Chapter 2
Object-Oriented Concepts

Software engineering trends before the mid-1970s followed one basic programming
methodology, known as structured programming. The structured paradigm, also
called the classical paradigm, offered a very straight-forward approach to software
engineering which seemed sufficient for the time. This model provided a simple
view of a software product: the product was either operation oriented or data
oriented (Schach 2008). In the first case, primary attention was paid to the functions
performed. In the second, the primary focus was on the information being handled.
The picture painted by the classical paradigm seemed uncomplicated in the begin-
ning, but as the field of software engineering grew, a fundamental flaw became
apparent. Describing a software application based exclusively on either the opera-
tions it was to perform or the data it was to manage was just too simplistic.

As solutions to the problem of oversimplification were being investigated,
brand new programming concepts began to emerge. The most influential of these,
and ultimately the most successful, is known today as the object-oriented
paradigm. In object-oriented programming, software is not broken down into
either operations or data, but rather into abstract software artifacts, called objects.
These objects are designed both to manage data and to carry out operations, thus
combining the two fundamentally related halves of a software product, which had
in the past been kept separate under the classical paradigm.

To better explain this concept, we turn to a real world example: a human being.
In the classical model, specific actions and physical characteristics were kept
separate from one and other. For example a person’s name, eyes, birth date, hands,
and taste in music would be separated from the actions he or she is able to perform
like, holding a conversation, winking at a friend, having a birthday party, listening
to a CD, or shaking an acquaintance’s hand. If we apply the object-oriented
paradigm however, all of these attributes and actions are combined to make up a
single unified object: a human being. This object is able to use its attributes, which
are stored internally, to perform actions, and thus can be thought of as a well-
defined, independent entity rather than an over encumbering conglomeration of
functions and data.

R. Y. Lee, Software Engineering: A Hands-On Approach, 17
DOI: 10.2991/978-94-6239-006-5_2, © Atlantis Press and the author 2013

18 2 Object-Oriented Concepts

The advent of the object-oriented paradigm had a profound change on the field
of software engineering. The use of objects allows software engineers to create
models of the real world in ways that had been previously thought impossible.
After all, software seeks to facilitate real-world situations, many of which cannot
rightly be broken down into a simple sequence of instructions to be carried out in
line-by-line order. Consider a local bank that, like any bank, stores money for
some number of clients. The classical model would have led to the creation of a
program consisting of many lines of code that dictate the exact order of operations
to be performed. Code created in this manner could never be very well organized.
This is not due to a fault of the programmer, however, it is the classical paradigm
that provided no system for breaking the program down into logical pieces. This
created a need for the objected-oriented paradigm, which allows us to model the
bank in a way that is logical for our system, capturing and focusing on the
important details, while leaving out those that are less important. This concept,
known as abstraction, allows us to create various objects that each represent
various portions of the bank, such as clients, bank accounts, employees, and
money transactions (Jia 2003). In the end, the object-oriented method allows us to
design and implement a software system more intuitively, compartmentalized, and
manageable than previously possible using the classical method. In this chapter,
we will discuss the specifics that make this possible.

2.1 What is an Object?

In the real world, an object can be anything at all from a pencil to a monster truck.
If it has a name, certain characteristics, and certain actions that can be done to it or
be accomplished with it, then simply put it is an object. Objects characteristics can
take on many forms, forms as simple as color to as complex as molecular structure.
Likewise, an object in the world of computer programming is an entity with
attributes that belong to and describe it. These attributes can be actions the object
is capable of performing, an interface to access those attributes and actions, and
most importantly, a unique identity. An object is a specific instance of a class,
which can be thought of as a blueprint for that object (classes will be discussed
further in the next section). Because a single class can be used to create many
objects, an object’s unique identity is crucial in distinguishing it from other
objects. Think of the monster truck that we mentioned earlier. Just like our soft-
ware object comes from some defining class, the monster truck object might
be an instance of the class truck. We use the identifier “monster truck” to ensure
that we can distinguish it from other instances of the truck class, such as fire
truck, pickup truck, or dump truck. An object inherits most of its attri-
butes from its class, but these attributes may differ amongst the object instances of
that class. An object is described as being in a certain state at any given moment,
which is defined by the value of its attributes. The state of an object plays a critical

2.1 What is an Object? 19

role in the functionality of that object. Many of the actions that are performed by
or to an object are based on the objects current state.

Programs are written so that a change in the state in an object will in some way
affect the program as a whole. For example, the constant monitoring of certain
object states is the driving force behind event-driven programming styles, which
create programs that react to the occurrence of certain events (specified changes in
object states). In this manifestation of object-oriented programming, a program
might contain a user interface (UI) that listens for the user to perform a predefined
action. For instance, the Ul might contain a button that the user can click. When
the user clicks said button, the state of some related object changes to reflect that
the button has been clicked. This state change then triggers some associated
reaction in the program. In this way, the operation of, and progression through, the
program is dictated by the states of the objects in it.

We have said that objects are able to both change states and react to state
changes. Of course, however, an object cannot simply ‘know’ how to change
states, or how to react to another object’s state change. Rather, objects are coded
with methods that perform tasks when called upon to do so. Think again of the
monster truck from before. Monster truck contains a method, which is
derived from the truck class (a concept called inheritance, which will be dis-
cussed later on the chapter), that turns the engine on. This method might be called
start, and it reacts to two specific events: the presence of a key in the ignition,
and the turning of that key to the right position. Essentially then, the monster
truck object reacts to certain state changes (placing the key in the ignition and
turning it) by calling the method start, which turns the vehicle on. This method
was implemented in the object by an engineer, much in the way that a software
engineer implements methods in a software object.

The methods that are included in an object can vary greatly, as different objects
are created for different purposes. There are two methods, however, that are
common to most objects: constructors and destructors. Construction is the action
of creating an object from its respective class, and initializing its attributes with
either assigned values or those that are given to it by default. Object construction
physically places that object into the computer’s memory. An object’s constructor
is the actual method that handles the creation and initialization of the object.
Likewise, destruction is the action of erasing an object, and thus freeing up the
memory in which it resided. The destructor method of an object performs this
action. Destruction of an object is used to provide room in the system memory,
potentially for the creation of other objects. It also prevents faulty code from
creating memory leaks. Constructors and destructors will be discussed in greater
detail in Sect. 2.3.4.

Fig. 2.1 Real world objects
CAR TIM LION

20 2 Object-Oriented Concepts

CAR TIM LION

Attributes: Attributes: Attributes:

Color: Red Age: 25 Age: 10

Model: Ford Address: 300w Location: Sahara zoo
bellows

Methods: Methods:

Drive Methods: Hunt

Apply brake Walk Eat

Park Eat Sleep
Sleep

Fig. 2.2 Real world objects with attributes and methods

In the next section we will discuss classes in further detail; but first, Figs. 2.1
and 2.2 provide examples of real world objects and their associated attributes and
methods.

2.2 Classes

The class-object relationship is essential to the object-oriented paradigm. The two
are intrinsically linked, and, truly, one cannot be discussed without mention of the
other. They are not, however, the same. This section defines classes and describes
the relationship and differences between classes and objects. It also explains the
distinct roles that the two concepts play in object-oriented programming.

2.2.1 Classes Versus Objects

Objects are instances of classes. It seems natural, then, to say that classes can be
thought of as parents to objects. This logic, however, misses a fundamental point
in the object-oriented paradigm. To say that classes are related to objects as parents
are related to children suggests that classes and objects are the same type of entity,
in the way that a parent and his or her child are both human beings. This is not
accurate. Rather, using the same example, a class can be thought of as the DNA of
an object. DNA is not itself a human being, but the description of a human being’s
attributes. Both parents and children, on the other hand, can be thought of as
objects created according to their DNA. In short, a class is the concept behind an
object, or the “essence” of an object, while an object itself is a tangible entity with
a place in space and time (or system memory) (Booch 1994).

A second, related definition of a class is similar to the more common definition
of the word in everyday speech. In standard use, a class is a “group, set, or kind
sharing common attributes” (Merriam-Webster 2009). In object-oriented pro-
gramming, the usage is the same, but more specifically describes a group of objects

2.2 Classes 21

with common attributes. This definition is a direct result of the previous definition:
objects created using a class will be distinct from each other, but will share the
characteristics given to them by that class, and will therefore constitute a group of
similar objects. These characteristics include not only the objects’ attributes, but
also their methods and interfaces, all as defined by the instantiating class.

2.2.2 The Class-Object Hierarchy

We often describe classes and objects in terms of real-world concepts. Fortunately,
though, some of the controversies of the real-world do not carry over into the field
of software engineering. There is no chicken-egg controversy in object-oriented
programming. The class comes first. As we have said, classes are essentially the
blueprints or templates behind objects. In our definition from Sect. 2.1, the
monster truck object could not exist without the truck class that it is derived
from. An object is an instance of a certain class, and for that reason a class must be
defined before the object can even be conceived. Once a class has been defined, an
object of that type can be created from it, using the constructor method specified in
that class. This action of creating an object from a class is instantiation, and the
class used to create the object is referred to as the instantiating class. A single
class may be used to instantiate any number of objects. All of these objects are
then referred to as members of the instantiating class.

2.2.3 Why Use Objects and Classes?

We have said a good deal about what objects and classes are, how they related, and
what they are capable of doing. However, object-oriented programming only
represents one line of thought in the world of computer programming. Why should
we use this paradigm? The next sections will describe the key features and
advantages of the object-oriented paradigm as afforded by the use of objects and
classes.

2.3 Modularity

The move from the classical structured programming model to the modern object-
oriented paradigm represented a fundamental shift in the practice of software
engineering. One portion of this shift dealt with the conceptualization, organiza-
tion, and management of a software. If a large software engineering project is
attacked as a single program to be written, the resulting code will undoubtedly be
cumbersome, arduous to navigate, and extremely difficult to debug. As a solution

22 2 Object-Oriented Concepts

to this, the use of modularity, borrowed from other engineering fields, worked its
way into software engineering. Modular programming focuses on the partitioning
of a program into smaller modules in order to reduce its overall complexity. The
resulting modules constitute definite and intuitive boundaries within the program,
and facilitate the use of multiple software engineering teams, each of which can
focus on an individual module. The layout of these modules constitutes the
physical architecture of a software system.

Booch describes modularity as “the property of a system that has been
decomposed into a set of cohesive and loosely coupled modules” (Booch 1994).
This not only covers the advantage of workable units, but also touches on the goal
of reducing dependencies among different portions of the program. Such depen-
dencies can make the modification of a program a tremendously large task, as
editing a single class will affect all portions of the program which were dependent
on that class. Those changes will have to be accounted for throughout the entire
system, often at a very high cost. Modularity offers a potential solution to this
problem through the isolation of individual program portions from each other. The
way in which the objects and classes of a module are accessed can then be easily
defined through the implementation of an interface for interaction with other parts
of the program.

The theories of encapsulation and information hiding will be discussed in
further detail later in this chapter, but it is important to understand that, if
implemented properly, they can ensure the integrity and dependability of data
across a software system.

The most important benefit of modularization is the efficiency and workability
afforded by the separation of different programming concerns into manageably
sized, logical modules. The result is a program that is more flexible and much
easier to understand, change, and debug. Additionally, because modules are
constructed independently, they can be easily reused in other applications or stored
for later reference and modification. Modularity also calls for the separate com-
pilation of the modules, which facilitates an incremental development process, and
allows for easier unit testing. The following sections will discuss in more detail a
few of the specific benefits of modularity.

2.3.1 Reuse

The modularization of a software product results in the creation of any number of
independent components, each with a distinct function. One advantage to this
approach comes from the potential use of these components in future projects. This
practice, known as reuse, can save developers from consuming resources in order
to remake something that they have developed in the past. For this reason, reuse is
a common practice in the field of software engineering, and one which needs not
be limited only to software components. Methods of organization, planning

2.3 Modularity 23

procedures and test data may all be reused, as can any other portion of a software
engineering project that might serve some function in the development of a
different project.

Schach draws the distinction between two types of reuse. The first, opportu-
nistic, or accidental reuse, occurs when a component that was not originally
developed with the mindset for future implementation, is discovered to be
appropriate for use in a new project. Opportunistic reuse, however, runs an
increased risk over the second type, deliberate reuse, which refers to making use of
a component that was developed with reusability in mind. In the case of deliberate
reuse, attention is paid to ensure that the component in question will have no
unintended side effects or disabling dependencies which might have negative
consequences for future projects. Opportunistic reuse, on the other hand, has a
greater potential for such mistakes, as avoiding them was not a priority during
development (Schach 2008). When a software component is developed with
reusability in mind, rigorous testing is performed and thorough documentation is
compiled to guide software engineers in future implementations of the component
in question. This extra attention, however, results in an increased cost for the
development of that component.

For the reasons described above, software engineering firms must weigh the
potential benefits of reuse against the cost of development when considering the
components involved in a software engineering project. A piece of software is
developed for a distinct reason, and thus, usually neither the application as a whole
nor all of its constituent parts are determined to be viable candidates for reuse.
Even pieces of software developed for the most specific purposes will generally
make use of very common routines. For this reason, extensive subroutine libraries
have been developed for many programming languages. Modules containing
common routines, such as math procedures, accounting functions or graphical
interface components, are examples of widely used reusable components. Because
the development of many such modules took place in the early development of
these languages, they are often taken for granted; but in truth, they are the quin-
tessential examples of reusable development, without which software engineers
would have to develop each and every portion of a software engineering project
from scratch. The myriad benefits of reuse have encouraged many companies to
both consider reusability in the development of new software engineering
components and to take into account the potential for making use of previously
developed components when designing and implementing a new software
engineering product.

2.3.2 Encapsulation and Information Hiding

As we have said, a modularized software product is essentially a collection of
independent modules which serve distinct purposes and are configured to interact
with each other. In addition to lending itself to logical project decomposition and

24 2 Object-Oriented Concepts

component reuse, this use of the object-oriented paradigm can also provide
integrity for a software system. To explain this, let us consider again the monster
truck and its start method that we described in the beginning of the chapter.
The start method uses the ignition and a key in order to turn the vehicle on.
In fact, the insertion and rotation of the key are the only actions needed to start this
very complex mechanical system. In software engineering terms, this is referred to
as the use of an interface. Essentially, an interface provides a defined way for
using an object, and for accessing those properties of an object that are intended to
be accessed. The processes involved in turning on a vehicle are extremely
complex, and involve everything from the use of a proper fuel mixture to the
completion of certain electrical circuits to the correctly timed firing of pistons. For
the average operator of the vehicle, such in depth knowledge of the vehicle’s
operation is unnecessary. In fact, were the operator required to manually specify
all of the settings and actions required to turn the vehicle on, we can safely assume
that our monster truck would never leave the sales lot. Luckily for us, these
intricacies are hidden from the user, and instead the monster truck is
engineered to perform these actions on its own, in response to an appropriate
interaction with a predetermined interface, in this case the vehicle’s ignition.

This practice of hiding a system’s inner workings is known as information
hiding. Information hiding is a key concept in the larger process at work here:
encapsulation. Booch describes encapsulation as the “process of compartmen-
talizing the elements of an abstraction that constitute its structure and behavior”
(Booch 1994). By this, we mean that objects should be designed to separate their
internal composition and function from their external appearance and purpose.
As previously stated, this provides integrity in a software system. That integrity
results from the closing off of an object’s internal workings so that the object in
question is only accessed in the desired manner, and unintended changes to the
object cannot be made by the program. Furthermore, encapsulation ensures the
independence of an object from the rest of a software system. The internalization
of an object’s attributes and methods means that if a change is made to one part of
the system, the object maintains its integrity and functionality, and is still accessed
and will still respond in the intended manner. This localization of data facilitates
not only changes implemented during the original development process, but also
throughout the ongoing maintenance that the software will undergo during its
serviceable lifespan.

2.3.3 Access Levels

We have said that the use of modularity and encapsulation can provide integrity
within a software system through the use of information hiding. One key practice
that leads to this advantage is the designation of access levels within classes, and

2.3 Modularity 25

thus within the objects derived from them. Levels of access are assigned in order to
specify how classes, as well as their attributes and methods, can be used by other
objects during execution. While cooperation among objects is desirable, these
interactions must be controlled in order to ensure stability. The three standard
access levels are described below:

Public: the class in question, and instances of it, can be accessed by any other
member simply by a call to the class or derived object name.

Protected: can be accessed by the class itself, and by all subclasses that are
derived from it.

Private: can only be accessed by the class itself. Thus, only methods that are part
of the class are allowed access.

Access levels can be applied to individual attributes or methods within a class,
and form the basis of an interface. Those characteristics of a class which we earlier
described as the class’s “inner workings” are designated as restricted. This might
encompass nearly all of a class’s attributes and methods. Those characteristics
which are left open for access by other parts of the software system constitute the
interface, and generally will communicate with the inner workings of the class in a
predefined way in order to return information, perform an action, or modify the
object in question.

2.3.4 Delegation

In the next section, we will discuss a practice in the object-oriented paradigm
called inheritance, which aims to provide a class with the properties of a different
class. Here we briefly discuss an alternative method to this practice, known as
delegation. Delegation provides opportunity for code reuse not by directly
inheriting the attributes of some class, but rather by simply using the methods of
another class to accomplish the desired result (Bruegge and Dutoit 2004). While
inheritance is generally considered a static method of implementing attributes,
delegation allows the dynamic use of only those desired attributes at a specified
time.

2.4 Inheritance

Object-oriented software engineering aims to efficiently produce reliable software
by reducing redundancy and ensuring integrity within a software system. The
class-object structure facilitates this end by providing an intuitive system of
modularization which easily lends itself to reusability. Central to both of these

26 2 Object-Oriented Concepts

principles is a feature of object-oriented programming languages known as
inheritance. Inheritance is a relationship between different classes in which one
class shares attributes of one or more different classes. In this way, the class in
question, the subclass, inherits the qualities of other classes that have already been
created, the superclasses. There are two general cases of inheritance, which are
defined by the number of superclasses, or parent classes, from which the subclass,
or child class, directly inherits attributes: single inheritance describes a rela-
tionship in which a class has only one ancestor from which it directly inherits its
attributes. Multiple inheritance, on the other hand, occurs when a class calls on
more than one superclass for properties. The rest of this section will be devoted to
discussing the various principles behind the use of inheritance.

For starters, inheritance offers an obvious solution for the elimination of redun-
dancy through the implementation of reuse. The creation of a new class from some
other class with a similar purpose and set of attributes saves the software engineer
from rewriting code that is already in use elsewhere. This implementation of
inheritance is often used to facilitate the creation of some number of differing classes
that share common attributes and a common purpose. Consider, again, the
monster truck example previously discussed. We described this as being an
instance of the truck class, along with a few other potential versions of that class:
fire truck and dump truck. In this example, each of our three subclasses of
truck can be thought of as more specific versions of the superclass. The superclass,
truck, can then be thought of as a generalization to be used in the formation of
those subclasses. This type of class is called an abstract class and is not meant to
ever be instantiated (that is, no object will be created from it). Rather, it exists only to
pass on common characteristics to more specific versions of itself. In our example,
these would be characteristics or important information common to all trucks, such
as numberOfWheels, allWheelDrive or groundClearance. Each
subclass of truck might then add more specific characteristics in their separate
implementations. Monster truck, for instance, might include a crushCar
method and a paintJob attribute. These are examples of single inheritance, which
we can now describe as a relationship in which one class inherits a set of charac-
teristics from a more general class. We often refer to this as an “is-a” relationship, a
term derived from the situational semantics. That is, a monster truck is a
truck, which is a vehicle, and so on from one class to another, more general
class.

To understand this further, we can extend our example again to an additional
superclass, vehicle, of which truck is a child. This new class is a step toward
greater generalization; an even more abstract class that can be used to create other
types of vehicles, such as car or spaceship. The vehicle class might contain a
few very general methods like move and stop, and some basic attributes like
fuelType and manufacturer, which will most likely be useful to all
subclasses. Figure 2.3 illustrates this example.

2.4 Inheritance 27

vehicle
fuelType : fuel
manufacturer : string
move (x : int)
stop ()
car || truck spaceship
model : string wheelQty : int cargoSpace : int
year : int allWheelDrive : bool
groundClearance : int blastoff ()
shift (gear : int) jettisonFuelTanks ()
openTrunk () tow (what : object) dock (what : object)
fire truck || monster_truck dump_truck
clr : color = 0xFF000 paintJob : paint boxCapacity : int
waterCapacity : int
sirenState : bool = Of|crushCar (what : car) dumpBox ()
sprayHose (ang : int)
toggleSiren ()

Fig. 2.3 Class hierarchy

2.4.1 Overloading

Overloading is an object-oriented programming practice by which, in certain
circumstances, different methods of a class can share the same name. This is
known as overloading the name with multiple implementations (Jia 2003). One of
two criteria must be met in order for two methods to overload the same name:

1. The methods must accept a different number of arguments.
2. The arguments accepted by the methods must be of different data types.

Due to the potential for overloading, programming languages do not use only
the name of a method, but rather the signature, which consists of the name in
combination with the arguments passed, in order to determine which implemen-
tation of a method to call. The following class description provides an example of
overloading.

28 2 Object-Oriented Concepts

public class ChatterBox {
protected String fristName;

public ChatterBox () {
firstName = “Chatty”;

public ChatterBox (String firstName) {
this.firstName = firstName;

public String sayHello () {
String s = “Hello! My name is “ + firstName +

return s;

public String sayHello (String userName) {
String s = “Hello, “ + userName + “! My name 1is
" + firstName + “.”;

return s;

public String sayHello (int times) {
String s = “;
while (times > 0) {
s += “Hello! “;
times--;
}
s += “My name is “ + firstName + “.”;
return s;

This example, written in Java, uses an overloaded constructor, ChatterBox,
to handle the potential need for a default value to be assigned to its only attribute,
firstName. This common usage of overloading allows software engineers to
apply a minimalist approach to object creation, and avoid writing unnecessary
code. In the case of the ChatterBox class, if a string argument is passed with the
constructor, that string will be assigned to the firstName attribute. On the other
hand, if no string is passed, firstName is given a default value, “Chatty”.

The class description above also demonstrates the second usage of overloading:
convenience. The three implementations of the sayHello method all serve a
slightly different, but related purpose. Overloading is used here to provide logical

2.4 Inheritance 29

Table 2.1 Overloading methods of the ChatterBox class

Method Signature

string sayHello () sayHello ()
string sayHello (String userName) sayHello (String)
string sayHello (int times) sayHello (int)

access to the desired actions by differentiating the implementations by the argu-
ments passed. Table 2.1 lists the signatures of each of these implementations.

The following code segment provides examples for possible calls to the
sayHello method with different arguments.

ChatterBox ¢ = new ChatterBox(‘Bob’); //invoke
ChatterBox (String)

c.sayHello () ; //invoke
sayHello
()
//return
“Hello!
My name
is Bob.”

c.sayHello (‘'John’) ; //invoke
sayHello
(String)
//return
“Hello,
John! My
name 1is
Bob.”

c.sayHello (3) //invoke
sayHello
(int)
//return
“Hello!
Hello!
Hello!
My name
is Bob.”

30 2 Object-Oriented Concepts

2.4.2 Overriding

We have said that inheritance permits a class to inherit the characteristics of some
other class. What happens, though if we need to modify some inherited method
within a subclass? Overriding is the practice of replacing a method inherited from
a superclass with a newly defined method in the sub class. Unlike overloading,
which differentiates different implementations of methods with the same name by
unique signatures, overriding requires that a method have exactly the same sig-
nature and return type as the method it is replacing. The following Java code
segment illustrates the use of overriding on two classes related by inheritance.

public class A {

public String greetings (String userName) {
String s = “Hello, “ + userName;
return s;

}
public class B extends A {
public String greetings (String userName) {
String s = “Hola, “ + userName;
return s;

In the example above, class B, which uses the Java extends keyword to
inherit the structure of class A, requires a different implementation of the
greetings method. Thus, the method is overridden by coding a new method
with an identical signature as the inherited method.

Overriding can be extremely useful, but it carries with it significant risks.
Overriding can potentially negate the integrity that is provided by the use of
inheritance. This occurs when the dependencies within a class are disturbed.
Consider the example in Fig. 2.4, which illustrates the subclass employee of the
class person. Assume that the setDateOfBirth method defined in the
person class accepts some month-day-year style argument as a date of birth.
Overriding allows us to redefine this method in the employee class to accept a
day-month-year style date of birth. However, the calculateAge method, which
returns an age based on the current date and the dateOfBirth attribute, will
now produce an error unless it too is overridden.

2.4.3 Polymorphism

Imagine for a moment that the only vehicle you had ever driven was a compact
sedan. This is the vehicle that you used when learning to drive, and the only

2.4 Inheritance 31

Fig. 2.4 Overriding person

dateOfBirth : int

setDateofBirth (mdy dob : int)
calculateAge ()

employee

dateOfBirth : int

setDateofBirth (mdy dob : int)

vehicle that you have used since. This is the only car that you are familiar with; the
only car that you know how to operate. Now, imagine that one day, your compact
sedan breaks down. In order to go to work, you are required to borrow a friend’s
car. This car, though, is not a compact sedan. It is a luxury SUV. How, then, will
you be able to drive this vehicle without prior knowledge of its specific operation?

In reality, we know that the problem posed above probably will not be a
problem at all. It seems reasonable enough, though, to assume that a compact
sedan and a luxury SUV have different enough inner workings to require separate
and distinct methods of operation. Why, then, would the knowledge of how to
operate one allow us the ability to operate the other? The answer is that both the
compact sedan and the luxury SUV share a common interface through which they
can be accessed. Simply put, most, if not all, of the control methods for one also
work for the other. This common method of access is of course based on some
general idea of how an automobile should be used. Put another way, both
compact_sedand and luxury_SUV have inherited a common interface from
the superclass automobile, which allows them to perform a set of general
functions based on the same methods of access.

Polymorphism is an engineering concept concerning the ability of separate
classes and their derived instances to be accessed in the same way, assuming they
are derived from the same superclass (Booch 1994). This method of access is
provided for in a common interface that is defined in the superclass. This provides
a level of encapsulation by hiding the inner workings of a class or object from the
user, while allowing access in a familiar way. In the example above, the compact
sedan and the luxury SUV are both started in the same manner, with the insertion
of a key into the ignition, and the turning of that key. The internal actions that fire
up the two vehicles, however, may be entirely different from one and other. So, to
narrow our definition, polymorphism dictates that a common interface can be used
to access the unique inner workings of separate classes that are related by a
common superclass. Polymorphism is a powerful tool that permits the use of

32 2 Object-Oriented Concepts

unique but related objects with only a general understanding of how those types of
objects are to be accessed rather than requiring the specific knowledge of the
individual objects themselves.

2.5 Abstraction

Abstraction is a fundamental concept in object-oriented software engineering that
allows for the efficient management of complexity through the use of generaliza-
tion. It is the practice of separating those details of a situation that are significant to
the current purpose from those that are not, resulting in an abstraction of the
situation as a whole. Booch explains that “an abstraction denotes the essential
characteristics of an object that distinguish it from all other kinds of objects and
thus provides crisply defined conceptual boundaries” of that object (Booch 1994).
By this definition, an abstraction is a generalization of an object which includes
only those details necessary to define it and to differentiate it from other objects. It
describes the “outside view” of an object, and not the objects inner workings, or
encapsulated information. An object’s abstraction is a simplified form of its original
self. It retains only those details required for accurate description and identification
of the object, but excludes all other nonessential information (Jia 2003).

The concept of abstraction is closely related to those of encapsulation and
information hiding. Essentially, the idea behind the use of an interface is to present
a view of an object that includes only the relevant and necessary details; an
abstraction of an object. Hiding the inner workings promotes economical use of
that object and aids in securing its internal integrity.

2.5.1 Abstract Classes

One of the most fundamental forms of abstraction in object-oriented software
engineering is the use of abstract classes. Earlier, we briefly described an abstract
class as a class which is never meant to be instantiated, but rather exists to pass its
characteristics on to more highly specified versions of itself: its subclasses. We can
now identify an abstract class as an abstraction comprised of a set of highly gen-
eralized, often largely unspecified attributes and methods that are to be passed on to
subclasses which are then able to tailor those characteristics to their specific purposes
and inner workings. An abstract class is often the root of an inheritance hierarchy and
provides the initial interface for the classes that will be derived from it. The abstract
class, in this case a base class, expresses the functionality of all subclasses, but does
so with such a high level of abstraction that it is impossible to explicitly define all of
the implementations behind the interface (McGregor and Sykes 1992).

Though technically identical to other classes in that it consists of methods and
attributes which can be used to create instantiations of itself, a class is only
considered an abstract class when it is used only as a superclass for other classes,

2.5 Abstraction 33

and is not itself instantiated. An abstract class only specifies properties, that is to
say, it is not used to create objects. Abstract classes provide the structure of all of
the classes in a class hierarchy, while the subclasses are responsible for defining
the specifics of the properties that they inherit. The following code segments
illustrate the use of abstract classes.

/*Set of classes for dice with different number of
sides*/

/*This 1is an abstract class for Dice*/
/*It 1s the base «class for all other Dice
Subclasses*/
class Die {
/*Declares unspecified protected variable for
Number of sides*/
protected int sides;

/*Declares function to roll Die*/
public int roll() {
int i = (int) (Math.ceil (Math.random () *
this.sides));
return 1i;

/*Class for six-sided Die*/
class Die Six extends Die {
Die Six () {
this.sides = 6;

/*Class for ten-sided Die*/
class Die Ten extends Die ({
Die Ten() {
this.sides = 10;

/*Class for Twenty-sided Die*/
class Die Twenty extends Die {
Die Twenty () {
this.sides = 20;

34 2 Object-Oriented Concepts

In the code segment above, classes representing dice with different numbers of
sides are created using an abstract base class Die. In the base class, one attribute and
one method are defined. The attribute, sides, is an integer that denotes the number
of sides on a die. Note that this attribute is only declared in our base class, and is not
assigned a value. The method defined in the base class is roll, which takes
advantage of Java’s Math . random method to select a random integer between 1
and the number denoted by the sides attribute. We are able to define this method
in our abstract class because its implementation will not change in any of our
subclasses: all of our dice will produce a random number based on their number of
sides when rolled. It is important to understand, though, that this method cannot be
used in our abstract class, because there is no assigned value for the variable sides.

The subclasses which we create next are specific version of the abstract class
Die. That is, they are subclasses of Die for which a number of sides is specified
(six for Die_Six, ten for Die_Ten, and twenty for Die_Twenty). Each class
contains just one method, a constructor which is used to create an instance of the
class in the form of an object. In each constructor method, the number of sides for
that specific die is assigned to the sides attribute, which is inherited from the
superclass (or abstraction) Die. In addition, each subclass of Die also inherits the
roll method. With this, we now have functioning die objects, which, when this
method is called, return a random number between 1 and the value of their
individual sides attribute.

2.5.2 Template

Closely related to the concept of an abstract class is the concept of templates. The
use of templates provides for the declaration of the structure and function of sub-
classes without regard for the data type to be handled by them. In other words, a
template is a sort of abstract class definition intended to be used on a data type that
is yet to be defined; a template for a class. The data type in question is declared only
upon the instantiation of an object from the template class, along with the actual
class definition. Before this point, in the template itself, a placeholder is used to
refer to the data type. Take a look at the following code segment for an example.

template class List for X {

/*Data structure needed to be implemented with
some sort of 1list that reacts to the following
methods*/

append (X element) { .. };
X.getFirst () { .. };
X.getNext () { .. };

}

2.5 Abstraction 35

The above template class List looks similar to any other class definition,
except that the first line denotes it as a template for use with the undefined type X.
This identifier, X, is the placeholder that will be replaced when the template class
is instantiated by some concrete data type that is to be acted on. The append
method, for example, will then accept a single argument containing that data type
and add it to the list. The data type of the element will be declared upon the
creation of a list object, as in the following example.

class Apple({

/*Data structure relating to the qualities of an
apple*/
Apple() { .. }; /*Apple constructor*/

/*Create a List object and specify the data type to
be used*/

List for Apple applelist;

/*Make some apples from the Apple class*/
Apple appleA;
Apple appleB;

/*Add them to the list*/
applelist.append (appled) ;
applelist.append (appleB) ;

In the first bit of code above, we create a class Apple. Next, we instantiate the
template class List into an object named appleList, to be used with the data
type Apple. We go on to create two instances of the Apple class, applea and
appleB, and use the append method derived from the template class to add
them to appleList. The statement List for Apple appleList substitutes
every occurrence of the placeholder X from our template class with the data type
Apple for appleList. In this way, templates provide for yet another level of
abstraction by allowing for dynamic data type declarations with classes.

2.5.3 Generic Components

The principle of abstraction lies at the heart of component based software engi-
neering. Abstraction allows for the creation of generalized components which can
be modified and implemented for specific situations. This generalization enhances

36 2 Object-Oriented Concepts

the reusability of components, assuming that the component in question is generic
enough to both be used in different contexts and to capture the common features of
those contexts (D’Sourza and Wills 1999). For this reason, software engineers
often look to enhance the generic quality of components. This can be performed in
several ways, and may result in the modification of a class created for some
specific purpose and circumstance, into a more general class which can then be
implemented in various other contexts. The use of various forms of inheritance
through the creation of templates and abstract classes work toward this end.

2.5.4 Interfaces

We have described the concept behind interfaces at various points throughout this
chapter. Simply put, an interface is a system that allows two separate entities to
interact with each other. It does this by closing off an object’s outward appearance
from its inner workings and by providing a set of methods for interaction. As we
have said, the interface is not unique to software engineering, but is a common
feature that can be found in countless forms: spoken language acts as an interface
between people, a keyboard is an interface into a computer, a faucet handle is an
interface for controlling water in a sink, and a mouth is an interface between an
animal and the food that it consumes.

In software engineering, the use of an interface defines a manner for interacting
with a class or an object. In some programming languages an interface is itself a
data type, just like any other class. Like a class, an interface defines a set of
methods, however, unlike a class the interface never implements those methods.
Instead, an interface is used by a class, which implements those methods for its
own use. A class can even make use of multiple interfaces to allow for different
manners of interaction.

In the example that we have used throughout this chapter, the monster_truck
class and its class hierarchy define what a monster_truck is; what it can and
cannot do. A monster truck, however, can be used in other ways. For instance, a
monster truck sitting at a car lot must be inventoried, inspected and categorized
according to various characteristics, including price. The system responsible for
managing the lot’s inventory does not care one bit about interacting with a monster
truck in the way that a driver would, nor does it care whether or not it is managing a
monster truck at all. So, instead of accessing our monster_truck class as defined
by its normal implementation, the inventory system might set up some other sort of
communication protocol to communicate information such as price and model
number. The system that it creates, of course, is just another interface through which
we are now able to interact with the monster_truck class. For this system to
work, both the monster_truck class and the inventory system must agree to this
protocol by implementing their own forms of the interface, and thus all of the
methods defined in that interface.

2.5 Abstraction 37

Interfaces are extremely useful tools that are vital to many object-oriented
concepts, including information hiding, efficient reuse, abstraction, encapsulation
and the proper use of inheritance.

2.6 Chapter Conclusion and Summary

This chapter focused on the object-oriented paradigm and its relationship to
software engineering. We defined, first, the base components of object-oriented
theory: objects and classes. Classes, as we have said, are not tangible entities, but
rather they are blueprints for creating such entities. Objects, on the other hand, are
created by classes, which represent the structure of a software system, and are
made up of attributes, methods and some unique identifier.

Object-oriented theory is strongly rooted in the concept of modularity. A modular
software system is comprised of independent components which are properly
implemented in order to function together. The concept of modularity enhances the
creation of reusable software components through the proper use of encapsulation
and information hiding. Encapsulation allows us to separate an object’s inner
workings from its outward appearance, and thus lend the object internal integrity.

The creation of a modular software system relies on the use of abstraction to
create a general view of the system’s components. Through abstraction, a series of
generalized components can both provide the boundary to be used in encapsulation
and establish a logical class hierarchy for the specification of individual compo-
nents and classes.

2.7 Exercises

Using examples, explain the difference between a class and an object.
. Explain how the concepts of the object-oriented paradigm are used to reduce
the complexity of a software system.

3. We have said that an object consists of attributes and methods. What are these?
Describe one attribute and one method of a pencil?

4. Explain how inheritance might jeopardize encapsulation. Can you think of a
solution for this?

5. Describe an inheritance hierarchy connecting a button down shit to its root

class, clothing.

N =

38 2 Object-Oriented Concepts

References

Booch G (1994) Object-oriented analysis and design with applications, 2nd edn. The Benjamin/
Cummings Publishing Companys, Inc., New York

Bruegge B, Dutoit A (2004) Object-oriented software engineering: using UML, patterns, and
java, 2nd edn. Pearson Education, Ltd., Upper Saddle River

D’Sourza D F, Wills A C (1999) Objects, components, and frameworks with UML.: the catalysis
approach. Addison Wesley Longman, Inc., Sydney

Jia X (2003) Object-oriented software development using java: principles, patterns, and
frameworks, 2nd edn. Addison-Wesley, Boston

McGregor J D, Sykes D A (1992) Object-oiented software development: engineering software for
reuse. Von Nostrand Reinhold Co., New York

Merriam-Webster (2009) Online Dictionary. http://www.merriam-webster.com/dictionary/class.
Accessed 30 Jan 2009

Schach S (2008) Object-Oriented Software Engineering. McGraw-Hill Higher Education, Boston

http://www.merriam-webster.com/dictionary/class

2 Springer
http://www.springer.com/978-94-6239-005-8

Software Engineering: A Hands-On Approach
Lee, RY.

2013, XN, 288 p. 70 illus., 2 illus, in color., Hardcover
ISEM: 978-94-6239-005-8
& product of Atlantis Press

	2 Object-Oriented Concepts
	2.1…What is an Object?
	2.2…Classes
	2.2.1 Classes Versus Objects
	2.2.2 The Class-Object Hierarchy
	2.2.3 Why Use Objects and Classes?

	2.3…Modularity
	2.3.1 Reuse
	2.3.2 Encapsulation and Information Hiding
	2.3.3 Access Levels
	2.3.4 Delegation

	2.4…Inheritance
	2.4.1 Overloading
	2.4.2 Overriding
	2.4.3 Polymorphism

	2.5…Abstraction
	2.5.1 Abstract Classes
	2.5.2 Template
	2.5.3 Generic Components
	2.5.4 Interfaces

	2.6…Chapter Conclusion and Summary
	2.7…Exercises
	References

