
Chapter 4

More on Complex Numbers
and Geometry

4.1 The Real Product of Two Complex Numbers

The concept of the scalar product of two vectors is well known. In what
follows, we will introduce this concept for complex numbers. We will see that
the use of this product simplifies the solution to many problems considerably.

Let a and b be two complex numbers.

Definition. Given complex numbers a and b, we call the number given by

a · b = 1

2
(ab+ ab)

the real product of the two numbers. It is easy to see that

a · b = 1

2
(ab+ ab) = a · b;

hence a · b is a real number, which justifies the name of this product.

Let A(a), B(b) be points in the complex plane, and let θ = (
−̂→
OA,

−−→
OB) be

the angle between the vectors
−→
OA,

−−→
OB. The following formula holds:

a · b = |a||b| cos θ =
−→
OA · −−→OB.

Indeed, considering the polar form of a and b, we have

a = |a|(cos t1 + i sin t1), b = |b|(cos t2 + i sin t2),

and

a·b = 1

2
(ab+ab) =

1

2
|a||b|[cos(t1−t2)−i sin(t1−t2)+cos(t1−t2)+i sin(t1−t2)]

= |a||b| cos(t1 − t2) = |a||b| cos θ =
−→
OA · −−→OB.

The following properties are easy to verify.
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98 4 More on Complex Numbers and Geometry

Proposition 1. For all complex numbers a, b, c, z, the following
relations hold:

(1) a · a = |a|2.
(2) a · b = b · a (the real product is commutative).
(3) a · (b + c) = a · b + a · c (the real product is distributive with respect to

addition).
(4) (αa) · b = α(a · b) = a · (αb) for all α ∈ R.
(5) a · b = 0 if and only if OA ⊥ OB, where A has coordinate a and B has

coordinate b.
(6) (az) · (bz) = |z|2(a · b).

Remark. Suppose that A and B are points with coordinates a and b. Then
the real product a · b is equal to the power of the origin with respect to the
circle of diameter AB.

Indeed, let M

(
a+ b

2

)
be the midpoint of [AB], hence the center of this

circle, and let r =
1

2
AB =

1

2
|a− b| be the radius of this circle. The power of

the origin with respect to the circle is

OM2 − r2 =

∣∣∣∣a+ b

2

∣∣∣∣
2

−
∣∣∣∣a− b

2

∣∣∣∣
2

=
(a+ b)(a+ b)

4
− (a− b)(a− b)

4
=

ab+ ba

2
= a · b,

as claimed.

Proposition 2. Suppose that A(a), B(b), C(c), and D(d) are four distinct
points. The following statements are equivalent:

(1) AB ⊥ CD;
(2) (b− a) · (d− c) = 0;

(3)
b− a

d− c
∈ iR∗ (or equivalently, Re

(
b− a

d− c

)
= 0).

Proof. Take points M(b − a) and N(d − c) such that OABM and OCDN
are parallelograms. Then we have AB ⊥ CD if and only if OM ⊥ ON . That
is, m · n = (b − a) · (d− c) = 0, using property (5) of the real product.

The equivalence (2) ⇔ (3) follows immediately from the definition of the
real product. ��

Proposition 3. The circumcenter of triangle ABC is at the origin of the
complex plane. If a, b, c are the coordinates of vertices A, B, C, then the
orthocenter H has the coordinate h = a+ b+ c.

Proof. Using the real product of the complex numbers, the equations of the
altitudes AA′, BB′, CC′ of the triangle are
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AA′ : (z−a)·(b−c) = 0, BB′ : (z−b)·(c−a) = 0, CC ′ : (z−c)·(a−b) = 0.

We will show that the point with coordinate h = a+ b+ c lies on all three
altitudes. Indeed, we have (h−a) ·(b−c) = 0 if and only if (b+c) ·(b−c) = 0.
The last relation is equivalent to b · b − c · c = 0, or |b|2 = |c|2. Similarly,
H ∈ BB′ and H ∈ CC′, and we are done. ��

Remark. If the numbers a, b, c, o, h are the coordinates of the vertices
of triangle ABC, the circumcenter O, and the orthocenter H of the triangle,
then h = a+ b + c− 2o.

Indeed, if we take A′ diametrically opposite A in the circumcircle of tri-
angle ABC, then the quadrilateral HBA′C is a parallelogram. If {M} =
HA′ ∩BC, then

zM =
b + c

2
=

zH + zA′

2
=

zH + 2o− a

2
, i.e., zH = a+ b+ c− 2o.

Problem 1. Let ABCD be a convex quadrilateral. Prove that

AB2 + CD2 = AD2 +BC2

if and only if AC ⊥ BD.

Solution. Using the properties of the real product of complex numbers, we
have

AB2 + CD2 = BC2 +DA2

if and only if

(b− a) · (b − a) + (d− c) · (d− c) = (c− b) · (c− b) + (a− d) · (a− d).

That is,
a · b+ c · d = b · c+ d · a,

and finally,
(c− a) · (d− b) = 0,

or equivalently, AC ⊥ BD, as required.

Problem 2. Let M,N,P,Q,R, S be the midpoints of the sides AB, BC, CD,
DE, EF , FA of a hexagon. Prove that

RN2 = MQ2 + PS2

if and only if MQ ⊥ PS.

(Romanian Mathematical Olympiad—Final Round, 1994)
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Solution. Let a, b, c, d, e, f be the coordinates of the vertices of the
hexagon (Fig. 4.1). The points M, N, P, Q, R, S have coordinates

m =
a+ b

2
, n =

b+ c

2
, p =

c+ d

2
,

q =
d+ e

2
, r =

e+ f

2
, s =

f + a

2
,

respectively.

Figure 4.1.

Using the properties of the real product of complex numbers, we have

RN2 = MQ2 + PS2

if and only if

(e+f−b−c)·(e+f−b−c)=(d+e−a−b)·(d+e−a−b)+(f+a−c−d)·(f+a−c−d).

That is,

(d+ e− a− b) · (f + a− c− d) = 0;

hence M Q ⊥ PS, as claimed.

Problem 3. Let A1A2 · · ·An be a regular polygon inscribed in a circle with
center O and radius R. Prove that for all points M in the plane, the following
relation holds:

n∑
k=1

MA2
k = n(OM2 +R2).

Solution. Consider the complex plane with the origin at point O, with the
x-axis containing the point A1, and let Rεk be the coordinate of vertex Ak,
where εk are the nth-roots of unity, k = 1, . . . , n. Let m be the coordinate
of M .
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Using the properties of the real product of the complex numbers, we have

n∑
k=1

MA2
k =

n∑
k=1

(m−Rεk) · (m−Rεk)

=

n∑
k=1

(m ·m− 2Rεk ·m+R2εk · εk)

= n|m|2 − 2R

(
n∑

k=1

εk

)
· m+R2

n∑
k=1

|εk|2

= n · OM2 + nR2 = n(OM2 +R2),

since
n∑

k=1

εk = 0.

Remark. If M lies on the circumcircle of the polygon, then

n∑
k=1

MA2
k = 2nR2.

Problem 4. Let O be the circumcenter of the triangle ABC, let D be the
midpoint of the segment AB, and let E is the centroid of triangle ACD.
Prove that lines CD and OE are perpendicular if and only if AB = AC.

(Balkan Mathematical Olympiad, 1985)

Solution. Let O be the origin of the complex plane and let a, b, c, d, e be
the coordinates of points A, B, C, D, E, respectively. Then

d =
a+ b

2
and e =

a+ c+ d

3
=

3a+ b + 2c

6

Using the real product of complex numbers, if R is the circumradius of tri-
angle ABC, then

a · a = b · b = c · c = R2.

Lines CD and OE are perpendicular if and only if (d− c) · e = 0, that is,

(a+ b− 2c) · (3a+ b+ 2c) = 0.

The last relation is equivalent to

3a · a+ a · b+ 2a · c+ 3a · b+ b · b+ 2b · c− 6a · c− 2b · c− 4c · c = 0,

that is,

a · b = a · c. (1)
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On the other hand, AB = AC is equivalent to

|b− a|2 = |c− a|2.

That is,

(b− a) · (b− a) = (c− a) · (c− a),

or

b · b− 2a · b+ a · a = c · c− 2a · c+ a · a,

whence

a · b = a · c. (2)

The relations (1) and (2) show that CD ⊥ OE if and only if AB = AC.

Problem 5. Let a, b, c be distinct complex numbers such that |a| = |b| = |c|
and |b+ c− a| = |a|. Prove that b+ c = 0.

Solution. Let A, B, C be the geometric images of the complex numbers
a, b, c, respectively. Choose the circumcenter of triangle ABC as the origin
of the complex plane and denote by R the circumradius of triangle ABC.
Then

aa = bb = cc = R2,

and using the real product of the complex numbers, we have

|b+ c− a| = |a| if and only if |b + c− a|2 = |a|2.

That is,
(b+ c− a) · (b+ c− a) = |a|2,

i.e.,
|a|2 + |b|2 + |c|2 + 2b · c− 2a · c− 2a · b = |a|2.

We obtain
2(R2 + b · c− a · c− a · b) = 0,

i.e.,
a · a+ b · c− a · c− a · b = 0.

It follows that (a − b) · (a − c) = 0, and hence AB ⊥ AC, i.e., ̂BAC = 90◦.
Therefore, [BC] is the diameter of the circumcircle of triangle ABC, so
b + c = 0.

Problem 6. Let E, F, G, H be the midpoints of sides AB, BC, CD, DA
of the convex quadrilateral ABCD. Prove that lines AB and CD are perpen-
dicular if and only if

BC2 +AD2 = 2(EG2 + FH2).
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Solution. Denote by the corresponding lowercase letter the coordinate of a
point denoted by an uppercase letter. Then

e =
a+ b

2
, f =

b+ c

2
, g =

c+ d

2
, h =

d+ a

2
.

Using the real product of the complex numbers, the relation

BC2 +AD2 = 2(EG2 + FH2)

becomes

(c− b) · (c− b) + (d− a) · (d− a) =
1

2
(c+ d− a− b) · (c+ d− a− b)

+
1

2
(a+ d− b − c) · (a+ d− b− c).

This is equivalent to

c · c+ b · b+ d · d+ a · a− 2b · c− 2a · d

= a · a+ b · b+ c · c+ d · d− 2a · c− 2b · d,
or

a · d+ b · c = a · c+ b · d.

The last relation shows that (a− b) · (d− c) = 0 if and only if AB ⊥ CD, as
desired.

Problem 7. Let G be the centroid of triangle ABC and let A1, B1, C1 be
the midpoints of sides BC, CA, AB, respectively. Prove that

MA2 +MB2 +MC2 + 9MG2 = 4(MA2
1 +MB2

1 +MC2
1 )

for all points M in the plane.

Solution. Denote by the corresponding lowercase letter the coordinate of a
point denoted by an uppercase letter. Then

g =
a+ b+ c

3
, a1 =

b+ c

2
, b1 =

c+ a

2
, c1 =

a+ b

2
.

Using the real product of the complex numbers, we have

MA2 +MB2 +MC2 + 9MG2

= (m− a) · (m− a) + (m− b) · (m− b) + (m− c) · (m− c)

+9

(
m− a+ b+ c

3

)
·
(
m− a+ b+ c

3

)

= 12|m|2 − 8(a+ b+ c) ·m+ 2(|a|2 + |b|2 + |c|2) + 2a · b+ 2b · c+ 2c · a.
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On the other hand,

4(MA2
1 +MB2

1 +MC2
1 )

= 4

[(
m− b+ c

2

)
·
(
m− b+ c

2

)
+

(
m− c+ a

2

)

·
(
m− c+ a

2

)
+

(
m− a+ b

2

)
·
(
m− a+ b

2

)]

= 12|m|2 − 8(a+ b+ c) ·m+ 2(|a|2 + |b|2 + |c|2) + 2a · b+ 2b · c+ 2c · a,
so we are done.

Remark. The following generalization can be proved similarly.
Let A1A2 · · ·An be a polygon with centroid G and let Aij be the midpoint

of the segment [AiAj ], i < j, i, j ∈ {1, 2, . . . , n}.
Then

(n− 2)

n∑
k=1

MA2
k + n2MG2 = 4

∑
i<j

MA2
ij ,

for all points M in the plane. A nice generalization is given in Theorem 3 in
Sect. 4.11.

4.2 The Complex Product of Two Complex Numbers

The cross product of two vectors is a central concept in vector algebra, with
numerous applications in various branches of mathematics and science. In
what follows, we adapt this product to complex numbers. The reader will
see that this new interpretation has multiple advantages in solving problems
involving area or collinearity.

Let a and b be two complex numbers.

Definition. The complex number

a× b =
1

2
(ab− ab)

is called the complex product of the numbers a and b.
Note that

a× b+ a× b =
1

2
(ab− ab) +

1

2
(ab− ab) = 0,

so Re(a× b) = 0, which justifies the definition of this product.

Let A(a), B(b) be points in the complex plane, and let θ = (
−̂→
OA,

−−→
OB) be

the angle between the vectors
−→
OA,

−−→
OB. The following formula holds:

a× b = εi|a||b| sin θ,
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where

ε =

{
−1, if triangle OAB is positively oriented;
+1, if triangle OAB is negatively oriented.

Indeed, if a = |a|(cos t1 + i sin t1) and b = |b|(cos t2 + i sin t2), then

a× b = i|a||b| sin(−t1 + t2) = εi|a||b| sin θ.

The connection between the real product and the complex product is given
by the following Lagrange-type formula:

|a · b|2 + |a× b|2 = |a|2|b|2.

The following properties are easy to verify:

Proposition 1. Suppose that a, b, c are complex numbers. Then:

(1) a × b = 0 if and only if a = 0 or b = 0 or a = λb, where λ is a real
number.

(2) a× b = −b× a (the complex product is anticommutative).
(3) a× (b+ c) = a× b+ a× c (the complex product is distributive with respect

to addition).
(4) α(a× b) = (αa)× b = a× (αb), for all real numbers α.
(5) If A(a) and B(b) are distinct points other than the origin, then a× b = 0

if and only if O, A, B are collinear.

Remarks.

(a) Suppose A(a) and B(b) are distinct points in the complex plane different
from the origin (Fig. 4.2).
The complex product of the numbers a and b has the following useful
geometric interpretation:

a× b =

{
2i. area [AOB], if triangle OAB is positively oriented;
−2i. area [AOB], if triangle OAB is negatively oriented.

Figure 4.2.



106 4 More on Complex Numbers and Geometry

Indeed, if triangle OAB is positively (directly) oriented, then

2i · area [OAB] = i ·OA ·OB · sin(̂AOB)

= i|a| · |b| · sin
(
arg

b

a

)
= i · |a| · |b| · Im

(
b

a

)
· |a||b|

=
1

2
|a|2

(
b

a
− b

a

)
=

1

2
(ab− ab) = a× b.

In the other case, note that triangle OBA is positively oriented; hence

2i · area[OBA] = b× a = −a× b.

(b) Suppose A(a), B(b), C(c) are three points in the complex plane.
The complex product allows us to obtain the following useful formula for
the area of the triangle ABC:

area [ABC] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

2i
(a× b+ b× c+ c× a)

if triangle ABC is positively oriened;

− 1

2i
(a× b+ b× c+ c× a)

if triangle ABC is negatively oriented.

Moreover, simple algebraic manipulation shows that

area [ABC] =
1

2
Im(ab + bc+ ca)

if triangle ABC is directly (positively) oriented.
To prove the above formula, translate points A, B, C by the vector −c.

The images of A, B, C are the points A′, B′, O with coordinates a− c, b−
c, 0, respectively. Triangles ABC and A′B′O are congruent with the same
orientation. If ABC is positively oriented, then

area [ABC] = area [OA′B′] =
1

2i
((a− c)× (b − c))

=
1

2i
((a− c)× b− (a− c)× c) =

1

2i
(c× (a− c)− b× (a− c))

=
1

2i
(c× a− c× c− b× a+ b× c) =

1

2i
(a× b+ b× c+ c× a),

as claimed.
The other situation can be handled similarly.
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Proposition 2. Suppose A(a), B(b), and C(c) are distinct points. The
following statements are equivalent:

(1) Points A, B, C are collinear.
(2) (b− a)× (c− a) = 0.
(3) a× b+ b × c+ c× a = 0.

Proof. Points A, B, C are collinear if and only if area [ABC] = 0, i.e.,
a×b+b×c+c×a = 0. The last equation can be written in the form (b− a)×
(c− a) = 0. ��
Proposition 3. Let A(a), B(b), C(c), D(d) be four points, no three of which
are collinear. Then AB‖CD if and only if (b− a)× (d− c) = 0.

Proof. Choose the points M(m) and N(n) such that OABM and OCDN
are parallelograms; then m = b− a and n = d− c.

Lines AB and CD are parallel if and only if points O, M, N are collinear.
Using property 5, this is equivalent to 0 = m× n = (b− a)× (d− c). ��
Problem 1. Points D and E lie on sides AB and AC of the triangle ABC
such that

AD

AB
=

AE

AC
=

3

4
.

Consider points E′ and D′ on the rays (BE and (CD such that EE′ = 3BE
and DD′ = 3CD. Prove the following:

(1) points D′, A, E′ are collinear.
(2) AD′ = AE′.

Solution. The points D, E, D′, E′ have coordinates: d =
a+ 3b

4
,

e =
a+ 3c

4
,

e′ = 4e− 3b = a+ 3c− 3b, and d′ = 4d− 3c = a+ 3b− 3c,

respectively.

Figure 4.3.
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(1) Since

(a− d′)× (e′ − d′) = (3c− 3b)× (6c− 6b) = 18(c− b)× (c− b) = 0,

it follows from Proposition 2 in Sect. 4.2 that the points D′, A, E′ are
collinear (Fig. 4.3).

(2) Note that

AD′

D′E′ =
∣∣∣∣ a− d′

e′ − d′

∣∣∣∣ = 1

2
,

so A is the midpoint of segment D′E′.

Problem 2. Let ABCDE be a convex pentagon and let M, N, P, Q, X, Y
be the midpoints of the segments BC, CD, DE, EA, MP, NQ, respectively.

Prove that XY ‖AB.

Solution. Let a, b, c, d, e be the coordinates of vertices A, B, C, D, E,
respectively (Fig. 4.4).

E
P

D

N

CMB

A

Q
Y

X

Figure 4.4.

Points M, N, P, Q, X, Y have coordinates

m =
b+ c

2
, n =

c+ d

2
, p =

d+ e

2
,

q =
e + a

2
, x =

b+ c+ d+ e

4
, y =

c+ d+ e+ a

4
,

respectively. Then

y − x

b− a
=

a− b

4
b− a

= −1

4
∈ R,

whence

(y − x) × (b− a) = −1

4
(b− a)× (b− a) = 0.

From Proposition 3 in Sect. 4.2, it follows that XY ‖AB.
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4.3 The Area of a Convex Polygon

We say that the convex polygon A1A2 · · ·An is directly (or positively) oriented
if for every point M situated in the interior of the polygon, the triangles
MAkAk+1, k = 1, 2, . . . , n, are directly oriented, where An+1 = A1.

Theorem. Consider a directly oriented convex polygon A1A2 · · ·An with
vertices with coordinates a1, a2, . . . , an. Then

area [A1A2 · · ·An] =
1

2
Im(a1a2 + a2a3 + · · ·+ an−1an + ana1).

Proof. We use induction on n. The base case n = 3 was proved above using
the complex product. Suppose that the claim holds for n = k, and note that

area [A1A2 · · ·AkAk+1] = area [A1A2 · · ·Ak] + area [AkAk+1A1]

=
1

2
Im(a1a2 + a2a3 + · · ·+ ak−1ak + ak1a) +

1

2
Im(akak+1 + ak+1a1 + a1ak)

=
1

2
Im(a1a2 + a2a3 + · · ·+ ak−1ak + akak+1 + ak+1a1)

+
1

2
Im(aka1 + a1ak) =

1

2
Im(a1a2 + a2a3 + · · ·+ akak+1 + ak+1a1),

since
Im(aka1 + a1ak) = 0.

Alternative proof. Choose a point M in the interior of the polygon. Applying
the formula (2) in Sect. 3.5.3, we have

area [A1A2 · · ·An] =

n∑
k=1

area [MAkAk+1]

=
1

2

n∑
k=1

Im(zak + akak+1 + ak+1z)

=
1

2

n∑
k=1

Im(akak+1) +
1

2

n∑
k=1

Im(zak + ak+1z)

=
1

2
Im

(
n∑

k=1

akak+1

)
+

1

2
Im

⎛
⎝z

n∑
k=1

ak + z

n∑
j=1

aj

⎞
⎠ =

1

2
Im

(
n∑

k=1

akak+1

)
,

since for any complex numbers z, w the relation Im(zw+ zw) = 0 holds. ��
Remark. From the above formula, it follows that the points A1(a1),
A2(a2), . . ., An(an) as in the theorem are collinear if and only if

Im(a1a2 + a2a3 + · · ·+ an−1an + ana1) = 0.
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For this result, the hypotheses in the theorem are essential, as we can see
from the following counterexample.

Counterexample The points with respective complex coordinates
a1 = 0, a2 = 1, a3 = i, a4 = 1 + i are not collinear, but we have
Im(a1a2 + a2a3 + a3a4 + a4a1) = Im(−1) = 0.

Problem 1. Let P0P1 · · ·Pn−1 be the polygon whose vertices have coordinates
1, ε, . . . , εn−1, and let Q0Q1 · · ·Qn−1 be the polygon whose vertices have

coordinates 1, 1+ ε, . . . , 1+ ε+ · · ·+ εn−1, where ε = cos
2π

n
+ i sin

2π

n
. Find

the ratio of the areas of these polygons.

Solution. Consider ak = 1+ ε+ · · ·+ εk, k = 0, 1, . . . , n− 1, and observe
that

area [Q0Q1 · · ·Qn−1] =
1

2
Im

(
n−1∑
k=0

akak+1

)

=
1

2
Im

(
n−1∑
k=0

(ε)k+1 − 1

ε− 1
· ε

k+2 − 1

ε− 1

)

=
1

2|ε− 1|2 Im
[
n−1∑
k=0

(ε− (ε)k+1 − εk+2 + 1)

]

=
1

2|ε− 1|2 Im(nε+ n) =
1

2|ε− 1|2n sin
2π

n

=
n

8 sin2 π
n

2 sin
π

n
cos

π

n
=

n

4
cotan

π

n
,

since
n−1∑
k=0

εk+1 = 0 and
n−1∑
k=0

εk+2 = 0.

On the other hand, it is clear that

area [P0P1 · · ·Pn−1] = n area [P0OP1] =
n

2
sin

2π

n
= n sin

π

n
cos

π

n
.

We obtain

area[P0P1 · · ·Pn−1]

area[Q0Q1 · · ·Qn−1]
=

n sin
π

n
cos

π

n
n

4
cotan

π

n

= 4 sin2
π

n
. (1)

Remark. We have QkQk+1 = |ak+1 − ak| = |εk+1| = 1 and PkPk+1 =

|εk+1 − εk| = |εk(ε− 1)| = |εk||1 − ε| = |1 − ε| = 2 sin
π

n
, k = 0, 1, . . . , n− 1.

It follows that
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PkPk+1

QkQk+1
= 2 sin

π

n
, k = 0, 1, . . . , n− 1.

That is, the polygons P0P1 · · ·Pn−1 and Q0Q1 · · ·Qn−1 are similar, and
the result in (1) follows.

Problem 2. Let A1A2 · · ·An(n ≥ 5) be a convex polygon and let Bk be the
midpoint of the segment [AkAk+1], k = 1, 2, . . . , n, where An+1 = A1. Then
the following inequality holds:

area [B1B2 · · ·Bn] ≥
1

2
area [A1A2 · · ·An].

Solution. Let ak and bk be the coordinates of points Ak and Bk, k =
1, 2, . . . , n. It is clear that the polygon B1B2 · · ·Bn is convex, and if we
assume that A1A2 · · ·An is positively oriented, then B1B2 · · ·Bn also has
this property. Choose as the origin O of the complex plane a point situated
in the interior of polygon A1A2 · · ·An.

We have bk = 1
2 (ak + ak+1), k = 1, 2, . . . , n, and

area [B1B2 · · ·Bn] =
1

2
Im(

n∑
k=1

bkbk+1) =
1

8
Im

n∑
k=1

(ak + ak+1)(ak+1 + ak+2)

=
1

8
Im

(
n∑

k=1

akak+1

)
+

1

8
Im

(
n∑

k=1

ak+1ak+2

)
+

1

8
Im

(
n∑

k=1

akak+2

)

=
1

2
area [A1A2 · · ·An] +

1

8
Im

(
n∑

k=1

akak+2

)

=
1

2
area [A1A2 · · ·An] +

1

8

n∑
k=1

Im(akak+2)

=
1

2
area [A1A2 · · ·An] +

1

8

n∑
k=1

OAk ·OAk+2 sinAk
̂OAk+2

≥ 1

2
area [A1A2 · · ·An],

where we have used the relations

Im

(
n∑

k=1

akak+1

)
= Im

(
n∑

k=1

ak+1ak+2

)
= 2 area [A1A2 · · ·An]

and sinAk
̂OAk+2 ≥ 0, k = 1, 2, . . . , n, where An+2 = A2.
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4.4 Intersecting Cevians and Some Important Points
in a Triangle

Proposition. Consider the points A′, B′, C′ on the sides BC, CA, AB of
the triangle ABC such that AA′, BB′, CC′ intersect at point Q and let

BA′

A′C
=

p

n
,
CB′

B′A
=

m

p
,
AC′

C′B
=

n

m
.

If a, b, c are the coordinates of points A, B, C, respectively, then the coor-
dinate of point Q is

q =
ma+ nb+ pc

m+ n+ p
.

Proof. The coordinates of A′, B′, C′ are a′ =
nb+ pc

n+ p
, b′ =

ma+ pc

m+ p
,

and c′ =
ma+ nb

m+ n
, respectively. Let Q be the point with coordinate q =

ma+nb+pc
m+n+p . We prove that AA′, BB′, CC′ meet at Q.

The points A, Q, A′ are collinear if and only if (q−a)× (a′−a) = 0. This
is equivalent to

(
ma+ nb+ pc

m+ n+ p
− a

)
×

(
nb+ pc

n+ p
− a

)
= 0,

or (nb+ pc− (n+ p)a)× (nb+ pc− (n+ p)a) = 0, which is clear by definition
of the complex product.

Likewise, Q lies on lines BB′ and CC′, so the proof is complete. ��

Some Important Points in a Triangle

(1) If Q = G, the centroid of the triangle ABC, we have m = n = p. Then
we obtain again that the coordinate of G is

zG =
a+ b+ c

3
.

(2) Suppose that the lengths of the sides of triangleABC are BC = α, CA =
β, AB = γ. If Q = I, the incenter of triangle ABC, then using a known
result concerning the angle bisector, it follows thatm = α, n = β, p = γ.
Therefore, the coordinate of I is

zI =
αa+ βb+ γc

α+ β + γ
=

1

2s
[(αa+ βb+ γc)],

where s = 1
2 (α+ β + γ).
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(3) If Q = H , the orthocenter of the triangle ABC, we easily obtain the
relations

BA′

A′C
=

tanC

tanB
,
CB′

B′A
=

tanA

tanC
,
AC′

C′B
=

tanB

tanA
.

It follows that m = tanA, n = tanB, p = tanC, and the coordinate of
H is given by

zH =
(tanA)a+ (tanB)b+ (tanC)c

tanA+ tanB + tanC
.

Remark. The above formula can also be extended to the limiting case in

which the triangle ABC is a right triangle. Indeed, assume that A → π

2
.

Then tanA → ±∞ and
(tanB)b + (tanC)c

tanA
→ 0,

tanB + tanC

tanA
→ 0. In

this case, zH = a, i.e., the orthocenter of triangle ABC is the vertex A.

(4) The Gergonne1 point J is the intersection of the cevians AA′, BB′, CC′,
where A′, B′, C′ are the points of tangency of the incircle to the sides
BC, CA, AB, respectively. Then

BA′

A′C
=

1

s− γ
1

s− β

,
CB′

B′A
=

1

s− α
1

s− γ

,
AC′

C′B
=

1

s− β
1

s− α

,

and the coordinate zJ is obtained from the same proposition, where

zJ =
rαa+ rβb+ rγc

rα + rβ + rγ
.

Here rα, rβ , rγ denote the radii of the three excircles of triangle. It is
not difficult to show that the following formulas hold:

rα =
K

s− α
, rβ =

K

s− β
, rγ =

K

s− γ
,

where K = area [ABC] and s = 1
2 (α+ β + γ).

(5) The Lemoine2 point K is the intersection of the symmedians of the tri-
angle (the symmedian is the reflection of the bisector across the median).
Using the notation from the proposition, we obtain

BA′

A′C
=

γ2

β2
,
CB′

B′A
=

α2

γ2
,
AC′

C′B
=

β2

α2
.

1 Joseph Diaz Gergonne (1771–1859), French mathematician, founded the journal Annales
de Mathématiques Pures et Appliquées in 1810.
2 Émile Michel Hyacinthe Lemoine (1840–1912), French mathematician, made important
contributions to geometry.
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It follows that

zK =
α2a+ β2b + γ2C

α2 + β2 + γ2
.

(6) The Nagel3 point N is the intersection of the cevian AA′, BB′, CC′,
where A′, B′, C′ are the points of tangency of the excircles with respec-
tive sides BC, CA, AB. Then

BA′

A′C
=

s− γ

s− β
,
CB′

B′A
=

s− α

s− γ
,
AC′

C′B
=

s− β

s− α
,

and the proposition mentioned above gives the coordinate zN of the Nagel
point N :

zN =
(s− α)a+ (s− β)b + (s− γ)c

(s− α) + (s− β) + (s− γ)
=

1

s
[(s− α)a+ (s− β)b+ (s− γ)c]

=
(
1− α

s

)
a+

(
1− β

s

)
b+

(
1− γ

s

)
c.

Problem. Let α, β, γ be the lengths of sides BC, CA, AB of triangle ABC
and suppose α < β < γ. If points O, I, H are the circumcenter, the incenter,
and the orthocenter of triangle ABC, respectively, prove that

area [OIH ] =
1

8r
(α− β)(β − γ)(γ − α),

where r is the inradius of ABC.

Solution. Consider triangle ABC, directly oriented in the complex plane
centered at point O.

Using the complex product and the coordinates of I and H , we have

area [OIH ] =
1

2i
(zI × zH) =

1

2i

[
αa+ βb+ γc

α+ β + γ
× (a+ b+ c)

]

=
1

4si
[(α− β)a× b+ (β − γ)b× c+ (γ − α)c× a]

=
1

2s
[(α− β) · area [OAB] + (β − γ) · area [OBC] + (γ − α) · area [OCA]]

=
1

2s

[
(α− β)

R2 sin 2C

2
+ (β − γ)

R2 sin 2A

2
+ (γ − α)

R2 sin 2B

2

]

3 Christian Heinrich von Nagel (1803–1882), German mathematician. His contributions
to triangle geometry were included in the book The Development of Modern Triangle
Geometry [21].
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=
R2

4s
[(α− β) sin 2C + (β − γ) sin 2A+ (γ − α) sin 2B]

=
1

8r
(α− β)(β − γ)(γ − α),

as desired.

4.5 The Nine-Point Circle of Euler

Given a triangle ABC, choose its circumcenter O to be the origin of the
complex plane and let a, b, c be the coordinates of the vertices A, B, C. We
have seen in Sect. 4.1, Proposition 3, that the coordinate of the orthocenter
H is zH = a+ b+ c.

Let us denote by A1, B1, C1 the midpoints of sides BC, CA, AB; by
A′, B′, C′ the feet of the altitudes; and by A′′, B′′, C′′ the midpoints of
segments AH, BH, CH , respectively (Fig. 4.5).

Figure 4.5.

It is clear that for the points A1, B1, C1, A′′, B′′, C′′, we have the
following coordinates:

zA1 =
1

2
(b + c), zB1 =

1

2
(c+ a), zC1 =

1

2
(a+ b),

zA′′ = a+
1

2
(b+ c), zB′′ = b+

1

2
(c+ a), zC′′ = c+

1

2
(a+ b).

It is not so easy to find the coordinates of A′, B′, C′.

Proposition. Consider the point X(x) on the circumcircle of triangle ABC.
Let P be the projection of X onto line BC. Then the coordinate of P is
given by
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p =
1

2

(
x− bc

R2
x+ b+ c

)
,

where R is the circumradius of triangle ABC.

Proof. Using the complex product and the real product, we can write the
equations of lines BC and XP as follows:

BC : (z − b)× (c− b) = 0,

XP : (z − x) · (c− b) = 0.

The coordinate p of P satisfies both equations; hence we have

(p− b)× (c− b) = 0 and (p− x) · (c− b) = 0.

These equations are equivalent to

(p− b)(c− b)− (p− b)(c− b) = 0

and

(p− x)(c− b) + (p− x)(c− b) = 0.

Adding the above relations, we obtain

(2p− b− x)(c− b) + (b− x)(c− b) = 0.

It follows that

p =
1

2

[
b+ x+

c− b

c− b
(x− b)

]
=

1

2

⎡
⎢⎣b+ x+

c− b

R2

c
− R2

b

(x− b)

⎤
⎥⎦

=
1

2

[
b + x− bc

R2
(x− b)

]
=

1

2

(
x− bc

R2
x+ b+ c

)
. ��

From the above proposition, we see that the coordinates of A′, B′, C′ are

zA′ =
1

2

(
a+ b+ c− bca

R2

)
,

zB′ =
1

2

(
a+ b+ c− cab

R2

)
,

zC′ =
1

2

(
a+ b+ c− abc

R2

)
.

Theorem 1 (The nine-point circle). In every triangle ABC, the points
A1, B1, C1, A′, B′, C′, A′′, B′′, C′′ are all on the same circle, whose
center is at the midpoint of the segment OH and whose radius is one-half the
circumradius.
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Proof. Denote by O9 the midpoint of the segment OH . Using our
initial assumption, it follows that zo9 = 1

2 (a + b + c). Also, we have
|a| = |b| = |c| = R, where R is the circumradius of triangle ABC.

Observe that O9A1 = |zA1 − zO9 | =
1

2
|a| =

1

2
R, and also

O9B1 = O9C1 =
1

2
R.

We can write O9A
′′ = |zA′′ − zO9 | =

1

2
|a| =

1

2
R, and also

O9B
′′ = O9C

′′ =
1

2
R.

The distance O9A
′ is also not difficult to compute:

O9A
′ = |zA′ − zO9 | =

∣∣∣∣12
(
a+ b+ c− bca

R2

)
− 1

2
(a+ b+ c)

∣∣∣∣
=

1

2R2
|bca| = 1

2R2
|a||b||c| = R3

2R2
=

1

2
R.

Similarly, we get O9B
′ = O9C

′ =
1

2
R. Therefore, O9A1 = O9B1 = O9C1 =

O9A
′ = O9B

′ = O9C
′ = O9A

′′ = O9B
′′ = O9C

′′ =
1

2
R, and the desired

property follows. ��
Theorem 2.

(1) (Euler4 line of a triangle.) In any triangle ABC the points O, G, H are
collinear.

(2) (Nagel line of a triangle.) In any triangle ABC the points I, G, N are
collinear.

Proof.

(1) If the circumcenter O is the origin of the complex plane, we have zO = 0,

zG =
1

3
(a + b + c), zH = a + b + c. Hence these points are collinear by

Proposition 2 in Sect. 3.2 or 4.2.

(2) We have zI =
α

2s
a+

β

2s
b+

γ

2s
c, zG =

1

3
(a+b+c), and zN =

(
1− α

s

)
a+(

1− β

s

)
b+

(
1− γ

s

)
c, and we can write zN = 3zG − 2zI .

Applying the result mentioned above and properties of the complex prod-
uct, we obtain (zG − zI)× (zN − zI) = (zG − zI)× [3(zG − zI)] = 0; hence
the points I, G, N are collinear. ��
4 Leonhard Euler (1707–1783), one of the most important mathematicians of all time,
created much of modern calculus and contributed significantly to almost every existing
branch of pure mathematics, adding proofs and arranging the whole in a consistent form.
Euler wrote an immense number of memoirs on a great variety of mathematical subjects.
We recommend William Dunham’s book Euler: The Master of Us All [33] for more details
concerning Euler’s contributions to mathematics.
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Remark. Note that NG = 2GI, and hence the triangles OGI and HGN
are similar. It follows that the lines OI and NH are parallel, and we have
the basic configuration of triangle ABC shown in Fig. 4.6.

Figure 4.6.

If Gs is the midpoint of segment [IN ], then its coordinate is

zGs =
1

2
(zI + zN) =

(β + γ)

4s
a+

(γ + α)

4s
b+

(α + β)

4s
c.

The point Gs is called the Spiecker point of triangle ABC, and it is easy to
verify that it is the incenter of the medial triangle A1B1C1.

Problem 1. Consider a point M on the circumcircle of triangle ABC. Prove
that the nine-point centers of triangles MBC, MCA, MAB are the vertices
of a triangle similar to triangle ABC.

Solution. Let A′, B′, C′ be the nine-point centers of the triangles
MBC, MCD, MAB, respectively. Take the origin of the complex plane
to be at the circumcenter of triangle ABC. Denote by the corresponding
lowercase letter the coordinate of the point denoted by an uppercase letter.
Then

a′ =
m+ b+ c

2
, b′ =

m+ c+ a

2
, c′ =

m+ a+ b

2
,

since M lies on the circumcircle of triangle ABC. Then

b′ − a′

c′ − a′
=

a− b

a− c
=

b− a

c− a
,

and hence triangles A′B′C′ and ABC are similar.
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Problem 2. Show that triangle ABC is a right triangle if and only if its
circumcircle and its nine-point circle are tangent.

Solution. Take the origin of the complex plane to be at the circumcenter O
of triangle ABC, and denote by a, b, c the coordinates of vertices A, B, C,
respectively. Then the circumcircle of triangle ABC is tangent to the nine-

point circle of triangle ABC if and only if OO9 =
R

2
. This is equivalent to

OO2
9 =

R2

4
, that is, |a+ b+ c|2 = R2.

Using properties of the real product, we have

|a+ b+ c|2 = (a+ b+ c) · (a+ b+ c) = |a|2 + |b|2 + |c|2 +2(a · b+ b · c+ c · a)

= 3R2 + 2(a · b+ b · c+ c · a) = 3R2 + (2R2 − α2 + 2R2 − β2 + 2R2 − γ2)

= 9R2 − (α2 + β2 + γ2),

where α, β, γ are the lengths of the sides of triangle ABC. We have used

the formulas a · b = R2 − γ2

2
, b · c = R2 − α2

2
, c · a = R2 − β2

2
, which can

be easily derived from the definition of the real product of complex numbers
(see also the lemma in Sect. 4.6.2).

Therefore, α2 + β2 + γ2 = 8R2, which is the same as sin2 A + sin2 B +
sin2 C = 2. We can write the last relation as 1 − cos 2A + 1 − cos 2B + 1 −
cos 2C = 4. This is equivalent to 2 cos(A+B) cos(A−B) + 2 cos2 C = 0, i.e.,
4 cosA cosB cosC = 0, and the desired conclusion follows.

Problem 3. Let ABCD be a cyclic quadrilateral and let Ea, Eb, Ec, Ed be
the nine-point centers of triangles BCD, CDA, DAB, ABC, respectively.
Prove that the lines AEa, BEb, CEc, DEd are concurrent.

Solution. Take the origin of the complex plane to be the center O of the
circumcircle of ABCD. Then the coordinates of the nine-point centers are

ea =
1

2
(b + c+ d), eb =

1

2
(c+ d+ a), ec =

1

2
(d+ a+ b), ed =

1

2
(a+ b+ c).

We have AEa : z = ka + (1 − k)ea, k ∈ R, and the analogous equations
for the lines BEb, CEc, DEd. Observe that the point with coordinate 1

3 (a+

b + c+ d) lies on all four lines

(
k =

1

3

)
, and we are done.
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4.6 Some Important Distances in a Triangle

4.6.1 Fundamental Invariants of a Triangle

Consider the triangle ABC with sides α, β, γ; semiperimeter

s =
1

2
(α + β + γ);

inradius r; and circumradius R. The numbers s, r, R are called the funda-
mental invariants of triangle ABC.

Theorem. The sides α, β, γ are the roots of the cubic equation

t3 − 2st2 + (s2 + r2 + 4Rr)t − 4sRr = 0.

Proof. Let us prove that α satisfies the equation. We have

α = 2R sinA = 4R sin
A

2
cos

A

2
and s− α = rcotan

A

2
= r

cos
A

2

sin
A

2

,

whence

cos2
A

2
=

α(s− α)

4Rr
and sin2

A

2
=

αr

4R(s− α)
.

From the formula cos2
A

2
+ sin2

A

2
= 1, it follows that

α(s− α)

4Rr
+

αr

4R(s− α)
= 1.

That is, α3−2sα2+(s2+r2+4Rr)α−4sRr = 0. We can show analogously
that β and γ are roots of the above equation. ��

From the above theorem, using the relations between the roots and the
coefficients, it follows that

α+ β + γ = 2s,

αβ + βγ + γα = s2 + r2 + 4Rr,

αβγ = 4sRr.

Corollary. The following formulas hold in every triangle ABC:

α2 + β2 + γ2 = 2(s2 − r2 − 4Rr),

α3 + β3 + γ3 = 2s(s2 − 3r2 − 6Rr).
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Proof. We have

α2 + β2 + γ2 = (α + β + γ)2 − 2(αβ + βγ + γα) = 4s2 − 2(s2 + r2 + 4Rr)

= 2s2 − 2r2 − 8Rr = 2(s2 − r2 − 4Rr).

In order to prove the second identity, we can write

α3 + β3 + γ3 = (α+ β + γ)(α2 + β2 + γ2 − αβ − βγ − γα) + 3αβγ

= 2s(2s2 − 2r2 − 8Rr − s2 − r2 − 4Rr) + 12sRr = 2s(s2 − 3r2 − 6Rr). ��

4.6.2 The Distance OI

Assume that the circumcenter O of the triangle ABC is the origin of the
complex plane, and let a, b, c be the coordinates of the vertices A, B, C,
respectively.

Lemma. The real products a · b, b · c, c · a are given by

a · b = R2 − γ2

2
, b · c = R2 − α2

2
, c · a = R2 − β2

2
.

Proof. Using the properties of the real product, we have

γ2 = |a−b|2 = (a−b)·(a−b) = a·a−2a·b+b·b = |a|2−2a·b+|b|2 = 2R2−2a·b,

and the first formula follows. ��

In order to simplify the formulas, we will use the symbol
∑

cyc, called the
cyclic sum:

∑
cyc

f(x1, x2, x3) = f(x1, x2, x3) + f(x2, x3, x1) + f(x3, x1, x2),

where the sum is taken over all cyclic permutations of the variables.

Theorem (Euler). The following formula holds:

OI2 = R2 − 2Rr.

Proof. The coordinate of the incenter is given by

zI =
α

2s
a+

β

2s
b+

γ

2s
c,
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so we can write

OI2 = |zI |2 =

(
α

2s
a+

β

2s
b+

γ

2s
c

)
·
(

α

2s
a+

β

2s
b+

γ

2s
c

)

=
1

4s2
(α2 + β2 + γ2)R2 + 2

1

4s2

∑
cyc

(αβ)a · b.

Using the above lemma, we find that

OI2 =
1

4s2
(α2 + β2 + γ2)R2 +

2

4s2

∑
cyc

αβ

(
R2 − γ2

2

)

=
1

4s2
(α + β + γ)2R2 − 1

4s2

∑
cyc

αβγ2 = R2 − 1

4s2
αβγ(α + β + γ)

= R2 − 1

2s
αβγ = R2 − 2

αβγ

4K
· K
s

= R2 − 2Rr,

where the well-known formulas

R =
αβγ

4K
, r =

K

s
,

are used. Here K is the area of triangle ABC. ��

Corollary (Euler’s inequality). In every triangle ABC, the following
inequality holds:

R ≥ 2r.

We have equality if and only if triangle ABC is equilateral.

Proof. From the above theorem. we haveOI2 = R(R−2r) ≥ 0, hence R ≥ 2r.
The equality R− 2r = 0 holds if and only if OI2 = 0, i.e., O = I. Therefore,
triangle ABC is equilateral. ��

4.6.3 The Distance ON

Theorem 1. If N is the Nagel point of triangle ABC, then

ON = R− 2r.

Proof. The coordinate of the Nagel point of the triangle is given by

zN =
(
1− α

s

)
a+

(
1− β

s

)
b+

(
1− γ

s

)
c.
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Therefore,

ON2 = |zN |2 = zN · zN = R2
∑
cyc

(
1− α

s

)2

+ 2
∑
cyc

(
1− α

s

)(
1− β

s

)
a · b

= R2
∑
cyc

(
1− α

s

)2

+ 2
∑
cyc

(
1− α

s

)(
1− β

s

)(
R2 − γ2

2

)

= R2

(
3− α+ β + γ

s

)2

−
∑
cyc

(
1− α

s

)(
1− β

s

)
γ2

= R2 −
∑
cyc

(
1− α

s

)(
1− β

s

)
γ2 = R2 − E.

To calculate E, we note that

E =
∑
cyc

(
1− α+ β

s
+

αβ

s2

)
γ2 =

∑
cyc

γ2 − 1

s

∑
cyc

(α+ β)γ2 +
1

s2

∑
cyc

αβγ2

=
∑
cyc

γ2 − 1

s

∑
cyc

(2s− γ)γ2 +
2αβγ

s
= −

∑
cyc

α2 +
1

s

∑
cyc

α3 + 8
αβγ

4K
· K
s

= −
∑
cyc

α2 +
1

s

∑
cyc

α3 + 8Rr.

Applying the formula in the corollary of Sect. 4.6.1, we conclude that

E = −2(s2 − r2 − 4Rr) + 2(s2 − 3r2 − 6Rr) + 8Rr = −4r2 + 4Rr.

Hence ON2 = R2 − E = R2 − 4Rr + 4r2 = (R − 2r)2, and the desired
formula is proved by Euler’s inequality. ��

Theorem 2 (Feuerbach5). In any triangle the incircle and the nine-point
circle of Euler are tangent.

Proof. Using the configuration in Sect. 4.5 we observe that

1

2
=

GI

GN
=

GO9

GO
.

Therefore, triangles GIO9 and GNO are similar. It follows that the lines

IO9 and ON are parallel and IO9 =
1

2
ON . Applying Theorem 1 in Sect.

4.6.3, we get IO9 =
1

2
(R − 2r) =

R

2
− r = R9 − r, and hence the incircle is

tangent to the nine-point circle. ��
5 Karl Wilhelm Feuerbach (1800–1834), German geometer, published the result of
Theorem 2 in 1822.
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Figure 4.7.

The point of tangency of these two circles is denoted by ϕ and is called
the Feuerbach point of the triangle (Fig. 4.7).

4.6.4 The Distance OH

Theorem. If H is the orthocenter of triangle ABC, then

OH2 = 9R2 + 2r2 + 8Rr − 2s2.

Proof. Assuming that the circumcenter O is the origin of the complex plane,
the coordinate of H is

zH = a+ b+ c.

Using the real product, we can write

OH2 = |zH |2 = zH · zH = (a+ b+ c) · (a+ b+ c)

=
∑
cyc

|a|2 + 2
∑

a · b = 3R2 + 2
∑
cyc

a · b.

Applying the formulas in the lemma and then the first formula in Corol-
lary 4.6.1, we obtain

OH2 = 3R2 + 2
∑
cyc

(
R2 − γ2

2

)
= 9R2 − (α2 + β2 + γ2)

= 9R2 − 2(s2 − r2 − 4Rr) = 9R2 + 2r2 + 8Rr − 2s2. ��
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Corollary 1. The following formulas hold:

(1) OG2 = R2 +
2

9
r2 +

8

9
Rr − 2

9
s2;

(2) OO2
9 =

9

4
R2 +

1

2
r2 + 2Rr − 1

2
s2.

Corollary 2. In every triangle ABC, the inequality

α2 + β2 + γ2 ≤ 9R2

is valid. Equality holds if and only if the triangle is equilateral.

4.6.5 Blundon’s Inequalities

Given a triangle ABC, denote by O its circumcenter, I the incenter, G the
centroid, N the Nagel point, s the semiperimeter, R the circumradius, and r
the inradius. In what follows, we present a geometric proof to the so-called
fundamental triangle inequality. This relation contains, in fact, two inequal-
ities, and it was first proved by E. Rouché in 1851, answering a question of
Ramus concerning necessary and sufficient conditions for three positive real
numbers s,R, r to be the semiperimeter, circumradius, and inradius of a tri-
angle. The standard simple proof was first given by W.J. Blundon, and it is
based on the following algebraic property of the roots of a cubic equation:
The roots x1, x2, x3 of the equation

x3 + a1x
2 + a2x+ a3 = 0

are the side lengths of a (nondegenerate) triangle if and only if the following
three conditions are satisfied:

(i) 18a1a2a3 + a21a
2
2 − 27a23 − 4a32 − 4a31a3 > 0;

(ii) −a1 > 0, a2 > 0, −a3 > 0;
(iii) a31 − 4a1a4 + 8a3 > 0.

The following result contains a simple geometric proof of the fundamental
inequality of a triangle, as presented in the article [15].

Theorem 1. Assume that the triangle ABC is not equilateral. The following
relation holds:

cos ̂ION =
2R2 + 10Rr− r2 − s2

2(R− 2r)
√
R2 − 2Rr

.

Proof. It is known (see Theorem 2 in Sect. 4.5) that the pointsN ,G, and I are
collinear on a line called Nagel’s line of the triangle, and we have NI = 3GI.
If we use Stewart’s theorem in the triangle ION , then we get

ON2 ·GI +OI2 ·NG−OG2 ·NI = GI ·GN ·NI,
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and it follows that

ON2 ·GI +OI2 · 2GI −OG2 − 3GI = 6GI3.

This relation is equivalent to

ON2 + 2OI2 − 3OG2 = 6GI2.

Now, using formulas for ON , OI, and OG, we obtain

GI2=
1

6

(
a2 + b2 + c2

3
− 8Rr + 4r2

)
=

1

6

(
2(s2 − r2 − 4Rr)

3
− 8Rr + 4r2

)
.

So we get

NI2 = 9GI2 = 5r2 + s2 − 16Rr.

We use the law of cosines in the triangle ION to obtain

cos ̂ION =
ON2 +OI2 −NI2

2ON · OI

=
(R − 2r)2 + (R2 − 2Rr)− (5r2 + s2 − 16Rr)

2(R− 2r)
√
R2 − 2Rr

=
2R2 + 10Rr− r2 − s2

2(R− 2r)
√
R2 − 2Rr

,

and we are done.
If the triangle ABC is equilateral, then the points I, O, N coincide, i.e.,

triangle ION degenerates to a single point. In this case, we extend the formula

by cos ̂ION = 1. ��

Theorem 2 (Blundon’s inequalities). A necessary and sufficient condi-
tion for the existence of a triangle with elements s, R, and r is

2R2 + 10Rr − r2 − 2(R− 2r)
√

R2 − 2Rr

≤ s2 ≤ 2R2 + 10Rr − r2 + 2(R2 − 2r)
√

R2 − 2Rr.

Proof. If we have R = 2r, then the triangle must be equilateral, and we are
done. If we assume that R − 2r �= 0, then the desired inequalities are direct

consequences of the fact that −1 ≤ cos ̂ION ≤ 1. ��

Equilateral triangles give the trivial situation in which we have equality.
Suppose that we are not working with equilateral triangles, i.e., we have
R − 2r �= 0. Denote by T (R, r) the family of all triangles with circumradius
R and inradius r. Blundon’s inequalities give, in terms of R and r, the exact
interval for the semiperimeter s of triangles in the family T (R, r). We have

s2min = 2R2 + 10Rr− r2 − 2(R− 2r)
√

R2 − 2Rr
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and

s2max = 2R2 + 10Rr − r2 + 2(R− 2r)
√
R2 − 2Rr.

If we fix the circumcenter O and the incenter I such that OI =
√
R2 − 2Rr,

then the triangle in the family T (R, r) with minimal semiperimeter corre-

sponds to the case cos ̂ION = 1 of equality, i.e., points I, O,N are collinear,
and I and N belong to the same ray with the origin O. Taking into account
the well-known property that points O,G,H belong to Euler’s line of the tri-
angle, we see that O, I,G must be collinear, and hence in this case, triangle
ABC is isosceles. In Fig. 4.8, this triangle is denoted by AminBminCmin. Also,
the triangle in the family T (R, r) with maximal semiperimeter corresponds

to the case of equality cos ̂ION = −1, i.e., points I, O,N are collinear, and
O is situated between I and N . Using again the Euler line of the triangle,
we see that triangle ABC is isosceles. In Fig. 4.8, this triangle is denoted by
AmaxBmaxCmax.

Note that we have BminCmin > BmaxCmax. The triangles in the family
T (R, r) are “between” these two extremal triangles (see Fig. 4.8). According
to Poncelet’s closure theorem, they are inscribed in the circle C(O;R), and
their sides are externally tangent to the circle C(I; r).

Bmax

Cmax

Amax

Amin

Cmin

A

I

O

C

B

Bmin

Nmin

Nmax

Figure 4.8.
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4.7 Distance Between Two Points in the Plane
of a Triangle

4.7.1 Barycentric Coordinates

Consider a triangleABC and let α, β, γ be the lengths of sidesBC, CA, AB,
respectively.

Proposition. Let a, b, c be the coordinates of vertices A, B, C and let P
be a point in the plane of the triangle. If zP is the coordinate of P , then there
exist unique real numbers μa, μb, μc such that

zP = μaa+ μbb+ μcc and μa + μb + μc = 1.

Proof. Assume that P is in the interior of triangle ABC and consider the

point A′ such that AP ∩BC = {A′}. Let k1 =
PA

PA′ , k2 =
A′B
A′C

, and observe

that

zP =
a+ k1zA′

1 + k1
, zA′ =

b+ k2c

1 + k2
.

Hence in this case, we can write

zP =
1

1 + k1
a+

k1
(1 + k1)(1 + k2)

b+
k1k2

(1 + k1)(1 + k2)
c.

Moreover, if we consider

μa =
1

1 + k1
, μb =

k1
(1 + k1)(1 + k2)

, μc =
k1k2

(1 + k1)(1 + k2)
,

we have

μa + μb + μc =
1

1 + k1
+

k1
(1 + k1)(1 + k2)

+
k1k2

(1 + k1)(1 + k2)

=
1 + k1 + k2 + k1k2
(1 + k1)(1 + k2)

= 1.

We proceed in an analogous way when the point P is situated in the
exterior of triangle ABC.

If the point P is situated on the support line of a side of triangle ABC
(i.e., the line determined by two vertices), then

zP =
1

1 + k
b+

k

1 + k
c = 0 · a+ 1

1 + k
b+

k

1 + k
c,

where k =
PB

PC
. ��
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The real numbers μa, μb, μc are called the absolute barycentric coordinates
of P with respect to triangle ABC.

The signs of the numbers μa, μb, μc depend on the regions of the plane in
which the point P is situated. Triangle ABC determines seven such regions
(Fig. 4.9).

Figure 4.9.

In the following table, we give the signs of μa, μb, μc:

I II III IV V VI VII

μa − + + + − − +

μb + − + − + − +

μc + + − − − + +

4.7.2 Distance Between Two Points in Barycentric
Coordinates

In what follows, in order to simplify the formulas, we will use again the
cyclic sum symbol defined above,

∑
cyc

f(x1, x2, . . . , xn). The most important

example for our purposes is

∑
cyc

f(x1, x2, x3) = f(x1, x2, x3) + f(x2, x3, x1) + f(x3, x1, x2).

Theorem 1. In the plane of triangle ABC, consider the points P1 and P2

with coordinates zP1 and zP2 , respectively. If zPk
= αka + βkb + γkc, where

αk, βk, γk are real numbers such that αk + βk + γk = 1, k = 1, 2, then

P1P
2
2 = −

∑
cyc

(α2 − α1)(β2 − β1)γ
2.
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Proof. Choose the origin of the complex plane to be located at the
circumcenter O of the triangle ABC. Using properties of the real product,
we have

P1P
2
2 = |zP2 − zP1 |2 = |(α2 − α1)a+ (β2 − β1)b+ (γ2 − γ1)c|2

=
∑
cyc

(α2 − α1)
2a · a+ 2

∑
cyc

(α2 − α1)(β2 − β1)a · b

=
∑
cyc

(α2 − α1)
2R2 + 2

∑
cyc

(α2 − α1)(β2 − β1)

(
R2 − γ2

2

)

= R2(α2 + β2 + γ2 − α1 − β1 − γ1)
2 −

∑
cyc

(α2 − α1)(β2 − β1)γ
2

= −
∑
cyc

(α2 − α1)(β2 − β1)γ
2,

since α1 + β1 + γ1 = α2 + β2 + γ2 = 1. ��

Theorem 2. The points A1, A2, B1, B2, C1, C2 are situated on the sides
BC, CA, AB of triangle ABC such that lines AA1, BB1, CC1 meet at
point P1, and lines AA2, BB2, CC2 meet at point P2. If

BAk

AkC
=

pk
nk

,
CBk

BkA
=

mk

pk
,
ACk

CkB
=

nk

mk
, k = 1, 2,

where mk, nk, pk are nonzero real numbers, k = 1, 2, and
Sk = mk + nk + pk, k = 1, 2, then

P1P
2
2 =

1

S2
1S

2
2

[
S1S2

∑
cyc

(n1P2 + p1n2)α
2 − S2

1

∑
cyc

n2p2α
2 − S2

2

∑
cyc

n1p1α
2

]
.

Proof. The coordinates of points P1 and P2 are

zPk
=

mka+ nkb+ pkC

mk + nk + pk
, k = 1, 2.

It follows that in this case, the absolute barycentric coordinates of points
P1 and P2 are given by

αk =
mk

mk + nk + pk
=

mk

Sk
, βk =

nk

mk + nk + pk
=

nk

Sk
,

γk =
pk

mk + nk + pk
=

pk
Sk

, k = 1, 2.

Substituting in the formula in Theorem 1 in Sect. 4.7.2, we obtain
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P1P
2
2 = −

∑
cyc

(
n2

S2
− n1

S1

)(
p2
S2

− p1
S1

)
α2

= − 1

S2
1S

2
2

∑
cyc

(S1n2 − S2n1)(S1p2 − S2p1)α
2

= − 1

S2
1S

2
2

∑
cyc

[
S2
1n2p2 + S2

2n1p1 − S1S2(n1p2 + n2p1)
]
α2

=
1

S2
1S

2
2

[
S1S2

∑
cyc

(n1p2 + n2p1)α
2 − S2

1

∑
cyc

n2p2α
2 − S2

2

∑
cyc

n1p1α
2

]
,

and the desired formula follows. ��

Corollary 1. For real numbers αk, βk, γk with αk + βk + γk = 1, k = 1, 2,
the following inequality holds:

∑
cyc

(α2 − α1)(β2 − β1)γ
2 ≤ 0,

with equality if and only if α1 = α2, β1 = β2, γ1 = γ2.

Corollary 2. For nonzero real numbers mk, nk, pk, k = 1, 2, with Sk =
mk + nk + pk, k = 1, 2, the lengths of sides α, β, γ of triangle ABC satisfy
the inequality

∑
cyc

(n1p2 + p1n2)
2 ≥ S1

S2

∑
cyc

n2p2α
2 +

S2

S1

∑
cyc

n1p1α
2,

with equality if and only if
p1
n1

=
p2
n2

,
m1

p1
=

m2

p2
,
n1

m1
=

n2

m2
.

Applications

(1) Let us use the formula in Theorem 2 in Sect. 4.7.2 to compute the distance
GI, used in Sect. 4.6.5, where G is the centroid and I is the incenter of
the triangle.

We have m1 = n1 = p1 = 1 and m2 = α, n2 = β, p2 = γ; hence

S1 =
∑
cyc

m1 = 3; S2 =
∑
cyc

m2 = α+ β + γ = 2s;

∑
cyc

(n1p2 + n2p1)α
2 = (β + γ)α2 + (γ + α)β2 + (α + β)γ2

= (α+ β + γ)(αβ + βγ + γα)− 3αβγ = 2s(s2 + r2 + 4rR)− 12sRr

= 2s3 + 2sr2 − 4sRr.
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On the other hand,

∑
cyc

n2p2α
2 = α2βγ + β2γα+ γ2αβ = αβγ(α + β + γ) = 8s2Rr

and ∑
cyc

n1p1α
2 = α2 + β2 + γ2 = 2s2 − 2r2 − 8Rr.

Then

GI2 =
1

9
(s2 + 5r2 − 16Rr).

(2) Let us prove that in every triangle ABC with sides α, β, γ, the following
inequality holds:

∑
cyc

(2α− β − γ)(2β − α− γ)γ2 ≤ 0.

In the inequality in Corollary 1 in Sect. 4.7.2, we consider the points

P1 = G and P2 = I. Then α1 = β1 = γ1 =
1

3
and α2 =

α

2s
, β2 =

β

2s
,

γ2 =
γ

2s
, and the above inequality follows. We have equality if and only if

P1 = P2, that is, G = I, so the triangle is equilateral.

4.8 The Area of a Triangle in Barycentric Coordinates

Consider the triangle ABC with a, b, c the respective coordinates of its
vertices. Let α, β, γ be the lengths of sides BC, CA, and AB.

Theorem. Let Pj(zpj ), j = 1, 2, 3, be three points in the plane of triangle
ABC with zPj = αja+ βjb+ γjc, where αj , βj , γj are the barycentric coor-
dinates of Pj. If the triangles ABC and P1P2P3 have the same orientation,
then

area[P1P2P3]

area[ABC]
=

∣∣∣∣∣∣
α1 β1 γ1
α2 β2 γ2
α3 β3 γ3

∣∣∣∣∣∣ .

Proof. Suppose that the triangles ABC and P1P2P3 are positively oriented.
If O denotes the origin of the complex plane, then using the complex product,
we can write

2i area[P1OP2] = zP1 × zP2 = (α1a+ β1b+ γ1c)× (α2a+ β2b+ γ2c)

= (α1β2 − α2β1)a× b+ (β1γ2 − β2γ1)b× c+ (γ1α1 − γ2α1)c× a
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=

∣∣∣∣∣∣
a× b b× c c× a
γ1 γ1 β1

γ2 α2 β2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a× b b× c 2i area [ABC]
γ1 α1 1
γ2 α2 1

∣∣∣∣∣∣ .
Analogously, we obtain

2i area [P2OP3] =

∣∣∣∣∣∣
a× b b× c 2i area [ABC]
γ2 α2 1
γ3 α3 1

∣∣∣∣∣∣ ,

2i area [P3OP1] =

∣∣∣∣∣∣
a× b b× c 2i area [ABC]
γ3 α3 1
γ1 α1 1

∣∣∣∣∣∣ .
Assuming that the origin O is situated in the interior of triangle P1P2P3,

it follows that

area[P1P2P3] = area [P1OP2] + area [P2OP3] + area [P3OP1]

=
1

2i
(α1 −α2+α2 −α3+α3−α1)a× b− 1

2i
(γ1 − γ2+ γ2− γ3+ γ3− γ1)b× c

+(γ1α2 − γ2α1 + γ2α3 − γ3α2 + γ3α1 − γ1α3)area [ABC]

= (γ1α2 − γ2α1 + γ2α3 − γ3α2 + γ3α1 − γ1α3) area [ABC]

= area [ABC]

∣∣∣∣∣∣
1 γ1 α1

1 γ2 α2

1 γ3 α3

∣∣∣∣∣∣ = area[ABC]

∣∣∣∣∣∣
α1 β1 γ1
α2 β2 γ2
α3 β3 γ3

∣∣∣∣∣∣ ,
and the desired formula is obtained. ��

Corollary 1. Consider the triangle ABC and the points A1, B1, C1 situated
on the respective lines BC, CA, AB (Fig. 4.10) such that

A1B

A1C
= k1,

B1C

B1A
= k2,

C1A

C1B
= k3.

If AA1 ∩BB1 = {P1}, BB1 ∩ CC1 = {P2}, and CC1 ∩ AA1 = {P3}, then

area[P1P2P3]

area[ABC]
=

(1− k1k2k3)
2

(1 + k1 + k1k2)(1 + k2 + k2k3)(1 + k3 + k3k1)
.

Proof. Applying the well-known Menelaus’s theorem to triangle AA1B, we
find that

C1A

C1B
· CB

CA1
· P3A1

P3A
= 1.

Hence
P3A

P3A1
=

C1A

C1B
· CB

CA1
= k3(1 + k1).
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Figure 4.10.

The coordinate of P3 is given by

zP3 =
a+ k3(1 + k1)zA1

1 + k3(1 + k1)
=

a+ k3(1 + k1)
b + k1c

1 + k1
1 + k3 + k3k1

=
a+ k3b+ k3k1c

1 + k3 + k3k1
.

In an analogous way, we find that

zP1 =
k1k2a+ b+ k1c

1 + k1 + k1k2
and zP2 =

k2a+ k2k3b+ c

1 + k2 + k2k3
.

The triangles ABC and P1P2P3 have the same orientation; hence by applying
the formula in the above theorem, we find that

area[P1P2P3]

area[ABC]
=

1

(1+k1+k1k2)(1+k2+k2k3)(1+k3+k3k1)

∣∣∣∣∣∣
k1k2 1 k1
k2 k2k3 1
1 k3 k3k1

∣∣∣∣∣∣

=
(1− k1k2k3)

2

(1 + k1 + k1k2)(1 + k2 + k2k3)(1 + k3 + k3k1)
. ��

Remark. When k1 = k2 = k3 = k, from Corollary 1 in Sect. 4.8, we obtain
Problem 3 in Sect. 4.9.2 from the 23rd Putnam Mathematical Competition.

Let Aj , Bj , Cj be points on the lines BC, CA, AB, respectively, such that

BAj

AjC
=

pj
nj

,
CBj

BjA
=

mj

pj
,
ACj

CjB
=

nj

mj
, j = 1, 2, 3.

Corollary 2. If Pj is the intersection point of lines AAj , BBj , CCj , j =
1, 2, 3, and the triangles ABC, P1P2P3 have the same orientation, then

area[P1P2P3]

area[ABC]
=

1

S1S2S3

∣∣∣∣∣∣
m1 n1 p1
m2 n2 p2
m3 n3 p3

∣∣∣∣∣∣ ,

where Sj = mj + nj + pj , j = 1, 2, 3.
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Proof. In terms of the coordinates of the triangle, the coordinates of the
points Pj are

zPj =
mja+ njb + pjC

mj + nj + pj
=

1

Sj
(mja+ njb+ pjc), j = 1, 2, 3.

The formula above follows directly from the above theorem. ��

Corollary 3. In triangle ABC, let us consider the cevians AA′, BB′, and
CC′ such that

A′B
AC

= m,
B′C
B′A

= n,
C′A
C′B

= p.

Then the following formula holds:

area[A′B′C′]
area[ABC]

=
1 +mnp

(1 +m)(1 + n)(1 + p)
.

Proof. Observe that the coordinates of A′, B′, C′ are given by

zA′ =
1

1 +m
b+

m

1 +m
c, zB′ =

1

1 + n
c+

n

1 + n
a, zC′ =

1

1 + p
a+

p

1 + p
b.

Applying the formula in Corollary 2 in Sect. 4.8, we obtain

area[A′B′C′]
area[ABC]

=
1

(1 +m)(1 + n)(1 + p)

∣∣∣∣∣∣
0 1 m
n 0 1
1 p 0

∣∣∣∣∣∣

=
1 +mnp

(1 +m)(1 + n)(1 + p)
. ��

Applications

(1) (Steinhaus)6 Let Aj , Bj , Cj be points on lines BC, CA, AB, respec-
tively, j = 1, 2, 3. Assume that

BA1

A1C
=

2

4
,
CB1

B1A
=

1

2
,
AC1

C1B
=

4

1
;

BA2

A2C
=

4

1
,
CB2

B2A
=

2

4
,
AC2

C2B
=

1

2
;

BA3

A3C
=

1

2
,
CB3

B3A
=

4

1
,
AC3

C3B
=

2

4
.

If Pj is the intersection point of lines AAj , BBj , CCj , j = 1, 2, 3, and
trianglesABC, P1P2P3 are of the same orientation, then from Corollary 3
above, we obtain

6 Hugo Dyonizy Steinhaus (1887–1972), Polish mathematician, made important contribu-
tions to functional analysis and other branches of modern mathematics.
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area[P1P2P3]

area[ABC]
=

1

7 · 7 · 7

∣∣∣∣∣∣
1 4 2
2 1 4
4 2 1

∣∣∣∣∣∣ =
49

73
=

1

7
.

(2) If the cevians AA′, BB′, CC′ are concurrent at point P , let us denote
by KP the area of triangle A′B′C′. We can use the formula in Corollary 3
above to compute the areas of some triangles determined by the feet of
the cevians of some notable points in a triangle.

(i) If I is the incenter of triangle ABC, we have

KI =

1 +
γ

β
· β
α
· α
γ(

1 +
γ

β

)(
1 +

β

α

)(
1 +

α

γ

)area[ABC]

=
2αβγ

(α+ β)(β + γ)(γ + α)
area[ABC] =

2αβγsr

(α+ β)(β + γ)(γ + α)
.

(ii) For the orthocenter H of the acute triangle ABC, we obtain

KH =
1 +

tanC

tanB
· tanB
tanA

· tanA
tanC(

1 +
tanC

tanB

)(
1 +

tanB

tanA

)(
1 +

tanA

tanC

)area[ABC]

= (2 cosA cosB cosC)area[ABC] = (2 cosA cosB cosC)sr.

(iii) For the Nagel point of triangle ABC, we can write

KN =

1 +
s− γ

s− β
· s− α

s− γ
· s− β

s− α(
1 +

s− γ

s− β

)(
1 +

s− α

s− γ

)(
1 +

s− β

s− α

)area[ABC]

=
2(s− α)(s− β)(s − γ)

αβγ
area[ABC] =

4area2[ABC]

2sαβγ
area[ABC]

=
r

2R
area[ABC] =

sr2

2R
.

If we proceed in the same way for the Gergonne point J , we obtain the
relation

KJ =
r

2R
area[ABC] =

sr2

2R
.

Remark. Two cevians AA′ and AA′′ are isotomic if the points A′ and A′′

are symmetric with respect to the midpoint of the segment BC. Assuming
that
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A′B
A′C

= m,
B′C
B′A

= n,
C′A
C′B

= p,

then for the corresponding isotomic cevians, we have

A′′B
A′′C

=
1

m
,
B′′C
B′′A

=
1

n
,
C′′A
C′′B

=
1

p
.

Applying the formula in Corollary 3 above yields that

area[A′B′C′]
area[ABC]

=
1 +mnp

(1 +m)(1 + n)(1 + p)

=

1 +
1

mnp(
1 +

1

m

)(
1 +

1

n

)(
1 +

1

p

) =
area[A′′B′′C′′]
area[ABC]

.

Therefore, area [A′B′C′] = area[A′′B′′C′′]. A special case of this relation
is KN = KJ , since the points N and J are isotomic (i.e., these points are
intersections of isotomic cevians).

(3) Consider the excenters Iα, Iβ , Iγ of triangle ABC. It is not difficult to
see that the coordinates of these points are

zIα = − α

2(s− α)
a+

β

2(s− β)
b+

γ

2(s− γ)
c,

zIβ =
α

2(s− α)
a− β

2(s− β)
b+

γ

2(s− γ)
c,

zIγ =
α

2(s− α)
a+

β

2(s− β)
b− γ

2(s− γ)
c.

From the formula in the theorem above, it follows that

area[IαIβIγ ] =

∣∣∣∣∣∣∣
− α

2(s−α)
β

2(s−β)
γ

2(s−γ)
α

2(s−α) − β
2(s−β)

γ
2(s−γ)

α
2(s−α)

β
2(s−β) − γ

2(s−γ)

∣∣∣∣∣∣∣
area[ABC]

=
αβγ

8(s− α)(s− β)(s− γ)

∣∣∣∣∣∣
-1 1 1
1 -1 1
1 1 -1

∣∣∣∣∣∣ area[ABC]

=
sαβγarea[ABC]

2s(s− α)(s− β)(s − γ)
=

sαβγarea[ABC]

2area2[ABC]
=

2sαβγ

4area[ABC]
= 2sR.

(4) (Nagel line) Using the formula in the theorem above, we give a different
proof for the so-called Nagel line: the points I,G,N are collinear. We
have seen that the coordinates of these points are
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zI =
α

2s
a+

β

2s
b+

γ

2s
c,

zG =
1

3
a+

1

3
b+

1

3
c,

zN =
(
1− α

s

)
a+

(
1− β

s

)
b+

(
1− γ

s

)
c.

Then

area[IGN ] =

∣∣∣∣∣∣
α
2s

β
2s

γ
2s

1
3

1
3

1
3

1− α
s 1− β

s 1− γ
s

∣∣∣∣∣∣ . area[ABC] = 0,

and hence the points I, G, N are collinear.

4.9 Orthopolar Triangles

4.9.1 The Simson–Wallace Line and the Pedal
Triangle

Consider the triangle ABC, and let M be a point situated in the plane of
the triangle. Let P, Q, R be the projections of M onto lines BC, CA, AB,
respectively.

Theorem 1 (The Simson line7). The points P, Q, R are collinear if and
only if M is on the circumcircle of triangle ABC.

Proof. We will give a standard geometric argument.
Suppose that M lies on the circumcircle of triangle ABC. Without loss

of generality, we may assume that M is on the arc
�

BC. In order to prove

the collinearity of R, P, Q, it suffices to show that the angles ̂BPR and
̂CPQ are congruent. The quadrilaterals PRBM and PCQM are cyclic (since
̂BRM ≡ ̂BPM and ̂MPC + ̂MQC = 180◦); hence we have ̂BPR ≡ ̂BMR

and ̂CPQ ≡ ̂CMQ. But ̂BMR = 90◦ − ̂ABM = 90◦ − ̂MCQ, since the

quadrilateral ABMC is cyclic, too. Finally, we obtain ̂BMR = 90◦− ̂MCQ =
̂CMQ, so the angles ̂BPR and ̂CPQ are congruent (Fig. 4.11).

To prove the converse, we note that if the points P, Q, R are collinear,

then the angles ̂BPR and ̂CPQ are congruent; hence ̂ABM + ̂ACM = 180◦,
i.e., the quadrilateral ABMC is cyclic. Therefore, the point M is situated on
the circumcircle of triangles ABC. ��
7 Robert Simson (1687–1768), Scottish mathematician. This line was attributed to Simson
by Poncelet, but it is now generally known as the Simson–Wallace line, since it does not
actually appear in any work of Simson. William Wallace (1768–1843) was also a Scottish
mathematician, who possibly published the theorem above concerning the Simson line in
1799.
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Figure 4.11.

When M lies on the circumcircle of triangle ABC, the line in the above
theorem is called the Simson–Wallace line of M with respect to triangle
ABC.

We continue with a nice generalization of the property contained in Theo-
rem 1 above. For an arbitrary point X in the plane of triangle ABC, consider
its projections P, Q, and R on the lines BC, CA and AB, respectively.

The triangle PQR is called the pedal triangle of point X with respect to
the triangle ABC. Let us choose the circumcenter O of triangle ABC as the
origin of the complex plane.

Theorem 2. The area of the pedal triangle of X with respect to the triangle
ABC is given by

area[PQR] =
area[ABC]

4R2

∣∣|x|2 −R2
∣∣, (1)

where R is the circumradius of triangle ABC.

Figure 4.12.
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Proof. Applying the formula in the proposition of Sect. 4.5, we obtain the
coordinates p, q, r of the points P, Q, R, respectively (Fig. 4.12):

p =
1

2

(
x− bc

R2
x+ b+ c

)
,

q =
1

2

(
x− ca

R2
x+ c+ a

)
,

r =
1

2

(
x− ab

R2
x+ a+ b

)
.

Taking into account the formula in Sect. 3.5.3, we have

area[PQR] = | i
4

∣∣∣∣∣∣
p p 1
q q 1
r r 1

∣∣∣∣∣∣ | = | i
4

∣∣∣∣ q − p q − p
r − p r − p

∣∣∣∣ |.

For the coordinates p, q, r, we obtain

p =
1

2

(
x− bc

R2
x+ b+ c

)
,

q =
1

2

(
x− c a

R2
x+ c+ a

)
,

r =
1

2

(
x− ab

R2
x+ a+ b

)
.

It follows that

q − p =
1

2
(a− b)

(
1− cx

R2

)
and r − p =

1

2
(a− c)

(
1− bx

R2

)
, (2)

q − p =
1

2abc
(a− b)(x− c)R2 and r − p =

1

2abc
(a− c)(x− b)R2.

Therefore,

area[PQR] = | i
4

∣∣∣∣ q − p q − p
r − p r − p

∣∣∣∣ | = | i(a− b)(a− c)

16abc

∣∣∣∣1−
cx
R2 (x− c)R2

1− bx
R2 (x− b)R2

∣∣∣∣ |
= | i(a− b)(a− c)

16abc

∣∣∣∣R
2 − cx x− c

R2 − bx x− b

∣∣∣∣ | = | i(a− b)(a− c)

16abc

∣∣∣∣ (b − c)x b− c
R2 − bx x− b

∣∣∣∣ |

= | i(a− b)(b− c)(a− c)

16abc

∣∣∣∣ x 1
R2 − bx x− b

∣∣∣∣ |= | i(a− b)(b − c)(a− c)

16abc
(xx−R2)|.
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We find that

area[PQR] =
|a− b||b− c||c− a|

16|a||b||c|
∣∣|x|2 −R2

∣∣ = αβγ

16R3

∣∣|x|2 −R2
∣∣

=
area[ABC]

4R2

∣∣|x|2 −R2
∣∣,

where α, β, γ are the side lengths of triangle ABC. ��

Remarks.

(1) The formula in Theorem 2 above contains the Simson–Wallace line
property. Indeed, points P, Q, R are collinear if and only if area
[PQR] = 0, that is, |xx−R2| = 0, i.e., xx = R2. It follows that |x| = R,
so X lies on the circumcircle of triangle ABC.

(2) If X lies on a circle of radius R1 and center O (the circumcenter of
triangle ABC), then xx = R2

1, and from Theorem 2 above, we obtain

area[PQR] =
area[ABC]

4R2
|R2

1 −R2|.

It follows that the area of triangle PQR does not depend on the point X .

The converse is also true. The locus of all points X in the plane of triangle
ABC such that area [PQR] = k (constant) is defined by

∣∣|x|2 −R2
∣∣ = 4R2k

area[ABC]
.

This is equivalent to

|x|2 = R2 ± 4R2k

area[ABC]
= R2

(
1± 4k

area[ABC]

)
.

If k >
1

4
area[ABC], then the locus is a circle with center O and radius

R1 = R

√
1 +

4k

area[ABC]
.

If k ≤ 1

4
area[ABC], then the locus consists with two circles of

center O and radii R

√
1± 4k

area[ABC]
, one of which degenerates to O when

k =
1

4
area[ABC].

Theorem 3. For every point X in the plane of triangle ABC, we can con-
struct a triangle with sides AX · BC, BX · CA, CX · AB. This triangle is
then similar to the pedal triangle of point X with respect to the triangle ABC.
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Proof. Let PQR be the pedal triangle of X with respect to triangle ABC.
From formula (2), we obtain

q − p =
1

2
(a− b)(x− c)

R2 − cx

R2(x− c)
. (3)

Taking moduli in (3), we obtain

|q − p| = 1

2R2
|a− b||x− c|

∣∣∣∣R
2 − cx

x− c

∣∣∣∣ . (4)

On the other hand,

∣∣∣∣R
2 − cx

x− c

∣∣∣∣
2

=
R2 − cx

x− c
· R

2 − cx

x− c
=

R2 − cx

x− c
· R

2 − cx

x− R2

c

=
R2 − cx

x− c
· R

2(c− x)

cx−R2
= R2,

whence from (4), we derive the relation

|q − p| = 1

2R
|a− b||x− c|. (5)

Therefore,

PQ

CX · AB =
QR

AX · BC
=

RP

BX · CA
=

1

2R
, (6)

and the conclusion follows. ��

Corollary 1. In the plane of triangle ABC, consider the point X and denote
by A′B′C′ the triangle with sides AX · BC, BX · CA, CX. AB. Then

area[A′B′C′] = area[ABC]
∣∣|x|2 −R2

∣∣. (7)

Proof. From formula (6), it follows that area [A′B′C′] = 4R2 area [PQR],
where PQR is the pedal triangle of X with respect to triangle ABC. Replac-
ing this result in (1), we obtain the desired formula. ��

Corollary 2 (Ptolemy’s inequality). The following inequality holds for
every quadrilateral ABCD:

AC · BD ≤ AB · CD +BC ·AD. (8)

Corollary 3 (Ptolemy’s theorem). The convex quadrilateral ABCD is
cyclic if and only if

AC · BD = AB · CD +BC ·AD. (9)
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Proof. If the relation (9) holds, then triangle A′B′C′ in Corollary 1 above is
degenerate; i.e., area [A′B′C] = 0. From formula (7), it follows that d·d = R2,
where d is the coordinate of D and R is the circumradius of triangle ABC.
Hence the point D lies on the circumcircle of triangle ABC.

If quadrilateral ABCD is cyclic, then the pedal triangle of point D
with respect to triangle ABC is degenerate. From (6), we obtain the
relation (9). ��

Corollary 4 (Pompeiu’s theorem8). For every point X in the plane of
the equilateral triangle ABC, three segments with lengths XA, XB, XC can
be taken as the sides of a triangle.

Proof. In Theorem 3 above, we have BC = CA = AB, and the desired
conclusion follows. ��

The triangle in Corollary 4 above is called the Pompeiu triangle of X
with respect to the equilateral triangle ABC. This triangle is degenerate if
and only if X lies on the circumcircle of ABC. Using the second part of
Theorem 3, we find that Pompeiu’s triangle of the point X is similar to the
pedal triangle of X with respect to triangle ABC and

CX

PQ
=

AX

QR
=

BX

RP
=

2R

α
=

2
√
3

3
. (10)

Problem 1. Let A, B, and C be equidistant points on the circumference of
a circle of unit radius centered at O, and let X be any point in the circle’s
interior. Let dA, dB , dC be the distances from X to A, B, C, respectively.
Show that there is a triangle with sides dA, dB, dC , and that the area of this
triangle depends only on the distance from X to O.

(2003 Putnam Mathematical Competition)

Solution. The first assertion is just the property contained in Corollary 4
above. Taking into account the relations (10), we see that the area of Pom-

peiu’s triangle of point X is
4

3
area[PQR]. From Theorem 2 above, we get

that area [PQR] depends only on the distance from X to O, as desired.

Problem 2. Let X be a point in the plane of the equilateral triangle ABC
such that X does not lie on the circumcircle of triangleABC, and let
XA = u, XB = v, XC = w. Express the side length α of triangle ABC in
terms of real numbers u, v, w.

(1978 GDR Mathematical Olympiad)

8 Dimitrie Pompeiu (1873–1954), Romanian mathematician, made important contribu-
tions in the fields of mathematical analysis, functions of a complex variable, and rational
mechanics. He was a Ph.D student of Henri Poincaré.
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Solution. The segments [XA], [XB], [XC] are the sides of Pompeiu’s
triangle of point X with respect to equilateral triangle ABC. Denote this
triangle by A′B′C′. From relations (10) and from Theorem 2 in Sect. 4.9.1 it
follows that

area[A′B′C′] =

(
2
√
3

3

)2

area[PQR] =
1

3R2
area[ABC]|x · x−R2|

=
1

3R2
· α

2
√
3

4

∣∣|x|2 −R2
∣∣ =

√
3

4
|XO2 −R2|. (1)

On the other hand, using the well-known formula of Heron, we obtain,
after a few simple computations,

area[A′B′C′] =
1

4

√
(u2 + v2 + w2)2 − 2(u4 + v4 + w4).

Substituting in (1), we obtain

|XO2 −R2| = 1√
3

√
(u2 + v2 + w2)2 − 2(u4 + v4 + w4). (11)

Now we consider the following two cases:

Case 1. If X lies in the interior of the circumcircle of triangle ABC, then
XO2 < R2. Using the relation (see also formula (4) in Sect. 4.11)

XO2 =
1

3
(u2 + v2 + w2 − 3R2),

from (11) we find that

2R2 =
1

3
(u2 + v2 + w2) +

1√
3

√
(u2 + v2 + w2)2 − 2(u4 + v4 + w4),

and hence

α2 =
1

2
(u2 + v2 + w2) +

√
3

2

√
(u2 + v2 + w2)2 − 2(u4 + v4 + w4).

Case 2. If X lies in the exterior of the circumcircle of triangle ABC, then
XO2 > R2, and after some similar computations we obtain

α2 =
1

2
(u2 + v2 + w2)−

√
3

2

√
(u2 + v2 + w2)2 − 2(u4 + v4 + w4).
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4.9.2 Necessary and Sufficient Conditions
for Orthopolarity

Consider a triangle ABC and points X, Y, Z situated on its circumcircle.
Triangles ABC and XY Z are called orthopolar triangles (or S-triangles)9 if
the Simson–Wallace line of point X with respect to triangle ABC is perpen-
dicular (orthogonal) to line Y Z.

Let us choose the circumcenter O of triangle ABC to lie at the origin of the
complex plane. Points A, B, C, X, Y, Z have the coordinates a, b, c, x, y, z
with

|a| = |b| = |c| = |x| = |y| = |z| = R,

where R is the circumradius of the triangle ABC.

Theorem. Triangles ABC and XY Z are orthopolar triangles if and only if
abc = xyz.

Proof. Let P, Q, R be the feet of the orthogonal lines from the point X to
the lines BC, CA, AB, respectively.

Points P, Q, R are on the same line, namely the Simson–Wallace line of
point X with respect to triangle ABC.

The coordinates of P, Q, R are denoted by p, q, r, respectively. Using
the formula in Proposition of Sect. 4.5, we have

p =
1

2

(
x− bc

R2
x+ b+ c

)
,

q =
1

2

(
x− ca

R2
x+ c+ a

)
,

r =
1

2

(
x− ab

R2
x+ a+ b

)
.

We study two cases.

Case 1. Point X is not a vertex of triangle ABC.
Then P Q is orthogonal to Y Z if and only if (p− q) · (y− z) = 0. That is,[

(b− a)

(
1− cx

R2

)]
· (y − z) = 0,

or

(b− a)(R2 − cx)(y − z) + (b − a)(R2 − cx)(y − z) = 0.

We obtain(
R2

b
− R2

a

)(
R2 − R2

c
x

)
(y−z)+(b−a)

(
R2 − c

R2

x

)(
R2

y
− R2

z

)
= 0;

9 This definition was given in 1915 by the Romanian mathematician Traian Lalescu (1882–
1929). He is famous for his book La géometrie du triangle [43].
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hence

1

abc
(a− b)(c− x)(y − z)− 1

xyz
(a− b)(c− x)(y − z) = 0.

The last relation is equivalent to

(abc− xyz) (a− b)(c− x)(y − z) = 0,

and finally, we get abc = xyz, as desired.
Case 2. Point X is a vertex of triangle ABC. Without loss of generality,

assume that X = B.
Then the Simson–Wallace line of point X = B is the orthogonal line from
B to AC. It follows that BQ is orthogonal to Y Z if and only if lines AC
and Y Z are parallel. This is equivalent to ac = yz. Because b = x, we
obtain abc = xyz, as desired.

��

Remark. Due to the symmetry of the relation abc = xyz, we observe that
the Simson–Wallace line of every vertex of triangle XY Z with respect to
ABC is orthogonal to the opposite side of the triangle XY Z. Moreover, the
same property holds for the vertices of triangle ABC.

Hence ABC and XY Z are orthopolar triangles if and only if XY Z and
ABC are orthopolar triangles. Therefore the orthopolarity relation is sym-
metric.

Problem 1. The median and the orthic triangles of a triangle ABC are or-
thopolar in the nine-point circle.

Solution. Consider the origin of the complex plane at the circumcenter O
of triangle ABC. Let M, N, P be the midpoints of AB, BC, CA and let
A′, B′, C′ be the feet of the altitudes of triangles ABC from A, B, C,
respectively.

If m, n, p, a′, b′, c′ are coordinates of M, N, P, A′, B′, C′, then we
have

m =
1

2
(a+ b), n =

1

2
(b+ c), p =

1

2
(c+ a)

and

a′ =
1

2

(
a+ b+ c− bc

R2
a

)
=

1

2
(a+ b+ c− bc

a
),

b′ =
1

2

(
a+ b+ c− ca

b

)
, c′ =

1

2

(
a+ b+ c− ab

2

)
.

The nine-point center O9 is the midpoint of the segment OH , whereH(a+b+

c) is the orthocenter of triangle ABC. The coordinate ofO9 is ω =
1

2
(a+b+c).



4.9 Orthopolar Triangles 147

Now observe that

(a′ − ω)(b′ − ω)(c′ − ω) = (m− ω)(n− ω)(p− ω) = −1

8
abc,

and the claim is proved.

Problem 2. The altitudes of triangle ABC meet its circumcircle at points
A1, B1, C1, respectively. If A

′
1, B

′
1, C

′
1 are the antipodal points of A1, B1, C1

on the circumcircle ABC, then ABC and A′
1B

′
1C

′
1 are orthopolar triangles.

Solution. The coordinates of A1, B1, C1 are −bc

a
, −ca

b
, −ab

c
, respectively.

Indeed, the equation of line AH in terms of the real product is

AH : (z − a) · (b− c) = 0.

It suffices to show that the point with coordinate −bc

a
lies both on AH and

on the circumcircle of triangle ABC. First, let us note that∣∣∣∣−bc

a

∣∣∣∣ = |b||c|
|a| =

R · R
R

= R;

hence this point is situated on the circumcircle of triangle ABC. Now we

shall show that the complex number −bc

a
satisfies the equation of the line

AH . This is equivalent to (
bc

a
+ a

)
· (b − c) = 0.

Using the definition of the real product, this reduces to

(
bc

a
+ a

)
(b − c) +

(
bc

a
+ a

)
(b − c) = 0,

or (
abc

R2
+ a

)
(b − c) +

(
bc

a
+ a

)(
R2

b
− R2

c

)
= 0.

Finally, this comes down to

(b − c)

(
abc

R2
+ a− R2

a
− aR2

bc

)
= 0,

a relation that is clearly true.

It follows that A′
1, B′

1, C′
1 have coordinates

bc

a
,

ca

b
,

ab

c
, respectively.

Because

bc

a
· ca
c

· ab
c

= abc,

we obtain that the triangles ABC and A′
1B

′
1C

′
1 are orthopolar (Fig. 4.13).
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A

C1

A1

B1

B1

B C

A1

C1

H

Figure 4.13.

Problem 3. Let P and P ′ be distinct points on the circumcircle of triangle
ABC such that lines AP and AP ′ are symmetric with respect to the bisector

of angle ̂BAC. Then triangles ABC and APP ′ are orthopolar (Fig. 4.14).

Figure 4.14.

Solution. Let us consider p and p′ the coordinates of points P and P ′,
respectively. It is clear that the lines PP ′ and BC are parallel. Using the
complex product, it follows that (p − p′) × (b − c) = 0. This relation is
equivalent to

(p− p′)(b − c)− (p− p′)(b − c) = 0.

Considering the origin of the complex plane at the circumcenter O of triangle
ABC, we have
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(p− p′)
(
R2

b
− R2

c

)
−

(
R2

p
− R2

p

)
(b − c) = 0,

so

R2(p− p′)(b− c)

(
1

bc
− 1

pp′

)
= 0.

Therefore, bc = pp′, i.e., abc = app′. From the theorem at the beginning of
this subsection, it follows that ABC and APP ′ are orthopolar triangles.

4.10 Area of the Antipedal Triangle

Consider a triangle ABC and a point M . The perpendicular lines from
A, B, C to MA, MB, MC, respectively, determine a triangle; we call this
triangle the antipedal triangle of M with respect to ABC (Fig. 4.15).

Recall that M ′ is the isogonal point of M if the pairs of lines AM , AM ′;
BM , BM ′; CM , CM ′ are isogonal, i.e., the following relations hold:

̂MAC ≡ ̂M ′AB, ̂MBC ≡ ̂M ′BA, ̂MCA ≡ ̂M ′CB.

Figure 4.15.

Theorem. Consider M a point in the plane of triangle ABC, M ′ the isog-
onal point of M , and A′′B′′C′′ the antipedal triangle of M with respect to
ABC. Then

area[ABC]

area[A′′B′′C′′]
=

|R2 −OM ′2|
4R2

=
|ρ(M ′)|
4R2

,

where ρ(M ′) is the power of M ′ with respect to the circumcircle of triangle
ABC.
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Proof. Consider point O the origin of the complex plane and let m, a, b, c
be the coordinates of M, A, B, C. Then

R2 = aa = bb = cc and ρ(M) = R2 −mm. (1)

Let O1, O2, O3 be the circumcenters of triangles BMC, CMA, AMB,
respectively. It is easy to verify that O1, O2, O3 are the midpoints of segments
MA′′, MB′′, MC′′, respectively, and so

area[O1O2O3]

area[A′′B′′C′′]
=

1

4
. (2)

The coordinate of the circumcenter of the triangle with vertices with coo-
rdinates z1, z2, z3 is given by the following formula (see formula (1) in
Sect. 3.6.1):

zO =
z1z1(z2 − z3) + z2z2(z3 − z1) + z3z3(z1 − z2)∣∣∣∣∣∣

z1 z1 1
z2 z2 1
z3 z3 1

∣∣∣∣∣∣
.

The bisector line of the segment [z1, z2] has the following equation in

terms of the real product:

[
z − 1

2
(z1 + z2)

]
· (z1 − z2) = 0. It is sufficient to

check that zo satisfies this equation, since that implies, by symmetry, that z0
belongs to the perpendicular bisectors of segments [z2, z3] and [z3, z1].

The coordinate of O1 is

zO1 =
mm(b− c) + bb(c−m) + cc(m− b)∣∣∣∣∣∣

m m 1

b b 1
c c 1

∣∣∣∣∣∣
=

(R2 −mm)(c− b)∣∣∣∣∣∣
m m 1

b b 1
c c 1

∣∣∣∣∣∣
=

ρ(M)(c− b)∣∣∣∣∣∣
m m 1

b b 1
c c 1

∣∣∣∣∣∣
.

Let

Δ =

∣∣∣∣∣∣
a a 1

b b 1
c c 1

∣∣∣∣∣∣
and consider

α =
1

Δ

∣∣∣∣∣∣
m m 1

b b 1
c c 1

∣∣∣∣∣∣ , β =
1

Δ

∣∣∣∣∣∣
m m 1
c c 1
a a 1

∣∣∣∣∣∣ ,
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and

γ =
1

Δ

∣∣∣∣∣∣
m m 1
a a 1

b b 1

∣∣∣∣∣∣ .
With this notation we obtain

(αa+ βb+ γc) ·Δ =
∑
cyc

m(ab− ac)−
∑
cyc

m(ab− ac) +
∑
cyc

a(bc− bc)

= mΔ−m · 0 +
∑
cyc

a

(
b
R2

c
− R2

c
a

)
= mΔ+R2

∑
cyc

(
ab

c
− ac

b

)
= mΔ,

and consequently,
αa+ βb + γc = m,

since it is clear that Δ �= 0.
We note that α, β, γ are real numbers and α+ β + γ = 1, so α, β, γ are

the barycentric coordinates of point M .
Since

zO1 =
(c− b) · ρ(M)

α ·Δ , zO2 =
(c− a) · ρ(M)

βΔ
, zO3 =

(a− b) · ρ(M)

γ ·Δ ,

we have

area[O1O2O3]

area[ABC]
=

∣∣∣∣∣∣∣∣∣∣∣∣

i

4

∣∣∣∣∣∣
zO1 zO1 1
zO2 zO2 1
zO3 zO3 1

∣∣∣∣∣∣
i

4
Δ

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

Δ
· ρ

2(M)

Δ2
· 1

αβγ

∣∣∣∣∣∣
b− c b− c α
c− a c− a β

a− b a− b γ

∣∣∣∣∣∣

∣∣∣∣∣∣
=

∣∣∣∣ρ
2(M)

Δ3
· 1

αβγ
·
∣∣∣∣ c− a c− a

a− b a− b

∣∣∣∣
∣∣∣∣

=

∣∣∣∣ρ
2(M)

Δ3
· 1

αβγ
·Δ

∣∣∣∣ =
∣∣∣∣ρ

2(M)

Δ2
· 1

αβγ

∣∣∣∣ . (3)

Relations (2) and (3) imply that

area[ABC]

area[A′′B′′C′′]
=

|Δ2αβγ|
4ρ2(M)

. (4)

Because α, β, γ are the barycentric coordinates of M , it follows that

zM = αzA + βzB + γzC .
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Using the real product, we find that

OM2 = zM · zM = (αzA + βzB + γzC) · (αzA + βzB + γzC)

= (α2 + β2 + γ2)R2 + 2
∑
cyc

αβzA · zB

= (α2 + β2 + γ2)R2 + 2
∑
cyc

αβ

(
R2 − AB2

2

)

= (α+ β + γ)2R2 −
∑
cyc

αβAB2 = R2 −
∑
cyc

αβAB2.

Therefore, the power of M ′ with respect to the circumcircle of triangle ABC
can be expressed in the form

ρ(M) = R2 −OM2 =
∑
cyc

αβAB2.

On the other hand, if α, β, γ are the barycentric coordinates of the point
M , then its isogonal point M ′ has barycentric coordinates given by

α′ =
βγBC2

βγBC2 + αγCA2 + αβAB2
, β′ =

γαCA2

βγBC2 + αγCA2 + αβAB2
,

γ′ =
αβAB2

βγBC2 + αγCA2 + αβAB2
.

Therefore,

ρ(M ′) =
∑
cyc

α′β′AB2

=
αβγAB2 · BC2 · CA2

(βγBC2 + αγCA2 + αβAB2)2
=

αβγAB2 · BC2 · CA2

ρ2(M)
. (5)

On the other hand, we have

Δ2 =

∣∣∣∣∣
(
4

i
· i
4
Δ

)2
∣∣∣∣∣ =

∣∣∣∣4i · area[ABC]

∣∣∣∣
2

=
AB2 ·BC2 · CA2

R2
. (6)

The desired conclusion follows from the relations (4), (5), and (6). ��

Applications

(1) If M is the orthocenter H , then M ′ is the circumcenter O, and

area[ABC]

area[A′′B′′C′′]
=

R2

4R2
=

1

4
.
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(2) If M is the circumcenter O, then M ′ is the orthocenter H , and we obtain

area[ABC]

area[A′′B′′C′′]
=

|R2 −OH2|
4R2

.

Using the formula in the theorem of Sect. 4.6.4, it follows that

area[ABC]

area[A′′B′′C′′]
=

|(2R+ r)2 − s2|
2R2

.

(3) If M is the Lemoine point K, then M ′ is the centroid G, and

area[ABC]

area[A′′B′′C′′]
=

|R2 −OG2|
4R2

.

Applying the formula in Corollary 1 in Sect. 4.6.4, then the first formula
in Corollary of Sect. 4.6.1, it follows that

area[ABC]

area[A′′B′′C′′]
=

2(s2 − r2 − 4Rr)

36R2
=

α2 + β2 + γ2

36R2
,

where α, β, γ are the sides of triangle ABC.
From the inequality α2 + β2 + γ2 ≤ 9R2 (Corollary 2 in Sect. 4.6.4), we
obtain

area[ABC]

area[A′′B′′C′′]
≤ 1

4
.

(4) If M is the incenter I of triangle ABC, then M ′ = I, and using Euler’s
formula OI2 = R2 − 2Rr (see the theorem of Sect. 4.6.2), we find that

area[ABC]

area[A′′B′′C′′]
=

|R2 −OI2|
4R2

=
2Rr

4R2
=

r

4R
.

Applying Euler’s inequality R ≥ 2r (corollary of Sect. 4.6.2), it follows
that

area[ABC]

area[A′′B′′C′′]
≤ 1

4
.

4.11 Lagrange’s Theorem and Applications

Consider the distinct points A1(z1), . . . , An(zn) in the complex plane. Let
m1, . . . , mn be nonzero real numbers such that m1 + · · · + mn �= 0. Let
m = m1 + · · ·+mn.
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The point G with coordinate

zG =
1

m
(m1z1 + · · ·+mnzn)

is called the barycenter of the set {A1, . . . , An} with respect to the weights
m1, . . . , mn.

In the case m1 = · · · = mn = 1, the point G is the centroid of the set
{A1, . . . , An}.

When n = 3 and the points A1, A2, A3 are not collinear, we obtain the
absolute barycentric coordinates of G with respect to the triangle A1A2A3

(see Sect. 4.7.1):

μz1 =
m1

m
, μz2 =

m2

m
, μz3 =

m3

m
.

Theorem 1 (Lagrange10). Consider the points A1, . . . , An and the
nonzero real numbers m1, . . . , mn such that m = m1 + · · · +mn �= 0. If G
denotes the barycenter of the set {A1, . . . , An} with respect to the weights
m1, . . . , mn, then for every point M in the plane, the following relation
holds:

n∑
j=1

mjMA2
j = mMG2 +

n∑
j=1

mjGA2
j . (1)

Proof. Without loss of generality, we can assume that the barycenter G is
the origin of the complex plane; that is, zG = 0.

Using properties of the real product, we obtain for all j = 1, . . . , n, the
relations

MA2
j = |zM − zj |2 = (zM − zj) · (zM − zj)

= |zM |2 − 2zM · zj + |z|2,

i.e.,

MA2
j = |zM |2 − 2zM · zj + |zj |2.

Multiplying by mj and adding the relations obtained for j = 1, . . . , n
yields

n∑
j=1

mjMA2
j =

n∑
j=1

mj(|zM |2 − 2zM · zj + |zj |2)

= m|zM |2 − 2zM ·

⎛
⎝ n∑

j=1

mjzj

⎞
⎠+

n∑
j=1

mj|zj |2

10 Joseph Louis Lagrange (1736–1813), French mathematician, one of the greatest math-
ematicians of the eighteenth century. He made important contributions in all branches of
mathematics, and his results have greatly influenced modern science.
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= m|zM |2 − 2zM · (mzG) +

n∑
j=1

mj |zj |2

= m|zM |2 +
n∑

j=1

mj |zj |2 = m|zM − zG|2 +
n∑

j=1

mj |zj − zG|2

= mMG2 +
n∑

j=1

mjGA2
j . ��

Corollary 1. Consider the distinct points A1, . . . , An and the nonzero real
numbers m1, . . . , mn such that m1 + · · ·+mn �= 0. The following inequality
holds for every point M in the plane:

n∑
j=1

mjMA2
j ≥

n∑
j=1

mjGA2
j , (2)

with equality if and only if M = G, the barycenter of set {A1, . . . , An} with
respect to the weights m1, . . . , mn.

Proof. The inequality (2) follows directly from Lagrange’s relation (1). ��

If m1 = · · · = mn = 1, then from Theorem 1 above, one obtains the
following corollary.

Corollary 2 (Leibniz11). Consider the distinct points A1, . . . , An and the
centroid G of the se t {A1, . . . , An}. The following relation holds for every
point M in the plane:

n∑
j=1

MA2
j = nMG2 +

n∑
j=1

GA2
j . (3)

Remark. The relation (3) is equivalent to the following identity: For all
complex numbers z, z1, . . . , zn, we have

n∑
j=1

|z − zj |2 = n

∣∣∣∣z − z1 + · · ·+ zn
n

∣∣∣∣
2

+

n∑
j=1

∣∣∣∣zj − z1 + · · ·+ zn
n

∣∣∣∣
2

.

Applications. We will use formula (3) in determining some important
distances in a triangle. Let us consider the triangle ABC and let us take
n = 3 in the formula (3). We find that the following formula holds for every
point M in the plane of triangle ABC:

MA2 +MB2 +MC2 = 3MG2 +GA2 +GB2 +GC2, (4)

11 Gottfried Wilhelm Leibniz (1646–1716) was a German philosopher, mathematician,
and logician who is probably best known for having invented the differential and integral
calculus independently of Sir Isaac Newton.
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where G is the centroid of triangle ABC. Assume that the circumcenter O
of the triangle ABC is the origin of the complex plane.

(1) In the relation (4) we choose M = O, and we get

3R2 = 3OG2 +GA2 +GB2 +GC2.

Applying the well-known median formula yields

GA2 +GB2 +GC2 =
4

9
(m2

α +m2
β +m2

γ)

=
4

9

∑
cyc

1

4
[2(β2 + γ2)− α2] =

1

3
(α2 + β2 + γ2),

where α, β, γ are the sides of triangle ABC. We obtain

OG2 = R2 − 1

9
(α2 + β2 + γ2). (5)

An equivalent form of the distance OG is given in terms of the basic
invariants of a triangle in Corollary 1, Sect. 4.6.4.

(2) Using the collinearity of points O, G, H and the relation OH = 3OG
(see Theorem 1 in Sect. 3.1), it follows that

OH2 = 9OG2 = 9R2 − (α2 + β2 + γ2). (6)

An equivalent form for the distance OH was obtained in terms of the
fundamental invariants of the triangle in the theorem of Sect. 4.6.4.

(3) In (4), consider M = I, the incenter of triangle ABC (Fig. 4.16).
We obtain

IA2 + IB2 + IC2 = 3IG2 +
1

3
(α2 + β2 + γ2).

On the other hand, we have the following relations:

IA =
r

sin
A

2

, IB =
r

sin
B

2

, IC =
r

sin
C

2

,

where r is the inradius of triangle ABC. It follows that

IG2 =
1

3

⎡
⎢⎣r2

⎛
⎜⎝ 1

sin2
A

2

+
1

sin2
B

2

+
1

sin2
C

2

⎞
⎟⎠− 1

3
(α2 + β2 + γ2)

⎤
⎥⎦ .

Taking into account the well-known formula

sin2
A

2
=

(s− β)(s− γ)

βγ
,
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Figure 4.16.

we obtain

∑
cyc

1

sin2 A
2

=
∑
cyc

βγ

(s− β)(s − γ)
=

∑
cyc

βγ(s− α)

(s− α)(s− β)(s− γ)

=
s

K2

∑
cyc

βγ(s− α) =
s

K2

[
s
∑

βγ − 3αβγ
]

=
s

K2
[s(s2 + r2 + 4Rr)− 12sRr] =

1

r2
(s2 + r2 − 8Rr),

where we have used the formulas in Sect. 4.6.1. Therefore,

IG2 =
1

3

[
s2 + r2 − 8Rr − 1

3
(α2 + β2 + γ2)

]

=
1

3

[
s2 + r2 − 8Rr − 2

3
(s2 − r2 − 4Rr)

]
=

1

9
(s2 + 5r2 − 16Rr),

where the first formula in Corollary 1 in this section was used. That is,

IG2 =
1

9
(s2 + 5r2 − 16Rr), (7)

and hence we obtain again the formula in Application 1 of Sect. 4.7.2.

Problem. Let z1, z2, z3 be distinct complex numbers having modulus R.
Prove that

9R2 − |z1 + z2 + z3|2
|z1 − z2| · |z2 − z3| · |z3 − z1|

≥
√
3

R
.

Solution. Let A, B, C be the geometric images of the complex numbers
z1, z2, z3 and let G be the centroid of the triangle ABC.

The coordinate ofG is equal to
z1 + z2 + z3

3
, and |z1−z2| = γ, |z2−z3| = α,

|z3 − z1| = β.



158 4 More on Complex Numbers and Geometry

The inequality becomes

9R2 − 9OG2

αβγ
≥

√
3

R
. (1)

Using the formula

OG2 = R2 − 1

9
(α2 + β2 + γ2),

we see that (1) is equivalent to

α2 + β2 + γ2 ≥ αβγ
√
3

R
=

4RK

R

√
3 = 4K

√
3.

Here is a proof of this famous inequality using Heron’s formula and the
arithmetic–geometric mean (AM-GM) inequality:

K =
√
s(s− α)(s− β)(s− γ) ≤

√
s
(s− α+ s− β + s− γ)3

27
=

√
s
s3

27

=
s2

3
√
3
=

(α+ β + γ)2

12
√
3

≤ 3(α2 + β2 + γ2)

12
√
3

=
α2 + β2 + γ2

4
√
3

.

We now extend Leibniz’s relation in Corollary 2 above. First, we need the
following result.

Theorem 2. Let n ≥ 2 be a positive integer. Consider the distinct points
A1, . . . , An, and let G be the centroid of the set {A1, . . . , An}. Then the
following formula holds for every point in the plane:

n2MG2 = n

n∑
j=1

MA2
j −

∑
1≤i<k≤n

AiA
2
k. (8)

Proof. We assume that the barycenter G is the origin of the complex plane.
Using properties of the real product, we have

MA2
j = |zM − zj|2 = (zM − zj) · (zM − zj) = |zM |2 − 2zM · zj + |zj|2

and

AiA
2
k = |zi − zk|2 = |zi|2 − 2zi · zk + |zk|2,

where the complex number zj is the coordinate of the point Aj , j =
1, 2, . . . , n.

The relation (8) is equivalent to

n2|zM |2 = n

n∑
j=1

(|zM |2 − 2zM · zj + |zj |2)−
∑

1≤i<k≤n

|(|zi|2 − 2zi · zk + |zk|2).
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That is,

n

n∑
j=1

|zj |2 = 2n

n∑
j=1

zM · zj +
∑

1≤i<k≤n

(|zi|2 − 2zizk + |zk|2).

Taking into account the hypothesis that G is the origin of the complex plane,
we have

n∑
j=1

zM · zj = zM ·

⎛
⎝ n∑

j=1

zj

⎞
⎠ = n(zM · zG) = n(zM · 0) = 0.

Hence, the relation (8) is equivalent to

n∑
j=1

|zj |2 = −2
∑

1≤i<k≤n

zi · zk.

The last relation can be obtained as follows:

0 = |zG|2 = zG · zG =
1

n2

(
n∑

i=1

zi

)
·
(

n∑
k=1

zk

)

=
1

n2
·

⎛
⎝ n∑

j=1

|zj |2 + 2
∑

1≤i<k≤n

zi · zk

⎞
⎠ .

Therefore the relation (8) is proved. ��

Remark. The formula (8) is equivalent to the following identity: for all
complex numbers z, z1, . . . , zn, we have

1

n

n∑
j=1

|z − zj |2 −
∣∣∣∣z − z1 + · · ·+ zn

n

∣∣∣∣
2

=
1

n

∑
1≤i<k≤n

|zi − zk|2.

Applications

(1) If A1, . . . , An are points on the circle with center O and radius R, then
if we take M = O in (8), it follows that

∑
1≤i<k≤n

AiA
2
k = n2(R2 −OG2).

If n = 3, we obtain the formula (5).
(2) The following inequality holds for every point M in the plane:

n∑
j=1

MA2
j ≥ 1

n

∑
1≤i<k≤n

AiA
2
k,

with equality if and only if M = G, the centroid of the set {A1, . . . , An}.
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Let n ≥ 2 be a positive integer, and let k be an integer such that 2 ≤ k ≤ n.
Consider the distinct points A1, . . . , An and let G be the centroid of the
set {A1, . . . , An}. For indices i1 < · · · < ik, let us denote by Gi1,...,ik the
centroid of the set {Ai1 , . . . , Aik}. We have the following result:

Theorem 3. For every point M in the plane,

(n− k)

(
n
k

) n∑
j=1

MA2
j + n2(k − 1)

(
n
k

)
MG2

= kn(n− 1)
∑

1≤i1<···<ik≤n

MG2
i1···ik . (9)

Proof. It is not difficult to see that the barycenter of the set {Gi1···ik : 1 ≤
i1 < · · · < ik ≤ n} is G. Applying Leibniz’s relation, one obtains

n∑
j=1

MA2
j = nMG2 +

n∑
j=1

GA2
j , (10)

∑
1≤i1<···<ik≤n

MG2
i1···ik =

(
n
k

)
MG2 +

∑
1≤i1<···<ik≤n

GG2
i1···ik , (11)

k∑
s=1

MA2
is = kMG2

i1···ik +
k∑

s=1

Gi1···ikA
2
is . (12)

Considering in (12) M = G and adding all these relations yields

∑
1≤i1<···<ik≤n

k∑
s=1

GA2
is = k

∑
1≤i1<···<ik≤n

GG2
i1···ik

+
∑

1≤i1<···<ik≤n

k∑
s=1

Gi1···ikA
2
is . (13)

Applying formula (8) in Theorem 3 above to the sets {A1, . . . , An} and
{Ai1 , . . . , Aik}, respectively, we get

n2MG2 = n
n∑

j=1

MA2
j −

∑
1≤i<k≤n

AiA
2
k, (14)

k2MG2
i1···ik = k

k∑
s=1

MA2
is −

∑
1≤p<q≤k

AipA
2
iq . (15)

Taking M = Gi1···ik in (15) yields

k∑
s=1

Gi1···ikA
2
is =

1

k

∑
1≤p<q≤k

AipA
2
iq . (16)
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From (16) and (13), we obtain

∑
1≤i1<···<ik≤n

k∑
s=1

GA2
is = k

∑
1≤i1<···<ik≤n

GG2
i1···ik

+
1

k

∑
1≤i1<···<ik≤n

∑
1≤p<q≤n

AipA
2
iq . (17)

If we rearrange the terms in formula (17), we get

(
k
1

)(
n
k

)
(
n
1

) n∑
j=1

GA2
j = k

∑
1≤i1<···<ik≤n

GG2
i1···ik+

1

k

(
k
2

)(
n
k

)
(
n
2

) ∑
1≤i<k≤n

AiA
2
j .

(18)

From relations (10), (11), (14), and (18), we readily derive formula (9). ��

Remark. The relation (9) is equivalent to the following identity: for all
complex numbers z, z1, . . . , zn, we have

(n− k)

(
n
k

) n∑
j=1

|z − zj|2 + n2(k − 1)

(
n
k

) ∣∣∣∣z − z1 + · · ·+ zn
n

∣∣∣∣
2

= kn(n− 1)
∑

1≤i1<···<ik≤n

∣∣∣∣z − zi1 + · · ·+ zik
k

∣∣∣∣
2

.

Applications

(1) In the case k = 2, from (9) we obtain that the following relation holds
for every point M in the plane:

(n− 2)

n∑
j=1

MA2
j + n2MG2 = 4

∑
1≤i1<i2≤n

MG2
i1i2 .

In this case, Gi1i2 is the midpoint of the segment [Ai1Ai2 ].
(2) If k = 3, from (9) we get that the relation

(n− 3)(n− 2)
n∑

j=1

MA2
j + 2n2(n− 2)MG2 = 18

∑
1≤i1<i2<i3≤n

MG2
i1i2i3

holds for every pointM in the plane. Here the point Gi1i2i3 is the centroid
of triangle Ai1Ai2Ai3 .
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4.12 Euler’s Center of an Inscribed Polygon

Consider a polygon A1A2 · · ·An inscribed in a circle centered at the origin of
the complex plane and let a1, a2, . . . , an be the coordinates of its vertices.

By definition, the point E with coordinate

zE =
a1 + a2 + · · ·+ an

2

is called Euler’s center of the polygon A1A2 · · ·An. In the case n = 3, it is
clear that E is equal to O9, the center of Euler’s nine-point circle.

Remarks.

(a) Let G(zG) and H(zH) be the centroid and orthocenter of the inscribed
polygon A1A2 · · ·An. Then

zE =
nzG
2

=
zH
2

and OE =
nOG

2
=

OH

2
.

Recall that the orthocenter of the polygon A1A2 · · ·An is the point H
with coordinate zH = a1 + a2 + · · ·+ an.

(b) For n = 4, point E is also called Mathot’s point of the inscribed quadri-
lateral A1A2A3A4.

Proposition. In the above notation, the following relation holds:

n∑
i=1

EA2
i = nR2 + (n− 4)EO2. (1)

Proof. Using the identity (8) in Theorem 4, Sect. 2.17 for M = E and
M = O, namely

n2 ·MG2 = n

n∑
i=1

MA2
i −

∑
1≤i<j≤n

AiA
2
j ,

we obtain

n2 ·EG2 = n

n∑
i=1

EA2
i −

∑
1≤i<j≤n

AiA
2
j (2)

and
n2 ·OG2 = nR2 −

∑
1≤i<j≤n

AiA
2
j . (3)

Setting s =
n∑

i=1

ai, we have

EG = |zE − zG| =
∣∣∣s
2
− s

n

∣∣∣ = ∣∣∣s
2

∣∣∣ · n− 2

n
=

n− 2

n
· OE. (4)
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From the relations (2), (3), and (4), we derive that

n

n∑
i=1

EA2
i = n2 ·EG2 − n2 ·OG2 + n2R2

= (n− 2)2OE2 − 4OE2 + n2R2 = n(n− 4) · EO2 + n2R2,

or equivalently,
n∑

i=1

EA2
i = nR2 + (n− 4)EO2,

as desired. ��

Applications

(1) For n = 3, from relation (1), we obtain

O9A
2
1 +O9A

2
2 +O9A

2
3 = 3R2 −OO2

9 . (5)

Using the formula in Corollary 1 in Sect. 4.6.4, we can express the
right-hand side in (5) in terms of the fundamental invariants of trian-
gle A1A2A3:

O9A
2
1 +O9A

2
2 +O9A

2
3 =

3

4
R2 − 1

2
r2 − 2Rr +

1

2
s2. (6)

From formula (5), it follows that the following inequality holds for every
triangle A1A2A3:

O9A
2
1 +O9A

2
2 +O9A

2
3 ≤ 3R2, (7)

with equality if and only if the triangle is equilateral.
(2) For n = 4, we obtain the interesting relation

4∑
i=1

EA2
i = 4R2. (8)

The point E is the unique point in the plane of the quadrilateral
A1A2A3A4 satisfying relation (8).

(3) For n > 4, from relation (1), the inequality

n∑
i=1

EA2
i ≥ nR2 (9)

follows. Equality holds only in the polygon A1A2 · · ·An with the property
E = O.
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(4) The Cauchy–Schwarz inequality and inequality (7) give

(
3∑

i=1

R ·O9Ai

)2

≤ (3R2)
3∑

i=1

O9A
2
i ≤ 9R2.

This is equivalent to

O9A1 +O9A2 +O9A3 ≤ 3R. (10)

(5) Using the same inequality and the relation (8), we have

(
R

4∑
i=1

EAi

)2

≤ 4R2 ·
4∑

i=1

EAi = 16R4,

or equivalently,
4∑

i=1

EAi ≤ 4R. (11)

(6) Using the relation

2EAi = 2|e− ai| = 2
∣∣∣s
2
− ai

∣∣∣ = |s− 2ai|,

the inequalities (4), (5) become respectively∑
cyc

| − a1 + a2 + a3| ≤ 6R

and ∑
cyc

| − a1 + a2 + a3 + a4| ≤ 8R.

The above inequalities hold for all complex numbers of the same
modulus R.

4.13 Some Geometric Transformations of the Complex
Plane

4.13.1 Translation

Let z0 be a fixed complex number and let tz0 be the mapping defined by

tz0 : C → C, tz0(z) = z + z0.

The mapping tz0 is called the translation of the complex plane by complex
number z0.
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Figure 4.17.

Taking into account the geometric interpretation of the addition of two
complex numbers (see Sect. 1.2.3), we have Fig. 4.17, giving the geometric
image of tz0(z).

In Fig. 4.17, OM0M
′M is a parallelogram and OM ′ is one of its diago-

nals. Therefore, the mapping tz0 corresponds in the complex plane C to the

translation t−−−→
OM0

by the vector
−−−→
OM0 in the case of the Euclidean plane.

It is clear that the composition of two translations tz1 and tz2 satisfies the
relation

tz1 ◦ tz2 = tz1+z2 .

It is also clear that the set T of all translations of the complex plane is
a group with respect to the composition of mappings. The group (T , ◦) is
abelian, and its unit is tO = 1C, translation by the complex number 0.

4.13.2 Reflection in the Real Axis

Consider the mapping s : C → C, s(z) = z. If M is the point with coordinate
z, then the point M ′(s(z)) is obtained by reflecting M across the real axis
(see Fig. 4.18). The mapping s is called the reflection in the real axis. It is
clear that s ◦ s = 1C.

4.13.3 Reflection in a Point

Consider the mapping s0 : C → C, s0(z) = −z. Since s0(z)+z = 0, the origin
O is the midpoint of the segment [M(z)M ′(z)]; hence M ′ is the reflection of
point M across O (Fig. 4.19).
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Figure 4.18.

The mapping s0 is called the reflection in the origin.
Consider a fixed complex number z0 and the mapping

sz0 : C → C, sz0(z) = 2z0 − z.

If z0, z, sz0(z) are the coordinates of points M0, M, M ′, then M0 is the
midpoint of the segment [MM ′]. Hence M ′ is the reflection of M in M0

(Fig. 4.20).
The mapping sz0 is called the reflection in the point M0(z0). It is clear

that the following relation holds: sz0 ◦ sz0 = 1C.

Figure 4.19.

4.13.4 Rotation

Let a = cos t0 + i sin t0 be a complex number having modulus 1 and let ra be
the mapping given by ra : C → C, ra(z) = az. If z = ρ(cos t + i sin t), then
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Figure 4.20.

ra(z) = az = ρ[cos(t+ t0) + i sin(t+ t0)],

and hence M ′(ra(z)) is obtained by rotating point M(z) about the origin
through the angle t0 (Fig. 4.21).

The mapping ra is called the rotation with center O and angle t0 = arg a.

4.13.5 Isometric Transformation of the Complex
Plane

A mapping f : C → C is called an isometry if it preserves distance, i.e., for
all z1, z2 ∈ C, |f(z1)− f(z2)| = |z1 − z2|.

Theorem 1. Translations, reflections (in the real axis or in a point), and
rotations about center O are isometries of the complex plane.

Figure 4.21.
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Proof. For the translation tz0 , we have

|tz0(z1)− tz0(z2)| = |(z1 + z0)− (z2 + z0)| = |z1 − z2|.

For the reflection s across the real axis, we obtain

|s(z1)− s(z2)| = |z1 − z2| = |z1 − z2| = |z1 − z2|,

and the same goes for the reflection in a point. Finally, if ra is a rotation,
then

|ra(z1)− ra(z2)| = |az1 − az2| = |a||z1 − z2| = |z1 − z2|, since |a| = 1. ��

We can easily check that the composition of two isometries is also an
isometry. The set Iso(C) of all isometries of the complex plane is a group
with respect to the composition of mappings, and (T , ◦) is a subgroup of
that group.

Problem. Let A1A2A3A4 be a cyclic quadrilateral inscribed in a circle
with center O, and let H1, H2, H3, H4 be the orthocenters of triangles
A2A3A4, A1A3A4, A1A2A4, A1A2A3, respectively.

Prove that quadrilaterals A1A2A3A4 and H1H2H3H4 are congruent.

(Balkan Mathematical Olympiad, 1984)

Solution. Consider the complex plane with origin at the circumcenter, and
denote by the corresponding lowercase letter the coordinates of a point de-
noted by an uppercase letter.

If s = a1+a2+a3+a4, then h1 = a2+a3+a4 = s−a1, h2 = s−a2, h3 =
s − a3, h4 = s− a4. Hence the quadrilateral H1H2H3H4 is the reflection of

quadrilateral A1A2A3A4 across the point with coordinate
s

2
.

The following result describes all isometries of the complex plane.

Theorem 2. Every isometry of the complex plane is a mapping f : C → C

with f(z) = az + b or f(z) = az + b, where a, b ∈ C and |a| = 1.

Proof. Let b = f(0), c = f(1), and a = c− b. Then

|a| = |c− b| = |f(1)− f(0)| = |1− 0| = 1.

Consider the mapping g : C → C, given by g(z) = az+b. It is not difficult to
prove that g is an isometry, with g(0) = b = f(0) and g(1) = a+b = c = f(1).
Hence h = g−1 is an isometry, with 0 and 1 as fixed points. By definition,
it follows that every real number is a fixed point of h, and hence h = 1C or
h = s, the reflection in the real axis. Hence g = f or g = f ◦ s, and the proof
is complete. ��

The above result shows that every isometry of the complex plane is the
composition of a rotation and a translation or the composition of a rotation
with a reflection in the origin O and a translation.
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4.13.6 Morley’s Theorem

In 1899, Frank Morley, then professor of mathematics at Haverford College,
came across a result so surprising that it entered mathematical folklore under
the name “Morley’s Miracle.” Morley’s marvelous theorem states that the
three points of intersection of the adjacent trisectors of the angles of any
triangle form an equilateral triangle.

The theorem was mistakenly attributed to Napoleon Bonaparte, who made
some contributions to geometry.

There are various proofs of this nice result, such as those by J. Conway,
D.J. Newman, L. Bankoff, and N. Dergiades.

Here we present a new proof published in 1998, by Alain Connes. His proof
is derived from the following result:

Theorem 1 (Alain Connes). Consider the transformations fi : C → C,
fi(z) = aiz+ bi, i = 1, 2, 3, of the complex plane, where all coefficients ai are
different from zero. Assume that the mappings f1 ◦ f2, f2 ◦ f3, f3 ◦ f1, and
f1 ◦ f2 ◦ f3 are not translations, equivalently, that a1a2, a2a3, a3a1, a1a2a3 ∈
C\{1}. Then the following statements are equivalent:

(1) f3
1 ◦ f3

2 ◦ f3
3 = 1C.

(2) j3 = 1 and α+ jβ + j2γ = 0, where j = a1a2a3 �= 1 and α, β, γ are the
respective unique fixed points of the mappings f1 ◦ f2, f2 ◦ f3, f3 ◦ f1.

Proof. Note that (f1 ◦ f2)(z) = a1a2z + a1b2 + b1, a1a2 �= 1,

(f2 ◦ f3)(z) = a2a3z + a2b3 + b2, a2a3 �= 1,

(f3 ◦ f1)(z) = a3a1z + a3b1 + b3, a3a1 �= 1,

Fix (f1 ◦ f2) =
{
a1b2 + b1
1− a1a2

}
=

{
a1a3b2 + a3b1

a3 − j
=: α

}
,

Fix (f2 ◦ f3) =
{
a2b3 + b2
1− a2a3

}
=

{
a1a2b3 + a1b2

a1 − j
=: β

}
,

Fix (f3 ◦ f1) =
{
a3b1 + b3
1− a3a1

}
=

{
a2a3b1 + a2b3

a2 − j
=: γ

}
,

where Fix(f) denotes the set of fixed points of the mapping f .
For the cubes of f1, f2, f3, we have the formulas

f3
1 (z) = a31z + b1(a

2
1 + a1 + 1),

f3
2 (z) = a32z + b2(a

2
2 + a2 + 1),

f3
3 (z) = a33 + b3(a

2
3 + a3 + 1),

whence

(f3
1 ◦ f3

2 ◦ f3
3 )(z) = a31a

3
2a

3
3z + a31a

3
2b3(a

2
3 + a3 + 1)

+a31b2(a
2
2 + a2 + 1) + b1(a

2
1 + a1 + 1).
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Therefore, f3
1 ◦ f3

2 ◦ f3
3 = idC if and only if a31a

3
2a

3
3 = 1 and

a31a
3
2b3(a

2
3 + a3 + 1) + a31b2(a

2
2 + a2 + 1) + b1(a

2
1 + a1 + 1) = 0.

To prove the equivalence of statements (1) and (2) we have to show that
α+ jβ+ j2γ is different from the free term of f3

1 ◦ f3
2 ◦ f3

3 by a multiplicative
constant. Indeed, using the relation j3 = 1 and implicitly j2 + j + 1 = 0, we
have successively

α+ jβ + j2γ = α+ jβ + (−1− j)γ = α− γ + j(β − γ)

=
a1a3b2 + a3b1

a3 − j
− a2a3b1 + a2b3

a2 − j
+ j

(
a1a2b3 + a1b2

a1 − j
− a2a3b1 + a2b3

a2 − j

)

=
a1a2a3b2 + a2a3b1 − a1a3b2j − a3b1j− a2a

2
3b1 − a2a3b3 + a2a3b1j + a2b3j

(a2 − j)(a3 − j)

+j
a1a

2
2b3 + a1a2b2 − a1a2b3j − a1b2j− a1a2a3b1− a1a2b3 + a2a3b1j + a2b3j

(a1 − j)(a2 − j)

=
1

a2 − j

(
b2j − a2a3b1j

2 − a1a3b2j − a3b1j − a2a
2
3b1 − a2a3b3 + a2b3j

a3 − j

+
a1a

2
2b3j + a1a2b2j + a1a2b3 − a1b2j

2 − b1j
2 + a2a3b1j

2 + a2b3j
2

a1 − j

)

=
1

(a1 − j)(a2 − j)(a3 − j)
(a1b2j − b1 − a21a3b2j − a1a3b1j − a1a2a

2
3b1 − b3j

+a1a2b3j − b2j
2 + a2a3b1 + a1a3b2j

2 + a3b1j
2 + a2a

2
3b1j + a2a3b3j − a2b3j

2

+a2b3j
2 + b2j

2 + b3j − a1a3b2j
2 − a3b1j

2 + a2a3b1j
2 + a2a3b3j

2

−a1a
2
2b3j

2 − a1a2b2j
2 − a1a2b3j + a1b2 + b1 − a2a3b1 − a2b3)

=
1

(a1 − j)(a2 − j)(a3 − j)
(−a1b2j

2 − a21a3b2j − a1a3b1j − a3b1j

−a2a
2
3b1 − a2a3b3 − aa22b3j

2 − a1a2b2j
2 − a2b3)

= − 1

(a1 − j)(a2 − j)(a3 − j)
(a21a

2
2a

2
3b2 + a31a2a

2
3b2

+a21a2a
2
3b1 + a1a2a

2
3b1 + a2a

2
3b1 + a2a3b3 + a31a

4
2a

2
3b3 + a31a

3
2a

2
3b2 + a2b3)

= − 1

(a1 − j)(a2 − j)(a3 − j)
[a2a

2
3b1(1 + a1 + a21) + a31a2a

2
3b2(1 + a2 + a22)

+a2b3(1 + a3 + a31 + a31a
3
2a

2
3)]

= − a2a
2
3

(a1 − j)(a2 − j)(a3 − j)
[a31a

3
2b3(1 + a3 + a23)

+a31b2(1 + a2 + a22) + b1(1 + a1 + a21)]. ��
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Theorem 2 (Morley). The three points A′(α), B′(β), C′(γ) of the adjacent
trisectors of the angles of any triangle ABC form an equilateral triangle.

Figure 4.22.

Proof (Alain Connes). Let us consider the rotations f1 = rA,2x, f2 = rB,2y,

f3 = rC,2z with centers A, B, C and angles x =
1

3
Â, y =

1

3
B̂, z =

1

3
Ĉ

(Fig. 4.22).
Note that Fix (f1 ◦ f2) = {A′}, Fix (f2 ◦ f3) = {B′}, Fix (f3 ◦ f1) = {C′}

(see Fig. 4.23).

Figure 4.23.

Figure 4.24.
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To prove that triangle A′B′C′ is equilateral, it is sufficient to show, by
Proposition 2, in Sect. 2.4 and above Theorem 1 in Sect. 4.13.6, that f3

1 ◦
f3
2 ◦f3

3 = 1C. The composition sAC◦sAB of reflections sAC and sAB across the
lines AC and AB is a rotation about center A through angle 6x (Fig. 4.24).

Therefore, f3
1 = sAC ◦ sAB, and analogously, f3

2 = sBA◦sBC and
f3
3 = sCB◦sCA. It follows that

f3
1 ◦ f3

2 ◦ f3
3 = sAC ◦ sAB ◦ sBA ◦ sBC ◦ sCB ◦ sCA = 1C.

��

4.13.7 Homothecy

Given a fixed nonzero real number k, the mapping hk : C → C, hk(z) = kz,
is called the homothety of the complex plane with center O and magnitude k.

Figures 4.25 and 4.26 show the position of point M ′(hk(z)) in the cases
k > 0 and k < 0.

Points M(z) and M ′(hk(z)) are collinear with center O, which lies on the
line segment MM ′ if and only if k < 0.

Moreover, the following relation holds:

|OM ′| = |k||OM |.

Point M ′ is called the homothetic point of M with center O and magnitude k.

Figure 4.25.

It is clear that the composition of two homotheties hk1 and hk2 is also a
homothety, that is,

hk1 ◦ hk2 = hk1k2 .

The set H of all homotheties of the complex plane is an abelian group with
respect to the composition of mappings. The identity of the group (H, ◦) is
h1 = 1C, the homothety of magnitude 1.
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Figure 4.26.

Problem. Let M be a point inside an equilateral triangle ABC and let
M1, M2, M3 be the feet of the perpendiculars from M to the sides
BC, CA, AB, respectively. Find the locus of the centroid of the triangle
M1M2M3.

Solution. Let 1, ε, ε2 be the coordinates of points A, B, C, where
ε = cos 120◦ + i sin 120◦. Recall that

ε2 + ε+ 1 = 0 and ε3 = 1.

If m, m1, m2, m3 are the coordinates of points M, M1, M2, M3, we have

m1 =
1

2
(1 + ε+m− εm),

m2 =
1

2
(ε+ ε2 +m−m),

m3 =
1

2
(ε2 + 1 +m− ε2m).

Let g be the coordinate of the centroid of the triangle M1M2M3. Then

g =
1

3
(m1 +m2 +m3) =

1

6
(2(1 + ε+ ε2) + 3m−m(1 + ε+ ε2)) =

m

2
,

and hence OG =
1

2
OM .

The locus of G is the interior of the triangle obtained from ABC under a

homothety of center O and magnitude
1

2
. In other words, the vertices of this

triangle have coordinates
1

2
,
1

2
ε,

1

2
ε2.



174 4 More on Complex Numbers and Geometry

4.13.8 Problems

1. Prove that the composition of two isometries of the complex plane is an
isometry.

2. An isometry of the complex plane has two fixed points A and B. Prove
that every point M of line AB is a fixed point of the transformation.

3. Prove that every isometry of the complex plane is a composition of a
rotation with a translation and possibly also with a reflection in the real
axis.

4. Prove that the mapping f : C → C, f(z) = i · z + 4 − i, is an isometry.
Analyze f as in the previous problem.

5. Prove that the mapping g : C → C, g(z) = −iz + 1 + 2i, is an isometry.
Analyze g as in the previous problem.
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