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2 
Probability Spaces 

This chapter discusses the basic properties of probability spaces, and in particular, 
probability measures. It also introduces the important ideas of set induction. 

2.1 Basic Definitions and Properties 

A probability space is a triple (Q, B, P) where 

• Q is the sample space corresponding to outcomes of some (perhaps hypo­
thetical) experiment. 

• B is the a-algebra of subsets of Q. These subsets are called events. 

• P is a probability measure; that is, P is a function with domain B and range 
[0, 1] such that 

(i) P(A) ~ 0 for all A e B. 

(ii) Pis a-additive: If {An. n ~ 1} are events in B that are disjoint, then 

00 00 

P(U An) = L P(An). 
n=l n=l 

(iii) P(Q) = 1. 

Here are some simple consequences of the definition of a probability measure 
P. 
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1. We have 
P(A') = 1- P(A) 

since from (iii) 

1 = P(Q) = P(A U A')= P(A) + P(A'), 

the last step following from (ii). 

2. We have 
P(0) = 0 

since P(0) = P(Q') = 1 - P(Q) = 1 - 1. 

3. For events A, B we have 

To see this note 

and therefore 

P(A U B)= PA + PB- P(AB). 

P(A) =P(AB') + P(AB) 

P(B) =P(BA') + P(AB) 

P(A U B) =P(AB' U BA' U AB) 

=P(AB') + P(BA') + P(AB) 

=P(A) - P(AB) + P(B) - P(AB) + P(AB) 

=P(A) + P(B) - P(AB). 

4. The inclusion-exclusion formula: If A 1, ... , An are events, then 

n n 

P(UAj) = LP(Aj)- L P(A;Aj) 
j=l j=l l~i<j~n 

+ L P(A;AjAk)- ... 

(2.1) 

(2.2) 

We may prove (2.2) by induction using (2.1) for n = 2. The terms on the 
right side of (2.2) alternate in sign and give inequalities called Bonferroni 
inequalities when we neglect remainders. Here are two examples: 

P (QAJ) ~ tPAJ 

P (Q AJ)?: ~PAJ- 19J;;~, P(A;AJ). 
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5. The monotonicity property: The measure P is non-decreasing: For events 
A,B 

If A C B then P(A) ,:::: P(B), 

since 

P(B) = P(A) + P(B \A) ::: P(A). 

6. Subadditivity: The measure Pis a-subadditive: For events An, n ::: 1, 

To verify this we write 

00 

UAn =A1 +A~Az+A3A~A2+ ... , 
n=l 

and since P is a-additive, 

00 

P(U An) =P(AI) + P(A~Az) + P(A3A~Az) + · · · 
n=l 

,::::P(AI) + P(A2) + P(A3) + · · · 

by the non-decreasing property of P. 

7. Continuity: The measure P is continuous for monotone sequences in the 
sense that 

(i) If An t A, where An E B, then P(An) t P(A). 

(ii) If An .J, A, where An E B, then P(An) .J, P(A). 

To prove (i), assume 

A 1 c Az c A3 c · · · c An c · · · 

and define 

Then {B;} is a disjoint sequence of events and 

n 00 

UB; =An, UB; =UA; =A. 
i=l i=l i 
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By a -additivity 

oo oo n 

P(A) =P(UB;) = LP(B;) = n~~ t LP(B;) 
i=I i=I i=I 

n 

= lim t P(U B;) = lim t P(An). 
n-+oo n-+oo 

i=I 

To prove (ii}, note if An .J.. A, then A~ t Ac and by part (i) 

P(A~) = 1- P(An) t P(Ac) = 1- P(A) 

so that PAn .J.. PA. 0 

8. More continuity and Fatou's lemma: Suppose An E B, for n 2: 1. 

(i) Fatou Lemma: We have the following inequalities 

P(liminfAn) ~ liminfP(An) 
n-+oo n-+oo 

~ lim sup P(An) ~ P(limsupAn). 
n-+00 n-+oo 

(ii) If An -+ A, then P(An) -+ P(A). 

Proof of 8. (ii) follows from (i) since, if An -+ A, then 

limsupAn = liminfAn =A. 
n-+oo n-+oo 

Suppose (i) is true. Then we get 

P(A) = P(lim inf An) ~ lim inf P(An) 
n-+oo n-+oo 

~ limsupP(An) ~ P(limsupAn) = P(A), 
n-+oo n-+oo 

so equality pertains throughout. 

Now consider the proof of (i): We have 

P(liminfAn) =P( lim t <n Ak)) 
n-+00 n-+oo 

k~n 

= lim t P<n Ak) 
n-+oo 

k~n 

(from the monotone continuity property 7) 

~lim inf P(An) 
n-+oo 
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P(limsupAn) = P( lim t <U Ak)) 
n-H>O n-+00 k?!_n 

= lim t P(U Ak) 
n-+00 

k?!_n 

(from continuity property 7) 

:::: lim sup P(An). 
n-+00 

completing the proof. D 

Example 2.1.1 Let Q = IR, and suppose P is a probability measure on JR. Define 
F(x) by 

F(x) = P((-oo,x]), x e JR. 

Then 

(i) F is right continuous, 

(ii) F is monotone non-decreasing, 

(iii) F has limits at ±oo 

F(oo) := lim F(x) = 1 
xtoo 

F(-oo) := lim F(x) = 0. 
x.j.-oo 

(2.3) 

Definition 2.1.1 A function F : lR ~ [0, 1] satisfying (i), (ii), (iii) is called a 
(probability) distribution function. We abbreviate distribution function by df. 

Thus, starting from P, we get F from (2.3). In practice we need to go in the 
other direction: we start with a known df and wish to construct a probability space 
(Q , B, P) such that (2.3) holds. See Section 2.5. 

Proof of (i), (ii), (iii). For (ii), note that if x < y, then 

(-oo,x] c (-oo,y] 

so by monotonicity of P 

F(x) = P((-oo,x]):::; P((-oo,y]):::; F(y). 
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Now consider (iii). We have 

F(oo) = lim F(xn) 
Xntoo 

(for any sequence Xn t oo) 

= lim t P((-OO,Xn]) 
Xntoo 

= P( lim t ( -oo, Xn]) 
Xntoo 

(from property 7) 

=P(U(-oo,xn]) = P((-oo, oo)) 
n 

= P(IR) = P(Q) = 1. 

Likewise, 

F(-oo) = lim F(Xn) = lim -1. P((-OO, Xn]) 
Xni-oo Xni-oo 

=P( lim (-OO,Xn]) 
Xni-oo 

(from property 7) 

=P<n<-oo.xnD = P(eJ) = o. 
n 

For the proof of (i), we may show F is right continuous as follows: Let Xn -1. x . 
We need to prove F(xn) -1. F(x) . This is immediate from the continuity property 
7 of P and 

(-OO,Xn] -1. (-oo, x] . 0 

Example 2.1.2 (Coincidences) The inclusion·exclusion formula (2.2) can be 
used to compute the probability of a coincidence. Suppose the integers 1, 2, . . . , n 
are randomly permuted. What is the probability that there is an integer left un· 
changed by the permutation? 

To formalize the question, we construct a probability space. Let Q be the set of 
all permutations of 1, 2, ... , n so that 

Q ={(XI, . .. , Xn) : Xi E {1, .. . , n}; i = 1, . .. , n ; Xi :;f Xj }. 

Thus Q is the set of outcomes from the experiment of sampling n times without 
replacement from the population 1, . .. , n. We let B = P(Q) be the power set of 
Q and define for (XI. . . . , Xn) E Q 

and forB E B 

1 
P((xl> ... , Xn)) = - , 

n! 

1 0 

P(B) =-#elements m B. 
n! 

Fori = 1, . . . , n, let A; be the set of all elements of Q with i in the ith spot. 
Thus, for instance, 

AI ={(1, Xz, .. . , Xn): (1, xz, . . . , Xn) E Q}, 

Az ={(XI,2, ... ,Xn): (XI.2 , .. . ,Xn) E Q}. 
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and so on. We need to compute P(U?=1A;). From the inclusion-exclusion formula 
(2.2) we have 

n n 

P(UA;) = LP(A;)- L P(A;Aj) + 
i=l i=l l::,i<j::,n 

To compute P(A; ), we fix integer i in the ith spot and count the number of 
ways to distribute n- 1 objects inn- 1 spots, which is (n- 1)! and then divide 
by n!. To compute P(A;Aj) we fix i and j and count the number of ways to 
distribute n - 2 integers into n - 2 spots, and so on. Thus 

P(lJA;) =n (n -1)! _ (n) (n- 2)! + (n) (n- 3)! _ ... (-1)n2_ 
i=l n! 2 n! 3 n! n! 

1 1 n 1 
=1 - 2! + 3!- ... (-1) n!" 

Taking into account the expansion of ,r for x = -1 we see that for large n, the 
probability of a coincidence is approximately 

n 

P(U A;)~ 1- e-1 ~ 0.632. 
i=l 

2.2 More on Closure 

0 

A a-field is a collection of subsets of n satisfying certain closure properties, 
namely closure under complementation and countable union. We will have need 
of collections of sets satisfying different closure axioms. We define a structure g 
to be a collection of subsets of Q satisfying certain specified closure axioms. Here 
are some other structures. Some have been discussed, some will be discussed and 
some are listed but will not be discussed or used here. 

• field 

• a-field 

• semialgebra 

• semiring 

• ring 

• a-ring 

• monotone class (closed under monotone limits) 
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• ]"(-system (P is a ]"(-system, if it is closed under finite intersections: A, B E 

P implies A n B E P ). 

• >..-system (synonyms: a-additive class, Dynkin class); this will be used ex­
tensively as the basis of our most widely used induction technique. 

Fix a structure in mind. Call itS. As with a-algebras, we can make the follow­
ing definition. 

Definition 2.2.1 The minimal structure S generated by a class C is a non-empty 
structure satisfying 

(i) s :> c, 

(ii) If S' is some other structure containing C, then S' :> S. 

Denote the minimal structure by S(C). 

Proposition 2.2.1 The minimal structure S exists and is unique. 

As we did with generating a minimal a-field, let 

~ = {g : g is a structure , g :> C} 

and 

2.2.1 Dynkin's theorem 

Dynkin's theorem is a remarkably flexible device for performing set inductions 
which is ideally suited to probability theory. 

A class of subsets .C of Q is a called a >..-system if it satisfies either the new 
postulates >..1, >..2, AJ or the old postulates>..~,>..;,>..) given in the following table. 

>..-system postulates 
old new 

>..; Qe.C At Qe.C 
>..; A, B E .C, A C B ~ B \ A E .C >..2 A E .C ~AcE .C 
>..' 3 An t, An E .C ~ UnAn E .C AJ n =f. m, AnAm = 0, 

An E .C ~ UnAn E .C. 

The old postulates are equivalent to the new ones. Here we only check that 
old implies new. Suppose >..;, >..;, >..) are true. Then .l..t is true. Since Q E .C, if 
A E .C, then A C Q and by>..;, Q \A = Ac E .C, which shows that >..2 is true. If 
A, B E .C are disjoint, we show that A U B E .C. Now Q \ A E .C and B C Q \ A 
(since (J) E B implies (J) fl. A which means (J) E Ac = Q \A) so by>..; we have 
(Q \A)\ B = AcBc E .C and by >..2 we have (AcBc)c =AU BE .C which is 
AJ for finitely many sets. Now if A j E .Care mutually disjoint for j = 1, 2, ... , 
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define Bn = U}=tAi . Then Bn e £by the prior argument for 2 sets and by >..3 
we have UnBn = limn-+oo t Bn E £ . Since UnBn = UnAn we have UnAn E £ 
which is AJ. 0 

Remark. It is clear that a a-field is always a >..-system since the new postulates 
obviously hold. 

Recall that a rr -system is a class of sets closed under finite intersections; that 
is, 'Pis a rr-system if whenever A, B e 'P we have AB e 'P. 

We are now in a position to state Dynkin's theorem. 

Theorem 2.2.2 (Dynkin's theorem) (a) lf'P is a rr-system and£ is a >..-system 
such that P c £, then a ('P) C £. 

(b) lf'P is a rr-system 

a('P) = £('P), 

that is, the minimal a-field over P equals the minimal >..-system over P. 

Note (b) follows from (a). To see this assume (a) is true. Since 'P c C('P), we 
have from (a) that a('P) c C('P). On the other hand, a('P), being a a-field, is a 
>..-system containing P and hence contains the minimal >..-system over 'P, so that 
a ('P) ::> £('P). 

Before the proof of (a), here is a significant application of Dynkin's theorem. 

Proposition 2.2.3 Let Pt. Pz be two probability measures on (Q, 8). The class 

£ :={A e 8: Pt(A) = Pz(A)} 

is a >..-system. 

Proof of Proposition 2.2.3. We show the new postulates hold: 

(J..t) n E £since Pt(fl) = Pz(n) = 1. 

(J..z) A e £implies Ace£, since A E £means Pt(A) = Pz(A), from which 

(J..3) If {A i} is a mutually disjoint sequence of events in £ , then P1 (A i) = 
Pz (A i) for all j, and hence 

P1(UAj) = LPt(Aj) = L:Pz(Aj) = Pz<UAj) 
j j j j 

so that 

0 
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Corollary 2.2.1 If Pt. P2 are two probability measures on (Q, B) and ifP is a 
;r-system such that 

'v'A e P: Pt(A) = P2(A), 

then 
'v'B e a(P): Pt(B) = P2(B). 

Proof of Corollary 2.2.1. We have 

C ={A e B: Pt(A) = P2(A)} 

is a A-system. But C :::> P and hence by Dynkin's theorem C :::> a(P). 0 

Corollary 2.2.2 Let n = JR. Let Pt, P2 be two probability measures on (JR., B(IR.)) 
such that their distribution functions are equal: 

'v'x E JR.: Ft(X) = Pt((-oo,x)) = F2(x) = P2((-oo,x]). 

Then 

on B(IR.). 

So a probability measure on JR. is uniquely determined by its distribution func­
tion. 

Proof of Corollary 2.2.2. Let 

P = {(-oo,x]: x e JR.}. 

Then P is a ;r -system since 

(-oo,x) n (-oo,y] = (-oo,x Ay) E P. 

Furthermore a (P) = B(IR.) since the Borel sets can be generated by the semi­
infinite intervals (see Section 1.7). SoFt (x) = F2(x) for all x e JR., means Pt = 
P2 on P and hence Pt = P2 on a(P) = B(IR.). 0 

2.2.2 Proof of Dynkin 's theorem 

Recall that we only need to prove: If Pis a ;r-system and Cis a A-system then 
P C C implies a (P) C C. 

We begin by proving the following proposition. 

Proposition 2.2.4 If a class C is both a ;r -system and a A-system, then it is a 
a-field. 

Proof of Proposition 2.2.4. First we show C is a field: We check the field postu­
lates. 
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(i) Q E C since C is a A.-system. 

(ii) A e C implies A c e C since C is a A.-system. 

(iii) If A i e C, for j = 1, ... , n, then nJ=l A i e C since Cis an-system. 

Knowing that Cis a field, in order to show that it is a a-field we need to show 
that if A i e C, for j 2: 1, then Uf=1A i E C. Since 

oo n 

UA· =lim t UA-
1 n-+oo 1 

j=l j=l 

and Uj =I A i e C (since Cis a field) it suffices to show C is closed under monotone 
non-decreasing limits. This follows from the old postulate>..;. 0 

We can now prove Dynkin's theorem. 

Proof of Dynkin's Theorem 2.2.2. It suffices to show .C('P) is a 1r -system since 
.C('P) is both a n-system and a A.-system, and thus by Proposition 2.2.4 also a 
a-field. This means that 

.c :::> .C('P) :::> 'P. 

Since .C('P) is a a-field containing 'P, 

.C('P) :::> a ('P) 

from which 

.C :::> .C('P) :::> a('P), 

and therefore we get the desired conclusion that 

.C :::> a('P). 

We now concentrate on showing that .C('P) is an-system. Fix a set A e a('P) 
and relative to this A, define 

gA ={BE a('P): AB E .C('P)}. 

We proceed in a series of steps. 

[A) If A e .C('P), we claim that gA is a A.-system. 

To prove [A) we check the new A.-system postulates. 

(i) We have 
n egA 

since An = A e .C('P) by assumption. 
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(ii) Suppose B E QA. We have that Be A =A\ AB. But B E QA means 
AB E .C('P) and since by assumption A E .C(P), we have A\ AB = 
Be A E .C(P) since A.-systems are closed under proper differences. 
Since Be A E .C(P), it follows that Be E QA by definition. 

(iii) Suppose {B j} is a mutually disjoint sequence and B j E 9A· Then 

00 00 

A n ( U B j) = U AB j 
j=l j=l 

is a disjoint union of sets in .C(P), and hence in .C(P). 

[B] Next, we claim that if A E P, then .C(P) C QA. 

To prove this claim, observe that since A E P C .C(P), we have from [A] 
that QA is a A.-system. 

ForB E P, we have AB E P since by assumption A E P and Pis a 
rr-system. So if B E P, then AB E P c .C(P) implies B E QA; that is 

(2.4) 

Since QA is a A.-system, 9A ::> .C(P). 

[B'] We may rephrase [B] using the definition of QA to get the following state­
ment. If A E P, and B E .C(P), then AB E .C(P). (So we are making 
progress toward our goal of showing .C(P) is a rr -system.) 

[C] We now claim that if A E £(P), then C(P) C QA · 

To prove [C]: If B E P and A E .C(P), then from [B'] (interchange the 
roles of the sets A and B) we have AB E .C(P). So when A E .C(P), 

From [A], 9A is a A.-system so .C(P) C QA. 

[C'] To finish, we rephrase [C]: If A E .C(P), then for any B E .C(P), B E QA. 
This says that 

ABE .C(P) 

as desired. 0 

2.3 Two Constructions 

Here we give two simple examples of how to construct probability spaces. These 
examples will be familiar from earlier probability studies and from Example 2.1.2, 
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but can now be viewed from a more mature perspective. The task of constructing 
more general probability models will be considered in the next Section 2.4 

(i) Discrete models: Suppose n = {w1, w2, ... } is countable. For each i, asso­
ciate to wi the number Pi where 

00 

Vi 2:: 1, Pi 2:: 0 and LPi = 1. 
i=l 

Define 13 = P(Q), and for A e 13, set 

P(A) = L Pi· 
w;EA 

Then we have the following properties of P: 

(i) P(A) 2:: 0 for all A E 13. 

(ii) P(Q) = L~l Pi = 1. 

(iii) P is a-additive: If A j, j 2:: 1 are mutually disjoint subsets, then 

00 

P<U A j) = L Pi = L L Pi 
j=l w;EUjAj j w;EAj 

= LP(Aj). 

Note this last step is justified because the series, being positive, can be 
added in any order. 

This gives the general construction of probabilities when n is countable. Next 
comes a time honored specific example of countable state space model. 

(ii) Coin tossing N times: What is an appropriate probability space for the ex­
periment "toss a weighted coin N times"? Set 

Q = {0, 1}N ={(WI. ... ,WN): Wi = 0 or 1}. 

For p 2:: 0, q 2:: 0, p + q = 1, define 

Construct a probability measure P as in (i) above: Let 13 = P(n) and for A c n 
define 

P(A) = LPw· 
we A 
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As in (i) above, this gives a probability model provided Lwen Pw = 1. Note the 
product form 

so 

N n w· 1-w· 
P(WJ, . .. ,WN) = p 'q I 

i=l 

n 

L PwJ , ... ,WN = L npw;ql-w; 
WJ, . .. ,WN WJ, .•. ,WN i=l 

0 

2.4 Constructions of Probability Spaces 

The previous section described how to construct a probability space when the 
sample space Q is countable. A more complex case but very useful in applications 
is when Q is uncountable, for example, when n = JR., JR.k, 1R.00 , and so on. For 
these and similar cases, how do we construct a probability space which will have 
given desirable properties? For instance, consider the following questions. 

(i) Given a distribution function F(x), let Q = JR.. How do we construct a 
probability measure P on B(lR.) such that the distribution function corre­
sponding to P is F: 

P((-oo,x]) = F(x). 

(ii) How do you construct a probability space containing an iid sequence of 
random variables or a sequence of random variables with given finite di­
mensional distributions. 

A simple case of this question: How do we build a model of an infinite 
sequence of coin tosses so we can answer questions such as: 

(a) What is the probability that heads occurs infinitely often in an infinite 
sequence of coin tosses; that is, how do we compute 

P[ heads occurs i.o. ]? 

(b) How do we compute the probability that ultimately the excess of 
heads over tails is at least 17? 

(c) In a gambling game where a coin is tossed repeatedly and a heads 
results in a gain of one dollar and a tail results in a loss of one dollar, 
what is the probability that starting with a fortune of x, ruin eventually 
occurs; that is, eventually my stake is wiped out? 
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For these and similar questions, we need uncountable spaces. For the coin toss­
ing problems we need the sample space 

Q ={0, 1}N 

={(WJ, wz, ... ) : Wj E {0, 1}, i ~ 1}. 

2.4.1 General Construction of a Probability Model 

The general method is to start with a sample space Q and a restricted, simple class 
of subsets S of Q to which the assignment of probabilities is obvious or natural. 
Then this assignment of probabilities is extended to a(S). For example, ifQ =JR., 
the real line, and we are given a distribution function F, we could take S to be 

S ={(a, b]: -oo =::a =:: b =:: oo} 

and then define P on S to be 

P((a, b]) = F(b) - F(a). 

The problem is to extend the definition of P from S to B(JR.), the Borel sets. 
For what follows, recall the notational convention that I:7=t A; means a dis­

joint union; that is, that At, ... , An are mutually disjoint and 

The following definitions help clarify language and proceedings. Given two 
structures gt, g2 of subsets of Q such that gt C g2 and two set functions 

P; : Q; ...... [0, 1 ], i = 1, 2, 

we say P2 is an extension of Pt (or Pt extends to P2) if P2 restricted to gt equals 
Pt. This is written 

P2lg1 = Pt 

and means P2(At) = Pt (At) for all At e Qt. A set function P with structure g 
as domain and range [0, 1 ], 

P:Q ...... [0,1], 

is additive iffor any n ~ 1 and any disjoint At. ... , An e g such that I:7=t A; e 
Qwe have 

n n 

P<:LA;) = LP(A;). (2.5) 
i=t i=t 

Call P a -additive if the index n can be replaced by oo; that is, (2.5) holds for 
mutually disjoint {An, n ~ 1} with A j e Q, j ::: 1 and L~t A j e g. 

We now define a primitive structure called a semialgebra. 



44 2. Probability Spaces 

Definition 2.4.1 A class S of subsets of Q is a semialgebra if the following pos­
tulates hold: 

(i) 0, Q E S. 

(ii) Sis a rr-system; that is, it is closed under finite intersections. 

(iii) If A E S, then there exist some finite nand disjoint sets Ct. ... , Cn, with 
each Ci E S such that A c = L7=1 Ci. 

The plan is to start with a probability measure on the primitive structure S, 
show there is a unique extension to A(S), the algebra (field) generated by S 
(first extension theorem) and then show there is a unique extension from A(S) 
to a(A(S)) = a(S), the a-field generated by S (second extension theorem). 

Before proceeding, here are standard examples of semialgebras. 

Examples: 

(a) Let Q = JR, and suppose S1 consists of intervals including 0, the empty 
set: 

S1 ={(a, b]: -oo.::: a ,::: b,::: oo}. 

If h , [z E S1. then h [z is an interval and in S1 and if I E St, then I c is a 
union of disjoint intervals. 

(b) Let 

0 
I 

1 

FIGURE 2.1 Intervals 

Q = JRk ={(XI, ... , Xk): Xi E JR, i = 1, ... , k} 

Sk = all rectangles (including 0, the empty set). 

Note that we call A a rectangle if it is of the form 

A=hX···Xh 

where Ij E S1 is an interval, j = 1, . . . , k as in item (a) above. Obviously 
0, Q are rectangles and intersections of rectangles are rectangles. When 
k = 2 and A is a rectangle, the picture of A c appears in Figure 2.2, showing 
A c can be written as a disjoint union of rectangles. 
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FIGURE 2.2 Rectangles 

For general k, let 

so that 

k 

A= It X . .. X h.= n{(XJ, . . . ,Xk) : xi E /i} 
i=l 

Since Ii E S1. we have I{= I!+![', where 1;, I;' ESt are intervals. 

Consider 

'D := {Ut X •.. X uk : Ua = Ia or/~ or I; , ct = 1, ... ' k}. 

When Ua =I a. ct = 1, . .. 'k, then Ut X •.• X uk =A. So 

U1 X· ·· XUke'D 

Not all Ua=la. a=l , .. . ,k 

This shows that sk is a semialgebra. 0 

Starting with a semialgebra S, we first discuss the structure of A(S), the small­
est algebra or field containing S. 

Lemma 2.4.1 (The field generated by a semialgebra) Suppose S is a semial­
gebra of subsets of Q.. Then 

A(S) ={LSi : I finite, {Si. i E I} disjoint, si E S}, (2.6) 
iEI 

is the family of all sums of finite families of mutually disjoint subsets of Q. in S. 

Proof. Let A be the collection on the right side of (2.6). It is clear that A :J S (take 
I to be a singleton set) and we claim A is a field. We check the field postulates in 
Definition 1.5.2, Chapter 1 on page 12: 
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(i) Q e A since Q e S. 

(iii) If Lie/ Si and LjeJ Sj are two members of A, then 

(Lsi) n (L:si) = L SiS} E A 
ie/ jeJ (i, j)e/xJ 

since {SiS], (i, j) E I x J} is a finite, disjoint collection of members of the 
1r-system S. 

(ii) To check closure under complementation, let Lie/ Si E A and observe 

( L:si)c = nsr 
ie/ ie/ 

But from the axioms defining a semialgebra, Si e S implies 

Sf= L:sij 
jeJ; 

for a finite index set Ji and disjoint sets {Sij, j E J;} in S. Now observe 
that nieiSf E A by the previously proven (iii). 

So A is a field, A :J Sand hence A :J A(S). Since also 

LSi E A implies LSi e A(S), 
ie/ ie/ 

we get A C A(S) and thus, as desired, A= A(S). 

It is now relatively easy to extend a probability measure from S to A(S). 

0 

Theorem 2.4.1 (First Extension Theorem) Suppose S is a semia/gebra of sub­
sets ofQ and P: S t-+ [0, 1) is a-additive on Sand satisfies P(Q) = 1. There is 
a unique extension P' of P to A(S), defined by 

P'<L:Si) = LP(Si), (2.7) 
ie/ ie/ 

which is a probability measure on A(S); that is P' (Q) = 1 and P' is a -additive 
on A(S). 

Proof. We must first check that (2. 7) defines P' unambiguously and to do this, 
suppose A e A(S) has two distinct representations 

A= L:si = L:sj. 
ie/ jeJ 
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We need to verify that 

LP(S;) = LP(Sj) (2.8) 
ie/ jeJ 

so that P' has a unique value at A. Confirming (2.8) is easy since S; c A and 
therefore 

L P(S;) = L P(S;A) = L P(S; n L Sj) 
ie/ ie/ ie/ jeJ 

= LP(LS;Sj) 
ie/ jeJ 

and using the fact that S; = LjeJ S;Sj E Sand P is additive on S, we get the 
above equal to 

= LLP(S;Sj) = LLP(S;Sj). 
ie/ jeJ jeJ ie/ 

Reversing the logic, this equals 

as required. 
Now we check that P' is a-additive on A(S). Thus suppose fori ~ 1, 

A; = L Sij E A(S), S;j E S, 
jEJi 

and {A;, i ~ 1} are mutually disjoint and 

00 

A= LA; E A(S). 
i=l 

Since A e A(S), A also has a representation 

A= L sk. sk e s, k e K, 
keK 

where K is a finite index set. From the definition of P', we have 

P'(A) = L P(Sk). 
keK 

Write 
00 00 

sk = skA = L:skA; = L L sksij· 
i=l i=l jEJi 
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Now SkSij e Sand I:~1 LjeJ; SkSij = Sk e S, and since Pis a-additive on 
S, we have 

00 00 

L P(Sk) = L L L P(SkSij) = L L L P(SkSij ). 
keK keK i=l jeJ; i=l jeJ; keK 

Again observe 
L sksij = AS;i = S;i e s 
keK 

and by additivity of P on S 

and continuing in the same way, we get this equal to 

00 00 

= LP(LSij) = LP'(A;) 
i=l jeJ; i=l 

as desired. 
Finally, it is clear that P has a unique extension from S to A(S), since if P{ 

and P2 are two additive extensions, then for any 

A= LS; e A(S) 
ie/ 

we have 
p; (A) = L P(S;) = P2(A). 

ie/ 
0 

Now we know how to extend a probability measure from S to A(S). The next 
step is to extend the probability measure from the algebra to the a-algebra. 

Theorem 2.4.2 (Second Extension Theorem) A probability measure P defined 
on a field A of subsets has a unique extension to a probability measure on a (A), 
the a -field generated by A 

Combining the First and Second Extension Theorems 2.4.1 and 2.4.2 yields the 
final result. 

Theorem 2.4.3 (Combo Extension Theorem) SupposeS is a semialgebra of sub­
sets of Q and that P is a a -additive set function mappingS into [0, 1] such that 
P(Q) = 1. There is a unique probability measure on a(S) that extends P. 

The ease with which this result can be applied depends largely on how easily 
one can check that a set function P defined on Sis a-additive (as opposed to just 
being additive). Sometimes some sort of compactness argument is needed. 

The proof of the Second Extension Theorem 2.4.2 is somewhat longer than the 
proof of the First Extension Theorem and is deferred to the next Subsection 2.4.2. 
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2.4.2 Proof of the Second Extension Theorem 

We now prove the Second Extension Theorem. We start with a field A and a 
probability measure P on A so that P(Q) = 1, and for all A E A, P(A) ~ 0 and 
for {A;} disjoint, A; E A, :[~1 A; E A, we have P(:[~1 A;) = :[~1 P(A; ). 

The proof is broken into 3 parts. In Part I, we extend P to a set function n on 
a class g :::) A. In Part II we extend n to a set function n* on a class D :::) a(A) 
and in Part III we restrict n * to a (A) yielding the desired extension. 

PART I. We begin by defining the class g: 

00 

g :={ U A j : A j e A} 
j=l 

={ lim t Sn : Sn E A, Sn C Sn+l. 'v'n}. 
n~oo 

So g is the class of unions of countable collections of sets in A, or equivalently, 
since A is a field, g is the class of non-decreasing limits of elements of A. 

We also define a set function n : g t-+ [0, 1] via the following definition: If 
G = limn~oo t Sn E g, where Sn E A, define 

n(G) = lim t P(Bn). 
n~oo 

(2.9) 

Since Pis a-additive on A, Pis monotone on A, so the monotone convergence 
indicated in (2.9) is justified. Call the sequence {Sn} the approximating sequence 
to G. To verify that n is well defined, we need to check that if G has two approx­
imating sequences {Sn} and {S~}, 

G = lim t Sn = lim t S~ 
n~oo n~oo 

then 
lim t P(Sn) = lim t P(B~). 
n~oo n~oo 

This is verified in the next lemma whose proof is typical of this sort of uniqueness 
proof in that some sort of merging of two approximating sequences takes place. 

Lemma 2.4.2 If {Bn} and {B~} are two non-decreasing sequences of sets in A 
and 

00 00 

Usn c Us~. 
n=l n=l 

then 
lim t P(Sn) ~ lim t P(S~) . 
n~oo n~oo 

Proof. For fixed m 

(2.10) 
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Since also 
BmB~ c B~ 

and P is continuous with respect to monotonely converging sequences as a con­
sequence of being a-additive (see Item 7 on page 31), we have 

lim t P(B~) :::: lim t P(BmB~) = P(Bm), 
n-+oo n-+00 

where the last equality results from (2.10) and P being continuous. The inequality 
holds for all m, so we conclude that 

lim t P(B~) :::: lim t P(Bm) 
n ..... oo m ..... oo 

as desired. 

Now we list some properties of nand 9: 

Property 1. We have 

and forGE g 

0 E g, 
neg, 

n(0) = o, 

n<n> = 1, 

o ~ n(G) ~ 1. 

More generally, we have A C g and 

niA=P; 

that is, n(A) = P(A), for A EA. 

0 

(2.11) 

The first statements are clear since, for example, if we set Bn = n for all 
n, then 

A~ Bn = Q t Q, 

and 
n(n) = lim t P(Q) = 1 

n ..... oo 

and a similar argument holds for 0. The statement (2.11) follows from 0 ~ 
P(Bn) ~ 1 for approximating sets {Bn} in A. To show n(A) = P(A) for 
An e A, take the approximating sequence to be identically equal to A. 

Property 2. If G; e g fori= 1, 2 then 

GtUG2eg, GtnG2eg, 

and 

n(Gt u Gz) + n(Gt n Gz) = n(Gt) + n(Gz). (2.12) 
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This implies n is additive on g, 
To see this, pick approximating sets Bnt. Bn2 E A such that Bni t G; for 
i = 1, 2 as n ~ oo and then, since A is a field, it follows that 

A 3 Bnt U Bn2 t Gt U Gz, 

A 3 Bnt nBnz t Gt nGz, 

showing that Gt U Gz and Gt n Gz are in Q. Further 

P(Bnt U Bnz) + P(Bnt n Bnz) = P(Bnt) + P(Bnz), (2.13) 

from (2.1) on page 30. If we let n ~ oo in (2.13), we get (2.12). 

Property 3. n is monotone on Q: If G; e Q, i = 1, 2 and Gt c Gz, then 
n(Gt) ~ n(Gz). This follows directly from Lemma 2.4.2. 

Property 4. If Gn E g and Gn t G, then G E g and 

n(G) = lim n(Gn). 
n-+oo 

So g is closed under non-decreasing limits and n is sequentially mono­
lonely continuous. Combining this with Property 2, we get that if 
{A; , i ::: 1} is a disjoint sequence of sets in Q, L:~1 A; E Q and 

00 n n 

n<"' A;) =n( lim t "'A;)= lim t n<"' A;) ~ n-+00 ~ n-+oo ~ 
i=l i=l i=l 

n 00 

= lim t "'n(A;) = "'P(A;). 
n-+oo ~ ~ 

i=l i=l 

Son is a-additive on Q. 

For each n, Gn has an approximating sequence Bm,n E A such that 

lim t Bm,n = Gn . 
m-+oo 

(2.14) 

Define Dm = u:=l Bm,n. Since A is closed under finite unions, Dm E A. 
We show 

lim t Dm = G, 
m-+00 

(2.15) 

and if (2.15) is true, then G has a monotone approximating sequence of sets 
in A. and hence G E Q. 

To show (2.15), we first verify {Dm} is monotone: 

m m 

Dm = U Bm,n C U Bm+l,n 
n=l n=l 
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(from (2.14)) 

m+l 

C U Bm+l,n = Dm+l· 
n=l 

Now we show {Dm} has the correct limit. If n < m, we have from the 
definition of Dm and (2.14) 

m m 

Bm ,n C Dm = UBm ,j C UGj =Gm; 
j=l j=l 

that is, 

(2.16) 

Taking limits on m, we have for any n ::: 1, 

Gn = lim t Bm,n C lim t Dm C lim t Gm = G 
m-+oo m-+oo m-+00 

and now taking limits on n yields 

G = lim t Gn C lim t Dm C lim t Gm = G 
n-+oo m-+oo m-+oo 

(2.17) 

which shows Dm t G and proves G e g. Furthermore, from the definition 
of n, we know n(G) = limm ..... oo t n(Dm). 

It remains to show n(Gn) t n(G). From Property 2, all sets appearing in 
(2.16) are in g and from monotonicity property 3, we get 

Let m ~ 00 and since Gn = limm-+oo t Bm,n we get 

which is true for all n. Thus letting n ~ oo gives 

lim t n(Gn) :::;: lim TI(Dm):::;: lim t TI(Gm), 
n-+oo m-+oo m-+00 

and therefore 

lim t TI(Gn) = lim TI(Dm). 
n-+oo m-+00 

The desired result follows from recalling 

lim TI(Dm) = TI(G). 
m-+00 
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This extends P on A to a a-additive set function non g. D 

PART 2. We next extend n to a set function n* on the power set 'P(Q) and 

finally show the restriction of n• to a certain subclass V of 'P(Q) can yield the 

desired extension of P. 
We define n* : 'P(Q) ~--+ [0, 1] by 

VA E 'P(Q) : n*(A) = inf{n(G): A C G E Q}, (2.18) 

so n*(A) is the least upper bound of values of non sets G E g containing A. 
We now consider properties of n*: 

Property 1. We have on g: 

n*lg = n 
and 0 ~ n*(A) ~ 1 for any A E 'P(Q). 

It is clear that if A E g, then 

A E {G :A C G E 9} 

and hence the infimum in (2.18) is achieved at A. 

In particular, from (2.19) we get 

n*(n) = n(n) = 1, n*(0) = n(0) = o. 

Property 2. We have for At. Az E 'P(Q) 

(2.19) 

n*(At u Az) + n*(At n Az) ~ n*(At) + n*(Az) (2.20) 

and taking At =A, Az = Ac in (2.20) we get 

1 = n*(Q) ~ n*(A) + n*(Ac), (2.21) 

where we used the fact that n*(Q) = 1. 

To verify (2.20), fix t: > 0 and find G; E g such that G; :::> A;, and for 
i = 1, 2, 

* € n (A;)+ 2 ::::: n(G;). 

Adding over i = 1, 2 yields 

n*(At) + n*(Az) + t: ::::: n(Gt) + n(Gz). 

By Property 2 for n (see (2.12)), the right side equals 

= n(Gt u Gz) + n(Gt n Gz). 

Since Gt UGz :::>At UAz, Gt nGz :::>At nAz, we get from the definition 
of n* that the above is bounded below by 

::::: n *(At u Az) + n*(At n Az) . 
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Property 3. n* is monotone on P(Q). This follows from the fact that n is mono­
tone on Q. 

Property 4. n* is sequentially monotone continuous on P(Q) in the sense that 
if An t A, then n*(An) t n*(A). 

To prove this, fix € > 0. for each n 2: 1, find Gn e 9 such that Gn :::> An 
and 

(2.22) 

Define G~ = U~=1 Gm. Since 9 is closed under finite unions, G~ e 9 and 
{G~} is obviously non-decreasing. We claim for all n 2: 1, 

n 

n*(An) +E L2-i 2: n(G~). (2.23) 
i=l 

We prove the claim by induction. For n = 1, the claim follows from (2.22) 
and the fact that c; = G I· Make the induction hypothesis that (2.23) holds 
for n and we verify (2.23) for n + 1. We have 

An C Gn C G~ and An CAn+ I C Gn+I 

and therefore An C G~ and An C Gn+I• so 

An C G~ n Gn+I e Q. 

Thus 

n(G~+I) =n(G~ u Gn+t> 

=n(G~) + n(Gn+t)- n(G~ n Gn+I) 

(2.24) 

from (2.12) for n on 9 and using the induction hypothesis, (2.22) and the 
monotonicity of n*' we get the upper bound 

~ ( n*(An) + € ~ 2-i) + ( n*(An+I) + 2:) 

- n*(An) 

n+I 
=€ L 2-i + n*(An+I) 

i=l 

which is (2.23) with n replaced by n + 1. 

Let n ~ oo in (2.23). Recalling n* is monotone on P(Q), n is monotone 
on 9 and 9 is closed under non-decreasing limits, we get 

00 

lim t n*(An) +€ 2: lim t n(G~) = n<U G',.). 
n-+oo n-+oo 

j=l 
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Since 
00 

A = lim tAn C U G'1· E 9, 
n-+oo 

j=l 

we conclude 
lim t n*(An) :::: n*(A). 

n-+00 

For a reverse inequality, note that monotonicity gives 

and thus 
lim t n*(An) :;: n*(A). 

n-+oo 0 

PART 3. We now retract n• to a certain subclass Vof'P(Q) and show n*lv is 
the desired extension. 

We define 
V := {D E 'P(Q) : n*(D) + n*(Dc) = 1.} 

Lemma 2.4.3 The class V has the following properties: 

1. V is a a-field. 

2. n* lv is a probability measure on (Q, V). 

Proof. We first show V is a field. Obviously Q E V since n*(Q) = 1 and 
n*(0) = 0. To see Vis closed under complementation is easy: If D E V, then 

and the same holds for De. 
Next, we show V is closed under finite unions and finite intersections. If D1, Dz E 

V, then from (2.20) 

n*(Dt u Dz) + n*(Dt n Dz) :::n*(Dt) + n*(Dz) (2.25) 

n*((Dt u Dzn + n*((Dt n Dz)c) :::n*(D~) + n*(D~). (2.26) 

Add the two inequalities (2.25) and (2.26) to get 

n*(Dt u Dz)+n*((Dt u Dzn 

+ n*(Dt n Dz) + n*((Dt n Dz)c) :;: 2 (2.27) 

where we used D; E V, i = 1, 2 on the right side. From (2.21), the left side of 
(2.27) is:::: 2, so equality prevails in (2.27). Again using (2.21), we see 

n*(Dt u Dz) + n*((Dt u Dz{) =1 

n*(Dt n Dz) + n*((Dt n Dzn =1. 
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Thus Dt UD2, Dt nD2 E V and Vis a field. Also, equality must prevail in (2.25) 
and (2.26) (else it would fail in (2.27)). This shows that n* is finitely additive on 
v. 

Now it remains to show that Vis a a-field and n* is a-additive on V. Since V 
is a field, to show it is a a-field, it suffices by Exercise 41 of Chapter 1 to show 
that V is a monotone class. Since V is closed under complementation, it is enough 
to show that Dn E V, Dn t D implies D E V. However, Dn t D implies, since 
n* is monotone and sequentially monotone continuous, that 

00 

lim t n*(Dn) = n*<U Dn) = n*(D). 
n-+00 

n=I 

Also, for any m ::: 1, 

00 00 

n*«U Dnn = n*<n D~) ~ n*<D~) 
n=I n=l 

and therefore, from (2.21) 
00 00 

1 ~ n*<U Dn) + n*((U Dn)c) ~ lim n*(Dn) + n*(D~) (2.28) 
n-+oo 

n=I n=l 

and letting m ~ oo, we get using Dn E V 

1 ~ lim n*(Dn) + lim n*(D~) 
n-+oo m-+oo 

= lim (n*(Dn) + n*(D~)) = 1, 
n-+00 

and so equality prevails in (2.28). Thus, Dn t D and Dn E V imply D E V and 
V is both an algebra and a monotone class and hence is a a -algebra. 

Finally, we show n*lv is a-additive. If {Dn} is a sequence of disjoint sets in 
V, then because n* is continuous with respect to non-decreasing sequences and 
Vis a field 

oo n 

n*<"' D;) =n*< lim ""D;) ~ n-+oo~ 
i=l i=l 

n 

= lim n*("' D;) 
n-+00 ~ 

i=l 

and because n* is finitely additive on V, this is 

n oo 

= lim ""n*(D;) = ""n*(D;), 
n-+oo~ ~ 

i=l i=l 

as desired. 
Since Vis a a-field and V ~ A, V ~ a(A). The restriction n*lu<A> is the 

desired extension of P on A to a probability measure on a(A). The extension 
from A to a (A) must be unique because of Corollary 2.2.1 to Dynkin 's theorem. 

0 
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2.5 Measure Constructions 

In this section we give two related constructions of probability spaces. The first 
discussion shows how to construct Lebesgue measure on (0, 1] and the second 
shows how to construct a probability on lR with given distribution function F. 

2.5.1 Lebesgue Measure on (0, 1] 

Suppose 

Q =(0, 1], 

B = 8((0, 1]), 

S ={(a, b] : 0.::; a .::; b.::; 1}. 

Define on S the function ). : S ~ [0, 1] by 

).(0) = 0, ).(a , b] = b- a. 

With a view to applying Extension Theorem 2.4.3, note that ).(A) ::: 0. To show 
that). has unique extension we need to show that). is a-additive. 

We first show that). is finitely additive on S . Let (a, b] e Sand suppose 

k 

(a,b] = U<a;,bi], 
i=l 

where the intervals on the right side are disjoint. Assuming the intervals have been 
indexed conveniently, we have 

a1 =a, bk = b, b; = a;+l• i = 1, ... , k- 1. 

a 

FIGURE 2.3 Abutting Intervals 

Then ).(a, b] = b- a and 

k k 

I><a;, bi] = L (b; - ai) 
i=l i=l 

b 

= b1 - a1 + b2 - a2 + · · · + bk - ak 

= bk - a1 = b - a. 

This shows ). is finitely additive. 
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We now show A. is a-additive. Care must be taken since this involves an infinite 
number of sets and in fact a compactness argument is employed to cope with the 
infinities. 

Let 

00 

(a, b] = U<a;, b;] 
i=1 

and we first prove that 

00 

b- a::: L(b;- aj). (2.29) 
i=1 

Pick £ < b - a and observe 

00 ( £ 
(a+£, b] C U a;, b; + i). 

i=1 2 
(2.30) 

The set on the left side of (2.30) is compact and the right side of (2.30) gives an 
open cover, so that by compactness, there is a finite subcover. Thus there exists 
some integer N such that 

It suffices to prove 

N £ 

[a+£,b]cU(a;,b;+ 1 ). 
i=1 2 

N £ 

b - a - £ =:: L ( b; - a; + 2i ) 

1 

since then we would have 

(2.31) 

(2.32) 

N £ oo 

b - a - £ ::: L ( b; - a; + 2i ) =:: L (b; -a;) + £; (2.33) 
1 1 

that is, 

00 

b-a::: L(b; -a;)+2£. 
1 

Since £ can be arbitrarily small 

as desired. 

00 

b - a ::: L (b; - a;) 
1 

(2.34) 
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Rephrasing relations (2.31) and (2.32) slightly, we need to prove that 

implies 

N 

[a , b] c U<a;, b;) 
1 

N 

b- a::=: L(b;- a;) . 
1 

(2.35) 

(2.36) 

We prove this by induction. First note that the assertion that (2.35) implies 
(2.36) is true for N = 1. Now we make the induction hypothesis that whenever 
relation (2.35) holds for N - 1, it follows that relation (2.36) holds for N - 1. We 
now must show that (2.35) implies (2.36) for N. 

Suppose aN = vf a;, and 

(2.37) 

with similar argument if (2.37) fails. Suppose relation (2.35) holds. We consider 
two cases: 

a b 

FIGURE 2.4 Case 1 

a b 

FIGURE 2.5 Case 2 

CASE 1: Suppose ON ::=:a Then 

N 

b- a::=: bN- aN::=: L(b;- a;). 
1 

CASE 2: Suppose aN >a. Then if (2.35) holds 

N-1 

[a,aN]C U<a;,b;) 
1 

so by the induction hypothesis 

N - 1 

aN- a::=: L(b;- a;) 
i=1 
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so 

b -a =b -ON +ON -a 
N-I 

:::;b-aN+ L (b;- a;) 
i=l 

N-I 

:::;bN -aN+ L(b; -a;) 
i=I 

N 

= L(b; -a;) 
i=I 

which is relation (2.36). This verifies (2.29). 
We now obtain a reverse inequality complementary to (2.29). We claim that if 

(a, b] = L:~1 (a;, b; ], then for every n, 

n n 

J.((a, b]) = b- a~ L J.((a;, b;]) = L(b;- a;). (2.38) 
i=I i=I 

This is easily verified since we know >. is finitely additive on S. For any n, 
U7=I (a;, b;] is a finite union of disjoint intervals and so is 

n m 

(a, b] \ U<a;, b;] =: U lj. 
i=l j=l 

So by finite additivity 

n m 

>.((a, b]) =>-(U(a;, b;] U U Ij), 
i=l j=I 

which by finite additivity is 

n m 

= 2:>-((a;,b;]) + 2:>-(/j) 
i=I j=I 

n 

~ 2:>-((a;,b;]). 
i=l 

Let n ~ oo to achieve 

00 

J.((a,b]) ~ 2:>-((a;,b;]). 
i=l 

This plus (2.29) shows>. is a-additive on S . 0 
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2.5.2 Construction of a Probability Measure on lR with Given 
Distribution Function F (x) 

Given Lebesgue measure>.. constructed in Section 2.5.1 and a distribution func­
tion F(x), we construct a probability measure on JR., PF, such that 

PF((-oo,x]) = F(x). 

Define the left continuous inverse of F as 

and define 

F ..... (y) = inf{s: F(s):::: y}, 0 < y :s 1 

F(x) 

r(y) 

FIGURE2.6 

A(y) := {s: F(s):::: y}. 

Here are the important properties of A (y). 

(2.39) 

X 

(a) The set A(y) is closed. If sn E A(y), and sn .J.. s, then by right continuity 

y :S F(sn) .J.. F(s), 

so F(s) :::: y and s E A(y). If Sn t sand Sn E A(y), then 

y :S F(sn) t F(s-) :S F(s) 

andy :s F(s) implies s e A(y). 

(b) Since A (y) closed, 
infA{y) E A(y); 

that is, 

(c) Consequently, 
F ..... (y) >tiff y > F(t) 

or equivalently 
F.,_(y) :S t iffy :S F(t). 
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The last property is proved as follows. If t < r- (y) = inf A (y ), then t ~ 
A(y), so that F(t) < y. Conversely, if F-(y) ~ t, then t E A(y) and F(t) :::: y. 

Now define for A C I. 

~F(A) = {x E (0, 1): F-(x) E A}. 

If A is a Borel subset of 1., then ~F (A) is a Borel subset of (0, 1 ]. 

Lemma 2.5.1 If A E 8(1.), then ~F(A) E 8((0, 1]). 

Proof. Define 

g ={A C I.: ~F(A) E 8((0, 1))}. 

g contains finite intervals of the form (a, b) C I. since from Property (c) of p-

~F((a, b]) = {x e (0, 1]: F-(x) e (a, b]} 

= {x E (0, 1]: a < F-(x) ~ b} 

={x E (0, 1): F(a) < x ~ F(b)} 

= (F(a), F(b)] E 8((0, 1]). 

Also g is a a-field since we easily verify the a-field postulates: 

(i) We have 
Reg 

since ~F (1.) = (0, 1 ]. 

(ii) We have that A e g implies A c e g since 

~F(Ac) = {x E (0, 1) : F-(x) E Ac} 

= {x E (0, 1]: F-(x) E A}c = (~F(AW. 
(iii) g is closed under countable unions since if An e g, then 

~F<UAn) = u~F(An) 
n n 

and therefore 

So g contains intervals and g is a a-field and therefore 

g :) 8( intervals) = 8(1.). 

We now can make our definition of PF. We define 

PF(A) = ).(~F(A)), 

0 

where ).. is Lebesgue measure on (0, 1 ]. It is easy to check that PF is a probability 
measure. To compute its distribution function and check that it is F, note that 

PF(-oo,x] = )..(~F(-oo,x]) = )..{y e (0, 1]: F-(y) ~ x} 

= )..{y E (0, 1): y ~ F(x)} 

= A.((O, F(x)]} = F(x). 0 
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2.6 Exercises 

1. Let Q be a non-empty set. Let Fo be the collection of all subsets such that 
either A or A c is finite. 

(a) Show that Fo is a field. 

Define for E e Fo the set function P by 

P(E) = { 0, if E is finite, 
1, if Ec is finite . 

(b) If Q is countably infinite, show Pis finitely additive but not a-additive. 

(c) If Q is uncountable, show Pis a-additive on Fo. 

2. Let A be the smallest field over the rr -system P. Use the inclusion-exclusion 
formula (2.2) to show that probability measures agreeing on P must agree 
also on A. 

Hint: Use Exercise 20 of Chapter 1. 

3. Let (Q, B, P) be a probability space. Show for events Bi c Ai the follow­
ing generalization of subadditivity: 

P(UiAi)- P(Ui Bi) ~ L(P(Ai)- P(Bi)) . 
i 

4. Review Exercise 34 in Chapter 1 to see how to extend a a-field. Suppose P 
is a probability measure on a a-field Band suppose A ¢ B. Let 

Bt = a(B, A) 

and show that P has an extension to a probability measure P1 on 8 1• (Do 
this without appealing directly to the Combo Extension Theorem 2.4.3.) 

5. Let P be a probability measure on B(l~). For any B e B(IR) and any E > 0, 
there exists a finite union of intervals A such that 

P(A!:::.B) <E. 

Hint: Define 

Q : = {B e B(IR) : 'VE > 0, there exists a finite union of intervals 

A€ such that P(A!:::.B) < E} . 

6. Say events A 1, Az, . . . are almost disjoint if 

P(Ai nAj) = 0, i # j . 

Show for such events 
00 00 

P<UAj) = LP(Aj)· 
j=l j=l 
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7. Coupon collecting. Suppose there are N different types of coupons avail­
able when buying cereal; each box contains one coupon and the collector 
is seeking to collect one of each in order to win a prize. After buying n 
boxes, what is the probability Pn that the collector has at least one of each 
type? (Consider sampling with replacement from a population of N dis­
tinct elements. The sample size is n > N. Use inclusion-exclusion formula 
(2.2).) 

8. We know that P1 = P2 on B if P1 = P2 on C, provided that C generates B 
and is a rr -system. Show this last property cannot be omitted. For example, 
consider Q = {a, b, c, d} with 

and 

Set 

1 
P1({a}) = P1({d}) = P2({b}) = P2({c}) = 6 

1 
P1 ({b}) = P1 ({c}) = P2({a}) = P2({d}) = 3· 

C = {{a, b} , {d, c}, {a, c}, {b, d}} . 

9. Background: Call two sets A1. A2 E B equivalent if P(A1.6.A2) = 0. For 
a set A E B, define the equivalence class 

A#= {B E B: P(B.6.A) = 0}. 

This decomposes B into equivalences classes. Write 

In practice we drop #s; that is identify the equivalence classes with the 
members. 

An atom in a probability space (Q, B, P) is defined as (the equivalence 
class ot) a set A E B such that P(A) > 0, and if B C A and B E B, then 
P(B) = 0, or P(A \B) = 0. Furthermore the probability space is called 
non-atomic if there are no atoms; that is, A E Band P(A) > 0 imply that 
there exists aBE B such that B C A and 0 < P(B) < P(A). 

(a) If Q = R, and Pis determined by a distribution function F(x), show 
that the atoms are {x: F(x)- F(x-) > 0}. 

(b) If (Q, B, P) = ((0, 1], 8((0, 1]), A.), where>.. is Lebesgue measure, 
then the probability space is non-atomic. 

(c) Show that two distinct atoms have intersection which is the empty set. 
(The sets A, B are distinct means P(A.6.B) > 0. The exercise then 
requires showing P(AB.6.1ZJ) = 0.) 
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(d) A probability space contains at most countably many atoms. (Hint: 
What is the maximum number of atoms that the space can contain 
that have probability at least 1/n?) 

(e) If a probability space (Q, B, P) contains no atoms, then for every 
a e (0, 1] there exists at least one set A e B such that P(A) = a. 
(One way of doing this uses Zorn's lemma.) 

(f) For every probability space (Q, B, P) and any E > 0, there exists 
a finite partition of Q by B sets, each of whose elements either has 
probability ::::: E or is an atom with probability > E. 

(g) Metric space: On the set of equivalence classes, define 

d(A1, A~)= P(Att.Az) 

where Ai e Af fori = 1, 2. Show dis a metric on the set of equiva­
lence classes. Verify 

IP(At)- P(Az)l ::::: P(Att.Az) 

so that p# is uniformly continuous on the set of equivalence classes. 
Pis a-additive is equivalent to 

B 3 An ,j, 0 implies d(A!, 0#)--+ 0. 

10. Two events A, B on the probability space {Q, B, P) are equivalent (see 
Exercise 9) if 

P(A n B) = P(A) v P(B) . 

11. Suppose {Bn, n ::: 1} are events with P(Bn) = 1 for all n. Show 

12. Suppose Cis a class of subsets of Q and suppose B C Q satisfies B e a (C). 
Show that there exists a countable class CB c C such that B e a(CB). 

Hint: Define 

g := {B C Q: 3 countable CB C C such that B E a(CB)}. 

Show that g is a a-field that contains C. 

13. If {Bk} are events such that 

n 

LP(Bk) > n -1, 
k=l 

then 
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14. IfF is a distribution function, then F has at most countably many discon­
tinuities. 

15. If S1 and Sz are two semialgebras of subsets of Q, show that the class 

is again a semialgebra of subsets of Q. The field (a-field) generated by 
S1S2 is identical with that generated by S1 U Sz. 

16. Suppose B is a a-field of subsets of Q and suppose Q : B ~ [0, 1] is a set 
function satisfying 

(a) Q is finitely additive on B. 

(b) 0,::: Q(A) ,::: 1 for all A e Band Q(Q) = 1. 

(c) If A; E Bare disjoint and L~I A; = Q, then L:~1 Q(A;) = 1. 

Show Q is a probability measure; that is, show Q is a-additive. 

17. For a distribution function F(x) , define 

Ft-(y) =inf{t: F(t) ~ y} 

F/-(y) =inf{t : F(t) > y} . 

We know F1-(y) is left-continuous. Show Fr-(y) is right continuous and 
show 

where, as usual, A. is Lebesgue measure. Does it matter which inverse we 
use? 

18. Let A, B, C be disjoint events in a probability space with 

P(A) = .6, P(B) = .3, P(C) = .1. 

Calculate the probabilities of every event in a(A, B, C). 

19. Completion. Let (Q, B, P) be a probability space. Call a set N null if 
N e Band P(N) = 0. Call a set B C Q negligible if there exists a null 
set N such that B C N. Notice that for B to be negligible, it is not required 
that B be measurable. Denote the set of all negligible subsets by N. Call B 
complete (with respect to P) if every negligible set is null. 

What if B is not complete? Define 

B* := {AU M : A e B, M EN}. 

(a) Show B* is a a-field. 
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(b) If A; e Band M; eN fori= 1, 2 and 

At U Mt = Az U Mz, 

then P(At) = P(Az). 

(c) Define P* : B* t-+ [0, 1] by 

P*(A U M) = P(A), A e B, MeN. 

Show P* is an extension of P to B*. 

(d) If B c nand A; e B, i = 1, 2andAt c B c Az and P(Az \At)= 
0, then show B e B*. 

(e) Show B* is complete. Thus every a-field has a completion. 

(t) Suppose n = JR and B = B(JR). Let Pk ?:: 0, Lk Pk = 1. Let {ak} be 
any sequence in JR. Define P by 

P({ak}) =Pt. P(A) = L Pt. A E B. 
OkEA 

What is the completion of B? 

(g) Say that the probability space (Q, B, P) has a complete extension 
(Q, Bt. Pt) if B C Bt and PtiB = P. The previous problem (c) 
showed that every probability space has a complete extension. How­
ever, this extension may not be unique. Suppose that (Q, Bz, Pz) is 
a second complete extension of (Q, B, P). Show Pt and P2 may not 
agree on Bt n Bz. (It should be enough to suppose Q has a small 
number of points.) 

(h) Is there a minimal extension? 

20. In (0, 1], let B be the class of sets that either (a) are of the first category 
or (b) have complement of the first category. Show that B is a a-field. For 
A e B, define P(A) to be 0 in case (a) and 1 in case (b). Is P a-additive? 

21. Let .A be a field of subsets of Q and let Jl be a finitely additive probability 
measure on .A. (This requires J-L(Q) = 1.) 

If .An e A and An .!. 0, is it the case that J-L(An) .!. 0? (Hint: Review 
Problem 2.6.1 with An = {n, n + 1, ... }.) 

22. Suppose F (x) is a continuous distribution function on JR. Show F is uni­
formly continuous. 

23. Multidimensional distribution functions. For a, b, x e B(JRk) write 
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a ::: b iff ai ::: bi, i = 1, ... , k; 

( -oo, x) = {u e B(!Rk) : u ::: x} 

(a, b)= {u e B(!Rk) :a < u::: b}. 

Let P be a probability measure on B(JRk) and define for x e JRk 

F(x) = P((-oo, x]). 

Let Sk be the semialgebra of k-dimensional rectangles in JRk. 

(a) If a ::: b, show the rectangle It := (a, b) can be written as 

It =(-oo, b)\ (<-oo, (a1, bz, ... , bk)]U 

(-oo, (bt. az, ... , bk)] U · · · u (-oo, (b1, bz, ... , ak)J) 

(2.40) 

where the union is indexed by the vertices of the rectangle other than 
b. 

(b) Show 

(c) Check that {(-oo, x], x e JRk} is a rr-system. 

(d) Show P is determined by F (x), x e JRk. 

(e) Show F satisfies the following properties: 

(1) If Xi -. oo, i = 1, ... , k, then F(x) -. 1. 
(2) If for some i e {1, ... , k} Xi -. -oo, then F(x) -. 0. 

(3) For Sk 3 It = (a, b), use the inclusion-exclusion formula (2.2) to 
show 

P(lk) = !::.~tF. 
The symbol on the right is explained as follows. Let V be the vertices 
of It so that 

V = {(XI, ... , Xi) : Xi = Oj Or bi, i = 1, ... , k} . 

Define for x e V 

sgn(x) = 

Then 

1+1, 
-1, 

if card{i :Xi = ai} is even. 

if card{i :Xi = ai} is odd. 

!::.hF = L sgn(x)F(x). 
xeV 



(t) Show F is continuous from above: 

lim F(x) = F(a). 
a=:;x.J.,a 
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(g) Call F : JR.k ...-. [0, 1] a multivariate distribution function if properties 
(1), (2) hold as well as F is continuous from above and D.1tF ::: 
0. Show any multivariate distribution function determines a unique 
probability measure P on (IRk, B(JRk)). (Use the extension theorem.) 

24. Suppose .A2 is the uniform distribution on the unit square [0, 1 f defined by 
its distribution function 

(a) Prove that .A2 assigns 0 probability to the boundary of [0, 1j2. 

(b) Calculate 
2 2 

A2{(0t. 82) E [0, 1) : Ot 1\82 > 3}. 

(c) Calculate 

25. In the game of bridge 52 distinguishable cards constituting 4 equal suits are 
distributed at random among 4 players. What is the probability that at least 
one player has a complete suit? 

26. If A 1, . .. , An are events, define 

and so on. 

n 

St = LP(A;) 
i=l 

s2 = L P(A;Aj) 

S3 = L P(A;AjAk) 
l!::i<j<k=:;n 

(a) Show the probability (1 ~ m ~ n) 

n 

p(m) = P[L 1A; = m] 
i=l 
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of exactly m of the events occurring is 

p(m) =Sm- (m: 1)sm+I + (m: 2)sm+2 

- + · · · ± (:)sn. (2.41) 

Verify that the inclusion-exclusion formula (2.2) is a special case of 
(2.41). 

(b) Referring to Example 2.1.2, compute the probability of exactly m co­
incidences. 

27. Regular measures. Consider the probability space (IRk, B(JRk), P). A Borel 
set A is regular if 

P(A) = inf{P(G) : G :::> A, G open,} 

and 

P(A) =sup{P(F): F C A, F closed.} 

P is regular if all Borel sets are regular. Define C to be the collection of 
regular sets. 

(a) Show JRk e C, I2J e C. 

(b) Show C is closed under complements and countable unions. 

(c) Let :F (JR.k) be the closed subsets of JR.k. Show 

:F(IRk) c C. 

(d) Show B(JRk) c C; that is, show regularity. 

(e) For any Borel set A 

P(A) = sup{P(K) : K c A, K compact.} 
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