for
integration, code reuse, language choice, and issues arising from implementation.

Chapter 10: The Testing chapter tells students about the ins and outs of software
testing. First, the importance of testing is highlighted by describing its important
role in the creation of correct software. Then, this chapter details how to plan and
manage tests, develop tests, and utilize tests. The appropriate tests to use for
certain cases are laid out in this chapter as well. The importance of testing is also
highlighted as a means for determining the readiness of a software to be released.

Chapter 11: Project Wrap-up, Delivery, and Maintenance is a chapter on the
improvement of project management and definition of success criteria. Students
will learn about the purpose and importance of project termination and release,
wrap-up and presentation to clients, and post-release maintenance as well as how
these phases fit into the software development life cycle.

Chapter 12: The chapter Software Metrics and Measurements is a description of
the theory and practice of establishing and using metrics of many varieties. Metrics
are defined and their importance in measuring software quality are detailed in the
sections of this chapter. Many broads types of metrics, including design metrics,
object-oriented metrics, and project metrics are discussed in relation to the
appropriate phases of development they are used in. Similarly, the benefits and
drawbacks that inherently exist are detailed.

Chapter 13: Perhaps the most important chapter, Hands-On Software Engi-
neering Project provides a complete guideline for completing an academic soft-
ware project. Presented in order of phase, this chapter clearly introduces the
complete software development life cycle and describes important tools to be used
to complete the project.

x Preface

http://dx.doi.org/10.2991/978-94-6239-006-5_7
http://dx.doi.org/10.2991/978-94-6239-006-5_8
http://dx.doi.org/10.2991/978-94-6239-006-5_9
http://dx.doi.org/10.2991/978-94-6239-006-5_10
http://dx.doi.org/10.2991/978-94-6239-006-5_11
http://dx.doi.org/10.2991/978-94-6239-006-5_12
http://dx.doi.org/10.2991/978-94-6239-006-5_13


Courses

Geared towards students with a background in an object-oriented language such as
Java or C??, this book is intended for courses in introductory software engi-
neering with a semester-long project. This book can be used for other courses,
however, with limited or altered use of the book’s parts and chapters.

Project-based course: For a project-based course in software engineering, we
recommend using the book nearly as-is, following the chapters in the order pro-
vided. This provides a smooth transition between concepts and practical use as
well as between phases of the development life-cycle. A semester-long project
should accompany course instruction and students should practice models, docu-
mentation, and other tools detailed by the book, especially those in Chap. 13.

Introductory course: For a course introducing the concepts of object-oriented
programming, we suggest primary attention being paid to the first three chapters of
this book. Also, various sections of other chapters can be used as necessary to
highlight practical uses of material covered in these first three chapters. For
example, parts of Chap. 7 cover object-oriented design concepts that rest on
principles of the object-oriented paradigm covered in Chap. 2.

Management course: For a course geared towards project management, focus
should be placed primarily on Chaps. 4, 5, 9, 10, 11 and 13 as these covers aspects
of overall management such as team work, communication, working with clients,
project delivery, etc.

Technical course: For students learning object-orientation and software
development beyond and introductory level, this books provides a core set of
chapters teaching concepts such as modeling with UML, object-oriented design,
implementation, and testing. In this case, Chaps. 2, 3, 6–9 and 12 are worth
emphasizing.

Support Materials

To better the learning and teaching experience of those using this software engi-
neering textbook, support materials have been provided to enhance courses in the
subject. These include:

• PowerPoint presentations for each chapter of the text.
• Multiple choice tests and answers covering the topics discussed in the book.

For more information and support you may contact the author, Dr. Roger Lee, at
lee1ry@cmich.edu.

Preface xi

http://dx.doi.org/10.2991/978-94-6239-006-5_13
http://dx.doi.org/10.2991/978-94-6239-006-5_7
http://dx.doi.org/10.2991/978-94-6239-006-5_2
http://dx.doi.org/10.2991/978-94-6239-006-5_4
http://dx.doi.org/10.2991/978-94-6239-006-5_5
http://dx.doi.org/10.2991/978-94-6239-006-5_9
http://dx.doi.org/10.2991/978-94-6239-006-5_10
http://dx.doi.org/10.2991/978-94-6239-006-5_11
http://dx.doi.org/10.2991/978-94-6239-006-5_13
http://dx.doi.org/10.2991/978-94-6239-006-5_2
http://dx.doi.org/10.2991/978-94-6239-006-5_3
http://dx.doi.org/10.2991/978-94-6239-006-5_6
http://dx.doi.org/10.2991/978-94-6239-006-5_9
http://dx.doi.org/10.2991/978-94-6239-006-5_12


http://www.springer.com/978-94-6239-005-8


