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Abstract  A large variety of in vitro and animal models have been used to 
characterize the pharmacodynamics of antimicrobials. In vitro kill curves report two 
different patterns of antimicrobial killing (concentration dependent and time depen-
dent) that can be followed by persistent effects that delay bacterial regrowth. In vitro 
kinetic models using dilution or dialysis have the ability to simulate the changing 
drug concentrations observed in humans and study their effect on different bacteria. 
New hollow-fiber dialysis models have reduced the chance of contamination and 
have allowed longer studies of the emergence and suppression of resistant mutants. 
Animal models have the advantage of determining antimicrobial efficacy at specific 
body sites such as the thigh in mice, the peritoneum in mice and rats, the lung  
in mice, rats, and guinea pigs, endocarditis in rabbits and rats, and meningitis in 
rabbits. However, clearance of antimicrobials is more rapid in animals than in 
humans. Many factors, such as inoculum, media, growth-phase of the organism, site 
of infection, drug concentrations to measure correct drug exposure, presence of 
neutropenia, and measurement of outcome by colony-forming units (CFUs), 
survival/mortality, or another form of assessment, need to be considered to develop 
meaningful conclusions.
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�Introduction

There are a large number of in vitro and animal models that have been used to 
characterize the pharmacodynamics of various antimicrobials. Many of the early in 
vitro studies were concerned with the kinetics of antimicrobial activity and the 
mechanism of action of the drug (Garrett and Miller 1965). Even most of the animal 
models were initially designed to document in vivo activity of an antibiotic rather 
than to determine the optimal way to dose the drug. Still in the early 1950s a few 
researchers, such as Harry Eagle, started using animal models to evaluate different 
dosing regimens to characterize the important pharmacodynamic characteristics of 
an antibiotic (Eagle et al. 1950). This chapter will review the major in vitro and 
animal models that have been used for pharmacodynamic assessment. It will outline 
the major factors that need to be considered to develop meaningful conclusions. 
These include inoculum, media, growth-phase of organism, site of infection, drug 
concentrations to measure correct drug exposure, immunologic status of the animal, 
and measurement of outcome by colony-forming units (CFUs), survival/mortality, 
or some other form of assessment.

�In Vitro Models

�In Vitro Time–Kill Curves at Increasing Concentrations

The first in vitro study performed to characterize the time course of bactericidal 
killing of different antimicrobials used killing curves at increasing drug concentra-
tions. Even back in the 1940s, different patterns of antimicrobial killing were 
observed between antimicrobials such as streptomycin and penicillin with 
Staphylococcus aureus (Garrod 1948). Increasing the concentration of streptomy-
cin 10- and 100-fold resulted in much faster killing at the higher concentrations. 
On the other hand, increasing the concentration of penicillin 10-, 100-, 1,000-, and 
10,000-fold did not increase the rate of bactericidal activity at all. This led to the 
classification of drugs as those exhibiting concentration-dependent killing and 
those with concentration-independent killing (Shah et  al. 1976; Vogelman and 
Craig 1986). Figure 2.1 illustrates the killing curves for different concentrations of 
tobramycin and ticarcillin against a standard strain of Pseudomonas aeruginosa. 
Increasing the concentration of tobramycin resulted in steeper slopes for the kill-
ing curve even up to a concentration that was 64 times the MIC. Increasing the 
concentration of ticarcillin from one-fourth to 4 times the MIC also increased the 
extent and the slope of the killing curve. However, at higher concentrations, the 
rate of killing as reflected by the slope was very similar. The only reason for 
slightly lower bacterial numbers at the higher concentrations is that killing started 
earlier as the concentration increased. With most beta-lactams such as ticarcillin 
there is a small range of concentrations that result in concentration-dependent 
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killing. However, once the concentration exceeds about four or five times the MIC, 
the rate of killing saturates and further killing at higher concentrations is largely 
concentration independent.

�Persistent Effects

The standard method for measuring the in-vitro postantibiotic effect (PAE) is to 
expose the organism to the desired drug concentration for a few hours and then 
rapidly remove the drug by repeated washing, dilution, filtration, or drug inactiva-
tion (Craig and Gudmundsson 1996). Figure  2.2 illustrates a comparison of the 
PAEs following a 2-h exposure of Staphylococcus aureus ATCC 6538P in broth to 
0.05 μg/ml of penicillin G using rapid drug removal by repeated washing, a 1,000-
fold dilution, filtration, or the addition of penicillinase. The PAE values varied only 
from 1.4 to 1.6 h. The majority of investigators have used dilution as the method of 
drug removal. It is important to ensure that the extent of dilution is large enough so 
that any remaining drug fails to affect the growth of control organisms. Usually a 
100-fold dilution is sufficient for concentrations near the MIC; 1,000-fold and 
10,000-fold dilutions are required at higher concentrations. Repeated washing 
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procedures are dependent on whether one has a visible pellet after centrifugation. 
Simple decanting of the supernatant is done with a visible pellet, but removal of 
only about 90  % of the supernatant is recommended when no pellet is visible. 
Filtration requires a membrane filter with a pore size of 0.45 μm or less. The use of 
drug inactivation is most applicable to beta-lactams that are quickly destroyed by 
beta-lactamases.

Viable count measurement (colony-forming units/ml) is the primary method to 
follow microbial growth kinetics after drug removal. This methodology has been 
criticized because of the one-to-one assumption between a bacteria and a single 
colony-forming unit (CFU). For example, Gram-negative bacilli can be induced to 
produce filaments that contain more than 20 individual bacteria (Lorian et al. 1989). 
The filaments usually break up into multiple bacteria after drug removal. Optical 
density measurements usually required bacterial numbers greater than 106 CFU/ml. 
Some drugs have produced a good correlation between optical density measurement 
and viable counting. However, optical density underestimates the extent of killing 
by beta-lactams and aminoglycosides with Gram-negative bacilli resulting in longer 
PAEs than with viable counts (Bergan et al. 1980). Intracellular ATP content mea-
sured by bioluminescence not only has a sensitivity of 104  CFU/ml, but it also 
appears to give longer PAE values for bactericidal antibiotics (Hanberger et  al. 
1990; MacKenzie et al. 1994). This occurs because some dead but intact bacteria 
still contain measurable intracellular ATP.

Time (Hours)

Lo
g 1

0 
C

F
U

/m
l

3

4

5

6

7

8

9

Control
Pen G

6

7

8

9

0 2 4 6 8 0 2 4 6 8

6

7

8

Penase

Wash
X 3

103

dilution

Filtration
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The in vitro PAE is measured by the following equation:

	 PAE T C= – 	 (2.1)

where T is the time required for the bacterial numbers to increase 1 log10 (or 10-fold) 
above the bacterial number immediately after drug removal and C is the time required 
for the untreated control culture to increase 1 log10 immediately after completion of 
the same method for drug removal that was used on the test culture (see Fig. 2.2). 
Growth after the initial 1 log10 is similar for control and antibiotic-exposed cultures.

Odenholt, Holm, and Cars (1989) demonstrated that the postantibiotic effect of 
penicillin with S. aureus could be prolonged with re-exposure to sub-MIC concen-
trations. They observed that the in vitro PAE increased from 2.4 h to 6–7 h with 
re-exposure to penicillin at 0.2 times the MIC. This phenomenon has been called the 
postantibiotic sub-MIC effect (Odenholt-Tornqvist et al. 1992). The sub-MIC expo-
sure concentrations used in most of these studies have been 0.1, 0.2, 0.3, and 0.4 
times the MIC. In general, the in vitro postantibiotic sub-MIC effects have been 
longer than the in vitro PAEs. With in vitro kinetic models, Lowdin and coworker 
(Lowdin et al. 1998) combined PAE and the postantibiotic sub-MIC effect by mea-
suring the time for 1 log10 regrowth after the drug concentration fell below the MIC 
in the model. They called this the post-MIC effect and observed that its duration got 
smaller with longer durations of exposure. They concluded that most of the persis-
tent effects after antibiotic exposure were due to sub-MIC effects. Den Hollander 
and colleagues performed actual measurements of PAE induced by tobramycin in an 
in vitro kinetic model and observed that the PAE got progressively smaller as drug 
levels fell and virtually disappeared by 12 h of exposure (den Hollander et al. 1998).

Re-exposure of bacteria in the PAE phase to supra-MIC concentrations of the same 
antibiotic does not alter the rate of killing (Odenholt et al. 1989). However, if the PAE 
phase was induced by a drug that inhibits protein synthesis, such as erythromycin or an 
aminoglycoside, subsequent killing on exposure to a beta-lactam antibiotic can be sig-
nificantly delayed (Craig and Gudmundsson 1996; Gerber and Craig 1981). On the 
other hand, exposure of organisms in the PAE phase to leukocytes usually enhances the 
rate of killing of staphylococci, streptococci, and E. coli by most antibacterials (Craig 
and Gudmundsson 1996; McDonald et al. 1981). This phenomenon has been called the 
postantibiotic leukocyte effect (PALE). Organisms are exposed to the antibiotic for 
10–30 min, washed, and then incubated with 106 leukocytes per ml for 2 h. Unexposed 
control organisms are similarly incubated with leukocytes for 2 h. PALE is expressed 
as the difference in the log10 CFU/ml between the pretreated and control organisms.

�In Vitro Kinetic Models

In vitro kinetic models using dilution to reduce drug concentrations started to appear 
in the late 1970s. One simple model described by Grasso and coworkers (Grasso 
et al. 1978) consisted of two flasks (see Fig. 2.3). One flask was the reservoir of 

2  In Vitro and Animal PK/PD Models



28

broth to pump into the second flask which contained the antibiotic and the organism. 
They evaluated the activity of cephalosporins against E. coli and concluded that 
peak concentrations were not as important as the duration of exposure. Dilution 
models not only dilute drug concentrations, they also dilute the organism. This can 
be a problem for drugs with very rapid half-lives of 30–60 min, and the CFUs/ml 
measured should be corrected for the extend of dilution (Keil and Weidemann 1995).

Dialysis models using a permeable membrane or hollow fibers to separate two 
compartments started to appear in the early 1980s (Zinner et al. 1981; Toothaker 
et al. 1982; Ledergerber et al. 1985). Dialysis models were also designed to study 
the effects of drug combinations when the two antibiotics had different elimination 
half-lives (Blaser 1985). Initially these models were used to compare the efficacy of 
different dosage regimens. For example, the enhanced killing of once-daily netilmi-
cin over thrice-daily dosing and continuous infusion of the same total about of drug 
was demonstrated in an in vitro kinetic model (Blaser et  al. 1987; see Fig. 2.4). 
Emergence of resistant subpopulations was observed at lower doses of drug with 
thrice-daily dosing and continuous infusion, but not with once-daily dosing. 
Similarly, the improved bactericidal efficacy of continuous infusion of ceftazidime 
over intermittent dosing of the drug was also reported using an in vitro model 
(Mouton and den Hollander 1994). In vitro kinetic models are ideal for studying 
factors that support or prevent the emergence of resistance. The volume of the 
organism compartments in these models are many fold larger than in most animal 
infection models. Thus, the ability to detect small numbers of resistant bacteria is 
much greater with in vitro models than with animal models.

A variety of different broths have been used in these studies. Most of these pro-
vide a luxurious environment for bacterial growth. One needs to reduce the amount 
of broth to 5 % of the total fluid volume to observe the same bacterial growth rate as 
seen in animal models. However, bacterial killing in diluted broth is very similar to 
that in 100 % broth (Odenholt et al. 2007). Some investigators have added 5 % human 
albumin or 25 % human serum to simulate the effects of protein binding. For drugs 
with high protein binding, the addition of human albumin or serum reduces the 

Fig. 2.3  Early dilution in vitro kinetic model. Republished with permission from Grasso et al. (1978)
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activity of the drug in these in vitro models (Odenholt et al. 2007; Garrison et al. 
1990; Dudley et al. 1990). Thus, if one does not want to add albumin or serum, one 
should use the free drug concentrations observed in human volunteers or patients to 
simulate in the in vitro model.

The usual inoculum used in most of these studies has been 105–106 CFU/ml. For 
fluoroquinolones antibiotics studies have not shown much difference in activity even 
up to an inoculum of 109 CFU/ml (Firsov et al. 1999). However, beta-lactams have 
demonstrated a significant reduction in activity at very high inocula (Tam et al. 2009). 
To exhibit their bactericidal activity, these drugs need growing bacteria which are 
reduced in number at very high inocula. The activity of fluoroquinolones against S. 
aureus and E. coli observed in vitro kinetic models has also been similar when cul-
tured under aerobic and anaerobic conditions (Wright et al. 2002; Noel et al. 2005).

Some of the early problems with these models were contamination of compart-
ments with other organisms and sterilizing the apparatus for reuse (Reeves 1985). 
Despite the use of complex in vitro models that use multiple hollow fiber units 
simultaneously to compare different dosing regimens, contamination has become 
much less of a problem. Some studies have been continued for at least 15 days with-
out contamination (Louie et al. 2012). This is very important for emergence of resis-
tance in these models as maximal enrichment of mutants is dependent on the 
duration of simulated antibiotic exposure (Smimova et al. 2009).

A variety of different evaluation techniques have been used in these in vitro 
kinetic models. Simultaneous evaluation of multiple dosing regimens can identify 
the important PK/PD index for efficacy and for suppression of resistance. For line-
zolid against Bacillus anthracis, AUC/MIC was the major PK/PD index determin-
ing bactericidal efficacy, while Cmax/MIC was more important in suppressing 

Fig. 2.4  Impact of once-
daily dosing, 8-hourly dosing, 
and continuous infusion of 
the same total daily amount 
of netilmicin on the CFUs/ml 
of S. aureus in a diffusion in 
vitro kinetic model. 
Republished with permission 
from Blaser et al. (1987)
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resistance (Louie et  al. 2012). Adding lower amounts of resistant organisms to 
susceptible strains in the same compartment can determine the value of a new dos-
ing regimen in preventing the emergence of resistance (Knudsen et  al. 2003). 
Studying multiple fluoroquinolones against a single organism can determine if the 
magnitude of the AUC/MIC to prevent emergence of resistance is similar with all 
drugs (Firsov et al. 2003). In general, most of the findings recorded with in vitro 
models have also been verified in animal infection models (Knudsen et al. 2003; 
Bonapace et  al. 2002). This makes in vitro kinetic models a relatively reliable 
method for pharmacodynamic assessment of most antibacterials.

�Specialized In Vitro Kinetic Models

The insertion of infected fibrin clots with a 109 bacterial density in an in vitro 
pharmacodynamic model was established in the mid-1990s to simulate treatment of 
endocarditis (Kang and Rybak 1995). Most of the studies have focused on treatment 
of S. aureus high inoculum infections, but some studies have also included 
penicillin-resistant S. pneumoniae and Enterococcus faecalis infections. The studies 
are usually conducted for 72 h with fibrin clots being removed a 0, 24, 48, and 72 h 
for determination of bacterial density.

The activity of antibacterials against intracellular pathogens was also developed 
in the mid-1990s (Hulten et al. 1996). A series of glass cell culture inserts contain-
ing 2-day grown monolayers of Hep-2 cells were connected to a pump with various 
tube diameters to simulate half-life of different drugs. The glass cultures are 
removed at different times, and the Hep-2 cells are washed and then lysed to mea-
sure intracellular activity. Helicobacter pylori was the initial organism studied and 
treatment with azithromycin and clarithromycin both resulted in significant bacteri-
cidal activity of the organism, while amoxicillin had no intracellular effect. The 
same model was used to evaluate to compare the activity of moxifloxacin and eryth-
romycin against Legionella pneumophila (Tano et al. 2005). In this model moxi-
floxacin exhibited a significantly better antibacterial effect than erythromycin.

�Animal Infection Models

There are clearly some differences between in vitro kinetic models and animal 
infection models. Animal models can look at infections in specific body sites. 
Animal models can also evaluate the effect of different host factors such as protein 
binding, complement, and leukocytes. However, major animal models for pharma-
codynamic studies involve mice and rats which have much faster elimination of 
antibiotics than in humans. Intravenous catheters have been used (mostly in rats) for 
antibiotic administration to simulate human pharmacokinetics (Woodnut and Berry 
1999). Multiple decreasing doses of drug have also been given subcutaneously to 
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mice to simulate a drug’s serum profile in humans (Kim et al. 2008). For drugs with 
significant renal elimination, administration of uranyl nitrate at 5–10 mg/kg 3 days 
before treatment will cause a transient but stable renal impairment that can simulate 
the half-life of these drugs in humans (Andes and Craig 1998a; Nicolau et al. 2000).

�Mouse Thigh-Infection Model

The mouse thigh as an infection model was initially used in 1952 by Selbie and 
Simon (1952) to measure the virulence of different strains of staphylococci. Mice 
rarely died of the infection with staphylococci and the measurement of thigh swell-
ing in millimeters was used to assess the relative virulence of the different strains. 
Two years later, the model was used to evaluate antimicrobial efficacy and demon-
strated similar success with different formulations of penicillin G (Selbie 1954). In 
1960, the model was modified by placing two pathogens, a penicillinase- and non-
penicillinase-producing S. aureus, into opposite thighs of the same mice (Acred 
et al. 1970). They were able to demonstrate effectiveness of methicillin and cloxa-
cillin against both strains, while penicillin G was only effective against the non-
penicillinase-producing organism.

Removal of the thigh with quantitation of bacterial numbers in thigh homoge-
nates was started in 1973 with an in vivo evaluation of amoxicillin and ampicillin 
against E. coli and Proteus mirabilis (Hunter et al. 1973). Kunst and Mattie (1978) 
used the same thigh model with CFU determinations to study the relationship 
between in vitro and in vivo antimicrobial activity following short drug exposures. 
They observed some discrepancies between in vitro and in vivo antibacterial activ-
ity that could not be explained by differences in protein binding and drug kinetics. 
In 1982, Gerber et  al. started to use neutropenic mice to provide more accurate 
assessment of drug–organism interactions and to allow for longer durations of study 
and the possible emergence of resistant mutants. One year later this model started to 
be used to evaluate the relative in vivo efficacy of different dosing regimens of anti-
bacterials against specific pathogens (Gerber et al. 1983). Finally, in 1988, the same 
neutropenic murine thigh-infection model was used to correlate different pharmaco-
kinetic indices (peak level, AUC, and time above MIC) with efficacy for various 
antibacterials against both gram-positive and gram-negative pathogens (Vogelman 
et al. 1988a). Over the subsequent 20 years, the neutropenic murine thigh-infection 
model has become the most standardized and accepted animal model for antimicro-
bial pharmacodynamic studies.

A variety of different mice, usually female and 6-week old, have been used for 
this model and all seem to give similar results when neutropenic mice are used. 
Neutropenia can be induced by irradiation or by cyclophosphamide (van’t Wout 
et al. 1989). A commonly used regimen provides for two injections of cyclophos-
phamide at 150 mg/kg 4 days and 100 mg/kg 1 day before infection (Zuluaga et al. 
2006). This regimen reduces the number of neutrophils to less than 10 mm3 for at 
least 3 days. Many organisms will not grow well or actually die in normal non-
neutropenic mice. For example, penicillin-resistant pneumococci will not grow in 
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normal ICR/Swiss or CD1 mice, but they do grow well in normal CBA/J mice 
(Tateda et al. 1996). It is recommended that an untreated organism grows at least 1.5 
log10 CFU/thigh over 24 h when non-neutropenic mice are to be used. Sometimes 
higher initial inocula are required for adequate growth in normal mice (Drusano 
et al. 2010). Several organisms grow very well in both non-neutropenic and neutro-
penic mice. S. pneumoniae ATCC 10813 and K. pneumoniae ATCC 43816 are two 
such strains. Comparing the activity of an antibiotic against these strains in neutro-
penic and non-neutropenic mice allows one to measure the impact of neutrophils on 
activity. As shown in Fig. 2.5, neutrophils had a much greater effect on the activity 
of ceftobiprole against S. pneumoniae than K. pneumoniae (Craig and Andes 2008).

The starting inoculum can range from about 105 to 108 per thigh. This is pro-
duced by injection of slightly lower number of organisms in 0.2 ml into the thigh 2 h 
before treatment. Starting treatment earlier results in more rapid killing than seen if 
therapy is held until 2–4 h after infection. It also gives the organism time to grow so 
that at least 90 % of the organisms are in vivo grown before starting therapy. Several 
studies have shown that there is a minimal inoculum effect for most antibiotics 
against streptococci and Gram-negative bacilli as the starting inoculum is increased 
from 105 to 107–8 (Andes and Craig 2005; Maglio et  al. 2007; Lee et  al. 2013). 
However, with staphylococci, most antibiotics show a 3- to 10-fold increase in the 
dose required for stasis as the inoculum increases from 105 to 107 (Lee et al. 2013). 
The highest increase was observed with vancomycin. Furthermore, the magnitude 
for PK/PD indices of efficacy in patients is similar to the values obtained in mice at 
the higher inoculum. The appearance and ultrastructure of staphylococci growing in 
vivo is similar to organisms growing on a surface or membrane (Lorian et al. 1985). 
This is much different than observed with in vitro models or in vitro kill curves at 
high inocula. Thus, staphylococci may show a major difference in the results for 
efficacy between in vitro kinetic models and animal models.
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Usually the CFU/g or thigh is correlated with the serum kinetics of the drug. 
Studies with microdialysis have demonstrated in rats and humans that the concen-
tration of drug in muscle interstitial fluid is very similar to the free drug concentra-
tion in serum (Kover et al. 1997; Liu et al. 2002). Figure 2.6 shows the relationship 
between the change in the log10 CFU/thigh over 24  h for four fluoroquinolones 
against 2–4 different strains of Enterobacteriaceae and the 24-h area-under-the-curve 
(AUC) divided by the MIC. The data was examined by nonlinear regression using a 
sigmoid Emax model based on the four parameter Hill equation:

	
E

E AUC MIC

P MIC

N

N N
=

×
+

max /

/50 AUC 	

where E is the observed effect (reduction in log10 CFU/thigh compared to 24-h 
controls, Emax is the maximum effect, AUC/MIC is the cumulative measure of drug 
exposure, P50 is a measure of potency indicated by the AUC/MIC producing 50 % 
of Emax, and N is a function describing the slope (Unadkat et al. 1986). A highly 
significant correlation of the change in log10 CFU/thigh with the AUC24/MIC was 
obtained. The magnitude of the AUC24/MIC for stasis, a 1 log kill, and a 2 log kill 
were 39 ± 4, 62 ± 7, and 105 ± 12, respectively.

The other major method of outcome analysis is using survival or mortality. In 
neutropenic mice with thigh infections, there is a very good similarity between the 
amount of daily drug required to protect 50 % of mice from death after 5 days of 
therapy and the total dose of drug to produce stasis after 24 h (Andes and Craig 
2002). Figure 2.7 shows the mortality results for different dosing regimens of mul-
tiple fluoroquinolones against various Enterobacteriaceae and P. aeruginosa plotted 
against drug exposure measured by the AUC/MIC. There was 80–100 % mortality in 
untreated animals at the time of assessment. Furthermore, outcome was determined 
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within 24 h of the last dose of drug. Using nonlinear regression and the same sigmoid 
Emax model, the analysis shows that the AUC/MIC producing survival for 50 and 
90 % of the animals was 41 ± 7 and 105 ± 16, respectively. These values are virtually 
identical to the AUC24/MIC for stasis and 2 logs kill after only 24 h of therapy. This 
connection between CFUs/thigh and survival in animal infection models has strongly 
supported the application of these data to human infections.

The neutropenic mouse thigh-infection model has been used in dose fraction-
ation studies with multiple drugs and organisms to identify which PK/PD index is 
the most important for antimicrobial efficacy (Vogelman et al. 1988a). Some drugs 
with long half-lives in mice need to compare 12-, 24-, 36-, and 72-h dosing for 
adequate dose fractionation (Andes and Craig 2007). This model has also been used 
to show that the in vivo postantibiotic effect is much longer than the in vitro PAE 
durations (Vogelman et al. 1988b). Furthermore, since mice have two thighs, nor-
mal growth of fresh organism reinjected into the opposite thigh during the in vivo 
PAE in the other thigh shows that all of the in vivo PAE is not due to sub-MIC 
concentrations. It is also seen on repeat injections of the antibiotic and at similar 
magnitude. Two thighs have additional advantages for comparing the same antibi-
otic exposure against two different organisms or for one organism at two different 
inocula (Lee et al. 2013).

�Peritonitis Infection Model in Mice and Rats

Infection of the peritoneum by direct injection of bacteria was the earliest animal 
model used in antibiotic research and dates back to the early studies with Protosil. 
In 1949, Schmidt et al. used this model to infect Sprague–Dawley rats by using an 
inoculum of 104 CFU/ml of a virulent strain of S. pneumoniae. They then examined 
the role of the dosage regimen of penicillin G on animal survival after 4 days of 
therapy. The ED50 was similar for 2-, 4-, and 8-hourly dosing regimens, but increased 
progressively as the dosing interval rose to 12 and then to 24 h. Subsequent studies 
in both mice and rats have demonstrated marked variability in the inoculum required 
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in control animals to produce fatal infections. Sometimes 5  % mucin had to be 
combined with the inoculum to enhance infection. In many of these studies, therapy 
started immediately after infection and often consisted of only a single dose. 
Although different doses of antibiotics were associated with effective doses 
protecting 50 % of the mice from death (ED50), there was little pharmacodynamic 
modeling in these mouse protection tests (Davis 1975; Acred et al. 1981).

In 1986, Frimodt-Moller et al. used another virulent strain of S. pneumoniae and 
standardized the inoculum at 106 CFU/ml (with 5 % mucin) to produce peritonitis in 
mice and compared the in vivo activity of 14 cephalosporins. The only correlation they 
observed was between the ED50 and the time serum concentrations exceeded the MIC. 
In additional studies in this model, the in vivo activity of the glycopeptides (vancomy-
cin and teicoplanin) and linezolid as measured by the ED50 were best explained by the 
free drug Cmax/MIC and free drug AUC/MIC, respectively (Knudsen et  al. 2000; 
Sanberg et al. 2010). In the linezolid studies, peritoneal washouts were used to measure 
bacterial killing. Peritoneal cells were separated to examine intracellular killing. While 
linezolid had significant extracellular killing, its intracellular killing was very weak.

Drusano et  al. (1993) used the same peritonitis model in neutropenic rats to 
evaluate the in vivo activity of a fluoroquinolone against P. aeruginosa. The rats 
were infected separately with the parent strain and with two resistant mutants and 
treated with the same total doses but fractionated for different dosing intervals. 
Overall efficacy against all the strains was most dependent on Cmax/MIC and a ratio 
of 10:1 or higher given once daily gave the best results. Use of this model in rats has 
more recently been limited to comparison of the activity of different antimicrobials 
and immunologic responses than for pharmacodynamic studies.

�Pneumonia Models in Mice, Rats, and Guinea Pigs

In the early days of antibiotics, pneumonia was primarily due to S. pneumoniae. 
Pneumonia models in mice were initially developed by intratracheal instillation of 
100,000–250,000 pneumococci in 0.1  ml along with 5  % mucin (Schmidt and 
Walley 1951) or by intranasal instillation of around 0.05 ml of 108 pneumococci in 
lightly anesthetized animals (Azoulay-Dupuis et al. 1991a, b). Antibiotic therapy 
was started 18–24 h after infection and continued for 3–4 days. Outcome in these 
initial studies were measured by survival/mortality, but later CFUs/g or lung were 
recorded to define efficacy. Intrabronchial inoculation was much more common in 
rats to induce pneumonia (Bakker-Woudenberg 1979). Overall the efficacy in rats 
with various penicillins was similar to those obtained in mice (Woodnut and Berry 
1999). Neutropenic mice or normal CBA/J mice were used in some studies to be 
able to determine accurate efficacy values for penicillin-resistant strains (Tateda 
et al. 1996; Scoriano 1996). Experimental pneumococcal pneumonia could also be 
induced by the aerosol route using an exposure chamber and a small particle nebu-
lizer. Nuermberger et al. (2005) produced a low inoculum infection which did not 
have bacteremia when therapy was started. However, they needed neutropenic mice 
for growth of the low inoculum in control mice.
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Pneumonia with Gram-negative bacilli in neutropenic mice was initially pro-
duced by the aerosol route (Leggett et al. 1989). A Collison nebulizer generated the 
aerosol for 45 min in a closed container at a flow rate of 4–5 l/min. About 105 CFUs 
of K. pneumoniae were deposited in the lung from the original 109 inoculum. 
However, therapy was delayed for 14  h to get the starting inoculum up to 107. 
Bronchoalveolar lavage recovered 4–5 times more organisms than remained in the 
lung for the first 4 h, and rapid growth in the lung did not start until 8 h. Studies with 
various beta-lactams, aminoglycosides, and ciprofloxacin showed that the same PK/
PD index that was important for each of the drugs in the neutropenic thigh model 
was also important in the neutropenic lung model (Leggett et al. 1989, 1991). This 
is illustrated in Fig. 2.8 where the static dose for imipenem and ceftazidime kept 
increasing as the dosing interval was increased from 1 to 12 h. This demonstrated 
that time above MIC was the important PK/PD index for these drugs in pneumonia. 
In contrast, the static dose remained unchanged for ciprofloxacin and gentamicin as 
the dosing interval was increased from 1 to 12 h, signifying that the AUC/MIC was 
the import PK/PD index. These studies also demonstrated that aminoglycosides and 
ceftazidime were more potent in the lung than the thigh. Imipenem showed equal 
efficacy in the two models, while cefazolin was less potent in the lung than the 
thigh. The efficacy of various antibiotics in normal mice required use of K. 
pneumoniae ATCC 43816, a strain that grows very well in non-neutropenic mice.

Gram-negative bacillary pneumonia in rats and guinea pigs was induced by intra-
tracheal or intrabronchial administration of the inoculum (Pennington and Stone 
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1979; Roosendaal and Bakker-Woudenberg 1989). Outcome was initially measured 
by survival/mortality after several days of therapy. Antibiotic efficacy studies in 
guinea pigs were focused mostly on P. aeruginosa, where antibiotic therapy was 
started only 1 h after infection (Pennington and Stone 1979). Furthermore, the dos-
ing regimen used resulted in variable drug exposure with very frequent dosing for 
the first 12 h followed by a single large dose for the second 12 h. Although differ-
ences in efficacy were observed with the various antibiotics, pharmacodynamic 
analysis is difficult because of the varied dosing regimens. K. pneumoniae ATCC 
43816 is the major gram-negative bacillus studied in pneumonitis in rats. These 
studies have compared the efficacy of different antibiotics administered to neutro-
penic rats by continuous infusion or 6-hourly injections (Roosendaal and Bakker-
Woudenberg 1989). The efficacy of gentamicin was similar with both dosing 
regimens, while ciprofloxacin appeared to be slightly more effective with intermit-
tent dosing. On the other hand, ceftazidime was far more potent when administered 
by continuous infusion than by intermittent injections. However, the difference in 
the two methods of ceftazidime dosing were much smaller in normal, non-
neutropenic rats than in neutropenic mice (Roosendaal et al. 1986). The same model 
showed that time above MIC was the major pharmacodynamic index for correlating 
with efficacy of ceftazidime over the first 48 h, but by 18 days the AUC/MIC was 
the more important PK/PD index (Bakker-Woudenberg et al. 2006).

Staphylococcal pneumonia model in BALB/c mice has been developed by oral 
instillation of 0.05  ml of a 109 suspension of organisms with 3  % gastric mucin 
(Crandon et al. 2010). Aspiration into the lungs occurred with the animal being held 
vertical for 30 s with the nares blocked. Antibiotic therapy was started 6 h later with 
starting inoculums of about 106 CFU/lung. Studies have documented the activity of 
vancomycin and telavancin against methicillin-susceptible S. aureus (MSSA) and 
methicillin-resistant S. aureus (MRSA) strains with increasing MICs. The two drugs 
appeared active with all strain with MICs of ≤2 mg/l. However, there are no data at 
higher inocula which demonstrated a significant inoculum effect with staphylococci 
in the murine thigh-infection model. Other studies have correlated efficacy of tigecy-
cline against various staphylococci with the free drug AUC/MIC (Koomanachal et al. 
2009). The ratio of tigecycline concentrations in bronchoalveolar lavage (BAL) fluid 
to plasma also appeared to increase with increasing doses. The measurement of BAL 
fluid drug concentrations is increasing in all of the various animal pneumonia models 
in the hope that these concentrations can be pharmacodynamically linked to efficacy.

�Other Animal Models

�Endocarditis Models

Animal models of endocarditis are rarely used for pharmacodynamic modeling 
because infected vegetations are rarely sampled at the beginning of therapy and 
later values during therapy are compared with untreated control. A review of data in 
the literature from 19 models of experimental endocarditis in rabbits or rats infected 
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with various staphylococci, streptococci, and Gram-negative bacilli and treated with 
fluoroquinolones showed a significantly lower number of CFU/vegetation if the 
AUC/MIC was ≥100 (Andes and Craig 1998b). AUC/MIC was the primary PK/PD 
index-determining efficacy. Subsequent studies have evaluated the efficacy of once-
daily combination therapy using human pharmacokinetics (Gavalda et  al. 2002), 
evaluating the activity of new antimicrobials (Tsaganos et al. 2008), or determining 
the best antibiotic for specific resistant organisms (Boutoille 2009).

�Meningitis Models

Experimental models of meningitis have been developed in rabbits, guinea pigs, and 
rats. However, virtually all of the pharmacodynamic studies have been performed in 
the rabbit meningitis model. Most experimental studies have focused on the rate of 
bactericidal killing in CSF. For example, maximal bactericidal rates of beta-lactams 
in rabbit meningitis required CSF concentrations that were 10- to 30-fold higher 
than the MIC (Tauber et al. 1984a). Other studies demonstrated that the duration of 
time CSF concentrations exceeded the MBC was the only index that independently 
correlated with the bacterial kill rate (Lutsar et al. 1997). To get maximum killing 
with ceftriaxone against S. pneumoniae, CSF concentrations needed to exceed the 
MBC for 95–100 % of the dosing interval. With ampicillin the time above MBC 
needed to be only about 40 % of the dosing interval to obtain sterile CSF (Tauber 
et al. 1984b). The investigators thought this was due to an in vivo postantibiotic 
effect with ampicillin against S. pneumoniae. However, this effect was due to active 
sub-MIC effects of the drug as injection of beta-lactamase into the CSF immedi-
ately resulted in regrowth of the bacteria.

The study of aminoglycosides in experimental meningitis is hampered by the 
poor penetration of these water-soluble drugs across the lipid blood–brain barrier. 
Still a comparison in experimental E. coli meningitis of the efficacy of increasing 
doses of gentamicin administered once or thrice daily for 3 days showed an excel-
lent correlation with the cumulative AUC/MIC (Ahmed et  al. 1997). Maximum 
bactericidal activity was observed at a cumulative AUC/MIC value of 50.

The evaluation of different dosing regimens of fluoroquinolone antibiotics has 
been limited primarily to experimental pneumococcal meningitis. In one study the 
PK/PD index for gatifloxacin with the highest coefficient of determination in 
correlation with efficacy was the AUC/MBC (Lutsar et al. 1998). Looking at results 
from multiple studies with different fluoroquinolones against S. pneumoniae in 
rabbit meningitis, maximal bacterial killing occurred at peak/MBC values of 10–30 
and AUC/MBC ratios of 80–150 (Andes and Craig 1999).

�Abscess Models

Stearne et al. (2001) developed an abscess model in Balb/C mice by injecting sub-
cutaneously both Bacteroides fragilis and E. coli in 0.25  ml volumes into both 
flanks. Treatment with a fluoroquinolone (trovafloxacin) was started 3 days later 
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and continued for 2–5 days. The Cmax/MIC ratio was the PK/PD index that best cor-
related with bacterial reduction for both organisms. A subsequent study used higher 
inocula of B. fragilis and Enterobacter cloacae that were similarly injected, but 
treatment was with multiple different dosing regimens of ceftizoxime (Stearne 
et  al. 2007). Antibiotic therapy was started 30  min before injection of the two 
organisms (which would not allow for much initial in vivo growth before  
treatment) and continued for 24 h. They observed that the PK/PD index that best 
correlated with in vivo reduction of bacterial numbers of E. cloacae was the free 
drug AUC/MIC ratio. They also found that the same index correlated best with 
prevention of the emergence of resistant E. cloacae mutants to ceftizoxime. 
However, the magnitude of the index for prevention of resistance emergence was 
four times higher than for efficacy.
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