2
Probability Spaces

This chapter discusses the basic properties of probability spaces, and in particular,
probability measures. It also introduces the important ideas of set induction.

2.1 Basic Definitions and Properties

A probability space is a triple (2, B, P) where

e Q is the sample space corresponding to outcomes of some (perhaps hypo-
thetical) experiment.

e Bis the o-algebra of subsets of 2. These subsets are called events.

e P is a probability measure; that is, P is a function with domain B and range
[0, 1] such that

(i) P(A) =0forall A € B.
(ii) P is o-additive: If {A,, n > 1} are events in B that are disjoint, then

o ¢} o0
P((JAn =) PA4n).

n=1 n=1
(iii) P(Q) = 1.

Here are some simple consequences of the definition of a probability measure
p.
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2. Probability Spaces

1. We have

P(A°)=1-P(A)
since from (iii)
1=P(Q) =P(AUA®) = P(A) + P(A9),

the last step following from ().

. We have

P@)=0
since P@) = P(Q)=1-P(Q)=1-1.

. For events A, B we have

P(AUB) = PA+ PB — P(AB). 2.1)
To see this note
P(A) =P(AB°) + P(AB)
P(B) =P(BA°) + P(AB)

and therefore

P(AUB) =P(AB°UBA°UAB)
=P(AB°) + P(BAS) + P(AB)
=P(A) — P(AB) + P(B) — P(AB) + P(AB)
=P(A) + P(B) — P(AB).

. The inclusion—exclusion formula: If A4, ..., A, are events, then

P(JA) = Y_PA)- Y. PAiA))
j=1 j=1

1<i<j<n

+ Y PAAJAD) -

1<i<j<kz<n

(~1)"1P(Ay--- Ap). 22)

We may prove (2.2) by induction using (2.1) for n = 2. The terms on the
right side of (2.2) alternate in sign and give inequalities called Bonferroni
inequalities when we neglect remainders. Here are two examples:

n n
P(UA,-)sZPA,—
j=1 j=1
n n
P( A,-)ZZPAj— Y. PAA)).
j=1 j=1

i= 1si<j<n
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5. The monotonicity property: The measure P is non-decreasing: For events
A,B

If A C B then P(A) < P(B),
since

P(B) = P(A)+ P(B\ A) > P(A).

6. Subadditivity: The measure P is o -subadditive: For events A,,n > 1,

o0 o0
P (U A,,) <> P(4y).
n=1 n=1
To verify this we write
o0
(U An = A1 + ASA2 + A3ASAS + -,
n=1
and since P is o -additive,

o0
P(|J An) =P(A1) + P(A5A2) + P(A3A5A%) + - -

n=1

<P(A1) + P(A2) + P(A3) + - --
by the non-decreasing property of P.

7. Continuity: The measure P is continuous for monotone sequences in the
sense that

(i) If A, + A, where A, € B, then P(A,) * P(A).
(ii) If A, | A, where A, € B, then P(A,) | P(A).

To prove (i), assume
A1CACA3C---CA, C---
and define
By =A1,By=A\Ay,...,By=A,\ An_1,....

Then {B;} is a disjoint sequence of events and

n

oo
B =4, B = Jai =A.
i=1 i=1 i
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By o-additivity

o0 00 n
P(4)=P(JB) =) P®B)= lm t) PB)
i i i=1

i=1 i=1

n
= lim 1 P(,L=J1 B)) = lim_ 1 P(An).

To prove (ii), note if A, | A, then A, + A€ and by part (i)
P(AS) =1— P(Ay) t P(A°) =1— P(A)
so that PA, | PA.

8. More continuity and Fatou’s lemma: Suppose A, € B, forn > 1.

(i) Fatou Lemma: We have the following inequalities

P(liminfA,) < liminfP(A,)
n—o0 n—oo .
< limsup P(A,) < P(limsup A,).
n—>o0 n—»0o0

(ii) If A, —> A, then P(A,) — P(A).
Proof of 8. (ii) follows from (i) since, if A, — A, then

limsupA, =liminfA, = A.
n—00 n—>0o0

Suppose (i) is true. Then we get
P(A) = P(liminfA,) < liminf P(A,)
n—0o n—00
< limsup P(A,) < P(limsupA,) = P(A),

n—»0oo n—>0oo

so equality pertains throughout.

Now consider the proof of (i): We have

P(liminf A,) =P( lim 1 (") Av)

k>n
= lim 1 P(D, Ap)

(from the monotone continuity property 7)

<liminf P(A,)
n—>0o0
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since P(Ng>nAk) < P(Ay). Likewise

P(limsup A,) = P(nl_iggo J (U Ax))

n—00 kon
= lim | P(| }Ax)
n—00 kLan

(from continuity property 7)

> limsup P(A,),

n—>0o0
completing the proof. a

Example 2.1.1 Let Q@ = R, and suppose P is a probability measure on R. Define
F(x) by

F(x) = P((—00,x]), xe€R. 2.3)
Then
(i) F is right continuous,
(ii) F is monotone non-decreasing,
(iii) F has limits at +00
F(00):=1lim F(x) =1
x100
F(—00):= lim F(x)=0.
x}—00
Definition 2.1.1 A function F : R — [0, 1] satisfying (i), (ii), (iii) is called a
(probability) distribution function. We abbreviate distribution function by df.

Thus, starting from P, we get F from (2.3). In practice we need to go in the
other direction: we start with a known df and wish to construct a probability space
(2, B, P) such that (2.3) holds. See Section 2.5.

Proof of (i), (ii), (iii). For (ii), note that if x < y, then
(=00, x] C (=00, y]
so by monotonicity of P

F(x) = P((-00,x]) < P((—00,y]) < F(y).
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Now consider (iii). We have
F(o0) = lign F(xp) (for any sequence x, 1 00)
Xxn 100
= lim 1 P((—=00, )
xp 100
=P(lim % (—o0,x,]) (from property 7)
Xp 100
= P(| J(—00, x4]) = P((—00, 20))
n
=PR)=P(Q) =1.
Likewise,
F(-o0)= lim F(x,)= lim | P((—00,x,])
Xpd—00 Xnd—00
=P( lim (—o00,x,]) (from property 7)
Xnd—00

=P(()(=00,xx]) = P(@) = 0.

For the proof of (i), we may show F is right continuous as follows: Let x,, | x.
We need to prove F(x,) | F(x). This is immediate from the continuity property
7 of P and

(=00, xp] { (=00, x]. m]

Example 2.1.2 (Coincidences) The inclusion-exclusion formula (2.2) can be
used to compute the probability of a coincidence. Suppose the integers 1,2, ..., n
are randomly permuted. What is the probability that there is an integer left un-
changed by the permutation?

To formalize the question, we construct a probability space. Let §2 be the set of
all permutations of 1, 2, ..., n so that

Q={(x1,....xn):xi €{l,...,n}5i =1,...,n;x; #xj}.

Thus €2 is the set of outcomes from the experiment of sampling » times without
replacement from the population 1, ..., n. We let B = P(Q) be the power set of
Q and define for (x1,...,x,) € Q

1
P((xlv e ’xn)) = _'9
n!
andforB € B )
P(B) = F#elements in B.

Fori =1,...,n,let A; be the set of all elements of 2 with i in the ith spot.
Thus, for instance,

Ay ={(1,x2,...,x0) : (1, x2,...,X,) € 2},
A ={(x1,2,...,%x5) : (*¥1,2,...,X,) € Q}.
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and so on. We need to compute P(U?_; A;). From the inclusion-exclusion formula
(2.2) we have

P(UA)_ZP(A)— Y. PAAD+ ). P(AiAjAY)

1<i<j<n 1<i<j<kz=n

— e (mD)"IP(A1A5 .. Ap).

To compute P(A;), we fix integer i in the ith spot and count the number of
ways to distribute n — 1 objects in n — 1 spots, which is (n — 1)! and then divide
by n!. To compute P(A;A;) we fix i and j and count the number of ways to
distribute n — 2 integers into n — 2 spots, and so on. Thus

" _ (n=1)! n\ (n — 2)! n\ (n — 3)! |
P(Jan =n"— —(2) — +(3) e

i=1

1 1 nl
+ i (=1 o
Taking into account the expansion of €* for x = —1 we see that for large n, the

probability of a coincidence is approximately

n
P(U A)~1-e 120632
i=1 O

2.2 More on Closure

A o-field is a collection of subsets of 2 satisfying certain closure properties,
namely closure under complementation and countable union. We will have need
of collections of sets satisfying different closure axioms. We define a structure G
to be a collection of subsets of 2 satisfying certain specified closure axioms. Here
are some other structures. Some have been discussed, some will be discussed and
some are listed but will not be discussed or used here.

o field

e o-field

e semialgebra
e semiring

e ring

e o-ring

o monotone class (closed under monotone limits)
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e m-system (P is a m-system, if it is closed under finite intersections: A, B €
P impliess ANB € P).

e A-system (synonyms: o-additive class, Dynkin class); this will be used ex-
tensively as the basis of our most widely used induction technique.

Fix a structure in mind. Call it S. As with o -algebras, we can make the follow-
ing definition.

Definition 2.2.1 The minimal structure S generated by a class C is a non-empty
structure satisfying

(i) $OC,
(ii) If S’ is some other structure containing C, then S’ O S.
Denote the minimal structure by S(C).

Proposition 2.2.1 The minimal structure S exists and is unique.

As we did with generating a minimal o -field, let
N = (G : G isastructure , G D C}

and
SC) = ngeRg-

2.2.1 Dynkin’s theorem

Dynkin’s theorem is a remarkably flexible device for performing set inductions
which is ideally suited to probability theory.

A class of subsets £ of Q is a called a A-system if it satisfies either the new
postulates A1, A2, A3 or the old postulates A7, A5, A3 given in the following table.

A-system postulates
old [ new
All Qel A Qel
A\, |ALBeEL,ACB=>B\AeLl |A |AcL=A€L
Ay | An N Ane L= UpAp €L A | nFEm A A, =0,
Ape L=>UyA, € L.

The old postulates are equivalent to the new ones. Here we only check that
old implies new. Suppose A, A, A3 are true. Then A; is true. Since Q € L, if
A€ L, thenA C Qandby A, Q\ A = A° € L, which shows that A, is true. If
A, B € L are disjoint, we show that AUB € L. Now 2\ A€ Land B C 2\ A
(since w € B implies w ¢ A which means w € A° = Q\ A) so by 1), we have
(2\ A)\ B = A°B¢ € L and by A, we have (A°B°)° = AU B € L which is
A3 for finitely many sets. Now if A; € £ are mutually disjoint for j = 1,2, ...,
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define B, = U’}=1A j- Then B, € L by the prior argument for 2 sets and by A3
we have U, B, = lim,, 1 By € L. Since U, B, = U,A, we have U,A, € L
which is A3. o

Remark. It is clear that a o-field is always a A-system since the new postulates
obviously hold.

Recall that a w-system is a class of sets closed under finite intersections; that
is, P is a w-system if whenever A, B € P we have AB € P.

We are now in a position to state Dynkin’s theorem.

Theorem 2.2.2 (Dynkin’s theorem) (a) If P is a n-system and L is a A-system
such that P C L, theno(P) C L.

(b) If P is a m-system
o(P) = L(P),
that is, the minimal o -field over P equals the minimal A-system over P.

Note (b) follows from (a). To see this assume (a) is true. Since P C L(P), we
have from (a) that o (P) C L(P). On the other hand, o (P), being a o-field, is a
A-system containing P and hence contains the minimal A-system over P, so that
a(P) D L(P).

Before the proof of (a), here is a significant application of Dynkin’s theorem.

Proposition 2.2.3 Let P;, P, be two probability measures on (2, B). The class
L:={A € B: Pi(A) = P,(A)}
is a A-system.
Proof of Proposition 2.2.3. We show the new postulates hold:
(A1) Q € Lsince P1(Q) = P2(R) = 1.
(A2) A € Limplies A€ € L, since A € £ means P;(A) = P»(A), from which

Pi(A%) =1- Pi(A) =1 - Py(A) = P2(A°).

(A3) If {Aj} is a mutually disjoint sequence of events in £, then Pi(A;) =
P,(Aj) for all j, and hence

P JAp =) P@ap =) Paj=Pp(JA4)
J J J J

so that

UA]' eL.
J



38 2. Probability Spaces

Corollary 2.2.1 If P,, P, are two probability measures on (2, B) and if P is a
m-system such that
VAeP: Pi(A)= Py (A),

then
VBeo(P): Pi(B)= PyB).

Proof of Corollary 2.2.1. We have
L={AeB: P (A) = P,(A)}
is a A-system. But £ O P and hence by Dynkin’s theorem £ D o (P). m]

Corollary 2.2.2 Let 2 = R. Let Py, P; be two probability measures on (R, B(R))
such that their distribution functions are equal:

VxeR: Fi(x) = Pi((-00,x]) = Fa(x) = P3((~00, x]).

Then
P=pP
on B(R).

So a probability measure on R is uniquely determined by its distribution func-
tion.

Proof of Corollary 2.2.2, Let
P ={(—o00,x]:x e R}.
Then P is a -system since
(—00,x] N (—00,y] = (—00,x A y] € P.

Furthermore o (P) = B(R) since the Borel sets can be generated by the semi-
infinite intervals (see Section 1.7). So Fi(x) = Fz(x) for all x € R, means P} =
P, on P and hence P; = P; on o (P) = B(R). O

2.2.2 Proof of Dynkin’s theorem

Recall that we only need to prove: If P is a w-system and £ is a A-system then
P c Limplieso(P) C L.
We begin by proving the following proposition.

Proposition 2.2.4 If a class C is both a w-system and a A-system, then it is a
o-field.

Proof of Proposition 2.2.4. First we show C is a field: We check the field postu-
lates.
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(i) Q € Csince C is a A-system.
(ii) A € C implies A€ € C since C is a A-system.
(iii) If A; €C,for j =1,...,n,then ﬂ'}=1Aj € Csince C is a -system.

Knowing that C is a field, in order to show that it is a o-field we need to show
thatif Aj € C, for j > 1, then U‘]’.°=1Aj € C. Since

T

]
—

n

and U;=1A j € C (since C is a field) it suffices to show C is closed under monotone
non-decreasing limits. This follows from the old postulate A7, a

We can now prove Dynkin’s theorem.

Proof of Dynkin’s Theorem 2.2.2. It suffices to show L(P) is a w-system since
L(P) is both a w-system and a A-system, and thus by Proposition 2.2.4 also a
o-field. This means that

LDOLP)DP.
Since L(P) is a o-field containing P,
L(P) D> a(P)
from which
LD LMP)Do(P),
and therefore we get the desired conclusion that
L>Do(P).

We now concentrate on showing that £L(P) is a w-system. Fix aset A € o (P)
and relative to this A, define

Ga={Beo(P): AB € L(P)}.
We proceed in a series of steps.

[A] If A € L(P), we claim that G4 is a A-system.
To prove [A] we check the new A-system postulates.

(i) We have
Qefa

since AQ = A € L(P) by assumption.
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(ii) Suppose B € G4. We have that B°A = A \ AB. But B € G4 means
AB € L(P) and since by assumption A € L(P), we have A \ AB =
B¢A € L(P) since A-systems are closed under proper differences.
Since B€A € L(P), it follows that B¢ € G4 by definition.

(iii) Suppose {B;} is a mutually disjoint sequence and B; € G4. Then

o0 o0
andJBp=J4s;
j=1 j=1

is a disjoint union of sets in £L(P), and hence in L(P).

[B] Next, we claim that if A € P, then L(P) C G4.

To prove this claim, observe that since A € P C L(P), we have from [A]
that G4 is a A-system.

For B € P, we have AB € P since by assumption A € P and P is a
n-system. So if B € P, then AB € P C L(P) implies B € G4; that is

P C Ga. (24)
Since G4 is a A-system, G4 D L(P).

[B'] We may rephrase [B] using the definition of G4 to get the following state-
ment. If A € P, and B € L(P), then AB € L(P). (So we are making
progress toward our goal of showing L(P) is a w-system.)

[C] We now claim that if A € L(P), then L(P) C Ga.

To prove [C): If B € P and A € L(P), then from [B'] (interchange the
roles of the sets A and B) we have AB € L(P). So when A € L(P),

P C Ga.
From [A}, G4 is a A-system so L(P) C Ga.

[C'] To finish, we rephrase [C]: If A € L(P), then for any B € L(P), B € Ga.
This says that

AB € L(P)

as desired. O

2.3 Two Constructions

Here we give two simple examples of how to construct probability spaces. These
examples will be familiar from earlier probability studies and from Example 2.1.2,
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but can now be viewed from a more mature perspective. The task of constructing
more general probability models will be considered in the next Section 2.4

(i) Discrete models: Suppose 2 = {w;, @, ...} is countable. For each i, asso-
ciate to w; the number p; where

o0
Vi>1, pi>0and ) pi=1
i=1

Define B = P(R2), and for A € B, set

PA)=)_ pi

wi€A
Then we have the following properties of P:
(i) P(A)>0forall A € B.
(i) PQ=Y2,pi=1
(iii) P is o-additive: If Aj, j > 1 are mutually disjoint subsets, then

PJAap= ) pm=)_) b
j=1

a),'EUjAj j Wi€Aj

=) P(A)).
i
Note this last step is justified because the series, being positive, can be

added in any order.

This gives the general construction of probabilities when 2 is countable. Next
comes a time honored specific example of countable state space model.

(ii) Coin tossing N times: What is an appropriate probability space for the ex-
periment “toss a weighted coin N times”? Set

Q=1{0,1}¥ ={(w1,...,0N8) :w; =0o0r1}.
Forp>0,9 >0, p+gq =1, define
N . _SN . ' /
Py,...,on) = P j='w'qN T = P#1 sq*0s.

Construct a probability measure P as in (i) above: Let B = P(2) and for A C Q
define

P(A) =) po.

w€EA
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As in (i) above, this gives a probability model provided )", .q p» = 1. Note the
product form

N

i o 1-wi

Py,....on) = npw g
i=1

SO

Y Porw Z I_[p“"ql “
W1y ,ON

WN i=
= Z ]_[p“"q "‘”'(pq +pq)—---=1-
GWON-1 = ‘D

2.4 Constructions of Probability Spaces

The previous section described how to construct a probability space when the
sample space € is countable. A more complex case but very useful in applications
is when € is uncountable, for example, when Q = R, R¥, R*, and so on. For
these and similar cases, how do we construct a probability space which will have
given desirable properties? For instance, consider the following questions.

(i) Given a distribution function F(x), let 2 = R. How do we construct a
probability measure P on B(R) such that the distribution function corre-
sponding to P is F:

P((-00,x]) = F(x).

(i) How do you construct a probability space containing an iid sequence of
random variables or a sequence of random variables with given finite di-
mensional distributions.

A simple case of this question: How do we build a model of an infinite
sequence of coin tosses so we can answer questions such as:

(a) What is the probability that heads occurs infinitely often in an infinite
sequence of coin tosses; that is, how do we compute

P[ heads occurs i.o. ]?

(b) How do we compute the probability that ultimately the excess of
heads over tails is at least 17?

(c) In a gambling game where a coin is tossed repeatedly and a heads
results in a gain of one dollar and a tail results in a loss of one dollar,
what is the probability that starting with a fortune of x, ruin eventually
occurs; that is, eventually my stake is wiped out?
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For these and similar questions, we need uncountable spaces. For the coin toss-
ing problems we need the sample space

Q ={0, )N
={(w1, @2,...) 1 w; € {0,1}, i > 1}.

2.4.1 General Construction of a Probability Model

The general method is to start with a sample space €2 and a restricted, simple class
of subsets S of 2 to which the assignment of probabilities is obvious or natural.
Then this assignment of probabilities is extended to o (S). For example, if Q@ = R,
the real line, and we are given a distribution function F, we could take S to be

S={(@a,b]: -0 <a<b<o}
and then define P on S to be
P((a, b)) = F(b) — F(a).

The problem is to extend the definition of P from S to B(R), the Borel sets.
For what follows, recall the notational convention that Ef___l A; means a dis-
joint union; that is, that A, ..., A, are mutually disjoint and

n n
Y A=A
i=1 i=1

The following definitions help clarify language and proceedings. Given two
structures Gy, G, of subsets of 2 such that G; C G and two set functions

P,:Gw—[0,1], i=12,

we say P, is an extension of P; (or P; extends to P,) if P; restricted to G; equals
Py. This is written
Plg, = P

and means P,(A1) = Pi(A) for all Ay € Gi. A set function P with structure G
as domain and range [0, 1],
P:Gm [0,1],

is additive if for any n > 1 and any disjoint Ay, ..., A, € G such that ZLI A; €
G we have

n n
P()_A) =) P(4). (2.5)
i=1 i=1
Call P o-additive if the index n can be replaced by oo; that is, (2.5) holds for

mutually disjoint {A,,n > 1} withAj € G, j > 1 and Zj’il Ajeg.
We now define a primitive structure called a semialgebra.
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Definition 2.4.1 A class S of subsets of Q is a semialgebra if the following pos-
tulates hold:

(i) 9,2€S.
(ii) S is a w-system; that is, it is closed under finite intersections.

(iii) If A € S, then there exist some finite # and disjoint sets Cy, . .., Cn, With
each C; € Ssuchthat A = Y ;_, Ci.

The plan is to start with a probability measure on the primitive structure S,
show there is a unique extension to .A(S), the algebra (field) generated by S
(first extension theorem) and then show there is a unique extension from A(S)
to 0 (A(S)) = 0(S), the o-field generated by S (second extension theorem).

Before proceeding, here are standard examples of semialgebras.

Examples:

(a) Let @ = R, and suppose S; consists of intervals including @, the empty
set:

S ={(a,b]: -0 <a<b<ox}

If I1, I, € &1, then I1 13 is an interval and in S; and if I € Sp, then I€isa
union of disjoint intervals.

FIGURE 2.1 Intervals
(b) Let

Q=R ={(x1,...,. ) :x €Ri=1,...,k}
Sk = all rectangles (including @, the empty set ).

Note that we call A a rectangle if it is of the form

A=L x---xIi
where I; € Sy is aninterval, j = 1,..., k as in item (a) above. Obviously
@, Q are rectangles and intersections of rectangles are rectangles. When

k = 2 and A is a rectangle, the picture of A€ appears in Figure 2.2, showing
A€ can be written as a disjoint union of rectangles.
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_________
e
_________
FIGURE 2.2 Rectangles
For general £, let
k
A= x---x Ik,=m{(x1,...,xk) 1 x; € I}
i=1

so that
k ¢k
A= (n{(xl,...,xk) txi € 1;}) = (@13 i x e IF)
i=1 i=1

Since I; € Sy, we have I€ = I/ + I/, where I/, I € S are intervals.
1 13 l l l

Consider

Di={Uyx - xUg:Uy=Iyorlorl,

o’

a=1,...,k}
WhenUy =1, o =1,... ,k,thenU; x ... x Uy = A. So

A€ = Z Uy x --- x Ug.
Uy x--xUpeD
Not all Uy=1,, a=1,...k

This shows that S is a semialgebra. a

Starting with a semialgebra S, we first discuss the structure of A(S), the small-
est algebra or field containing S.

Lemma 2.4.1 (The field generated by a semialgebra) Suppose S is a semial-
gebra of subsets of Q. Then

AS) = {Z Si : I finite, {S;, i € I} disjoint, S; € S}, (2.6)
iel
is the family of all sums of finite families of mutually disjoint subsets of Q in S.
Proof. Let A be the collection on the right side of (2.6). It is clear that A D S (take

I to be a singleton set) and we claim A is a field. We check the field postulates in
Definition 1.5.2, Chapter 1 on page 12:
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() Qe Asince Qe S.

(ii) If 3 ;e Siand 3, S are two members of A, then

(Zs)N(s)= & ssyen

iel jeJ @i,j)elxJ

since {S; S}, (i, j) € I x J} is a finite, disjoint collection of members of the
mw-system S.

(ii) To check closure under complementation, let }";, S; € A and observe
[
(Z s,-) =(s¢.
iel iel

But from the axioms defining a semialgebra, S; € S implies

for a finite index set J; and disjoint sets {S; j»J € Ji}in S. Now observe
that N;es S; € A by the previously proven (iii).

So Ais afield, A D S and hence A D A(S). Since also

Z Si € A implies Z S; € A(S),
iel iel
we get A C A(S) and thus, as desired, A = A(S). |

It is now relatively easy to extend a probability measure from S to A(S).

Theorem 2.4.1 (First Extension Theorem) Suppose S is a semialgebra of sub-
sets of Qand P : S — [0, 1] is o -additive on S and satisfies P(Q) = 1. There is
a unique extension P’ of P to A(S), defined by

P'(Y sy =) P, @.7)
iel iel
which is a probability measure on A(S); that is P'(Y) = 1 and P’ is o-additive
on A(S).

Proof. We must first check that (2.7) defines P’ unambiguously and to do this,
suppose A € A(S) has two distinct representations

A= ZS,’ =ZS}.

iel jel
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We need to verify that

Y PGS) =) P(S) (2.8)

iel jeJ

so that P’ has a unique value at A. Confirming (2.8) is easy since S; C A and

therefore
Y P(S)=)_PSiA)=) P(Sin Y sh

iel iel iel jeJ
=Y _P()_S:S)
iel jeJ

and using the fact that S; = }_;; §;S; € S and P is additive on S, we get the
above equal to

=YY PSiS) =) > P(SiS).
iel jeJ jeJ iel
Reversing the logic, this equals
=2 P
jeJ

as required.
Now we check that P’ is o-additive on .A(S). Thus suppose fori > 1,

A = ZS,']' € A(S), S,‘j €S,
jeJi

and {A;,{ > 1} are mutually disjoint and
o0
A= ZA,' € A(S).
=

Since A € A(S), A also has a representation

A=Zsk, Sv€S, keKk,
keK

where K is a finite index set. From the definition of P’, we have

P'(A) = Z P(Sp).

keK

Write

00 00
Sk = StA = .ZSkAi = Z Zsksij-

i=1 i=1 jel;
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Now SS;j € Sand 3721 3 ;e j, SkSij = Sk € S, and since P is o-additive on
S, we have

D PSO=)_Y D P&Si) =YY PSS

keK keK i=1 jeJ; i=1 jeJ; keK

Again observe
ZSkS,-,- =AS;j=SijeS
keK

and by additivity of P on S

e 0
Z > Z P(SSij) =Z Z P(Sij),

i=1 jeJ; keK i=1 jeJ;

and continuing in the same way, we get this equal to

o0 o0

=) P()_Sij)=)_ P'A)
i=1 jelJ; i=1

as desired.

Finally, it is clear that P has a unique extension from S to A(S), since if P|
and Pz’ are two additive extensions, then for any

A=) "5 € AWS)
iel
we have
P{(A) =) _P(S) = Py(A).
iel
0
Now we know how to extend a probability measure from S to A(S). The next
step is to extend the probability measure from the algebra to the o-algebra.

Theorem 2.4.2 (Second Extension Theorem) A probability measure P defined
on a field A of subsets has a unique extension to a probability measure on o (A),
the o-field generated by A.

Combining the First and Second Extension Theorems 2.4.1 and 2.4.2 yields the
final result.

Theorem 2.4.3 (Combo Extension Theorem) Suppose S is a semialgebra of sub-
sets of 2 and that P is a o-additive set function mapping S into [0, 1] such that
P(2) = 1. There is a unique probability measure on o (S) that extends P.

The ease with which this result can be applied depends largely on how easily
one can check that a set function P defined on S is o-additive (as opposed to just
being additive). Sometimes some sort of compactness argument is needed.

The proof of the Second Extension Theorem 2.4.2 is somewhat longer than the
proof of the First Extension Theorem and is deferred to the next Subsection 2.4.2.
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2.4.2  Proof of the Second Extension Theorem

We now prove the Second Extension Theorem. We start with a field A and a
probability measure P on A so that P(2) = 1, and for all A € A, P(A) > 0 and
for {A;} disjoint, A; € A, Y2, A; € A, we have P(3_02, A;) = Y 12, P(A).
The proof is broken into 3 parts. In Part I, we extend P to a set function IT on
aclass G O A. In Part II we extend IT to a set function IT* on a class D D o (A)
and in Part III we restrict IT* to o (A) yielding the desired extension.
PART I. We begin by defining the class G:

g :={LJAAj :Aj € fu

j=1
={n1_i—)rgo T Bn . Bn € A, Bn C Bn+1, Vn}.

So G is the class of unions of countable collections of sets in .4, or equivalently,
since A is a field, G is the class of non-decreasing limits of elements of 4.

We also define a set function I1 : G — [0, 1] via the following definition: If
G =lim,_,« 1 B, € G, where B,, € A, define

MG) = lim 1 P(By). (2.9)

Since P is o-additive on .4, P is monotone on .4, so the monotone convergence
indicated in (2.9) is justified. Call the sequence {B,} the approximating sequence
to G. To verify that IT is well defined, we need to check that if G has two approx-
imating sequences {B,} and {B,},

G = lim t B, = lim 1 B,
n—>0o0 n—>00

then
lim 4 P(B,) = lim % P(B,',).
n—0o0 n—0o0

This is verified in the next lemma whose proof is typical of this sort of uniqueness
proof in that some sort of merging of two approximating sequences takes place.

Lemma 2.4.2 If {B,} and {B,} are two non-decreasing sequences of sets in A

and
o0 o0
Us.cUs.
n=1 n=1

then
lim 4 P(B,) < lim ¢ P(B,',).
n—->oo n—oo

Proof. For fixed m

lim 1 BuB, = Bn. (2.10)
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Since also

BnB, C B,

and P is continuous with respect to monotonely converging sequences as a con-
sequence of being o -additive (see Item 7 on page 31), we have

lim 4 P(B,) > lim t P(BnB,)= P(Bn),
n—-oo n—00

where the last equality results from (2.10) and P being continuous. The inequality
holds for all m, so we conclude that

. ’ N
lim 1 P(B;) > lim 1 P(Bn)

as desired. O

Now we list some properties of IT and G:

Property 1. We have

deg, MW =0,
Qedg, NWQ)=1,

andforG € G
0<T(G) <1 (2.11)
More generally, we have A C G and
Mg =P;

that is, [1(A) = P(A), for A € A.

The first statements are clear since, for example, if we set B, = 2 for all
n, then
A3B, =Q1 Q,

and
INe) = nl_l)ngo 1+ P(Q)=1

and a similar argument holds for @. The statement (2.11) follows from 0 <
P(B,) < 1 for approximating sets {B,} in .A. To show I1(A) = P(A) for
A, € A, take the approximating sequence to be identically equal to A.

Property 2. If G; € G fori =1, 2 then

Gi1UG2e G, GiNG2¢€g,
and

I1(G1 VU G2) + I1(G1 N G2) = T1(G1) + T1(G?). (2.12)
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This implies IT is additive on G.

To see this, pick approximating sets Bp1, Bp2 € A such that B,; 1 G; for
i =1,2asn — oo and then, since A is a field, it follows that

-ABBnIUBnZTGIUGZy
AaBnlanZTGlnGZ,

showing that G1 U G2 and G1 N G are in G. Further
P(Bnl ) BnZ) + P(Bnl N BnZ) = P(Bnl) + P(BnZ), (2-13)
from (2.1) on page 30. If we let n — oo in (2.13), we get (2.12).

Property 3. IT is monotone on G: If G; € G,i = 1,2 and G; C Gy, then
IT(G1) < 1(G37). This follows directly from Lemma 2.4.2.

Property 4. If G, € Gand G, 1 G,then G € G and
IT(G) = lim T1(Gp).
n—>0o0

So G is closed under non-decreasing limits and IT is sequentially mono-
tonely continuous. Combining this with Property 2, we get that if
{A;, i > 1} is a disjoint sequence of sets in G, Y 1o, A; € G and

M- A) =MClim 13" A = lim 11 49
i=1 i=1 i=1

i=1

i=1
So I1 is o -additive on G.

For each n, G, has an approximating sequence B,, , € A such that
lim 1 Bpp = Ghp. (2.14)
m-—>00

Define Dy = U)_; Bm,n- Since A is closed under finite unions, D, € A.
We show

lim 4 Dp =G, (2.15)
m-—>00

and if (2.15) is true, then G has a monotone approximating sequence of sets
in A, and hence G € G.

To show (2.15), we first verify {D,,} is monotone:

m m
Dy, = U Bm,n C U Bm+1,n
n=1 n=1
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(from (2.14))

m+1
C Bm+1,n = Dm+1~
n=1

Now we show {D,,} has the correct limit. If n < m, we have from the
definition of Dy, and (2.14)

m m
Bnn CDm=|JBmjc|JGj=6m
j=1 ]=1
that is,
Bmn C Dy C Gn. (2.16)
Taking limits on m, we have for any n > 1,
Gp= lim By, C lim + D, C lim 1 Gn=G
m—00 m-—00 m—00
and now taking limits on n yields
G=lm tG,C lim 4D, C lim 1G,=G (2.17)
n—>oo m—0Q0 m-—>00

which shows D,, 1 G and proves G € G. Furthermore, from the definition
of IT, we know I1(G) = lim;, 00 1 IT(Dyy).

It remains to show I1(G,) 1 I1(G). From Property 2, all sets appearing in
(2.16) are in G and from monotonicity property 3, we get

[(Bm,n) < (D) < TH(Gm).
Let m — oo and since G, = lim;y—00 1+ Bm,n We get
[(Gr) < lim 14 I1(Dp) < lim 1 [1(Gm)
m—>00 m—0o0
which is true for all n. Thus letting n — 00 gives
lim 4t I1(Gp) < lim TI(Dyp) < lim 1 II(Gp),
n—>oo m—>»00 m—00

and therefore
lim 1 I1(Gp) = lim TI(Dp).
n—0o0o m—00
The desired result follows from recalling

mli)moo (D) = I1(G).
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This extends P on A to a o-additive set function IT on G. 0O

PART 2. We next extend I1 to a set function IT* on the power set P(2) and
finally show the restriction of IT* to a certain subclass D of P(2) can yield the
desired extension of P.

We define IT* : P(Q) — [0, 1] by

VAeP(Q): T*A)=inf{TI(G):ACGeG) (2.18)

so IT*(A) is the least upper bound of values of IT on sets G € G containing A.
We now consider properties of IT*:

Property 1. We have on G:
Mg=1 (2.19)

and 0 < IT*(A) < 1forany A € P(Q).
It is clear that if A € G, then

Ae{G:ACGeG}

and hence the infimum in (2.18) is achieved at A.
In particular, from (2.19) we get

mQ) =R =1 M*@=NI0@ =0.
Property 2. We have for A1, A2 € P(Q)
IT*(A; U Ap) + TT*(A1 N A2) < TT*(A1) + [T%(A2) (2.20)
and taking A; = A, A2 = A€ in (2.20) we get
1 =TM*(Q) < T*(A) + [T*(A°), (2.21)

where we used the fact that [T*(2) = 1.

To verify (2.20), fix € > 0 and find G; € G such that G; D A;, and for
i=1,2,
€
IM*(A:) + 3 > I1(G)).

Adding over i = 1, 2 yields
T*(A1) + [T*(A2) + € > TI(GY) + T1(G2).
By Property 2 for I (see (2.12)), the right side equals
=I1(G1 U G2) + I1(G1 N Gy).

Since G1UG,2 D A1UA2,G1NG2 D A1 NA3, we get from the definition
of IT* that the above is bounded below by

> IT*(A; U A2) + TT* (A1 N A2).
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Property 3. IT* is monotone on P(S2). This follows from the fact that IT is mono-
tone on G.

Property 4. IT* is sequentially monotone continuous on P(S2) in the sense that
if Ay 1 A, then IT*(A,) 1 IT*(A).
To prove this, fix € > 0. for eachn > 1, find G, € G such that G, D A,
and

M*(An) + 26—,, > 1(G). 2.22)

Define G, = U —1Gm. Since G is closed under finite unions, G, € Gand
{G,} is obviously non-decreasing. We claim for all n > 1,

M*(4x) +€ ) 27 > T1(G)). 2.23)

i=1

We prove the claim by induction. For n = 1, the claim follows from (2.22)
and the fact that G| = G. Make the induction hypothesis that (2.23) holds
for n and we verify (2.23) for n + 1. We have

Apn CGnCGyand Ay C Apt1 C Grpa
and therefore A, C G, and A, C Gp41, SO
An CG,NGpi1 €G. (2.24)
Thus
(G, ) =M(G, UGnt1)
=I1(G,) + (Gp+1) — (G, N Gn+1)

from (2.12) for IT on G and using the induction hypothesis, (2.22) and the
monotonicity of IT*, we get the upper bound

< (n*mn) +e }":z-") + (M (An) + zi)

i=1
- IT*(An)
n+1
=€ ) 27" + IT*(Ant1)
i=1
which is (2.23) with n replaced by n + 1.

Let n — o0 in (2.23). Recalling IT* is monotone on P(S2), I1 is monotone
on G and G is closed under non-decreasing limits, we get

o0
lim 4 [T*(4,) +€ > lim_ 1 “(G'"’=“‘UIG3"'
]=
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Since

(o]

. !/

j=1

we conclude
lim 1 [T*(A,) > IT*(A).
n—>oo

For a reverse inequality, note that monotonicity gives

IT*(As) < IT*(A)

and thus

lim 4 M*(A,) < IT*(A).
n—00 ]

PART 3. We now retract IT* to a certain subclass D of P(2) and show IT*|p is
the desired extension.
We define
D :={D € P(Q) : T*(D) + M*(D°) = 1.}

Lemma 2.4.3 The class D has the following properties:
1. Disa o-field.
2. IT*|p is a probability measure on (2, D).

Proof. We first show D is a field. Obviously Q@ € D since IT*(2) = 1 and
IT*(@) = 0. To see D is closed under complementation is easy: If D € D, then

n*(D) + N*(D°) =1

and the same holds for D€,
Next, we show D is closed under finite unions and finite intersections. If D1, D, €
D, then from (2.20)

[1*(D, U D3) + IT*(D1 N Dy) <IT*(Dy) + IT*(D3y) (2.25)
I*((D1 U Dy)°) + II*((D1 N D)) <IT*(DY) + TT*(D5). (2.26)

Add the two inequalities (2.25) and (2.26) to get

T*(D1 U D2)+11*((D1 U D2)°)
+M*(D1 N D7) + MT*((D1 N D)) <2 (2.27)

where we used D; € D, i = 1,2 on the right side. From (2.21), the left side of
(2.27) is = 2, so equality prevails in (2.27). Again using (2.21), we see

T*(D1 U Dy) + IT*((D1 U Dy)°) =1
IT*(D1 N D2) + I*((D1 N D2)) =1.



56 2. Probability Spaces

Thus D1UD;, D1ND; € D and D is a field. Also, equality must prevail in (2.25)
and (2.26) (else it would fail in (2.27)). This shows that IT* is finitely additive on
D.

Now it remains to show that D is a o-field and IT* is o-additive on D. Since D
is a field, to show it is a o-field, it suffices by Exercise 41 of Chapter 1 to show
that D is a monotone class. Since D is closed under complementation, it is enough
to show that D, € D, D, 1 D implies D € D. However, D, 14 D implies, since
IT* is monotone and sequentially monotone continuous, that

o0
Jim 4 IT*(Dy) = I1*(|_J D) = M*(D).
n=1

Also, foranym > 1,

o0 o]
M* (| Dw)®) = I*((") DS) < T*(D§)
n=1 n=1

and therefore, from (2.21)

(e ¢] o0
1< (D) + *((J D)) < lim (D) + *(D})  (228)
n=1 n=1
and letting m — oo, we get using D, € D
1< lim [T*(Dy) + lim I*(Dg,)
n—0oo m—00
= lim (IT*(Dn) + H*(D;)) =1,
n—>00
and so equality prevails in (2.28). Thus, D, 1+ D and D, € D imply D € D and
D is both an algebra and a monotone class and hence is a o -algebra.
Finally, we show IT*|p is o-additive. If {D,} is a sequence of disjoint sets in

D, then because IT* is continuous with respect to non-decreasing sequences and
Dis afield

00 n
() D) =M*(lim » " Dy)
i=1 i=1

n
— 1 * .
L
and because I1* is finitely additive on D, this is

n 00
= lim ) M*Dy) =) N*Dy),
as desired.

Since D is a o-field and D D A, D D o (A). The restriction IT*|;(4) is the
desired extension of P on 4 to a probability measure on o (A). The extension
from A to o (A) must be unique because of Corollary 2.2.1 to Dynkin’s theorem.

O
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2.5 Measure Constructions

In this section we give two related constructions of probability spaces. The first
discussion shows how to construct Lebesgue measure on (0, 1] and the second
shows how to construct a probability on R with given distribution function F.

2.5.1 Lebesgue Measure on (0, 1]
Suppose

2 =(0,1],
B =B((0, 1]),
S={(@a,b]:0<a<bs1}

Define on S the function A : S — [0, 1] by
A@) =0, A(a,bl=b-—a.

With a view to applying Extension Theorem 2.4.3, note that A(A) > 0. To show
that A has unique extension we need to show that A is o-additive.
We first show that A is finitely additive on S. Let (a, b] € S and suppose

k
(@,b] = | @, bi),
i=1

where the intervals on the right side are disjoint. Assuming the intervals have been
indexed conveniently, we have

ai =a,bk=b,b,-=a,-+1, i=1,... ,k—l.

L X h'd 1 b ]
\ X J ]
a bi=a, b;=a, ccc by
({ h |
\ ]
a b

FIGURE 2.3 Abutting Intervals
Then A(a,b] = b —a and

k k
Z A(ai, bi] = Z(bi - a;)
i=1 i=1

=by—ay+by—ar+---+by—ax
=by—aj=b—a.

This shows A is finitely additive.
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We now show A is o-additive. Care must be taken since this involves an infinite
number of sets and in fact a compactness argument is employed to cope with the
infinities.

Let

(@,b] = J@;, bi]
i=1

and we first prove that

o0
b-a<) (bi—a). (229)
i=1
Pick ¢ < b — a and observe
* P
[a+eblc| (a,~, bi + 5) . (2.30)
i=1

The set on the left side of (2.30) is compact and the right side of (2.30) gives an
open cover, so that by compactness, there is a finite subcover. Thus there exists
some integer N such that

N
[a+e,5)c | (ainbi + 28—,) . 2.31)

i=1

It suffices to prove

N £
b—a—esZ(bi—ai+§) 2.32)
1
since then we would have

N 00
€
b—a—ssZ(bi—a;+§)SZ(bi—aiH-e; (2.33)
1 1

that is,

o0

b—a<) (bi—a)+2e. (2.34)

1

Since ¢ can be arbitrarily small

o0
b—aSZ(bi—ai)
1

as desired.
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Rephrasing relations (2.31) and (2.32) slightly, we need to prove that
N
[a.b] c (@i, bi) (235)
1
implies
N
b—a<) (bi—a) (2.36)
1

We prove this by induction. First note that the assertion that (2.35) implies
(2.36) is true for N = 1. Now we make the induction hypothesis that whenever
relation (2.35) holds for N — 1, it follows that relation (2.36) holds for N — 1. We
now must show that (2.35) implies (2.36) for N.

Suppose ay = vf’ a;, and

ay < b <by, (2.37)

with similar argument if (2.37) fails. Suppose relation (2.35) holds. We consider
two cases:

ay a b by
FIGURE 2.4 Case 1

a ay b by
FIGURE 2.5 Case 2

CASE 1: Suppose ay < a Then
N
b—a<by—ay=< Z(bi - a;).
1

CASE 2: Suppose ay > a. Then if (2.35) holds
N-1
[a,an] C | @i i)
1
so by the induction hypothesis

N-1
ay—a <) (bi—a)

i=1
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SO

b—a=b—ay+ay —a
N-1

<b—an+ ) (bi—a)
i=1
N-1
<by —an + ) (bi —a)
i=1

N
=Y (bi —a)
i=1

which is relation (2.36). This verifies (2.29).
We now obtain a reverse inequality complementary to (2.29). We claim that if

(a,b] = gl(a,-, bi], then for every n,
M@, b)=b—a>) @i b= (b —a). (238)
i=1 i=1

This is easily verified since we know A is finitely additive on S. For any n,
U?_, (@i, b;] is a finite union of disjoint intervals and so is

n m
(@, b]\ @i, bi] = | ] 1;.
i=1 j=1
So by finite additivity

M@, b)) =z J@i, biju | J 1),
\ —

i=1 j

which by finite additivity is

=Y A, b)) + ix(lj)
i=1 j=1
2 n

i

A((a;, bi]).
1

Let n — 00 to achieve
o0
M@, b)) = ) M(ai, bi)).
i=1

This plus (2.29) shows A is o-additive on S. a
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2.5.2 Construction of a Probability Measure on R with Given
Distribution Function F (x)

Given Lebesgue measure A constructed in Section 2.5.1 and a distribution func-
tion F(x), we construct a probability measure on R, Pr, such that

Pp((—00, x]) = F(x).
Define the left continuous inverse of F as

F ()=infs: F(s)>y}, 0<y<1 (2.39)

1
]
1
1
-

F(y) x
FIGURE 2.6

\

and define
A(y) :={s: F(s) > y}.
Here are the important properties of A(y).

(a) The set A(y) is closed. If s, € A(y), and s, | s, then by right continuity
y = F(sp) | F(s),
so F(s) > yands € A(y).Ifs, 1 s and s, € A(y), then
y<F(sp) t F(s—) < F(s)
and y < F(s) implies s € A(y).

(b) Since A(y) closed,
infA(y) € A(y);

that is,
F(F<(y) >y.

(c) Consequently,
Fo@) >tiffy > F()

or equivalently
Fo(y)<tiffy < F(t).
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The last property is proved as follows. If t < F*(y) = infA(y), then ¢ ¢
A(y), so that F(t) < y. Conversely, if F(y) <t, thent € A(y) and F(¢) > y.
Now define for A C R

EF(A) ={x € (0,1]: F*(x) € A).
If A is a Borel subset of R, then £r (A) is a Borel subset of (0, 1].
Lemma 2.5.1 If A € B(R), then £r(A) € B((0, 1)).
Proof. Define
G={ACR:&r(4) € B(O, 1]}
G contains finite intervals of the form (a, b] C R since from Property (c) of F*~
§r((a,b]) ={x € (0,1]: F* (x) € (a, b]}
={xe0,1]:a < FT(x) <b}
={x €(0,1]): F(a) <x < F(b)}
= (F(a), F(b)] € B((0, 1.
Also G is a o -field since we easily verify the o-field postulates:

(i) We have
Reg

since £r (R) = (0, 1].
(ii) We have that A € G implies A€ € G since
EF(AS) ={x € (0,1]: F(x) € A°)
={x € (0,1]: F~(x) € A} = (§r(A))".

(iii) G is closed under countable unions since if A, € G, then

gr(JAn =Jer(an

UA,, eqg.

So G contains intervals and G is a o -field and therefore
G D B(intervals ) = B(R). O
We now can make our definition of Pr. We define
Pp(A) = A(5F (A)),
where A is Lebesgue measure on (0, 1]. It is easy to check that PF is a probability
measure. To compute its distribution function and check that it is F, note that
Prp(—00,x] = A(§r(—00,x]) =My € (0,1] : F*(y) < x}
=My e©,1]:y < F()}
= A((0, F(x)]) = F(x). O

and therefore
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2.6 Exercises

1.

Let €2 be a non-empty set. Let Fo be the collection of all subsets such that
either A or A€ is finite.

(a) Show that Fy is a field.
Define for E € Fy the set function P by

0, if E is finite,

P(EY=1 1 ifEis finite.

(b) If Q is countably infinite, show P is finitely additive but not o-additive.
(c) If Q is uncountable, show P is o-additive on Fyg.
Let A be the smallest field over the -system P. Use the inclusion-exclusion

formula (2.2) to show that probability measures agreeing on P must agree
also on A.

Hint: Use Exercise 20 of Chapter 1.

Let (2, B, P) be a probability space. Show for events B; C A; the follow-
ing generalization of subadditivity:

P(U;Ai) — P(U;B) < Z(P(Ai) — P(B))).

Review Exercise 34 in Chapter 1 to see how to extend a o-field. Suppose P
is a probability measure on a o-field B and suppose A ¢ B. Let

By = o(B, A)

and show that P has an extension to a probability measure P; on B;. (Do
this without appealing directly to the Combo Extension Theorem 2.4.3.)

. Let P be a probability measure on B(R). For any B € B(R) and any € > 0,

there exists a finite union of intervals A such that
P(AAB) < e.
Hint: Define

G:={B € B(R) : Ve > 0, there exists a finite union of intervals
Ae such that P(AAB) < €}.

. Say events A1, Az, ... are almost disjoint if

P(AiNAj)=0, i#].

Show for such events

o0 o0
P Jan=> Pa&y.
j=1 j=1
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7. Coupon collecting. Suppose there are N different types of coupons avail-

able when buying cereal; each box contains one coupon and the collector
is seeking to collect one of each in order to win a prize. After buying n
boxes, what is the probability p, that the collector has at least one of each
type? (Consider sampling with replacement from a population of N dis-
tinct elements. The sample size is n > N. Use inclusion—exclusion formula

22))

. We know that Py = P, on B if P; = P; on C, provided that C generates B

and is a r-system. Show this last property cannot be omitted. For example,
consider 2 = {a, b, ¢, d} with

Pi({a}) = Pi({d)}) = Py({)) = Pa({ch) = %
and )
Pi((b) = Py((e) = Pala)) = Po((d} = 5.

Set
C = {{a, b}, {d,c}, {a,c}, {b,d}}.

. Background: Call two sets A1, A2 € B equivalent if P(A1AA3) = 0. For

aset A € B, define the equivalence class
A* = (B € B: P(BAA) =0}
This decomposes B into equivalences classes. Write
P*(A*) = P(A), VA e A*.

In practice we drop #s; that is identify the equivalence classes with the
members.

An atom in a probability space (2, B, P) is defined as (the equivalence
class of) a set A € B such that P(A) > 0,and if B C A and B € B, then
P(B) =0, or P(A\ B) = 0. Furthermore the probability space is called
non-atomic if there are no atoms; that is, A € B and P(A) > 0 imply that
there exists a B € Bsuchthat B C Aand 0 < P(B) < P(A).

(a) If Q = R, and P is determined by a distribution function F (x), show
that the atoms are {x : F(x) — F(x—) > 0}.

(b) If (2, B, P) = ((0,1], B((0, 1]), 1), where A is Lebesgue measure,
then the probability space is non-atomic.

(c) Show that two distinct atoms have intersection which is the empty set.
(The sets A, B are distinct means P(AAB) > 0. The exercise then
requires showing P(ABA@) = 0.)
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(d) A probability space contains at most countably many atoms. (Hint:
What is the maximum number of atoms that the space can contain
that have probability at least 1/n?)

(e) If a probability space (S2, B, P) contains no atoms, then for every
a € (0, 1] there exists at least one set A € B such that P(A) = a.
(One way of doing this uses Zorn’s lemma.)

(f) For every probability space (2, B, P) and any € > 0, there exists
a finite partition of Q by B sets, each of whose elements either has
probability < € or is an atom with probability > €.

(g) Metric space: On the set of equivalence classes, define
d(A%, A) = P(A104))

where A; € Af fori = 1, 2. Show d is a metric on the set of equiva-
lence classes. Verify

|P(A1) — P(A2)| < P(A1AA2)

so that P* is uniformly continuous on the set of equivalence classes.
P is o-additive is equivalent to

B> A, | @implies d(A*, #*) — 0.

Two events A, B on the probability space (S2, B, P) are equivalent (see
Exercise 9) if
P(ANB) = P(A)V P(B).

Suppose {B,, n > 1} are events with P(B,) = 1 for all n. Show
o0
P(()Bn) =1.
n=1

Suppose C is a class of subsets of 2 and suppose B C 2 satisfies B € o (C).
Show that there exists a countable class Cg C C such that B € o (Cp).

Hint: Define
G := {B C Q : 3 countable Cg C C such that B € o(Cp)}.
Show that G is a o-field that contains C.

If { Bx} are events such that
n
Y PB)>n-1,
k=1

then .
P(ﬂ By) > 0.
k=1



66

14.

15.

16.

17.

18.

19.
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If F is a distribution function, then F has at most countably many discon-
tinuities.

If §; and S; are two semialgebras of subsets of $2, show that the class
$185:={A14A2: A1 € 51, A € S}

is again a semialgebra of subsets of 2. The field (o-field) generated by
818, is identical with that generated by S; U Ss.

Suppose B is a o-field of subsets of 2 and suppose Q : B+ [0, 1] is a set
function satisfying

(a) Q is finitely additive on B.
(b) 0 < Q(A) < 1forall A € Band Q(Q) = 1.
(c) If A; € Bare disjointand Y ;2; A; = ©, then Y 2, Q(A;) = 1.

Show Q is a probability measure; that is, show Q is o -additive.
For a distribution function F (x), define

F~(y) =inf{t : F(t) > y}

F(y) =inf{t : F(t) > y}.

We know F;(y) is left-continuous. Show F,(y) is right continuous and
show
Mu € (0,1]: F~(u) # F,"(w)} =0,

where, as usual, A is Lebesgue measure. Does it matter which inverse we
use?

Let A, B, C be disjoint events in a probability space with
PA)=.6, PB)=.3, PC)=.1
Calculate the probabilities of every event in o (A, B, C).

Completion. Let (2, B, P) be a probability space. Call a set N null if
N € Band P(N) = 0. Call aset B C Q2 negligible if there exists a null
set N such that B C N. Notice that for B to be negligible, it is not required
that B be measurable. Denote the set of all negligible subsets by NV. Call B
complete (with respect to P) if every negligible set is null.

What if B is not complete? Define
B*:={AUM:AeB,MecN)}

(a) Show B* is a o-field.
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(b) If A; e Band M; € N fori =1,2and
AitUM; =AU M;,

then P(A1) = P(A3).
(c) Define P* : B* — [0, 1] by

P*(AUM)=P(A), AeB, MeN.

Show P* is an extension of P to B*.

d) fBcQandA; € B,i =1,2and Aj C B C Az and P(A;\ Ay) =
0, then show B € B*.

(e) Show B* is complete. Thus every o -field has a completion.

(f) Suppose Q@ = R and B = B(R). Let px > 0, >, px = 1. Let {a;} be
any sequence in R. Define P by

P({ak}) = pr, P(A) = Z pr, A€B.

ax€A

What is the completion of 5?

(g) Say that the probability space (S2, B, P) has a complete extension
(2, B4, Py) if B C By and P1|g = P. The previous problem (c)
showed that every probability space has a complete extension. How-
ever, this extension may not be unique. Suppose that (2, By, P) is
a second complete extension of (2, B, P). Show P; and P; may not
agree on By N B,. (It should be enough to suppose 2 has a small
number of points.)

(h) Is there a minimal extension?
20. In (0, 1], let B be the class of sets that either (a) are of the first category

or (b) have complement of the first category. Show that B is a o -field. For
A € B, define P(A) to be 0 in case (a) and 1 in case (b). Is P o-additive?

21. Let A be a field of subsets of € and let i be a finitely additive probability
measure on A. (This requires u(2) = 1.)

If A, € Aand A, | @, is it the case that u(A,) | 0? (Hint: Review
Problem 2.6.1 with A, = {n,n+1,...}.)

22. Suppose F(x) is a continuous distribution function on R. Show F is uni-
formly continuous.

23. Multidimensional distribution functions. For a, b, x € B(R¥) write
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a Sbiffa,' 5b,', i=1,...,k
(—oo,x]={ue B(Rk) :u<x}
(a,b] = {ueB(]R"):a <u<b}
Let P be a probability measure on B(R¥) and define for x € R¥
F(x) = P((—o0, X]).
Let S; be the semialgebra of k-dimensional rectangles in R*.
(a) If a <b, show the rectangle I; := (a, b] can be written as
Ik =("'(”, b] \ ((—wv (al7 b21 ey bk)]U

(=00, (b1, @z, . .., br)] U -+ - U (00, (b1, ba, ...,ak)])

(2.40)
where the union is indexed by the vertices of the rectangle other than
b.
(b) Show

B(R¥) = g ((—o0, x], x € RF).

(c) Check that {(—oo, X], x € R¥} is a 7-system.
(d) Show P is determined by F (x), x € R*.
(e) Show F satisfies the following properties:
D Ifx; > o00,i =1,...,k, then F(x) - 1.
(2) If for some i € {1,...,k} x; & —oo, then F(x) — 0.
(3) For S > Iy = (a, b}, use the inclusion-exclusion formula (2.2) to

show
P(Iy) = Ay, F.

The symbol on the right is explained as follows. Let V be the vertices
of Iy so that
V={(x1,...,x;) :xi=a;jorb;, i=1,...,k}.

Define for x € V

+1, if card{i : x; = a;} is even.

X) =
B =11 ifcard{i : x; = a;) is odd.

Then

ApF = Z sgn(x) F (x).
xeV
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(f) Show F is continuous from above:

lim F(x) = F(a).
a<xla

(g) Call F : R¥ > [0, 1] a multivariate distribution function if properties
(1), (2) hold as well as F is continuous from above and A, F >
0. Show any multivariate distribution function determines a unique
probability measure P on (R¥, B(R¥)). (Use the extension theorem.)

24. Suppose A is the uniform distribution on the unit square [0, 1]? defined by
its distribution function

22([0,61] x [0,62)) = 6162, (61, 62) € [0, 1]
(a) Prove that A; assigns 0 probability to the boundary of [0, 1]2.
(b) Calculate
2
22{(61,62) € [0,1]%: 6, A6, > 5}.
(c) Calculate

22{(61,602) € [0,1)7: 6, A6y <x,0; A Oy < y}.

25. In the game of bridge 52 distinguishable cards constituting 4 equal suits are
distributed at random among 4 players. What is the probability that at least
one player has a complete suit?

26. If Aq,..., A, are events, define
n
S1=)_ P(A)
i=1
Sa= Y P(AiA))

1<i<j<n

S3= ) P(AiAjA))

1<i<j<k=<n

and so on.

(a) Show the probability (1 <m < n)

p(m)=P[)_ 14 =m]
i=1
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of exactly m of the events occurring is

m+1 m+2
p(m) =Sy — ( )Sm+1 + ( )Sm+2
m m

—t (;>s". (2.41)

Verify that the inclusion-exclusion formula (2.2) is a special case of
(2.41).

(b) Referring to Example 2.1.2, compute the probability of exactly m co-
incidences.

27. Regular measures. Consider the probability space (Rk, B(R¥), P). A Borel
set A is regular if

P(A) =inf{P(G) : G D A, G open,}
and

P(A) =sup{P(F): F C A, F closed.}

P is regular if all Borel sets are regular. Define C to be the collection of
regular sets.

(a) ShowRF e C, 0B eC.
(b) Show C is closed under complements and countable unions.
(c) Let F(R¥) be the closed subsets of R¥. Show

FRM cc.

(d) Show B(R¥) c C; that is, show regularity.
(e) For any Borel set A

P(A) =sup{P(K): K C A, K compact.}
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