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Definitions

Land surface emissivity (LSE). Average emissivity of
an element of the surface of the Earth calculated
from measured radiance and land surface temperature
(LST) (for a complete definition, see Norman and Becker,
1995).

Atmospheric window. A spectral wavelength region in
which the atmosphere is nearly transparent, separated by
wavelengths at which atmospheric gases absorb radiation.
The three pertinent regions are “visible/near-infrared”
(~0.4-2.5 pm), mid-wave infrared (~3-5 pm) and
long-wave infrared (~8—14 pum).

Blackbody. An ideal material absorbing all incident energy
or emitting all thermal energy possible. A cavity with
a pinhole aperture approximates a blackbody.

Brightness temperature. The temperature of a blackbody
that would give the radiance measured for a surface.
Color temperature. Temperature satisfying Planck’s law
for spectral radiances measured at two different
wavelengths.

Contrast stretch. Mathematical transform that adjusts the
way in which acquired radiance data translate to the
black/white dynamic range of the display monitor.
Emissivity e. The efficiency with which a surface radiates
its thermal energy.

Irradiance. The power incident on a unit area, integrated
over all directions (W m?).

Graybody. A material having constant but non-unity
emissivity.

Long-wave infrared (LWIR). For most terrestrial surfaces
(~340 K to ~240 K), peak thermal emittance occurs in
the LWIR (~8—14 pm).

Mid-infrared (MIR). Forest fires (~1,000—600 K) have
peak thermal emittances in the MIR (~3—5 pm).

Noise equivalent A temperature (NEAT). Random mea-
surement error in radiance propagated through Planck’s
law to give the equivalent uncertainty in temperature.
Path radiance S;. The power per unit area incident on
a detector and emitted upward from within the atmosphere
(Wm st .

Planck’s law. A mathematical expression relating spectral
radiance emitted from an ideal surface to its temperature
(Equation 1, in the entry Land Surface Temperature).
Radiance. The power per unit area from a surface directed
toward a sensor, in units of W m ™2 sr™ .

Reflectivity p. The efficiency with which a surface reflects
energy incident on it.

Reststrahlen bands. Spectral bands in which there is
a broad minimum of emissivity associated in silica
minerals with interatomic stretching vibrations of Si and
O bound in the crystal lattice.

SEBASS. Spatially Enhanced Broadband Array Spectro-
graph System, a hyperspectral TIR imager (Hackwell
et al., 1996).

Short-wave infrared (SWIR). Erupting basaltic lavas
(~1,400 K) have their maximum thermal emittance at
~2.1 pm in an atmospheric window at 0.4—2.5 pum. Part
of this spectral region (1.4—2.5 um) is called the SWIR.
Sky irradiance I,. The irradiance on the Earth’s surface
originating as thermal energy radiated downward by the
atmosphere (W m~?) (spectral irradiance: W m™2 pm ™).
Spectral radiance L. Radiance per wavelength, in units of
W m 2 um_l st

Thermal infrared (TIR). Thermal energy is radiated from
a body at frequencies or wavelengths in proportion to its
temperature. The wavelengths for which this radiant energy
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is significant for most terrestrial surfaces (~1.4—14 pm) are
longer than the wavelength of visible red light and hence
are known as thermal infrared. The TIR is subdivided into
three ranges (LWIR, MIR, SWIR) for which the atmo-
sphere is transparent (atmospheric “windows”) so that the
energy can be measured from space.

Introduction

Thermal emissivity ¢ is the efficiency with which a surface
emits its stored heat as thermal infrared (TIR) radiation.
It is useful to know because it indicates the composition
of the radiating surface and because it is necessary as
a control in atmospheric and energy-balance models, since
it must be known along with brightness temperature to
establish the heat content of the surface. The first practical
demonstration of multispectral TIR imaging for composi-
tional mapping was from a NASA airborne scanner flown
over Utah (Kahle and Rowan, 1980).

Emissivity differs from wavelength to wavelength, just
as reflectivity p does in the spectral region of reflected
sunlight (0.4-2.5 um). Emissivity is defined as

o = L)

B(A,T)
where L is the measured spectral radiance and B is the
theoretical blackbody spectral radiance for a surface
with a skin temperature 7. B is given by Planck’s law
which, together with the basic physics of TIR radiative
transfer, is discussed in the entry Land Surface Tempera-
ture (LST).

Unlike 7, which is a variable property of a surface
controlled by the heating history and not directly by com-
position, &(4) is independent of 7'and is a function directly
of composition. Furthermore, &(7,) in the TIR wavelengths
(3—14 pm) responds to different aspects of composition
than reflectivity p(4) at 0.4—2.5 pm. In general, p at wave-
lengths 0.4-2.5 pm is controlled by the amounts of iron
oxides, chlorophyll, and water on the surface; ¢ in the
TIR is controlled more by the bond length of Si and O in
silicate minerals. Examples of emissivity spectra are given
in Figure 1.

TIR spectroscopy is especially important because
silicate minerals are the building blocks of the geologic
surface of Earth, and their presence and amounts can be
inferred only indirectly at shorter wavelengths. Thus TIR
spectroscopy is complementary to spectroscopy of
reflected sunlight. Good summaries of TIR spectroscopy
and its significance in terms of surface composition may
be found in Lyon (1965), Hunt (1980), and Salisbury
and D’Aria (1992). A good introduction to spectral
analysis may be found in Clark et al. (2003).

Figure 1 shows daytime and nighttime false-color com-
posite images of spectral radiance from a sparsely vege-
tated part of Death Valley, California, enhanced using
a decorrelation contrast stretch (Soha and Schwartz,
1978; Gillespie et al., 1986). This stretch emphasizes the
emissivity component of the signal, shown as color, and

(D

de-emphasizes the temperature, shown as dark/light inten-
sity. In addition to composition, the daytime image gives
a good sense of topography, because sunlit slopes are
warmer than shadowed slopes. In the nighttime image,
most temperature effects are subdued, and the image
closely resembles the Land Surface Emissivity (LSE)
alone.

Exceptions include standing water, which is cooler than
the land during the day but warmer at night. Standing
water (C) in the floor of Death Valley shows dark green
in the daytime image but light pink in the nighttime image.
Vegetation (A) appears dark in the daytime image, when it
is cooling its canopy by evapotranspiration. The toe of an
alluvial fan (B) appears darker at night, when soil moisture
rises to the surface and evaporates.

The colors in Figure 1 indicate rock type. For example,
the emissivity of quartzite is low (~0.8) at 8.3 and 9.1 pm
(blue and green) but high at 10.4 pm (red); therefore, it is
displayed as red. Other rock types and display colors can
be understood by comparing the images and emissivity
spectra in Figure 1.

The discussion below focuses on algorithms designed
to recover emissivities from remotely sensed spectral radi-
ance data. Figure 2, of a desert landscape, compares spec-
tral radiance to temperature and emissivity images
recovered from it. Also shown are emissivity spectra of
vegetation and the geologic substrate. As explained in
the entry Land Surface Temperature, temperature and
emissivity recovery is an underdetermined problem, and
dozens of approaches have been proposed and published
that break down the indeterminacy. These fall in four clas-
ses: deterministic algorithms that solve for LST and LSE
exactly, algorithms that recover the shape of the LSE spec-
trum only, model approaches that make key assumptions,
and algorithms that attempt also to scale or calibrate the
normalized spectra to their actual emissivity values.

In evaluating the algorithms, it is useful to ask how
accurately it is necessary to recover LSE and LST. For
example, many analytic algorithms that seek to identify
surface composition rely not so much on actual emissivity
values, but on the central wavelengths of emissivity min-
ima (e.g., reststrahlen bands), which can be diagnostic
for many rocks and minerals. If this is your goal, it may
not be necessary to scale the spectra, relying instead on
the simpler algorithms that just recover spectral shape.

Errors in LST may affect some algorithms by warping
the spectra over several pm of wavelength. This happens
because the shape of the Planck function changes with
temperature (Land Surface Temperature, Figure 2).
A 5 K error at 300 K, for example, will cause a slope in
the recovered emissivity spectrum of 0.05 from 8 to
14 pm. However, the sharp mineralogical features
(~0.2—0.5 pm wide) are readily distinguished against this
distorted continuum.

The TIR is commonly a difficult spectral region in
which to measure spectral radiance, and the images are typ-
ified by a low signal-noise ratio. This ratio is commonly
represented by the “noise equivalent A temperature” or
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Land Surface Emissivity, Figure 1 Airborne thermal infrared multispectral scanner (TIMS: Palluconi and Meeks, 1985) false-color TIR
radiance images of Death Valley, California (RGB = 10.4, 9.1, 8.3 um). Letters A, B, and C indicate sites discussed in the text. Central
column shows laboratory spectra for field samples. Inset shows similar ASTER image “draped” over topography, looking north up
Death Valley. The TIMS images cross the central part of the ASTER footprint (Courtesy Harold Lang and Anne Kahle, JPL).

NEAT, which is the temperature difference corresponding
to the standard deviation of the radiance within
a homogeneous, isothermal scene region. For TIR imagers
such as ASTER, NEA T30k =~ 0.25 K. Also for ASTER, the
NEAT, atmospheric correction, and radiometric calibration
all introduce errors of about the same size, leading to a total
uncertainty in the recovered LST of about 1.5 K and in the
LSE of ~0.015.

Deterministic solutions for emissivity

As discussed in Land Surface Temperature, recovering
both LST and LSE from a single image is
underdetermined. In principle, this problem can be
removed by increasing the number of images acquired
for the same scene. For each n-channel image, after atmo-
spheric compensation, there are n + 1 unknowns, but only
n measurements; for two images of the same scene, there
are n + 2 unknowns, but 2n measurements (assuming
LST has changed but LSE has remained constant). There-
fore, a two-channel image taken at two different times is

deterministic. It is additionally necessary that the LST be
significantly different between acquisitions.

Two-time, two-channel approach

If well-registered multispectral day—night radiance mea-
surements are available, it is possible to determine 7 and
¢ uniquely (Watson, 1992a). Although this approach is
esthetic, for most TIR data, the recovered temperatures
and emissivities tend to be imprecise. For example, for
image channels at 8 and 12 pm, day—night temperatures
of 290 and 310 K, and for NEAT = 0.3 K, recovered
LST would have an uncertainty of >20 K. This arises
because of the flat shape of the Planck curve in the spectral
range around 300 K.

Wan (1999) showed that using an image channel in the
3—5 um window, where the slope of the Planck function is
steep, can improve the precision greatly and used the day—
night algorithm to make a standard MODIS LST product.
However, for daytime data, reflected sunlight at 3—5 pm
must be accounted for (see Land Surface Temperature,
Figure 3). Furthermore, acquiring data 12 h or more apart
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Land Surface Emissivity, Figure 2 TIR images and spectra, South Mountain, Arizona, looking SE. (a) Natural color; (b) TIR radiance at
9 um; (c) brightness temperature; (d) emissivity (RGB = 8, 8.5 and 9 um, respectively); (e) emissivity spectra measured with the
TELOPS, Inc., FIRST hyperspectral imaging spectrometer, August 8, 2007. The shrub spectrum was taken from the site in d marked the
green cross; the rock spectrum from the red cross. Differences in the “rock” spectra likely relate to differences in the pixel field of view
and exact location, and in the length of the atmospheric path between the sample and sensor.

adds complexity because the scene may have changed
between images, for example, because of dew.

It is also advantageous to use more than two channels,
in which case the inversion for LST and LSE is overdeter-
mined. This has the advantage of reducing the impact of
measurement errors. The exaggeration of measurement
error in this otherwise esthetic technique will become less
severe as high-precision imagers such as SEBASS
(NEAT300k, 11m < 0.05 K: Hackwell et al., 1996) become
widely available.

Emissivity bounds method

Jaggi et al. (1992) observed that for every pixel and every
channel i there exists a locus of (7, ¢;) vectors that are
possible solutions for the modified Planck equation
(Equation 1, Land Surface Temperature). Because T must
be the same for all image channels, some (7, ¢;) pairs can
be ruled out as candidate solutions. The range of solutions
is even more limited if ¢ and/or 7 can be restricted a priori.
For the land surface, it is commonly possible to assume
that 0.8 < ¢ < 1.0, for example.

This elegant approach is not truly deterministic,
because it requires assumed limits to ¢ and/or 7. However,
it requires no empirical assumptions. The technique does
not appear to have been widely used, perhaps because it
does not identify the most probable values of ¢ or 7, only
possible ranges. In practice, performance depends on

how well emissivity limits are known a priori, and imple-
mentation would probably require some sort of image
classification to establish them closely.

Spectral-shape solutions

Although it is not possible to invert the modified Planck
equation for both ¢ and 7 without external constraints, it
is possible to estimate spectral shape for ¢, at the expense
of T'and of the amplitude of the recovered spectrum, that
is, the recovered spectra are essentially normalized, so that
only relative amplitudes (wavelength to wavelength) are
known. This is nevertheless useful, since composition is
generally determined from spectral shape, and not the
absolute amplitudes.

Ratio methods

Watson (1992b) observed that ratios of spectrally adjacent
channels i and j described spectral shape accurately, pro-
vided that 7 could be estimated even roughly:

g _ Lz (exp(e/(WT)) = 1) o
f L} (exple2/ (5T)) = 1)

(c, is a constant from Planck’s law, Equation 1, Land
Surface Temperature). To calculate the ¢ ratios, it is nec-
essary first to approximate the temperature 7 from the
measured radiances L; and L;. If ¢ can be estimated
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Land Surface Emissivity, Figure 3 Emissivity ¢(1) and spectral
radiance spectra L(/) for basalt at 300 K. L(1) was calculated as
the product of measured ¢(4) and a 300 K blackbody (B(4))
spectrum. In “Planck draping,” blackbody spectra are calculated
for successively lower temperatures (e.g., 310, 305 and 301.5 K,
above) until &4« B(A) = L(/) at some wavelength. The maximum
emissivity, &max Must be estimated, usually as a value near 0.95 as
in the example shown. ¢*(1), the recovered &(/), is calculated as L
(A)/B(2). Both it and the found LST (301.5 K, above) will be
inaccurate unless the Planck functions are scaled correctly by
Emax- IN the example shown, LST is in error by 1.5 K. The error
warps £*(4) slightly.

within +0.075, the uncertainty in 7 is £5 K, and the ¢
ratios can be estimated with an average error of
~0.007 (this estimate does not include the effects
of measurement error).

Becker and Li (1990) proposed a similar approach they
called the “temperature-independent spectral indices”
(TISI) method. TISI begins with the observation (Slater,
1980) that Planck’s law may be represented by

Bk(Ts) = ak(To)T”k(To) (3)
where B is the spectral radiance in image channel &

for a blackbody at temperature 7; and 7}, is a reference tem-
perature. Constants 7, and o, are given by

[65) 1
To - 1 Iy 5
nk( ) ﬂvao ( * exp (Cz/AkTo) — 1> (4)
o (T,) = Bi(To)
k o) — T:k(To)

(Dash, 2005). The land-leaving spectral radiance
Ly, corrected for atmospheric absorption and path radiance
but not down-welling spectral irradiance L, is thus

(1- 8k)Lk

b= aend 2 wBi(Ty)
N

Ci=1+ Q)

where C) 1is spatially variable and atmosphere
specific. The TISI is found by rationing spectral radiances
for image channels i and j:

aj i dinia; (di
L' &'’ TG

TG T4 4 o ~a
L g TG

(6)

Here a, is defined as 7, (and a; = nj_l), chosen to
make Equation 6 independent of 7. Since for a wide range
of temperatures the C ratio is close to unity, TISI is then

1/n; 1/n; 1/n;
Qm clim g

L 1/n; .*l/"_/
Tk M M =
] J

7

()

The ratio spectra are insensitive to temperature, for nor-
mal terrestrial ranges. The approaches are adaptable for
most sensors.

Alpha-residual method

The alpha-residual algorithm produces a relative emissiv-
ity spectrum that preserves spectral shape but, like the
ratio methods, does not yield actual ¢ or 7 values. The
alpha residuals are calculated utilizing Wien’s approxima-
tion of Planck’s law, which neglects the “—1” term in the
denominator. This makes it possible to linearize the
approximation with logarithms, thereby separating A
and T:

(&)
+ 4;In(cr) — 54;In(%)

()
— J;In(n).

Here ¢; and ¢, are the constants defined in Planck’s law
(Equation 1, Land Surface Temperature) and; is the image
channel. Wien’s approximation introduces a systematic
error in & of ~1 % at 300 K and 10 um wavelength.

The next step is to calculate the means for the parame-
ters of the linearized equation, summing over the n image
channels:

Z/I In(g;) —

+ (In(ey)

Zﬂ An(2,
Zx

The residual is calculated by subtracting the mean from
the individual channel values. Collecting terms, a set of n
equations is generated relating ¢; to L,, independent of 7~

——Zi In(L

Zz In(2;) — (In(cy) — In(n)) (4 — 2)

(10b)

% i iIn(L;)
©)

—In(n))

AiIn (&) — p, = 2;In (4 j)+xi. (10a)

K~ 5;»1 ln l
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n

Z Z

J=1

(10c)

S =

1 & -
o =" > 4ln(y); A=
=

Note that x; contains only terms which do not include
the measured spectral radiances, L;, and hence may be cal-
culated from the constants. Although dependency on 7 has
been eliminated, it has been replaced by the unknown g,
related to the mean emissivity, such that the total number
of unknowns is unchanged. The components of the
alpha-residual spectrum vary only with the measured
radiances. They are defined as

o = Ailn(e;) — p, (11)
and are equivalent to the right-hand side of Equation 10a
(o is defined differently than in the TISI method).

Model approaches

In this section, three algorithms distinguished by their
model assumptions are described. The most specific
requires that both a value of ¢ and the wavelength at which
it occurs be known. The next requires only that the value
be known. The third does not require the value of the emis-
sivity to be known, only that the emissivity at two known
wavelengths be the same.

The model emissivity (or reference channel) method
(Kahle et al., 1980) assumes that the value of ¢ for one
of the image channel’s ref is constant and known
a priori, reducing the number of unknowns to the number
of measurements. First, the temperature is estimated using

~1
2 In 701%’; +1
jvref TL'Lrgfﬂref

Lyon (1965) suggested that, for most rocks, the maxi-
mum emissivity (&,,,) was commonly ~0.95 and
occurred at the long-wavelength end of the 8—14 um
TIR window. This observation has been used to
justify the assumption &,.r = &4, typically for 10 < 4,
< 12 pm.

Blackbody spectral radiances B; for the remainder of
the channels are next calculated from 7 and Planck’s law.
The model emissivities are ¢; = L/B;.

No single value of ¢,.,is appropriate for all surfaces.
For example, for vegetation, &,,,, ~ 0.983; if the value
is assumed to be 0.95, the emissivities will be
underestimated, the spectrum warped, and T
overestimated by ~2.3 K. Vegetation, snow, and water
are all subject to this kind of error. Also, reststrahlen bands
for some types of rocks, for example, peridotite, occur
near 10 pm, and ¢,,,, occurs at shorter wavelengths. For
these rock types, the errors may be even greater. Neverthe-
less, the model emissivity approach is robust and has the
virtue of simplicity. It produces reliable results for
a wide range of surface materials.

T = (12)

Retaining the assumption &,,s = &,,,, but allowing the
reference channel to vary, pixel by pixel, allows the model
emissivity approach to be accurate for a wider range of
materials. This approach is called the normalized emissiv-
ity method (NEM) (Gillespie, 1985; Realmuto, 1990).
First, the brightness temperature 7}, is found for each
image channel, using Planck’s law. T}, differs from chan-
nel to channel only if ¢; does also, since the actual skin
temperature must be the same. The channel j with the
maximum 7}, is also the channel for which the maximum
&; occurs and becomes the reference channel. For 81 spec-
tra evaluated by Hook et al. (1992), 58 % of the tempera-
tures found by the NEM algorithm were accurate to within
1 K, compared to only 21 % of temperatures recovered
using the model emissivity method.

Finding the maximum 7}, has been called the “Planck
draping” method (Figure 3). This approach has been used
to estimate ¢() from high-resolution radiance spectra col-
lected by hyperspectral imagers such as SEBASS or by
field spectrometers.

Instead of examining the same scene element at two
different times and temperatures, as in the day—night
method, the scene element may be measured at different
wavelengths /; and 4, chosen such that ¢; = ¢;. In such
a case, it is necessary to find 7T (the “color temperature,”
1.; see Equations 10 and 11, Land Surface Temperature)
and only a single ¢ for the two channels, and the situation
is deterministic (two measurements, L; and L;, and the two
unknowns, T, and &; = ¢;). As for the reference channel
method, 7, can then be used to calculate a blackbody spec-
trum B, from which ¢(7) can be found. This treatment has
been called the “graybody emissivity method” (Barducci
and Pippi, 1996).

The strength of the technique lies in its ability to recover
emissivities even if the value of ¢ is unknown. The main
weaknesses are that for imagers with only a few TIR chan-
nels, the basic requirement, ¢; = ¢;, is not met for much of
the land surface, and it is not always possible to know /;
and ;. If the assumption is valid, the accuracy for 7'is com-
parable to NEM, provided /; and /; are widely separated
(e.g., Mushkin et al., 2005), but for most rock spectra, errors
are >5 K. Barducci and Pippi (1996) proposed the
graybody emissivity method for hyperspectral scanners,
for which the basic requirement is more likely to be met.

Scaling approaches

Once relative spectra have been calculated, they can be
calibrated to “absolute” emissivity provided a scaling fac-
tor is known. Applied to the ratio approach of Watson
(1992b) or the TIST approach of Becker and Li (1990), this
is basically the same as one of the model algorithms. How-
ever, scaling can also be done from empirical regression
relating the shape of the emissivity spectrum to an abso-
lute value at one wavelength. The regression is typically
based on laboratory spectra of common scene compo-
nents. More complex approaches also are possible: the
first example given below combines the “two-channel,
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two-time,” and TISI approaches to convert the relative
TISI spectra to emissivities.

The hybrid TISI approaches requires first that
daytime and nighttime MIR and LWIR images be
acquired and co-registered and that their TISI ratios be
calculated. Essentially, there are four measurements
(Lyirday Liwirday Laviirnighs 804 Lpyig nign), four
unknowns (ey;r, €wir), and one model assumption
(the solar irradiance on the target). The MIR reflectivity
is the complement of &,z by Kirchhoff’s law (for the
complete mathematical development, see Dash, 2005).
Using widely separated image channels improves the pre-
cision of 7T'and ¢ recovery (e.g., Mushkin et al., 2005).

Alpha-derived emissivity (ADE) method

The ADE method (Kealy and Gabell, 1990; Hook et al.,
1992; Kealy and Hook, 1993) is based on the alpha-
residual approach. To recover ¢;, i, may be estimated via
an empirical regression to the variance parameter v, found
for laboratory spectra:

1 n 5

Vy = E o

fn—14&7
J=1

where « is defined in Equation 11. The best-fitting curves
relating u,, and v, are of the form u,, = ev,'” where ¢ and x
are empirically determined coefficients (¢ = —0.085,
vy, = 0.40, and 7° = 0.935 for ASTER).

Once the emissivities have been estimated, the temper-
ature may be calculated using Planck’s law. For 95 % of
the library spectra, 7' was recovered within 1.6 K of the
correct value, and Hook et al. (1992) showed that 67 %
were accurate to within 1 K, compared to 58 % for
the NEM.

The key innovation of the ADE approach is to utilize
the empirical relationship between the average ¢ and
a measure of the spectral contrast or complexity in order
to restore the amplitude to the alpha-residual spectrum.
The regression is based on the observation that, for
a blackbody, the mean emissivity is unity and the spectral
variance is zero. For minerals with reststrahlen bands or
other emissivity features, the variance is greater than zero
and, of course, the mean is less than unity. In use, the mean
is predicted from the variance, which is calculated from
the measured radiances.

(13)

Temperature—emissivity separation algorithm (TES)

The TES algorithm (Gillespie et al., 1998) uses a variant of
the “minimum-maximum difference” or MMD approach
of Matsunaga (1994) to scale relative emissivity spectra.
TES is used to generate standard 7 and ¢ products from
ASTER, but it has been generalized for different scanners.
TES can work with as few as three channels provided the
channel wavelengths are well chosen to capture the range
of emissivities in scene spectra.

The MMD algorithm is related to the ADE algorithm,
but is simpler. Whereas ADE utilizes the empirical

relationship between the mean emissivity ¢ and the
variance of alpha-residual emissivities, MMD utilizes an
assumed linear relationship between & and the range of
the emissivities themselves, represented by the maxi-
mum—minimum difference or MMD.

The MMD algorithm requires that the ¢ spectrum be
estimated (e.g., using NEM) in order to calculate MMD,
from which ¢ is predicted. The apparent spectrum is then
rescaled according to this average, T is calculated, and
the process is iterated until the change in 7 is less than
the NEAT.

TES uses land-leaving spectral radiance and down-
welling sky irradiance as input and provides a first guess
for T'and ¢; using the NEM algorithm. The correction for
reflected sky irradiance is

=g, ,ff)ll (14)
where L; is the ground-leaving spectral radiance, compen-
sated for atmospheric absorption and path radiance, /|is
the down-welling sky irradiance, and (1—¢;) is the scene
reflectivity (Kirchhoff’s law). The NEM emissivities are
then recalculated from L; and normalized:

8.
S
p=2

(15)

MMD is calculated from the f spectrum and used to
predict ¢,,,, (instead of &, as in the MMD approach), which

is used for scaling:
Emin
5=F (B , >
(16)

After early 2009, a linear regression (g,,;,, = 0.8625MMD
+0.955) was used for scaling in TES (Gustafson et al., 2006)
in order to improve TES precision for low-contrast spectra in
standard ASTER data products. The TES algorithm differs
from the MMD approach in using a better estimate of the
emissivity and in basing the “absolute” measure of emissiv-
ity on ¢,,,;,, rather than &, a difference that results in less scatter
of the data about the regressed line and, hence, improved
performance (1.5 K; 4 0.015 ¢).

Emin = 0.994 — 0.687 MMD 7.

Classification-based algorithms

Classification approaches exploit the relationship between
composition and ¢ and/or p to estimate ¢ pixel by pixel in
at least one-image channel, generally in order to find 7.
T can then be used to calculate ¢() in the other channels.
Approaches that use channels in reflected sunlight
(0.4-2.5 um) require imagers with multiple, co-registered
telescopes. They also make the assumption that TIR emis-
sivities and visible-SWIR reflectivities are correlated.
In some cases, for example, vegetation or water, the TIR
emissivities can be predicted accurately; in others, for
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example, many rocks, this assumption is less robust. Nev-
ertheless, simply being able to distinguish rock and/or soil
from vegetation can improve accuracy by 1-2 K. As an
example, the NDVI approach (see Equation 9, Land Sur-
face Temperature) makes use of co-registered visible red
(~0.65 pm) and near-infrared (NIR: 0.7—1.2 pm) daytime
image channels in order to recognize pixels that have
a significant fraction of vegetation.

Conclusions

Only a fraction of published temperature—emissivity
separation algorithms have been discussed here. (For an
alternative summary, see Dash (2005).) Increasingly
sophisticated approaches are being devised to improve
on old treatments, for example, by using neural net tech-
nology to tune algorithms (e.g., Mao et al., 2008; Liang,
1997). However, the basic categories discussed above
still apply.

For the most part, calibration inaccuracies, measurement
uncertainty, and inaccurate atmospheric characterization all
contribute to errors in the recovered LST and LSE. These
errors are commonly as large as or larger than those
attributable to the algorithms themselves, at least for
the high-resolution imagers commonly used for Earth-
surface studies. Therefore, algorithms themselves are now
not the dominant factor limiting recovery accuracy.
However, the next few years may see the introduction of
anew generation of sensors, such as SEBASS, with dramat-
ically improved measurement characteristics. In this case,
atmospheric compensation may become the biggest source
of uncertainty and deserving of attention. Likewise, the
performance of some algorithms like the “two-time,
two-channel” algorithm that now are strongly limited by
measurement precision may improve relative to those algo-
rithms that are limited by different factors, such as TES with
its empirical regression of ¢,,;, and MMD.
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LAND SURFACE ROUGHNESS

Thomas Farr
Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA, USA

Synonyms
Microrelief; Microtopography

Definition

Surface roughness is usually defined at the human scales
of centimeter to a few meter; larger scales are usually con-
sidered as topography. Relief at these scales is familiar to
field geologists working at the outcrop scale and those
interested in interpretation of landforms and earth-surface
processes that form and modify them.

Scientific usefulness

One important surficial geologic process is acolian erosion,
transport, and deposition of sediments. The shear stress
wind produces at the earth’s surface is strongly affected
by the surface roughness. The aerodynamic roughness

parameter, z,, depends on the wind speed profile as
a function of height about the ground (Greeley et al.,
1997). This parameter is used by geologists interested
in aeolian processes as well as climatologists seeking to
quantify atmospheric coupling with the solid earth.

Windblown dust and sand can also modify surface
roughness by mantling and attenuating surface roughness
(Farr, 1992; Arvidson et al.,, 1993). This can lead to
estimates of relative age for surfaces such as lava flows
or alluvial fans exposed to the same rate of aeolian
deposition (Farr, 1992; Farr and Chadwick, 1996).

Streambed and ocean-bottom roughness also affect the
flow and transport capabilities of water in those environ-
ments (e.g., Butler et al., 2001).

Other geologic processes produce or modify surface
roughness, in particular volcanic eruptions which may
mantle surfaces with ash or produce new roughness
elements through extrusion of lava flows which can be
relatively smooth pahoehoe or extremely rough aa.
Roughness of lava flows can provide information on
their eruption characteristics, such as rate and temperature
(e.g., Lescinsky et al., 2007).

Land surface roughness strongly affects many remote
sensing techniques. Observations of reflected visible-
near-infrared wavelengths are affected by sub-resolution
self-shadowing of roughness elements. Thus, rougher
surfaces are darker, and the shadows are illuminated by
sky light or reflections from adjacent land, shifting the
spectral signature of the surface (Adams and Gillespie,
20006). At thermal infrared and microwave wavelengths,
which are dominated by emission from solar-heated
surfaces, roughness as well as larger-scale topography
affects the initial heating of the surface while roughness
also affects the efficiency of emission (Ulaby et al.,
1982). Active microwave (radar) systems image surfaces
through scattering of a transmitted wave from the surface.
Smooth surfaces at the scale of the wavelengths, which are
typically centimeter-meter, reflect energy away from
the receiving antenna and are imaged as dark surfaces,
while rough surfaces scatter the incident energy in all
directions and show up in bright tones on radar images
(Henderson and Lewis, 1998).

Much work has gone into quantitative models which
seek to remove the effects of roughness on sub-resolution
shadowing and thermal heating and emission (Tsang et al.,
2000; Adams and Gillespie, 2006). In the radar area,
inversion models have been developed which estimate
the surface roughness from radar observations at different
angles, polarizations, and wavelengths (Ulaby et al., 1982;
Van Zyl et al., 1991; Evans et al., 1992; Dubois et al.,
1995; Tsang et al., 2000).

Quantifying surface roughness

Good reviews of techniques for describing quantitatively
surface roughness can be found in Dierking (1999),
Thomas (1999), Shepard et al. (2001), and Campbell
(2002), Chap. 3. The simplest description of surface
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