Chapter 4

More on Complex Numbers
and Geometry

4.1 The Real Product of Two Complex Numbers

The concept of the scalar product of two vectors is well known. In what

follows, we will introduce this concept for complex numbers. We will see that

the use of this product simplifies the solution to many problems considerably.
Let a and b be two complex numbers.

Definition. Given complex numbers a and b, we call the number given by
a-b— %(ab+a5)
the real product of the two numbers. It is easy to see that
a-b= %(ag—i-ﬁb) =a-b

hence a - b is a real number, which justifies the name of this product.

Let A(a), B(b) be points in the complex plane, and let § = (O—/i, @) be
the angle between the vectors (ﬁl, (7@ . The following formula holds:

a-b=la||b|cosd = OA - OB.
Indeed, considering the polar form of a and b, we have
a = |a|(cost; +isinty), b= |b|(coste + isints),
and

1 — 1
a-b= é(db—i—ab) = §|a||b|[cos(t1—t2)—isin(tl—tg)-i-cos(tl—tg)—i—isin(tl—tg)]

— |a||b| cos(t1 — t2) = |al|b| cos6 = OA - OB.

The following properties are easy to verify.
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Proposition 1. For all complex numbers a, b, ¢, =z, the following
relations hold:

(1) a-a=lal*

(2)a-b="b-a (the real product is commutative).

(8)a-(b+c)=a-b+a-c (the real product is distributive with respect to
addition).

(4) (aa) -b=ala-b) =a-(ab) for all o € R.

(5)a-b=0 if and only if OA L OB, where A has coordinate a and B has
coordinate b.

(6) (az) - (bz) = |2[*(a - D).

Remark. Suppose that A and B are points with coordinates a and b. Then
the real product a - b is equal to the power of the origin with respect to the

circle of diameter AB.
a+b

Indeed, let M (T) be the midpoint of [AB], hence the center of this
1 1
circle, and let r = éAB = §|a — b| be the radius of this circle. The power of

the origin with respect to the circle is

a—bl?

2

a+b
2

2
OM? —r? = —

_(@+b)@+d) (a—b)a—b ab+ba_

4 4 2 ’

as claimed.

Proposition 2. Suppose that A(a), B(b), C(c), and D(d) are four distinct
points. The following statements are equivalent:

(1) AB 1L CD;
(2) (b—a)-(d=c)=0;
b—a ., ) b—a\

(8) T € iR* (or equivalently, Re (E) =0).
Proof. Take points M (b — a) and N(d — ¢) such that OABM and OCDN
are parallelograms. Then we have AB 1 CD if and only if OM L ON. That
is, m-n=(b—a)-(d—c) =0, using property (5) of the real product.

The equivalence (2) < (3) follows immediately from the definition of the
real product. a

Proposition 3. The circumcenter of triangle ABC' is at the origin of the
complex plane. If a, b, ¢ are the coordinates of vertices A, B, C, then the
orthocenter H has the coordinate h =a + b+ c.

Proof. Using the real product of the complex numbers, the equations of the
altitudes AA’, BB’, CC'’ of the triangle are
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AA": (z—a)-(b—c) =0, BB': (z=b):(c—a) =0, CC": (z—c)-(a—b) = 0.

We will show that the point with coordinate h = a + b+ ¢ lies on all three
altitudes. Indeed, we have (h—a)-(b—c¢) = 0 if and only if (b+¢)-(b—c¢) = 0.
The last relation is equivalent to b+ b —c-c = 0, or [b|> = |c|?. Similarly,
H € BB’ and H € CC’, and we are done. |

Remark. If the numbers a, b, ¢, o, h are the coordinates of the vertices
of triangle ABC, the circumcenter O, and the orthocenter H of the triangle,
then h =a+ b+ c— 2o0.

Indeed, if we take A’ diametrically opposite A in the circumcircle of tri-
angle ABC, then the quadrilateral HBA'C' is a parallelogram. If {M} =
HA N BC, then

b / 20 —
= ;—C:ZH_;ZA :ZH+2O a, ie., zg =a+ b+ c— 2o.

M

Problem 1. Let ABCD be a convex quadrilateral. Prove that
AB?+CD? = AD? + BC?
if and only if AC L BD.

Solution. Using the properties of the real product of complex numbers, we
have

AB? + CD? = BC? + DA?
if and only if
b—a)-b—a)+(d—c)-(d—c)=(c—=b)-(c=b)+(a—d)-(a—d).

That is,
a-b+c-d=b-c+d-a,

and finally,
(c—a)-(d=0b)=0,

or equivalently, AC | BD, as required.

Problem 2. Let M, N, P,Q, R, S be the midpoints of the sides AB, BC, CD,
DE, EF, FA of a hexagon. Prove that

RN? = MQ* + PS?
if and only if MQ L PS.

(Romanian Mathematical Olympiad—Final Round, 1994)
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Solution. Let a, b, ¢, d, e, f be the coordinates of the vertices of the
hexagon (Fig. 4.1). The points M, N, P, Q, R, S have coordinates

_a+b n_b—i—c _c+d
- 2 b - 2 7p_ 2 b
_d+e e+ f  fHa

9 T Ty 8T Ty

respectively.

Figure 4.1.

Using the properties of the real product of complex numbers, we have
RN? = MQ? + PS?
if and only if
(e+f—b—c)-(e+f—b—c)=(d+e—a—b)-(d+e—a—b)+(f+a—c—d)-(f+a—c—d).

That is,
(d+e—a—-b)-(f+a—c—d)=0;

hence M Q) 1L PS, as claimed.

Problem 3. Let A1 As - -+ A, be a reqular polygon inscribed in a circle with
center O and radius R. Prove that for all points M in the plane, the following
relation holds:

> MA; =n(OM? + R?).
k=1

Solution. Consider the complex plane with the origin at point O, with the
z-axis containing the point A;, and let Rej be the coordinate of vertex Ay,
where ¢ are the nth-roots of unity, k =1, ..., n. Let m be the coordinate
of M.
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Using the properties of the real product of the complex numbers, we have

N
M:

m - R{:‘k) : (m - R{:‘k)

ol
Il
—

(m-m — 2Rey, -m + R%cy, - €1,)

I
M=

b
Il
—

=n|m|* — 2R <Z €k> - m+ R? Z lex|?
k=1

k=1
=n-0OM? 4+ nR*=n(OM? + R?),

since Y e, = 0.
k=1
Remark. If M lies on the circumcircle of the polygon, then
> MA; =2mR?.
k=1

Problem 4. Let O be the circumcenter of the triangle ABC, let D be the
midpoint of the segment AB, and let E is the centroid of triangle ACD.
Prove that lines CD and OF are perpendicular if and only if AB = AC.

(Balkan Mathematical Olympiad, 1985)

Solution. Let O be the origin of the complex plane and let a, b, ¢, d, e be
the coordinates of points A, B, C, D, E, respectively. Then

a-+b at+c+d 3a+b+2c
and e = 3 = 5

d:

Using the real product of complex numbers, if R is the circumradius of tri-
angle ABC, then

a-a=b-b=c-c=R"
Lines CD and OF are perpendicular if and only if (d — ¢) - e = 0, that is,
(a4+b—2c)-(3a+b+2c) =0.
The last relation is equivalent to
3a-at+a-b+2a-c+3a-b+b-b+2b-c—6a-c—2b-c—4c-c=0,

that is,
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On the other hand, AB = AC' is equivalent to

|b—al® =|c—al?.

That is,
(b—a)-(b—a)=(c—a)(c—a),
or
b-b—2a-b+a-a=c-c—2a-c+a-a,
whence

a-b=a-c. (2)
The relations (1) and (2) show that CD L OF if and only if AB = AC.

Problem 5. Let a, b, ¢ be distinct complex numbers such that |a| = |b] = |¢|
and |b+ ¢ — a| = |a|. Prove that b+ ¢ = 0.

Solution. Let A, B, C be the geometric images of the complex numbers
a, b, ¢, respectively. Choose the circumcenter of triangle ABC' as the origin
of the complex plane and denote by R the circumradius of triangle ABC.
Then

aa = bb = c¢ = R?,
and using the real product of the complex numbers, we have

|b+ ¢ — a| = |a| if and only if |b + ¢ — a|* = |a|*.

That is,
(b+c—a)-(b+c—a)=laf,
i.e.,
lal? + |b]2 +|c|* +2b-c—2a-c—2a-b=|al’.
We obtain
2(R*+b-c—a-c—a-b) =0,
i.e.,

a-a+b-c—a-c—a-b=0.

It follows that (a —b) - (a — ¢) = 0, and hence AB L AC, i.e., BAC = 90°.
Therefore, [BC] is the diameter of the circumcircle of triangle ABC, so
b+c=0.

Problem 6. Let E, F, G, H be the midpoints of sides AB, BC, CD, DA
of the convex quadrilateral ABC'D. Prove that lines AB and CD are perpen-
dicular if and only if

BC? + AD? = 2(EG? + FH?).
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Solution. Denote by the corresponding lowercase letter the coordinate of a
point denoted by an uppercase letter. Then

_a+b f_b—i—c _c+d h_d—i—a
T T T I T Ty P Ty

Using the real product of the complex numbers, the relation
BC? + AD? = 2(EG* + FH?)
becomes
(c=b)-(c=b)+(d—a)-(d—a)==(c+d—a—=0b)-(c+d—a—0b)

+-(a+d—-b—c)-(a+d—b—c).

[N el NCY IS

This is equivalent to
c-c+b-b+d-d+a-a—2b-c—2a-d
=a-a+b-b+c-c+d-d—2a-c—2b-d,

or
a-d+b-c=a-c+b-d.

The last relation shows that (a —b) - (d —¢) = 0 if and only if AB L CD, as
desired.

Problem 7. Let G be the centroid of triangle ABC and let Ay, Bi, Cy be
the midpoints of sides BC, C'A, AB, respectively. Prove that

MA? + MB?* + MC? + OMG? = 4(M A2 + MB} + MC?)
for all points M in the plane.

Solution. Denote by the corresponding lowercase letter the coordinate of a
point denoted by an uppercase letter. Then

at+b+ec b+c c+a a+b
, a1 = 7b1: , C1 = .
3 2 2 2

Using the real product of the complex numbers, we have
MA? + MB*+ MC? + 9MG?
=(m—a)-(m—a)+(m—=>0) - (m=b)+(m—c)-(m—c)

v (o dtbteN ([, _atbte
3 3

=12\m|* —8(a+b+c)-m+2(|a]* + b + |c|*) +2a - b+ 2b-c+ 2¢- a.
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On the other hand,
4(MA? + MB} + MC3})

:4Km_b20) , (m_b;c)+<m_c;a>
(59 (2]

=12/m|?> = 8(a+b+c) -m+2(|a]® + |b]* + |c|*) +2a-b+2b-c+2c-a,

so we are done.

Remark. The following generalization can be proved similarly.

Let A1 A5 --- Ay, be a polygon with centroid G and let A;; be the midpoint
of the segment [A;4;], i <j, i, j € {1,2, ..., n}.

Then

(n—2) ZMAk +n’MG® =4 MA3,
1<J
for all points M in the plane. A nice generalization is given in Theorem 3 in
Sect. 4.11.

4.2 The Complex Product of Two Complex Numbers

The cross product of two vectors is a central concept in vector algebra, with
numerous applications in various branches of mathematics and science. In
what follows, we adapt this product to complex numbers. The reader will
see that this new interpretation has multiple advantages in solving problems
involving area or collinearity.

Let a and b be two complex numbers.

Definition. The complex number
1 —
axb= g(ﬁb—ab)

is called the complex product of the numbers a and b.
Note that

1 -1 -
axb+axb= é(ab—ab)—i—i(ab—ab) =0
so Re(a x b) = 0, which justifies the definition of this product.

Let A(a), B(b) be points in the complex plane, and let § = O—/i O?
the angle between the vectors (ﬁl O? The following formula holds:

a X b= gila||b|sin,
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where
- —1, if triangle OAB is positively oriented;
" | +1, if triangle OAB is negatively oriented.

Indeed, if a = |a|(costy + isinty) and b = |b|(costs + isints), then
a X b= ilal|b| sin(—t1 + t2) = ci|a||b| sin 6.

The connection between the real product and the complex product is given
by the following Lagrange-type formula:

ja - b + la x b|* = |al?[b*.
The following properties are easy to verify:

Proposition 1. Suppose that a, b, c are compler numbers. Then:

(1)axb=20if and only if a = 0 or b = 0 or a = \b, where \ is a real
number.

(2) a x b= —bx a (the complex product is anticommutative).

(8) ax (b+c) =axb+axc (the complex product is distributive with respect
to addition).

(4) a(a x b) = (aa) x b =a x (ab), for all real numbers «.

(5) If A(a) and B(b) are distinct points other than the origin, then a X b =0
if and only if O, A, B are collinear.

Remarks.

(a) Suppose A(a) and B(b) are distinct points in the complex plane different
from the origin (Fig. 4.2).
The complex product of the numbers a and b has the following useful
geometric interpretation:

b 2i. area [AOB|, if triangle OAB is positively oriented;
“ ~ | —2i. area [AOB], if triangle OAB is negatively oriented.

Figure 4.2.
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Indeed, if triangle OAB is positively (directly) oriented, then

2i - area [OAB]=i-OA-OB - sin(@)

. . by . b\ |a
= i|al - |b| - sin (arga> =14-|al-|b|-Im (E) Tl
1 b b\ 1 -
= 5|a|2 (— —:) = (@ —ab) =axb.

a a

In the other case, note that triangle OBA is positively oriented; hence
2i-area[OBA] =bx a= —a x b.

(b) Suppose A(a), B(b), C(c) are three points in the complex plane.
The complex product allows us to obtain the following useful formula for
the area of the triangle ABC:

1
Z(axb+b><c+c><a)

if triangle ABC is positively oriened;
area [ABC] =

1
—E(axb—l—bxc—l—cxa)
i

if triangle ABC' is negatively oriented.

Moreover, simple algebraic manipulation shows that
1 —
area [ABC] = élm(ab + be + ¢a)

if triangle ABC is directly (positively) oriented.

To prove the above formula, translate points A, B, C by the vector —c.
The images of A, B, C are the points A’, B’, O with coordinates a —c, b —
¢, 0, respectively. Triangles ABC and A’B’O are congruent with the same
orientation. If ABC is positively oriented, then

area [ABC| = area [OA'B'] = %((a —c)x (b—c¢))

:%((a—c)xb—(a—c)xc):%(cx(a—c)_bx(a_c))

1 1
=—(exa—cxc—bxat+bxc)=—(axb+bxc+cxa),
24 24
as claimed.
The other situation can be handled similarly.
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Proposition 2. Suppose A(a), B(b), and C(c) are distinct points. The
following statements are equivalent:

(1) Points A, B, C are collinear.
(2) (b—a)x (c—a)=0.
(83)axb+bxc+exa=0.

Proof. Points A, B, C are collinear if and only if area[ABC] = 0, i.e.,
axb+bxc+cxa=0. The last equation can be written in the form (b — a) x
(c—a)=0. O

Proposition 3. Let A(a), B(b), C(c), D(d) be four points, no three of which
are collinear. Then AB||CD if and only if (b—a) x (d—c¢) =0.

Proof. Choose the points M(m) and N(n) such that OABM and OCDN
are parallelograms; then m =b—a and n =d — c.

Lines AB and C'D are parallel if and only if points O, M, N are collinear.
Using property 5, this is equivalent to 0 = m x n = (b —a) x (d — ¢). O

Problem 1. Points D and E lie on sides AB and AC of the triangle ABC
such that

AD AE 3

AB  AC 4
Consider points E' and D’ on the rays (BE and (CD such that EE’ = 3BE
and DD’ = 3CD. Prove the following:

(1) points D', A, E' are collinear.

(2) AD' = AF'.
3b
Solution. The points D, E, D’, E’ have coordinates: d = a—z ,
o a—+ 3c
=
e =4e—3b=a+3c—3b, and d = 4d — 3c = a + 3b — 3c,
respectively.

D’ A E’

Figure 4.3.
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(1) Since
(a—d)x (e =d) = (3c—3b) x (6c—6b) = 18(c —b) x (¢ —b) =0,

it follows from Proposition 2 in Sect. 4.2 that the points D', A, E’ are
collinear (Fig. 4.3).

(2) Note that

a—d

e —d

AD’

D'E"

=35

so A is the midpoint of segment D'E’.

Problem 2. Let ABCDE be a convex pentagon and let M, N, P, Q, X, Y
be the midpoints of the segments BC, CD, DE, EA, M P, NQ, respectively.
Prove that XY ||AB.

Solution. Let a, b, ¢, d, e be the coordinates of vertices A, B, C, D, F,
respectively (Fig. 4.4).

B M c

Figure 4.4.

Points M, N, P, Q, X, Y have coordinates

b+c c+d d+e
m = , = y D= )
2 2 2
e+a b+c+d+e ct+d+e+a
= €r= =
q 2 2 4 ) y 4 2
respectively. Then
a—>b
Yy—x 4 1
= =——€eR,

whence

(v =) % (b—a) = —3(b—a) x (b—a) =0.

From Proposition 3 in Sect. 4.2, it follows that XY ||AB.
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4.3 The Area of a Convex Polygon

We say that the convex polygon Ay As - - - A, is directly (or positively) oriented
if for every point M situated in the interior of the polygon, the triangles
MAR A1, k=1,2, ..., n, are directly oriented, where A, 11 = A;.

Theorem. Consider a directly oriented convexr polygon AyAs--- A, with
vertices with coordinates ay, az, ..., a,. Then

1
area [A1As -+ Ay = Elm(a_lag +azas + -+ Gp_1an + Gra1).

Proof. We use induction on n. The base case n = 3 was proved above using
the complex product. Suppose that the claim holds for n = k, and note that

area [A1As -+ A Ag+1] = area [A1 Ay - - - A] + area [Ag Agy141]
1 _ o - - 1 . - _
= §Im(a1a2 +azas + - - -+ aQp_1ai + ar1a) + §Im(akak+1 + apri01 + arak)
1 _ _ _ _
= 51111(&1@2 +G2a3 + -+ + Ap—10k + Q41 + Trr101)

1. _ 1. _ _ _
+§Im(aka1 + arar) = §Im(a1a2 +azasg + - -+ + Qpak11 + Ggr1a1),

since
Im(ara; + arax) = 0.

Alternative proof. Choose a point M in the interior of the polygon. Applying
the formula (2) in Sect. 3.5.3, we have

area [A1As--- A,] = Z area [MApAgt1]
k=1

1 n
=5 Z Im(Zay, + arag+1 + Teriz)
k=1

1 n
1 Im(a@gars1) + 5 ; Im(Zay, + ariz)

= §Im (}; akak+1> + §Im z;ak + z;aj = §Im (Z akak+1> ,

k=1

|
| —
(]

~
Il

since for any complex numbers z, w the relation Im(Zw + zw) = 0 holds. O

Remark. From the above formula, it follows that the points Aj(aq),
As(az), ..., Ap(ayn) as in the theorem are collinear if and only if

Im(ﬁlag +asas+ -+ ap_1an +ana1) =0.
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For this result, the hypotheses in the theorem are essential, as we can see
from the following counterexample.

Counterexample The points with respective complex coordinates
ap =0, ao = 1, a3 = i, ag = 1+ ¢ are not collinear, but we have
Im(atas + azas + azaq + azaq) = Im(—1) = 0.

Problem 1. Let PyP; - - - P,,—1 be the polygon whose vertices have coordinates
1, &,..., €" L and let QuQ1---Qn_1 be the polygon whose vertices have

2
coordinates 1, 1+¢, ..., 14+e+---4+e""1 wheree = cos—ﬂ—l—isin—ﬂ-. Find
n n

the ratio of the areas of these polygons.

Solution. Consider a, =1+¢e+---+¢*, k=0,1, ..., n— 1, and observe
that

n—1
area [QoQ1 - Qn-1] = %Im (Z @akH)
k=0

n—l k41 _ k+2 _
. <Z @) 1 ¢ 1)

2 z—1 e—1

n—1
! Im [Z(s — @)k 2 )

= TP
2|le — 1| —
1 Im(ne + n) 1 . 27
= m(ne +n) = ————=nsin —
2le — 12 2le —1)2 n
LT T n 0
= ———5—2sin—cos — = — cotan —,
8sin” n n 4 n
since
n—1 n—1
ZE’“H =0 and Z eht2 — 0.
k=0 k=0
On the other hand, it is clear that
2
area [PyPy -+ P,_1] = n area [PhOP;] = 2 sin == = nsin — cos —.
2 n n n
We obtain
LT T
PPPn_ 7 S1n — CoS —
arealPy P 1] gy T (1)
a’rea[QOQl e anl] —cotan— n
4 n
Remark. We have QzQri1 = |ags1 — ax| = ¥ = 1 and PPy =
b1 — k| = k(e —1)| = |eF||l —¢| = |1 —¢| = 2sin ~, k= 0,1,...,n— 1.
n

It follows that
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Py Pyyq
QrQr+1

That is, the polygons PyP; -+ P,—1 and QoQ1 - Qr—1 are similar, and
the result in (1) follows.

—9sin’, k=0,1, ..., n— 1.
n

3

Problem 2. Let AjAy---Ap(n > 5)
midpoint of the segment [AkAkH], k
the following inequality holds:

b convex polygon and let By be the
= .., n, where Ap4+1 = Ay1. Then

area [B1By--- By| > % area [A1 Az -+ Ayl

Solution. Let a; and bx be the coordinates of points Ay and B, k =
1,2, ..., n. It is clear that the polygon B1Bs--- B, is convex, and if we
assume that A;As--- A, is positively oriented, then By Bs--- B, also has
this property. Choose as the origin O of the complex plane a point situated
in the interior of polygon Ay As--- A,,.

We have by, = %(ak +ag+1), k=1,2, ..., n, and
G- 1
area [B1Bs - = —Im Z brbr+1) = —Imz ar + 1) (kg1 + akg2)
k=1 k=1

()l e

k=1 k=1 k=1

1 1 "
= jarea [A1As---Ap]+ glm (Za_]ga/k+2>

k=1

1 1 &
= garea [A1Ag--- Ap] + 3 ; Im(arakt2)

1 1 < —
= carea [A1 Ay -+ Ap] + < > OAy - OAg o sin A O Ay
2 8 &

> %area [A1As--- Ay,

where we have used the relations

Im <Z a_kakH) =Im (Z Mak_ﬂ) =2 area [A1 Az - A,)]

k=1 k=1

and sinAkO/AEQ >0, k=1,2, ..., n, where A, 12 = As.
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4.4 Intersecting Cevians and Some Important Points
in a Triangle

Proposition. Consider the points A, B', C' on the sides BC, CA, AB of
the triangle ABC' such that AA’, BB', CC' intersect at point Q and let

BA” p CB" m AC" n

AC n BA p CB m

If a, b, c are the coordinates of points A, B, C, respectively, then the coor-
dinate of point @ is

_ ma+nb+ pc
m+n+p
b
Proof. The coordinates of A’, B’, C' are o' = r —i—pc, b = M,
n+p m-+p
b
and ¢ = @, respectively. Let () be the point with coordinate ¢ =
m+n
matnbipe \We prove that AA’, BB', CC’' meet at Q.

m~+n-+p
The points A, @, A’ are collinear if and only if (¢—a) x (¢’ —a) = 0. This

is equivalent to
(ma—i—nb—i—pc ) (nb—l—pc )
— —a| X | ———a] =0,
m+n+p n-—+p

or (nb+ pc— (n+p)a) X (nb+ pc— (n+p)a) = 0, which is clear by definition
of the complex product.
Likewise, @Q lies on lines BB’ and C'C’, so the proof is complete. a

Some Important Points in a Triangle

(1) If @ = G, the centroid of the triangle ABC, we have m = n = p. Then
we obtain again that the coordinate of G is

at+b+c
3 .

(2) Suppose that the lengths of the sides of triangle ABC are BC = o, CA =
B, AB = ~. If Q = I, the incenter of triangle ABC, then using a known
result concerning the angle bisector, it follows that m = «, n = 8, p = 7.
Therefore, the coordinate of I is

zZqg =

aa+fbt+ye l[((m + Bb+ ye),

= a+ B8+ 2s

where s = £ (a+ 8+ 7).
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(3) If @ = H, the orthocenter of the triangle ABC, we easily obtain the
relations

BA" tanC CB' tanA AC’' tanB
A'C "~ tanB’ B'’A~ tanC’ C'B tan A’

It follows that m = tan A, n = tan B, p = tanC, and the coordinate of
H is given by

ZH =

(tan A)a + (tan B)b + (tan C)c
tan A + tan B + tan C '

Remark. The above formula can also be extended to the limiting case in
which the triangle ABC' is a right triangle. Indeed, assume that A — g

tan B)b + (tan C tan B + tan C
ThentanA—>:|:ooand(an )b+ (tan >C—>O,u—>0.1n

) i tan A ) “tan
this case, zy = a, i.e., the orthocenter of triangle ABC' is the vertex A.

(4) The Gergonne® point J is the intersection of the cevians AA’, BB', CC’,
where A’, B’, C' are the points of tangency of the incircle to the sides
BC, CA, AB, respectively. Then

1 1 1
BA' s—~y CB' _, AC' s—8
Ac 1 "pa 1 o 17
s—p 55— s—a

and the coordinate z; is obtained from the same proposition, where

raa +1rgb+1,c

z] =
Ta+ 7+ 7,

Here 7o, rg, 7, denote the radii of the three excircles of triangle. It is
not difficult to show that the following formulas hold:

K K K

Trn = T~ =
s—a P T s—p " s—7’

Ta =

where K = area [ABC] and s = 3(a + 8+ 7).

(5) The Lemoine? point K is the intersection of the symmedians of the tri-
angle (the symmedian is the reflection of the bisector across the median).
Using the notation from the proposition, we obtain

BA" y* CB' _o* AC' B
A'C B2 B'A A2 C'B o2’

1 Joseph Diaz Gergonne (1771-1859), French mathematician, founded the journal Annales
de Mathématiques Pures et Appliquées in 1810.

2 Emile Michel Hyacinthe Lemoine (1840-1912), French mathematician, made important
contributions to geometry.
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It follows that
a?a + B%b + %
a? + 32 + 2
(6) The Nagel® point N is the intersection of the cevian AA’, BB', C(C’,

where A’, B’, C’ are the points of tangency of the excircles with respec-
tive sides BC, CA, AB. Then

K =

BA" s—vy CB s—a AC' s-p

AC  s—pB B'A s—~ C'B s—ao

and the proposition mentioned above gives the coordinate zx of the Nagel
point N:
(s—a)a+ (s—PB)b+ (s —7)c

R RN PRy R CEE) :é[@—a)“(s—ﬁ)bﬂs—w)c]

_(1—%)a+<1—§)b+(l—g)c.

Problem. Leta, (8, v be the lengths of sides BC, CA, AB of triangle ABC
and suppose o < 3 < ~y. If points O, I, H are the circumcenter, the incenter,
and the orthocenter of triangle ABC, respectively, prove that

area [OTH| = 8_1r(a = B)(B =y — ),

where r is the inradius of ABC.

Solution. Consider triangle ABC, directly oriented in the complex plane
centered at point O.
Using the complex product and the coordinates of I and H, we have

1 1 + 8b+
area [OTH| = Z(Z[ X zp) = % %_’_JC X (a—l—b—i—c)]

1

= E[(o‘_ﬂ)aXb"’(ﬂ—’}/)bxc—l—("y—a)cxa]
= %S[(a — B) - area [OAB] + (8 — v) - area [OBC] + (y — a) - area [OCA]

= - a9

2s 2

R?sin2C R?sin2A R?sin 2B
Fn20 (g2 (o ein2B

3 Christian Heinrich von Nagel (1803-1882), German mathematician. His contributions
to triangle geometry were included in the book The Development of Modern Triangle
Geometry [21].
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= f—;[(a—ﬁ)sin20+ (B —7)sin2A4 + (v — a)sin 2B]

_ 8i<a ~B)(B-7(r - a),

r
as desired.

4.5 The Nine-Point Circle of Euler

Given a triangle ABC, choose its circumcenter O to be the origin of the
complex plane and let a, b, ¢ be the coordinates of the vertices A, B, C. We
have seen in Sect. 4.1, Proposition 3, that the coordinate of the orthocenter
Hiszg=a+b+ec.

Let us denote by A;, B;, C; the midpoints of sides BC, CA, AB; by
A’, B, C' the feet of the altitudes; and by A”, B”, C” the midpoints of
segments AH, BH, CH, respectively (Fig. 4.5).

B A Al c

Figure 4.5.

It is clear that for the points A;, By, Ci, A”, B”, C"”, we have the
following coordinates:

1 1 1
ZA; = 5(1)—}-6), 2By — §(C+a)v 2Cy = §(a+b)a

1 1 1
zar = a+ §(b+ ¢), zpr =b+ §(c+a), zon =c+ 5(&4— b).
It is not so easy to find the coordinates of A’, B’, C’.

Proposition. Consider the point X () on the circumcircle of triangle ABC.
Let P be the projection of X onto line BC. Then the coordinate of P is
given by
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1 be _
P=3 x—ﬁx—i—b—i—c ,

where R is the circumradius of triangle ABC.

Proof. Using the complex product and the real product, we can write the
equations of lines BC' and X P as follows:

BC:(z—b)x (c—b) =0,
XP:(z—2)-(c=b)=0.

The coordinate p of P satisfies both equations; hence we have
(p—b)x(c—b)=0and (p—2x)-(c—b)=0.
These equations are equivalent to
(p=b)e—b)—(P—b)(c—b) =

and
(p—z)T—b)+ (P—T)(c—b)=0.

Adding the above relations, we obtain

(2p —b—x)(€—b)+ (b—7)(c—b) = 0.

It follows that

c—b

1 R 1 c _
pzi[b—i_x—’—é—l_)(x_b)]:ﬁ b-l—x-i-w(iﬂ—b)
c b
1 be - 1 be _
_§{b+x—ﬁ(;v—b)]—§<x—ﬁx+b+c). a

From the above proposition, we see that the coordinates of A’, B’, C’ are

1 bca
5 CL+b—|—C—— s

ZA!

R2

. 1 a+b+c_ca5
B’_2 R2 )

1 abc
ZC/:é a—l—b—i—c—ﬁ .

Theorem 1 (The nine-point circle). In every triangle ABC, the points
Ay, By, Ci, A", B, C', A", B"”, C” are all on the same circle, whose
center is at the midpoint of the segment OH and whose radius is one-half the
circumradius.
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Proof. Denote by Og the midpoint of the segment OH. Using our
initial assumption, it follows that zog = %(a + b + ¢). Also, we have
|a| = |b] = |¢| = R, where R is the circumradius of triangle ABC.

1 1
Observe that OgA; = |za, — zo,| = §|a| = §R, and also
1
OgBl = OgCl = ER
1 1
We can write OgA” = |zav — zo,| = §|a| = §R, and also
1

OgB" = OgC"" = ER'
The distance Og A’ is also not difficult to compute:

1 bea\ 1
OQA/ = |ZA/ —2'09| = }5 <a+b+c—%) —§(a+b—|—c)
1 1 R 1
oz 0@l = gz lalbliel = 55z = 3

1
Similarly, we get OgB’ = OgC’ = §R. Therefore, OgA1 = OgB1; = OgCy =
1
OgA" = OgB' = OgC’" = OgA” = OgB" = 0yC" = §R, and the desired
property follows. O
Theorem 2.

(1) (Euler* line of a triangle.) In any triangle ABC the points O, G, H are

collinear.

(2) (Nagel line of a triangle.) In any triangle ABC the points I, G, N are
collinear.

Proof.

(1) If the circumcenter O is the origin of the complex plane, we have zo = 0,
z¢ = =(a+b+c), zy = a+ b+ c. Hence these points are collinear by
Proposition 2 in Sect. 3.2 or 4.2.

(2) Weh a+ﬂb+7 1(+b+) d (1 a)+

ehave z; = —a+—b+—c, zg = = (a and zy = (1——)a
VORI T g0 T oV T g0 ¢ T g ) N s
<1 — é) b+ (1 — 1) ¢, and we can write zy = 3zg — 22;.
S S

Applying the result mentioned above and properties of the complex prod-
uct, we obtain (z¢ — z1) X (25 — 21) = (2¢ — 21) X [3(2¢ — 21)] = 0; hence
the points I, G, N are collinear. a

4 Leonhard Euler (1707-1783), one of the most important mathematicians of all time,
created much of modern calculus and contributed significantly to almost every existing
branch of pure mathematics, adding proofs and arranging the whole in a consistent form.
Euler wrote an immense number of memoirs on a great variety of mathematical subjects.
We recommend William Dunham’s book Euler: The Master of Us All [33] for more details
concerning Euler’s contributions to mathematics.
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Remark. Note that NG = 2GI, and hence the triangles OGI and HGN
are similar. It follows that the lines Ol and NH are parallel, and we have
the basic configuration of triangle ABC shown in Fig. 4.6.

Figure 4.6.

If G is the midpoint of segment [IN], then its coordinate is

G, = %(ZI +2n) = (ﬂ;wa+ (VLa)b+ (a;ﬂ)c.

The point Gy is called the Spiecker point of triangle ABC, and it is easy to
verify that it is the incenter of the medial triangle A1 B1Ch.

Problem 1. Consider a point M on the circumcircle of triangle ABC. Prove
that the nine-point centers of triangles MBC, M CA, MAB are the vertices
of a triangle similar to triangle ABC.

Solution. Let A’, B’, C’ be the nine-point centers of the triangles
MBC, MCD, MAB, respectively. Take the origin of the complex plane
to be at the circumcenter of triangle ABC. Denote by the corresponding
lowercase letter the coordinate of the point denoted by an uppercase letter.
Then

, m+b+c , m+4c+a , m+a+bd

¢ =—,bV=———cd=—"7—,

2 2 2
since M lies on the circumcircle of triangle ABC'. Then

b—a a-b b-a

d—a a—-c c—a’

and hence triangles A’B’C’ and ABC' are similar.
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Problem 2. Show that triangle ABC' is a right triangle if and only if its
circumcircle and its nine-point circle are tangent.

Solution. Take the origin of the complex plane to be at the circumcenter O
of triangle ABC, and denote by a, b, ¢ the coordinates of vertices A, B, C,
respectively. Then the circumcircle of triangle ABC' is tangent to the nine-

point circle of triangle ABC' if and only if OOg¢ = g This is equivalent to
R2
003 = e that is, |a + b+ c|> = R%

Using properties of the real product, we have
la+b+c?>=(a+b+c)-(a+b+c)=la>+|b*+|c|* +2(a-b+b-c+c-a)
=3R*+2(a-b+b-c+c-a)=3R*+ (2R? — o® + 2R* — % + 2R* — +?)
=9R? — (a® + B2 ++7),

where o, (3, 7 are the lengths of the sides of triangle ABC. We have used
2 2 2

the formulasa-b:RQ—l, b~c:R2—a—, c~a:R2—%,which can

be easily derived from the definition of the real product of complex numbers

(see also the lemma in Sect. 4.6.2).

Therefore, a? + 32 + 42 = 8R2, which is the same as sin? A + sin? B +
sin? C' = 2. We can write the last relation as 1 — cos24 + 1 — cos2B + 1 —
cos 2C = 4. This is equivalent to 2 cos(A + B) cos(A — B) +2cos®> C = 0, i.e.,
4 cos Acos BcosC = 0, and the desired conclusion follows.

Problem 3. Let ABCD be a cyclic quadrilateral and let E,, Fy, E., Eq be
the nine-point centers of triangles BCD, CDA, DAB, ABC, respectively.
Prove that the lines AE,, BE,, CE., DE, are concurrent.

Solution. Take the origin of the complex plane to be the center O of the
circumcircle of ABC'D. Then the coordinates of the nine-point centers are

1 1 1 1
€q = §(b—|—c—|—d), eb:§(c—|—d—|—a), eC:§(d—|—a—|—b), ed:§(a—|—b—|—c).

We have AE, : z = ka+ (1 — k)eq, k € R, and the analogous equations
for the lines BEy,, CE., DE,. Observe that the point with coordinate %(a +

1
b+ ¢+ d) lies on all four lines (k = 5)’ and we are done.
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4.6 Some Important Distances in a Triangle

4.6.1 Fundamental Invariants of a Triangle

Consider the triangle ABC' with sides «, 3, 7y; semiperimeter

S=%(0<+B+7);

inradius r; and circumradius R. The numbers s, r, R are called the funda-
mental invariants of triangle ABC.

Theorem. The sides a, 8, v are the roots of the cubic equation
t3 — 2st? + (s* + 1% + 4Rr)t —4sRr = 0.

Proof. Let us prove that « satisfies the equation. We have

) ) A A COSE
a=2Rsin A = 4Rs1n5cos ) and s —a = rcotang = 7‘7,
sin —
2
whence
A als—a) A ar
o= ———and sin® - = ———.
O T Tarr MM Y T URG — )

A A
From the formula cos? 3 + sin? 7= 1, it follows that

a(s — ) ar

=1.
4Rr + 4R(s — )

That is, a® —2sa?+ (s +r? +4Rr)a—4sRr = 0. We can show analogously
that 8 and ~ are roots of the above equation. O

From the above theorem, using the relations between the roots and the
coefficients, it follows that

a+pB+y=2s,

af + By +ya = s®+ 712 +4Rr,
afy = 4sRr.
Corollary. The following formulas hold in every triangle ABC':

o + %4+ ~4% =2(s® —r* —4Rr),

a’ + 8% + 9% = 2s(s* — 3r* — 6Rr).
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Proof. We have

o’ + B2 +97 = (a4 B+7)* = 2(aB + By +a) = 4s” — 2(s* + 1° + 4Rr)
=2s? — 2r? —8Rr = 2(s*> — 1% — 4Rr).

In order to prove the second identity, we can write
3 3 3 _ 2 2 2
o’ + 7 +7° = (a+ B+y)(a” + 7+ — af — By — ya) + 3aby

=25(25% — 2r? —8Rr — s> — 12 — 4Rr) + 12sRr = 2s(s> — 3r — 6Rr). O

4.6.2 The Distance OI

Assume that the circumcenter O of the triangle ABC' is the origin of the
complex plane, and let a, b, ¢ be the coordinates of the vertices A, B, C,
respectively.

Lemma. The real products a-b, b-c, c-a are given by

2 2
bRl peer- e
a-b=R 2,bC—R 2,ca—R 5

Proof. Using the properties of the real product, we have
7? = la—b]* = (a—b)-(a—b) = a-a—2a-b+b-b = |a|*—2a-b+|b|* = 2R*—2a-b,
and the first formula follows. a

In order to simplify the formulas, we will use the symbol chc, called the
cyclic sum:

Zf(fcl,!Ez,fEs) = f(x1, 2, 23) + f(x2, 23, 21) + f(23, 21, 22),

cyc
where the sum is taken over all cyclic permutations of the variables.
Theorem (Euler). The following formula holds:

OI* = R*> — 2Rr.
Proof. The coordinate of the incenter is given by

a B Y
= — —b _
550 + 2s + 25
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SO we can write

By, a B,
OI2 — 2 — ) _b . — _b -
&l (2sa+ 2s *os 25" 25" 23 + 25 ¢

r0? + 5 4R 25 S (aB)asb

cyc

42

Using the above lemma, we find that

or? = 4i (@ 4 B* ++7) R2+ Zaﬁ (R2 )

cyc

1 2 1
= qzl@+B8+7)R %Cjaﬁv =R — afy(a+5+7)
2 2 0‘57 K 2
=R—- = —2— =R"-2
=R ozﬁ’y R K s =R Rr,
where the well-known formulas
_apy K
R=9g "=%
are used. Here K is the area of triangle ABC. a

Corollary (Euler’s inequality). In every triangle ABC, the following
inequality holds:
R > 2r.

We have equality if and only if triangle ABC' is equilateral.
Proof. From the above theorem. we have OI? = R(R—2r) > 0, hence R > 2r.

The equality R — 2r = 0 holds if and only if OI? =0, i.e., O = I. Therefore,
triangle ABC is equilateral. O

4.6.3 The Distance ON

Theorem 1. If N is the Nagel point of triangle ABC, then
ON = R — 2r.

Proof. The coordinate of the Nagel point of the triangle is given by

av=(1-%)a +(1_é)b+( e
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Therefore,
ON? = |axP = oo = B2Y. (1-2) 423" (1-9) <1_§>a.b
cye cye
ES DD
= R? (3—a+f+7)2—§;(1—%) (1_5)72
g3
cyc

To calculate E, we note that

E= 2(1—‘”5 ) ZQ——Za+ﬁw+QZaﬁwz

cyc cyc cyc cyc
=S MM > et 4+ Z 3+8°‘—M K
cyc 5 cyc cyc cyc §
= —Za2+§2a3+8Rr.
cyc cyc

Applying the formula in the corollary of Sect. 4.6.1, we conclude that
E=—-2(s>—1% —4Rr) + 2(s* — 3r* — 6Rr) + 8Rr = —4r? + 4Rr.

Hence ON? = R? — E = R? — 4Rr + 4r? = (R — 2r)?, and the desired
formula is proved by Euler’s inequality. a

Theorem 2 (Feuerbach®). In any triangle the incircle and the nine-point
circle of Euler are tangent.
Proof. Using the configuration in Sect. 4.5 we observe that
1 GI GOy
2 GN GO’
Therefore, triangles GIOg9 and GNO are similar. It follows that the lines
1
109 and ON are parallel and 10y = §ON . Applying Theorem 1 in Sect.

1 R
4.6.3, we get 109 = §(R —2r) = 5= Rg — r, and hence the incircle is

tangent to the nine-point circle. a

5 Karl Wilhelm Feuerbach (1800-1834), German geometer, published the result of
Theorem 2 in 1822.
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Figure 4.7.

The point of tangency of these two circles is denoted by ¢ and is called
the Feuerbach point of the triangle (Fig. 4.7).

4.6.4 The Distance OH

Theorem. If H is the orthocenter of triangle ABC, then
OH? = 9R* + 2% + 8Rr — 25°.

Proof. Assuming that the circumcenter O is the origin of the complex plane,
the coordinate of H is

zg=a-+b+ec.

Using the real product, we can write

OH? = |zgl* =2y -2z = (a+b+c) - (a+b+c)

=Y 1a?+2)" a-b=3R*+2) a-b.

cyc cyc

Applying the formulas in the lemma and then the first formula in Corol-
lary 4.6.1, we obtain

2
0H2—3R2+22<R2—%) =9R? — (® + % +1?)

cyc

=9R? — 2(s®> —r? —4Rr) = 9R? + 2r2 + 8Rr — 252 0
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Corollary 1. The following formulas hold:

2 8 2
1 2 _ p2 2.2 = _ 2.2,
(1) OG R+9T+9RT 55

9 1 1
(2) 003 = “RZ4+ Zr?2 4 2Rr — 252
4 2 2
Corollary 2. In every triangle ABC, the inequality
o® + %+~ <9R?

1s valid. Equality holds if and only if the triangle is equilateral.

4.6.5 Blundon’s Inequalities

Given a triangle ABC, denote by O its circumcenter, I the incenter, G the
centroid, N the Nagel point, s the semiperimeter, R the circumradius, and r
the inradius. In what follows, we present a geometric proof to the so-called
fundamental triangle inequality. This relation contains, in fact, two inequal-
ities, and it was first proved by E. Rouché in 1851, answering a question of
Ramus concerning necessary and sufficient conditions for three positive real
numbers s, R, r to be the semiperimeter, circumradius, and inradius of a tri-
angle. The standard simple proof was first given by W.J. Blundon, and it is
based on the following algebraic property of the roots of a cubic equation:
The roots x1, x3, x3 of the equation

:103+a1x2+a2x+a3:0

are the side lengths of a (nondegenerate) triangle if and only if the following
three conditions are satisfied:

(i) 18ajazas + a?a3 — 27a% — 4aj — dadaz > 0;
(ll) —ay; >0, az >0, —az > 0;
(iii) a} —4ajas +8az > 0.

The following result contains a simple geometric proof of the fundamental
inequality of a triangle, as presented in the article [15].

Theorem 1. Assume that the triangle ABC' is not equilateral. The following
relation holds:

2R% + 10Rr — 12 — §?

2(R - 2r)VRZ —2Rr

Proof. Tt is known (see Theorem 2 in Sect. 4.5) that the points N, G, and I are

collinear on a line called Nagel’s line of the triangle, and we have NI = 3GI.
If we use Stewart’s theorem in the triangle JON, then we get

COS@V =

ON?.GI +0I> NG —-0G?-NI=GI-GN - NI,
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and it follows that
ON?.GI +OI* - 2GI — OG® — 3GI = 6GI°.
This relation is equivalent to
ON? +20I* — 30G? = 6GI*.

Now, using formulas for ON, OI, and OG, we obtain

L/(a®>+b 4 1 /2(s>—r2 —4R

Grro (T o g2) 2L (2 ") SRrtar?)
6 3 6 3

So we get

NI? =9GI* = 51 + s> — 16Rr.
We use the law of cosines in the triangle JON to obtain

ON? 4+ 0OI*> - NI?

cosION = 50N - OI

(R—2r)>+ (R* —2Rr) — (5r* + s> —16Rr) _ 2R?*+10Rr —r? — s*
2(R — 2r)VR? — 2Rr "~ 2(R—2r)WRZ—2Rr’
and we are done.

If the triangle ABC is equilateral, then the points I, O, N coincide, i.e.,
triangle ION degenerates to a single point. In this case, we extend the formula

by cosION = 1. a

Theorem 2 (Blundon’s inequalities). A necessary and sufficient condi-
tion for the existence of a triangle with elements s, R, and r is

2R* + 10Rr — r* — 2(R — 2r)\/ R2 — 2Rr
< s? <2R* +10Rr — r* + 2(R* — 2r)\/ R2 — 2Rr.

Proof. If we have R = 2r, then the triangle must be equilateral, and we are
done. If we assume that R — 2r # 0, then the desired inequalities are direct

consequences of the fact that —1 < cosI/O]\V < 1. O

Equilateral triangles give the trivial situation in which we have equality.
Suppose that we are not working with equilateral triangles, i.e., we have
R — 2r # 0. Denote by T(R,r) the family of all triangles with circumradius
R and inradius r. Blundon’s inequalities give, in terms of R and r, the exact
interval for the semiperimeter s of triangles in the family 7 (R, r). We have

s2. =2R*+10Rr —r* —2(R — 27")\/m
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and

s2  =2R?>+10Rr —r* +2(R — 2r)v/ R — 2Rr.

If we fix the circumcenter O and the incenter I such that OI = v R? — 2Rr,
then the triangle in the family 7(R,r) with minimal semiperimeter corre-
sponds to the case cosION = 1 of equality, i.e., points I, O, N are collinear,
and I and N belong to the same ray with the origin O. Taking into account
the well-known property that points O, G, H belong to Euler’s line of the tri-
angle, we see that O, I, G must be collinear, and hence in this case, triangle
ABC is isosceles. In Fig. 4.8, this triangle is denoted by Amin BminCrmin- Also,
the triangle in the family 7 (R,r) with maximal semiperimeter corresponds
to the case of equality cos TON = —1, i.e., points 1,0, N are collinear, and
O is situated between I and N. Using again the Euler line of the triangle,
we see that triangle ABC is isosceles. In Fig. 4.8, this triangle is denoted by
Amameameax-

Note that we have BupinCmin > BmaxCmax- The triangles in the family
T(R,r) are “between” these two extremal triangles (see Fig.4.8). According
to Poncelet’s closure theorem, they are inscribed in the circle C(O; R), and
their sides are externally tangent to the circle C(I;7).

min

maxr

C,

‘max

min

Figure 4.8.
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4.7 Distance Between Two Points in the Plane
of a Triangle

4.7.1 Barycentric Coordinates

Consider a triangle ABC and let «, 3, v be the lengths of sides BC, C' A, AB,
respectively.

Proposition. Let a, b, ¢ be the coordinates of vertices A, B, C and let P
be a point in the plane of the triangle. If zp is the coordinate of P, then there
exist unique real numbers g, Wy, fe Such that

Zp = fla@ + b + pcc and pg + pp + pre = 1.

Proof. Assume that P is in the interior of triangle ABC and consider the

/
point A’ such that AP N BC = {A’}. Let ky = If_j” 0 = j/—g, and observe
that
a+ kiza b+ kac

S TR

Hence in this case, we can write
1 k1 k1ko
A T +k2)b+ A+ k)1t k)

Moreover, if we consider

_ 1 _ ki B Kk
Ba e 0 P T Okt k) T O k) + ko)’

we have

1 ky ke ko
1+ ky * (14 k1)(1 + ko) * (14 k1)(1 + ko)
Ltk kot kike
(k)1 F k)

Ha + pho + fe =

=1

We proceed in an analogous way when the point P is situated in the
exterior of triangle ABC.

If the point P is situated on the support line of a side of triangle ABC
(i.e., the line determined by two vertices), then

1 k 1 k

- —0-a4 — pa
A e e g

zp

PB
here k = —. O
where PO
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The real numbers pq, tp, pe are called the absolute barycentric coordinates
of P with respect to triangle ABC.

The signs of the numbers i, iy, e depend on the regions of the plane in
which the point P is situated. Triangle ABC determines seven such regions
(Fig. 4.9).

I
VII

B C
V/ I w

Figure 4.9.

In the following table, we give the signs of pga, Wy, Me:

1[I [I[IV]V]VI[VII
pa|— [+ [+ F]=[= [+
T I e e ER e
pe| HF= ==+ ]+

4.7.2 Distance Between Two Points in Barycentric
Coordinates

In what follows, in order to simplify the formulas, we will use again the

cyclic sum symbol defined above, > f(x1, za, ..., x,). The most important
cyc
example for our purposes is

> flar, wa, w3) = fz1, 22, w3) + flw2, 73, 11) + fl23, T2, T2).

cyc

Theorem 1. In the plane of triangle ABC, consider the points P and Py
with coordinates zp, and zp,, respectively. If zp, = aga + Prb + yrc, where
ak, Bk, Yk are real numbers such that o + B+ =1, k=1,2, then

PP} =— Z(Oéz —a1)(B2 — i)y

cyc
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Proof. Choose the origin of the complex plane to be located at the
circumcenter O of the triangle ABC. Using properties of the real product,
we have

PP} = |zp, — zp,|* = [(a2 — o1)a + (B2 — B1)b+ (v2 — 1)l

= Z(Oéz —a1)’a- a+ 22(042 —ai)(f2—PBr)a- b

cyc cyc
2
= ;(QQ - a1)2R2 + QC}IZC(OZQ — Ozl)(ﬂz — ﬂl) <R2 — %)
=R* oy +fa+y2—o1—fr— )’ — 2(042 —o)(B2 = By
cyc
== (a2 —a1)(B2 — )7’
cyc
SinCGO&l—Fﬂl—I—"yl:OAQ—FﬂQ—F’}/Q:l. O

Theorem 2. The points Ay, Az, By, Bs, C1, Cs are situated on the sides
BC, CA, AB of triangle ABC such that lines AA,, BBy, CCy meet at
point Py, and lines AAs, BBy, CCy meet at point Ps. If

BAk_pk CBk_mk ACk_nk k=19

AkC’_nk’ BkA_pk7CkB_mk7 o
where my, ng, px are nonzero teal numbers, k = 1,2, and
Sk =mg +ng+pr, k=1,2, then

1

2
Bl =gg

5152 Z(n1P2 +p1n2)a2 - Sf 27121)2042 - 522 Zn1p1042

cyc cyc cyc
Proof. The coordinates of points P; and P, are

; _ mga + ngb+ pre k—19
e mg +ng+pe o

It follows that in this case, the absolute barycentric coordinates of points
P, and P, are given by

ap = Mk _ Mk gk:—nk _
mp+nk+pe Sk’ my+nk+pe Sk’
e = Pk Pk 1 —1,2.

mg +nk +pE S_k7

Substituting in the formula in Theorem 1 in Sect. 4.7.2, we obtain
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P, P2 — _ O D2 p_l 2
e 2 (52 ) (52 s )
cyc
= S2s2 > (Sing — Sama)(Sip2 — Sap1)a’
cyc
S2S2 Z Sinaps + S3nipr — S152(naps + napr)] o
cyc
1
82S2 [5152 Z(n1p2 +ngp1)a’® — 7 Z nopac® — 53 Z mpia?|
cyc cyc cyc
and the desired formula follows. O

Corollary 1. For real numbers oy, Bk, Ve with a + B + v =1, k = 1,2,
the following inequality holds:

Z(Oéz —a1)(B2 — f1)y* <0,

cyc
with equality if and only if an = a, B = P2, 71 = V2.

Corollary 2. For nonzero real numbers my, ng, px, k = 1,2, with Sy =
myg +ng + pr, k= 1,2, the lengths of sides «, B, v of triangle ABC' satisfy
the inequality

S S.
2 1 2 2 2
Z(n1p2 + ping)” > 5, anza + 3, anpla ;

cyc cyc cyc
m my n n
with equality if and only if o p_z} - —2, a2
n nz2 p1 P2 m1 Mg

Applications

(1) Let us use the formula in Theorem 2 in Sect. 4.7.2 to compute the distance
GI, used in Sect. 4.6.5, where G is the centroid and I is the incenter of
the triangle.

We have m; =ny =p; =1 and my = a, no = 3, pa = 7; hence

51:Zm1:3; SQZZWQZQ-I-B—F’V:ZS;

cyc cyc

S (mp2 +nopr)a® = (8 +7)a? + (v + )8 + (a + B)7
cyc
= (a+B+7)(aB + By +7ya) —3afy = 2s(s* + 1> + 4rR) — 12sRr
=253 4 2512 — 4sRr.
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On the other hand,

> napaa® = a?By + BPya+y7af = afy(a+ B +7) = 8s°Rr
cyc
and
Zn1p1a2 =a?+ 3% ++%=2s>—2r> — 8Rr.

cyc

Then

1
GI? = §(52 + 572 — 16Rr).

(2) Let us prove that in every triangle ABC with sides «, 3, v, the following
inequality holds:

D 2a—B-)(28-a-7)7 <0

cyc

In the inequality in Corollary 1 in Sect. 4.7.2, we consider the points

1
PlzGandPg = 1. Thenal :ﬂl = " = —anda2 = g, /82 = ﬁ,
3 2s 2s
Yo = l, and the above inequality follows. We have equality if and only if
s
P, = Py, that is, G = I, so the triangle is equilateral.

4.8 The Area of a Triangle in Barycentric Coordinates

Consider the triangle ABC with a, b, ¢ the respective coordinates of its
vertices. Let «, [, 7 be the lengths of sides BC, C'A, and AB.

Theorem. Let Pj(zp,), j = 1,2,3, be three points in the plane of triangle
ABC with zp; = aja+ B;b+vjc, where oy, Bj, v; are the barycentric coor-
dinates of P;. If the triangles ABC and P, P>P; have the same orientation,
then
area| Py P, Ps] a1 gl n
— = = .
area| ABC 21722
as B3 73
Proof. Suppose that the triangles ABC and P P, Ps are positively oriented.
If O denotes the origin of the complex plane, then using the complex product,
we can write

2i area|PLOPs] = zp, X zp, = (@1a + B1b+ 71¢) X (aea + B2b + v20)

= (a1f2 — 2f1)a X b+ (Biy2 — B2y1)b X ¢+ (M1 —12a1)c X a
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axbbxcexa a xbbxc2iarea [ABC]
=lm m B|=m o 1
Yo az P Yo Q2 1

Analogously, we obtain

a xbbxc2iarea [ABC]
2i area [Po,OPs] = | v  «g 1
Y3 Qs 1

a xbbxc2iarea [ABC]
2i area [PgOPl] = Y3 (6% 1
Mmoo 1

Assuming that the origin O is situated in the interior of triangle P, P> Ps,
it follows that

area| P, P, P3] = area [POP;] + area [P,OPs3] + area [PsOP ]

1 1
= Z(al —as+a—az+ag—ai)ax b_Z(% — Yo+ —7v3+y3—71)bXx ¢
+(y12 — y201 + Y23 — Y32 + Y301 — Y103)area [ABC]
= (712 — Y201 + Yeas — Y32 + Y301 — Y1a3) area [ABC]

1y an a1 B
= area [ABC| |1 vz ag | = area| ABC| | a2 B2 Y2 |,
173 as as B3 73
and the desired formula is obtained. O

Corollary 1. Consider the triangle ABC' and the points A1, By, C1 situated
on the respective lines BC, CA, AB (Fig. 4.10) such that

AB_ L BC_ . GA
AC " BA " oB ™

If AAy,NBB; = {Pl}, BB NCC; = {Pz}, and CC1NAA = {P3}, then

area[P1P2P3] (1 — k1k2k3)2

area[ABC’] (1 + k1 + klkg)(l + ko + kzkg)(l + k3 + kgkl) '

Proof. Applying the well-known Menelaus’s theorem to triangle AA; B, we
find that
ChA CB P3A

: : =1.
Ci1B CA; DA

Hence
PA 1A CB
PsA; - CiB CA

= ks(1+ k).
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Figure 4.10.

The coordinate of Pj is given by

b+ kic
CL+I€3(1+]€1)ZAI - 1+k a+ k3b+ kskic

T+ks(1+k) 14 k3 + ksky L+ kg +kaky

a+ks(1+ k)

Zpy =

In an analogous way, we find that

. klkga + b + klc

. . koa + koksb + ¢
PUT T ke o ks

d zp, = .
e R T S A

The triangles ABC and P; P, P; have the same orientation; hence by applying
the formula in the above theorem, we find that

area[P, PyPs] 1 kllfz’ klk "11
arcal ABC] — (L+ki+hkiks)(I+ka+hoks)(1+ks+hsk) | | %3%h

B (1 — k1koks)? -

(U4 k1 + krk2) (1 + ko + koks) (1 + k3 + ksk1)
Remark. When k; = ko = k3 = k, from Corollary 1 in Sect. 4.8, we obtain
Problem 3 in Sect. 4.9.2 from the 23rd Putnam Mathematical Competition.
Let A;, B;, C; be points on the lines BC, C'A, AB, respectively, such that

BAjipj C'Bjimj chiﬁ i—1.9273
AjC_nj’ BjA_pj, CjB_mjvj_ e

Corollary 2. If P; is the intersection point of lines AA;, BB;,CC;, j =
1,2,3, and the triangles ABC, P, P, P3 have the same orientation, then

area[P P, P3) 1 21 Zl P
arealABC] 518285 | 222
ms3 N3 p3

where S; =mj; +n; +p;, j=1,2,3.
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Proof. In terms of the coordinates of the triangle, the coordinates of the
points P; are
mja +nib+ pj;c 1

P = —(mja+nb+pc), 7=1,2,3.
BT my 4+ Sj( 90+ b+ pich, J

The formula above follows directly from the above theorem. a

Corollary 3. In triangle ABC, let us consider the cevians AA’, BB’, and
CC" such that

ac =™ AT OB
Then the following formula holds:

A'B BC (A

:p,

area|A’ B'C"] 1+ mnp

area| ABC] (14+m)(1+n)(1+p)
Proof. Observe that the coordinates of A’, B, C' are given by

L, _m L+ L+ Py
4= — ¢, zpr = c+——a, zov=——a+ ——
A 14+m 1+m “B 1+n T+n ' ¢

Applying the formula in Corollary 2 in Sect. 4.8, we obtain

area[ A’ B'C'] 1 0 (1) 7711
= n
area| ABC)| (L+m)(1+n)1+p) |4 » 0

- 1+ mnp -
S (I+m) (I +n)(1+p)

Applications

(1) (Steinhaus)® Let A;, B;, C; be points on lines BC, CA, AB, respec-
tively, j = 1,2, 3. Assume that

BA, 2 CB, 1 AC, 4
AC 4 BA 2" 4B 1
BAy; 4 CBy 2 AC, 1
A;C 17 ByA 4 CoB 2
BA; 1 CBy 4 AC; 2
A3C T2 B3A 1 C3B 4

If P; is the intersection point of lines AA;, BB;, CCj, j =1,2,3, and
triangles ABC, P P, P3 are of the same orientation, then from Corollary 3
above, we obtain

6 Hugo Dyonizy Steinhaus (1887-1972), Polish mathematician, made important contribu-
tions to functional analysis and other branches of modern mathematics.
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arealP PPs] 1 ;?Z 49 1
area ABC] — 7-7-T|, 5 7 T

(2) If the cevians AA’, BB’, CC’ are concurrent at point P, let us denote
by Kp the area of triangle A’ B’C’. We can use the formula in Corollary 3
above to compute the areas of some triangles determined by the feet of
the cevians of some notable points in a triangle.

(i) If I is the incenter of triangle ABC, we have

1428 @
K; = b o vy area| ABC
(1+3) (+2) (+3)
B 200y aren _ 2a8vysr
BN (R R et A T [ Gy o)

(ii) For the orthocenter H of the acute triangle ABC, we obtain

tanC tanB tand
Ky = tanB tan A tanC areal ABC]

1+taLnC' 1+taLnB 1+tamA
tan B tan A tan C

= (2 cos A cos B cos C')area| ABC] = (2 cos A cos B cos C)sr.

(iii) For the Nagel point of triangle ABC, we can write

14570 s s—p3
Ky = — s— P j:7 S_as—ﬁ area| ABC]|
(1+S 7)(H a><1+ )
s—p3 s—7 s o
3 3 _ 2
= 20s a)(ZByﬂ)(s el arealABC] = MZT[I?:%]MGMABC]

2
r Sr

= ﬁarea[ABC] = 3R

If we proceed in the same way for the Gergonne point J, we obtain the
relation

87‘2

K;= %%area[ABC] =5E"
Remark. Two cevians AA’ and AA” are isotomic if the points A" and A"
are symmetric with respect to the midpoint of the segment BC. Assuming
that
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A'B B'C C'A
=m =N =
wc - " BAa" "o P
then for the corresponding isotomic cevians, we have

A'B 1 B'C 1 1
A'"C " m’ B"A n’ C"B  p

Applying the formula in Corollary 3 above yields that
area|A’ B'C"] 14+ mnp

area|ABC)| 1+m)(1+n)(1+p)

1
1+ mnp area|A” B"C"]

Ty

Therefore, area [A'B’C’'] = area[A” B”C"]. A special case of this relation
is Ky = K, since the points N and J are isotomic (i.e., these points are

intersections of isotomic cevians).

(3) Consider the excenters I, Ig, I, of triangle ABC. It is not difficult to
see that the coordinates of these points are

___« p g
I CEr R e M P
o« B Y
ZIB_2(s—a)a_2(s—6)b+2(s—7)c’
__«a B gl
ZI”_2(s—a)a+2(s—6)b_2(s—7)c'

From the formula in the theorem above, it follows that

a Je] ol
2(s—a) 2(s—p) 2(s—v)

area[lolply] = | 5555 —2(57@ sy | arealABC]
a __
2(s—a)  2(s=p)  2(s—7)
By 111
= 1-11|arealABC
TP ) T § Bl et
safyarea| ABC)| safyarea| ABC)| 2safy 95 R
= = = = 2sR.

C 2s(s—a)(s—B)(s—7)  2area?|ABC]  4darea|ABC]

(4) (Nagel line) Using the formula in the theorem above, we give a different
proof for the so-called Nagel line: the points I, G, N are collinear. We
have seen that the coordinates of these points are
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B B
Z[—ga/-i- 2—Sb+ 2—C
EESS Y
GT 3T YT 34

zN_(l—g)a+(1—§)b+(1—%)c

Then
o L
2s 2s 2s
area[IGN| = | 3 3 5 |.area[ABC| =0,
1-21-871-12

and hence the points I, GG, N are collinear.

4.9 Orthopolar Triangles

4.9.1 The Simson—Wallace Line and the Pedal
Triangle

Consider the triangle ABC, and let M be a point situated in the plane of
the triangle. Let P, @), R be the projections of M onto lines BC, CA, AB,

respectively.

Theorem 1 (The Simson line”). The points P, Q, R are collinear if and
only if M is on the circumcircle of triangle ABC.

Proof. We will give a standard geometric argument.

Suppose that M lies on the circumcircle of triangle ABC. Without loss
of generality, we may assume that M is on the arc BAC. In order to prove
the colhnearlty of R, P, @, it suffices to show that the angles BPR and
C’PQ are congruent The quadrllaterals PRBM and PCQM are cychc (smce
BRM BPM and MPC + MQC = 1800) hence we have BPR = BMR
and CPQ = CMQ But BMR = 90° — ABM = 90° MCQ, since the
quadrllateral ABMC'is cychc too. Fmally, we obtain BMR = 90° — ]\m =

C’MQ, so the angles BPR and CPQ are congruent (Fig. 4.11).

To prove the converse, we note that if the points P, ), R are collinear,
then the angles BPR and @ are congruent; hence ABM + ACM = 180°,
i.e., the quadrilateral ABMC is cyclic. Therefore, the point M is situated on
the circumcircle of triangles ABC. ad

7 Robert Simson (1687-1768), Scottish mathematician. This line was attributed to Simson
by Poncelet, but it is now generally known as the Simson—Wallace line, since it does not
actually appear in any work of Simson. William Wallace (1768-1843) was also a Scottish
mathematician, who possibly published the theorem above concerning the Simson line in
1799.
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Figure 4.11.

When M lies on the circumcircle of triangle ABC, the line in the above
theorem is called the Simson—Wallace line of M with respect to triangle
ABC.

We continue with a nice generalization of the property contained in Theo-
rem 1 above. For an arbitrary point X in the plane of triangle ABC, consider
its projections P, @, and R on the lines BC, C A and AB, respectively.

The triangle PQR is called the pedal triangle of point X with respect to
the triangle ABC'. Let us choose the circumcenter O of triangle ABC' as the
origin of the complex plane.

Theorem 2. The area of the pedal triangle of X with respect to the triangle
ABC is given by

area| ABC’
area| PQR] = | | |2 ‘ (1)

where R is the circumradius of triangle ABC.

R,
A .----.--------.---.. X

B P
Figure 4.12.
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Proof. Applying the formula in the proposition of Sect. 4.5, we obtain the
coordinates p, ¢, r of the points P, Q, R, respectively (Fig. 4.12):

1 be _
p:§<$—ﬁ$+b+c>a
1 ca _
0= (=T Heta),
1 ab
T:§<$—ﬁ$+a+b>

Taking into account the formula in Sect. 3.5.3, we have

(PPl Llq—pq—D
wealPQR| =I5 |a 71| 1= 15122177}
rrl

For the coordinates p, g, r, we obtain

_ 1 be
P=3 x—ﬁx+b+c
_ 1 (_ ea  _ _
Q—§ x——2$+c+a s
_ 1/_ ab R
T=3 x—ﬁx—i—a—i—b
It follows that
1 cT 1 b
q—p—g(a—b)<1—ﬁ) andr—p_i(a—c)<1—ﬁ), (2)
T-P= —(a—b)(w— )R and T~ = ——(a — )(z — b)R”
7—P=5-(a T —c and T p=g-(a—c)(z )
Therefore,
q—pq—p ila=b)a—c) |1- £ (z—c)R?
wealpQr) = || 172 TP - Mg =9 g e O )
_|z(a—b)(a—c) RP—cTrx—c |_|( b)(a—c) |[(b—c)Tb—c |
B 16abc R*—bzx—b 16abc R —bzx—b
_ila—=b)(b—c)(a—c) T 1 _ila=b)(b—c)la—c) _
= 16abc R?2—bzxz—b = 16abc (27 = B7)].
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We find that
la—bl[b—cllc—al, 2 afy | o 2
areal PQE] 16]al[b]|c] [l = togs |l |
_area ABC “ 2
where o, (3, 7 are the side lengths of triangle ABC. ad

Remarks.

(1) The formula in Theorem 2 above contains the Simson-Wallace line
property. Indeed, points P, (), R are collinear if and only if area
[PQR] = 0, that is, |27 — R?| = 0, i.e., 2T = R?. It follows that |z| = R
so X lies on the circumcircle of triangle ABC.

(2) If X lies on a circle of radius R; and center O (the circumcenter of
triangle ABC), then 27 = R?, and from Theorem 2 above, we obtain

area| ABC)|
4R?

It follows that the area of triangle PQ R does not depend on the point X.

area| PQR] = |R? — R?|.

The converse is also true. The locus of all points X in the plane of triangle
ABC such that area [PQR] = k (constant) is defined by

4R%*k
2 2
[l | area| ABC
This is equivalent to
w2 = R2+ 4Rk

4k
— =R 14+ ——— .
area| ABC R < area[ ABC] >

1
If k> Zarea[ABC’], then the locus is a circle with center O and radius

4k
B = R\/ I+ area| ABC]

1
If £ < Zarea[ABC], then the locus consists with two circles of

center O and radii R4/1 + 4—k, one of which degenerates to O when
area| ABC

k= iarea[ABC].

Theorem 3. For every point X in the plane of triangle ABC, we can con-
struct a triangle with sides AX - BC, BX - CA, CX - AB. This triangle is
then similar to the pedal triangle of point X with respect to the triangle ABC.
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Proof. Let PQR be the pedal triangle of X with respect to triangle ABC.
From formula (2), we obtain

2_cx
19 = 50— b - O o )

Taking moduli in (3), we obtain

R?>—cT

1
M—pﬁzﬁgm—ﬂw—d

On the other hand,

2

R?—cx R?-c¢x R?>—cx R?-c¢x

R?—cx
T —c T—C Tr—c R?

Tr—cC

R?—ct R%*(c—x)

= . = R?
T —c cT — R? ’
whence from (4), we derive the relation
4=l = ==la—blle — ¢ (5)
q—p|l = 5 a T —cl.
Therefore,
PQ QR RP 1 (6)
CX-AB AX-BC BX-CA 2R’
and the conclusion follows. O

Corollary 1. In the plane of triangle ABC, consider the point X and denote
by A'B'C" the triangle with sides AX - BC, BX - CA, CX. AB. Then

area[A’'B'C'] = area[ABC]||z|* — R?|. (7)

Proof. From formula (6), it follows that area [A’B’'C’] = 4R? area [PQR],
where PQR is the pedal triangle of X with respect to triangle ABC'. Replac-
ing this result in (1), we obtain the desired formula. O

Corollary 2 (Ptolemy’s inequality). The following inequality holds for
every quadrilateral ABCD:

AC-BD < AB-CD + BC - AD. 8)

Corollary 3 (Ptolemy’s theorem). The conver quadrilateral ABCD is
cyclic if and only if

AC-BD = AB-CD + BC - AD. (9)
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Proof. If the relation (9) holds, then triangle A’B’C’ in Corollary 1 above is
degenerate; i.e., area [A’B’C] = 0. From formula (7), it follows that d-d = R?,
where d is the coordinate of D and R is the circumradius of triangle ABC'.
Hence the point D lies on the circumcircle of triangle ABC'.

If quadrilateral ABCD is cyclic, then the pedal triangle of point D
with respect to triangle ABC is degenerate. From (6), we obtain the
relation (9). O

Corollary 4 (Pompeiu’s theorem?®). For every point X in the plane of
the equilateral triangle ABC, three segments with lengths X A, X B, XC can
be taken as the sides of a triangle.

Proof. In Theorem 3 above, we have BC = CA = AB, and the desired
conclusion follows. a

The triangle in Corollary 4 above is called the Pompeiu triangle of X
with respect to the equilateral triangle ABC'. This triangle is degenerate if
and only if X lies on the circumcircle of ABC'. Using the second part of
Theorem 3, we find that Pompeiu’s triangle of the point X is similar to the
pedal triangle of X with respect to triangle ABC' and

CX _AX _BX _2R_2V3 (10)
PQ QR RP a 3 °

Problem 1. Let A, B, and C be equidistant points on the circumference of
a circle of unit radius centered at O, and let X be any point in the circle’s
interior. Let da, dp, dc be the distances from X to A, B, C, respectively.
Show that there is a triangle with sides d4, dp, dc, and that the area of this
triangle depends only on the distance from X to O.

(2003 Putnam Mathematical Competition)
Solution. The first assertion is just the property contained in Corollary 4
above. Taking into account the relations (10), we see that the area of Pom-

peiu’s triangle of point X is garea[PQR]. From Theorem 2 above, we get
that area [PQR] depends only on the distance from X to O, as desired.

Problem 2. Let X be a point in the plane of the equilateral triangle ABC
such that X does not lie on the circumcircle of triangleABC, and let
XA=u, XB=v, XC =w. Ezxpress the side length o of triangle ABC in
terms of real numbers u, v, w.

(1978 GDR Mathematical Olympiad)

8 Dimitrie Pompeiu (1873-1954), Romanian mathematician, made important contribu-
tions in the fields of mathematical analysis, functions of a complex variable, and rational
mechanics. He was a Ph.D student of Henri Poincaré.
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Solution. The segments [XA], [XB], [XC] are the sides of Pompeiu’s
triangle of point X with respect to equilateral triangle ABC. Denote this
triangle by A’B’C’. From relations (10) and from Theorem 2 in Sect. 4.9.1 it
follows that

2
area|A'B'C'] = <%§> area|PQR] = ;ﬁarea[ABC’Hx T — R?|

_ L VB e g V3
3R? 4 4

|XO* — R?|. (1)

On the other hand, using the well-known formula of Heron, we obtain,
after a few simple computations,

1
area|A'B'C'] = Z\/(u2 + 02 +w?)2 = 2(ut + vt + w?).

Substituting in (1), we obtain

|XO2—R2|:%\/(u2+v2+w2)2—2(u4+v4+w4). (11)

Now we consider the following two cases:

Case 1. If X lies in the interior of the circumcircle of triangle ABC, then
XO?% < R%. Using the relation (see also formula (4) in Sect. 4.11)

1
X0? = g(u2 + v +w? — 3R?),

from (11) we find that

—_

1
2R? = —( 2+v2+w2)+ﬁ\/(iﬂ—l—vz—sz)z—2(u4+v4+w4),

3

and hence

—_

3
04225( 2+v2+w2)+g\/(iﬂ—i—vz—%wz)z—2(u4—|—v4+w4).

Case 2. If X lies in the exterior of the circumcircle of triangle ABC, then
X0? > R?%, and after some similar computations we obtain

—_

3
o? = E(u2 + 0 +w?) — g\/(lﬂ + 02 +w?)? = 2(ut + vt + wh).
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4.9.2 Necessary and Sufficient Conditions
for Orthopolarity

Consider a triangle ABC and points X, Y, Z situated on its circumcircle.
Triangles ABC and XY Z are called orthopolar triangles (or S-triangles)® if
the Simson—Wallace line of point X with respect to triangle ABC' is perpen-
dicular (orthogonal) to line Y Z.

Let us choose the circumcenter O of triangle ABC to lie at the origin of the
complex plane. Points A, B, C, X, Y, Z have the coordinates a, b, ¢, z, y, z
with

la| = [b] = e[ = [z] = |y| = 2| = R,
where R is the circumradius of the triangle ABC.

Theorem. Triangles ABC and XY Z are orthopolar triangles if and only if
abc = xyz.

Proof. Let P, Q, R be the feet of the orthogonal lines from the point X to
the lines BC, C A, AB, respectively.

Points P, @, R are on the same line, namely the Simson—Wallace line of
point X with respect to triangle ABC.

The coordinates of P, @, R are denoted by p, ¢, r, respectively. Using
the formula in Proposition of Sect. 4.5, we have

1 be _
p== x—ﬁx—i—b—i—c ,

ca _
q= (x—ﬁx—i—c—i—a),

2
1 ab _
r=g x—ﬁx—i—a—i—b .
We study two cases.

Case 1. Point X is not a vertex of triangle ABC.
Then P @ is orthogonal to Y Z if and only if (p —q) - (y — z) = 0. That is,

-0 (1| w-2-0,

or

‘We obtain

(5-2) (e 2ot ) (5-2) -

9 This definition was given in 1915 by the Romanian mathematician Traian Lalescu (1882
1929). He is famous for his book La géometrie du triangle [43].
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hence

L a—b)e—2)(y - 2) — —(a—b)(c—a)(y—2) =0.

abc TYz

The last relation is equivalent to
(abe — 2y2) (a — b)(c —2)(y — 2) =0,

and finally, we get abc = xyz, as desired.

Case 2. Point X is a vertex of triangle ABC'. Without loss of generality,
assume that X = B.
Then the Simson—Wallace line of point X = B is the orthogonal line from
B to AC. It follows that B(@ is orthogonal to Y Z if and only if lines AC
and Y Z are parallel. This is equivalent to ac = yz. Because b = z, we
obtain abc = xyz, as desired.

O

Remark. Due to the symmetry of the relation abc = xyz, we observe that
the Simson-Wallace line of every vertex of triangle XY Z with respect to
ABC is orthogonal to the opposite side of the triangle XY Z. Moreover, the
same property holds for the vertices of triangle ABC.

Hence ABC and XY Z are orthopolar triangles if and only if XY Z and
ABC are orthopolar triangles. Therefore the orthopolarity relation is sym-
metric.

Problem 1. The median and the orthic triangles of a triangle ABC are or-
thopolar in the nine-point circle.

Solution. Consider the origin of the complex plane at the circumcenter O
of triangle ABC. Let M, N, P be the midpoints of AB, BC, CA and let
A’, B', C' be the feet of the altitudes of triangles ABC from A, B, C,
respectively.

If m, n, p, d’, V/, ¢ are coordinates of M, N, P, A’, B', C’, then we
have

1 1 1
mzi(a—i_b)v n:§(b—|—c), p:5(6+a)

and
1 b 1 b
a’_§<a+b+c—R—C26) zi(a—l—b—l—c—f),
1 ca 1 ab
r_ 2 @ U i
b—2(a—|—b+c b),c 2(a+b+c 2>.

The nine-point center Oy is the midpoint of the segment OH, where H(a+b+
1
¢) is the orthocenter of triangle ABC'. The coordinate of Og is w = §(a—|—b+c).
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Now observe that
1
(0~ )t/ ~ w)(¢ ~w) = (m — w)(n —w)(p — w) = —abe,

and the claim is proved.

Problem 2. The altitudes of triangle ABC meet its circumcircle at points
A1, By, Cy, respectively. If A}, B}, C} are the antipodal points of A1, By, Cy
on the circumcircle ABC, then ABC and A} BiCY are orthopolar triangles.

bc  ca ab
Solution. The coordinates of A, B1,C; are ——, ——, —— respectively.
c

a
Indeed, the equation of line AH in terms of the real product is
AH :(z—a)-(b—c)=0.

be
It suffices to show that the point with coordinate —— lies both on AH and

a
on the circumcircle of triangle ABC. First, let us note that

_bel Pl _R-R _
al la R

R;

hence this point is situated on the circumcircle of triangle ABC. Now we

b

shall show that the complex number _x satisfies the equation of the line
a

AH. This is equivalent to

(%-l—a)-(b—c)zo.

Using the definition of the real product, this reduces to

(EE—EJra) (b—c)+ (%C-i-a) (b—72) =0,

() (5o (- 2) -

Finally, this comes down to
be R? R?
(b_c) (24_@___&_) =0,

a relation that is clearly true.

or

bc ca ab
It follows that A}, Bj, C} have coordinates —, 3 o respectively.
a c
Because
bc ca ab
—_— — o — abC7
a ¢ ¢

we obtain that the triangles ABC and A} B} Cj are orthopolar (Fig. 4.13).
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A A{
Bl
By
Cy
oy
Z/ C
Ay

Figure 4.13.

Problem 3. Let P and P’ be distinct points on the circumcircle of triangle
ABC such that lines AP and AP" are symmetric with respect to the bisector

of angle BAC. Then triangles ABC and APP’' are orthopolar (Fig. 4.14).

AV VA

Figure 4.14.

Solution. Let us consider p and p’ the coordinates of points P and P’,
respectively. It is clear that the lines PP’ and BC' are parallel. Using the
complex product, it follows that (p — p’) x (b — ¢) = 0. This relation is
equivalent to

(p=p)b-2) = FE-p)b-c)=0.
Considering the origin of the complex plane at the circumcenter O of triangle
ABC, we have
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(»—») (%—R—Q>— (R—Q—R—2> (b—c)=0,

c p p
SO
1 1
2 o b— - = _

Therefore, bc = pp’, i.e., abc = app’. From the theorem at the beginning of
this subsection, it follows that ABC and APP’ are orthopolar triangles.

4.10 Area of the Antipedal Triangle

Consider a triangle ABC and a point M. The perpendicular lines from
A, B, Cto MA, MB, MC, respectively, determine a triangle; we call this
triangle the antipedal triangle of M with respect to ABC' (Fig. 4.15).

Recall that M’ is the isogonal point of M if the pairs of lines AM, AM’;
BM, BM'; CM, CM' are isogonal, i.e., the following relations hold:

MAC = M'AB, MBC = M'BA, MCA = M'CB.

Figure 4.15.

Theorem. Consider M a point in the plane of triangle ABC, M' the isog-
onal point of M, and A" B"C" the antipedal triangle of M with respect to
ABC'. Then

areal[ABC]  |R*—OM"”|  |p(M')|

area|AVB"C"] ~  4R2 4R?

where p(M') is the power of M’ with respect to the circumcircle of triangle
ABC.
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Proof. Consider point O the origin of the complex plane and let m, a, b, ¢
be the coordinates of M, A, B, C. Then

R? = aa = bb = c¢ and p(M) = R* — mm. (1)

Let O1, Os, O3 be the circumcenters of triangles BMC, CMA, AMB,
respectively. It is easy to verify that O1, Oa, O3 are the midpoints of segments
MA"”, MB", MC”, respectively, and so
area]O1 0203 1
(2)

areaA”B"C"] 4’

The coordinate of the circumcenter of the triangle with vertices with coo-
rdinates zj, 22, z3 is given by the following formula (see formula (1) in

Sect. 3.6.1):

21 Z1(22 — 23) + 2272(23 — 21) + 23%3(21 — 22)
z1 2_1 1
z9 2_2 1
z3 2’_3 1

zZ0 —

The bisector line of the segment [z1, 22| has the following equation in
1
terms of the real product: |z — 5(21 + 29)| - (21 — z2) = 0. It is sufficient to

check that zo satisfies this equation, since that implies, by symmetry, that zg
belongs to the perpendicular bisectors of segments [z2, z3] and [z3, 21].
The coordinate of O is

mm (b — ¢) + bb(c — m) + cc(m — b)

mm 1
b b1l
ccl
_ (R =mm)(c—=b)  p(M)(c—b)
N mm 1 N mm 1
b b1l b b1
ccl ccl
Let
agl
A=1bb1
ccl
and consider
1 mm 1 1 mm 1
a=x b§1,ﬁzz cEl,
ccl a al



4.10 Area of the Antipedal Triangle 151

and
mm 1
*1 a al
y=—
Ay

With this notation we obtain

(aa + Bb+vc)- A = Zm(a@—aﬁ) - m(ab—ac)—i—Za(bE—l_)c)
cyc cyc cyc
m-0+>» a b R A+RY ab _ ac A
R — =m _— = m
cyc ! cyc ¢ b 7

and consequently,
aa+ Bb+ye=m

since it is clear that A # 0.
We note that a, 3, v are real numbers and e+ +v =1,s0 a, 5, 7y are
the barycentric coordinates of point M.

Since
o=t pM)  (e—a)-p(M) _ (a—b) p(M)
Oq N sy 209 BA sy <03 v A 9
we have
i 20, Zoll
Z 202%1
area[010203] 203 205 1
area[ABC] i A
4
g [reboe
=~ 55t ——|c—at-
A A aBy a—ba—bry
B p2(M). 1 c—ac—a
| A3 aBy |a—ba-—b
_|pPen 1 (|| 1 3)
A3 apy A2 apy

Relations (2) and (3) imply that

areal[ABC]  |A%afy]
area[A”B"C"]  4p2(M)’

Because a, 3, « are the barycentric coordinates of M, it follows that

Zvm = aza + Bz +vzo.
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Using the real product, we find that
OM? =z - 2y = (aza + Bz + 720) - (aza + 2B + 720)

= (042 + 52 -I—”yz)Rz —|—22aﬁz,4 - 2B

cyc

2
= (a2+62+72)R2+2Za6 (R2—ATB)

cyc
=(a+8+7)°R* =) afAB*=R*-> aBAB”.
cyc cyc

Therefore, the power of M’ with respect to the circumcircle of triangle ABC
can be expressed in the form

p(M) =R* - OM* = aBAB>.

cyc

On the other hand, if o, 3, v are the barycentric coordinates of the point
M, then its isogonal point M’ has barycentric coordinates given by

;L ByBC? 5= vyaCA?
~ BYBC? 4+ ayCA2 + aBAB2’ " ByBC2 + ayCA? + affAB?’

;o afAB?
T T ByBC? 1 anCA? + aBAB?

Therefore,

p(M/) — Za'ﬁ’AB2

cyc
B aByAB? - BC? - CA? B aByAB? - BC? - CA? (5)

~ (BYBC? + ayCA% + afAB2)? p*(M) '

On the other hand, we have
4 i\ |4 ?  AB? BC?.CA?
2 — [ — f— —_ =

A% = ‘ (z 4A) - area|ABC 7 . (6)
The desired conclusion follows from the relations (4), (5), and (6). O

Applications
(1) If M is the orthocenter H, then M’ is the circumcenter O, and

area| ABC] R* 1

area[A"B"C"] ~ 4R? 4
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(2) If M is the circumcenter O, then M’ is the orthocenter H, and we obtain

arealABC]  |R?> — OH?|
area[A”B"C"] 4R?

Using the formula in the theorem of Sect. 4.6.4, it follows that

area[A”B"C"] 2R?

area| ABC)| (2R +7)? — 52|

(3) If M is the Lemoine point K, then M’ is the centroid G, and

areal[ABC]  |R* — OG?|
area[A”B"C"] 4R?

Applying the formula in Corollary 1 in Sect. 4.6.4, then the first formula
in Corollary of Sect. 4.6.1, it follows that

areaABC)| 2(s2 — 12 —4Rr) o’ + % ++°

arealA”B"C"] 36R2 B 36R2

where a, (3, v are the sides of triangle ABC'
From the inequality a2 + 82 +~2 < 9R? (Corollary 2 in Sect. 4.6.4), we
obtain
area| ABC < 1
area[A"B"C"] — 4
(4) If M is the incenter I of triangle ABC, then M’ = I, and using Euler’s
formula OI? = R? — 2Rr (see the theorem of Sect. 4.6.2), we find that

arealABC|]  |R*—OI*| 2Rr r
arcalAVB'CY] | 4RZ | 4RZ 4R

Applying Euler’s inequality R > 2r (corollary of Sect. 4.6.2), it follows
that

area| ABC < 1
area|A”B"C"| — 4’

4.11 Lagrange’s Theorem and Applications

Consider the distinct points A1(21), ..., An(z,) in the complex plane. Let
msy, ..., My be nonzero real numbers such that my 4+ --- + m, # 0. Let
m=mi+- -+ mpy.
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The point G with coordinate

1
zg = —(miz1+ -+ Mmnzp)
m

is called the barycenter of the set {A1, ..., A,} with respect to the weights
mi, «.., Mp.

In the case m; = --- = m,, = 1, the point G is the centroid of the set
{Ay, ..., A,}.

When n = 3 and the points Ay, As, Asz are not collinear, we obtain the
absolute barycentric coordinates of G with respect to the triangle A; Az A3
(see Sect. 4.7.1):

_my M2 _mg
Hzy = Ha Hzy = Ha Hzg = H
Theorem 1 (Lagrange'®). Consider the points Ay, ..., A, and the
nonzero real numbers my, ..., my, such that m=mqy+---+m, #0. If G
denotes the barycenter of the set {A1, ..., An} with respect to the weights
ml, ..., my,, then for every point M in the plane, the following relation
holds:
n n
ijMA? = mMGQ—FijGA?. (1)
j=1 j=1

Proof. Without loss of generality, we can assume that the barycenter G is
the origin of the complex plane; that is, zg = 0.
Using properties of the real product, we obtain for all j =1, ..., n, the
relations
MA? = |2y — 2 = (2m — 25) - (21 — 2j)

= |zm|? — 2200 - 25 + |2)%,
i.e.,

MA? = lam? — 220 - 25 + ||

Multiplying by m; and adding the relations obtained for j =1, ..., n
yields

> omyMAT = " my(lam* — 2200 - 25 + |2
j=1

Jj=1

n n
=mlzml® = 2200 - [ Y myzg | + Y mylzl
j=1 j=1

10 Joseph Louis Lagrange (1736-1813), French mathematician, one of the greatest math-
ematicians of the eighteenth century. He made important contributions in all branches of
mathematics, and his results have greatly influenced modern science.
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n

=mlzn|? — 2201 - (Mm2g) + ij|zj|2
j=1

n n
= m|zym|? +ij|2j|2 = mlzy — 2g|? +ij|2j —2¢|?

j=1 j=1
n
=mMG® +Y m;GA3. O
j=1
Corollary 1. Consider the distinct points A1, ..., A, and the nonzero real
numbers my, ..., my, such that my +---+m, # 0. The following inequality

holds for every point M in the plane:

j=1 j=1
with equality if and only if M = G, the barycenter of set {A1, ..., An} with
respect to the weights my, ..., my.

Proof. The inequality (2) follows directly from Lagrange’s relation (1). O

If my =--- = m, = 1, then from Theorem 1 above, one obtains the
following corollary.

Corollary 2 (Leibniz!'!). Consider the distinct points A1, ..., A, and the
centroid G of the se t {A1, ..., A,}. The following relation holds for every
point M in the plane:
Y OMA? =nMG?+) GAZ. (3)
Jj=1 j=1

Remark. The relation (3) is equivalent to the following identity: For all
complex numbers z, 21, ..., 2z,, we have

n
Y le—zl=n
j=1

Applications. We will use formula (3) in determining some important
distances in a triangle. Let us consider the triangle ABC and let us take
n = 3 in the formula (3). We find that the following formula holds for every
point M in the plane of triangle ABC:

2 n 2

77— -
n

Zj— —————

Jj=1

MA? + MB? + MC? = 3MG? + GA? + GB? + GC?, (4)

11 Gottfried Wilhelm Leibniz (1646-1716) was a German philosopher, mathematician,
and logician who is probably best known for having invented the differential and integral
calculus independently of Sir Isaac Newton.
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ere GG is the centroid of triangle ABC'. Assume that the circumcenter O

of the triangle ABC is the origin of the complex plane.

(1)

In the relation (4) we choose M = O, and we get
R? = 30G” + GA* + GB* + GC”.
Applying the well-known median formula yields

GA? + GB?* + GC? = 4

9(m2+m%+m2)
1
:_Z [2(8% +7%) —a®] = 3(a® + B2 + %),
cyc

where «, 3, 7 are the sides of triangle ABC. We obtain

1
0G? = R? — §(a2 + B2 +42). (5)
An equivalent form of the distance OG is given in terms of the basic
invariants of a triangle in Corollary 1, Sect. 4.6.4.
Using the collinearity of points O, G, H and the relation OH = 30G
(see Theorem 1 in Sect. 3.1), it follows that

OH? = 90G? = 9R? — (a? + 8% +4?). (6)

An equivalent form for the distance OH was obtained in terms of the
fundamental invariants of the triangle in the theorem of Sect. 4.6.4.

In (4), consider M = I, the incenter of triangle ABC (Fig. 4.16).
We obtain

TA?2 4+ IB? + IC? = 3IG? + 3(a + B2+ 7).
On the other hand, we have the following relations:

T
IA = A,IB_ B,Ic_ —
sm— SlIl— SlIl—

2 2 2

where r is the inradius of triangle ABC. It follows that

1 1 1 1
IG® = = |r? + +

sin? = sin? = sin® —

2 2 2

1
_ g(a2 +B2 +72)

Taking into account the well-known formula

2 A _(s=PB)(s=7)

sin? = =~ 20— U

2 By
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A

B
Figure 4.16.

we obtain
1 By _ B
(s=B)s—7) ; (s —a)(s=B)(s—7)

Z sin? é
cyc

cyc
- %;Bv(s —a) = = [s 3 8y — 3ap1]|

— %[8(32 NI 4R’r) — 128R'r] = r_2(82 2 SR’I“),
where we have used the formulas in Sect. 4.6.1. Therefore,

1 1
IG? = = [52 +7r% —8Rr — 5(042 + 8%+ 72)}
—(s% +5r* —16Rr),

= [52 +7% —8Rr — ;(52 —r? - 4RT):|
(7)

1
-3
where the first formula in Corollary 1 in this section was used. That is,

1
IG* = —(s* + 51 — 16Rr),

and hence we obtain again the formula in Application 1 of Sect. 4.7.2.
Problem. Let z1, z3, 23 be distinct complex numbers having modulus R.

9R2—|Zl—|—22—|—2’3|2 >\/_§

Prove that
|Zl —2’2| . |2’2 — Z3| . |Z3 —Zl| - R

yand |z1—22] = 7, [22—23| =

Solution. Let A, B, C be the geometric images of the complex numbers
21, 22, z3 and let G be the centroid of the triangle ABC.
21+ 29 + 23

The coordinate of G is equal to 3

|23 — 21| = B.
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The inequality becomes

9R? —90G* _ V3
afy -~ R’
Using the formula
1
OG? = R? = 5 (o + 3% +77),

we see that (1) is equivalent to

3 ARK
a4+ 6% +42 > aﬁ]{\/—zT\@ﬂLK\/ﬁ.

Here is a proof of this famous inequality using Heron’s formula and the
arithmetic—geometric mean (AM-GM) inequality:

— _ — )3 3
K—\/s(s—a)(s—ﬂ)(s—”y)g\/s(s a+527ﬂ+5 ) = s%
82 _(a+6+'7)2<3(a2+62+72)_0¢2+62+72

"33 12v3 12v/3 /3

We now extend Leibniz’s relation in Corollary 2 above. First, we need the
following result.

Theorem 2. Let n > 2 be a positive integer. Consider the distinct points
A1, ..., Ay, and let G be the centroid of the set {Ay, ..., An}. Then the
following formula holds for every point in the plane:

n’MG®=n) MA}— > A (8)
j=1 1<i<k<n

Proof. We assume that the barycenter G is the origin of the complex plane.
Using properties of the real product, we have

MAF = |aar — 2 = (2n = 25) - (21 = 25) = [zml® = 2200 - 25 + |25
and
A A2 = |z — 2]? = |zi)® — 220 - 21 + 2],

where the complex number z; is the coordinate of the point A;, j =
1,2, ..., n.
The relation (8) is equivalent to

n
n2lanl? =0 (el = 22002+ 122 = D0 1(zl? = 220 2+ zl?).
j=1 1<i<k<n
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That is,

nZ|z3|2—2nZzM zj + Z (|2i]* = 22521 + |21)?).

1<i<k<n

Taking into account the hypothesis that G is the origin of the complex plane,
we have

ZZM-zj:zM- Zz] =n(zpy - 2¢) = n(zp - 0) = 0.
j=1

Hence, the relation (8) is equivalent to

n
Z |2 = —2 Z Zi* Zk-
j=1

1<i<k<n

The last relation can be obtained as follows:

1 n n
O_|ZG|2_ZG'ZG_E<ZZZ'> . (sz>
k=1

i=1
n
Z|Zj|2+2 Z 2+ 2k
j=1 1<i<k<n
Therefore the relation (8) is proved. O
Remark. The formula (8) is equivalent to the following identity: for all
complex numbers z, 21, ..., 2z,, we have
1 & 9 214+ 2 S| 9
j=1 1<i<k<n
Applications
(1) If Ay, ..., A, are points on the circle with center O and radius R, then

if we take M = O in (8), it follows that

> A4 =nP(R? - 0G?).

1<i<k<n

If n = 3, we obtain the formula (5).
(2) The following inequality holds for every point M in the plane:

Zn: MAZ>= M A4}
j=1

1<i<k<n
with equality if and only if M = G, the centroid of the set {Ay, ..., A,}.

Sl
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Let n > 2 be a positive integer, and let k be an integer such that 2 < k < n.

Consider the distinct points Ay, ..., A, and let G be the centroid of the
set {4y, ..., A,}. For indices i1 < --- < iy, let us denote by G, ;. the
centroid of the set {A4;,, ..., A;_ }. We have the following result:

Theorem 3. For every point M in the plane,

(n—k) <Z> éMA?Jrn?(k—n (Z) MG?

=kn(n—-1) Y MG; ., . (9)

1<ij< - <ipg<n

Proof. Tt is not difficult to see that the barycenter of the set {Gi;...;, : 1 <
i1 < --- <ip <n}is G. Applying Leibniz’s relation, one obtains
> MA? =nMG®+) GAZ (10)

Jj=1 Jj=1

1<ip <---<ip<n 1<i1 << <n

11"'ik

k k
STMAZ =kMGE_,, + Y Gy AL (12)
s=1 s=1

Considering in (12) M = G and adding all these relations yields

k
2. . ea=k > GG,

1<y < <ip<n s=1 1<i3 <--<ipg<n
k
2
1<ii <+ <ip <n s=1

Applying formula (8) in Theorem 3 above to the sets {4i,...,4,} and
{4;,,..., A}, respectively, we get

n?MG® =nY MA?— Y AA7 (14)
j=1 1<i<k<n
k
MG ., =kY MA} — > A A7, (15)
s=1 1<p<qg<k

Taking M = G;,...;,, in (15) yields

k

ZGM...%AZ?S:% > AL AL (16)

s=1 1<p<q<k
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From (16) and (13), we obtain

k
Z Z GA?S =k Z GGZ ik

1<iy <-<ip<n s=1 1<ip < <ip<n

+% > > AL AL (17)

1<i1 < <ip<n 1<p<qg<n

If we rearrange the terms in formula (17), we get

—G)(Z)Zn:GA?_k > GG} 1—(5)(7;) > A4l

J 1 'Lk k
(?) =1 1<i < <ip<n (;) 1<i<k<n

(18)
From relations (10), (11), (14), and (18), we readily derive formula (9). O

Remark. The relation (9) is equivalent to the following identity: for all
complex numbers z, 21, ..., zn, we have

n-o (}) il|z—zj|2+n2<k—1> (1)

=kn(n—1) Z _ etz

. _ k
1<y < <ip<n

2
21 _% e _F Zn
-

2

Applications

(1) In the case k = 2, from (9) we obtain that the following relation holds
for every point M in the plane:

(n—2) Zn: MA? +n’MG* =4 > MG},

j=1 1<i1<i2<n

In this case, Gj, i, is the midpoint of the segment [A4;, A;,].
(2) If k = 3, from (9) we get that the relation

114213

(n — Zn: MAZ +2n°(n —2)MG* =18 > MG}

1<i1<i2<i3<n

holds for every point M in the plane. Here the point G;,4,:, is the centroid
of triangle A;, A;, Ai,.
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4.12 Euler’s Center of an Inscribed Polygon

Consider a polygon A; Ay --- A, inscribed in a circle centered at the origin of
the complex plane and let a;, as, ..., a, be the coordinates of its vertices.
By definition, the point £ with coordinate

ay+az +---+ap
2

ZE =
is called Euler’s center of the polygon AjAs--- A,. In the case n = 3, it is
clear that F is equal to Og, the center of Euler’s nine-point circle.
Remarks.

(a) Let G(z¢) and H(zp) be the centroid and orthocenter of the inscribed
polygon A1 As--- Ay,. Then

o= PG P g op = M0G0

2 2 2 2

Recall that the orthocenter of the polygon A;As--- A, is the point H
with coordinate zg = a1 +as + - + a,.

(b) For n =4, point F is also called Mathot’s point of the inscribed quadri-
lateral A1 AsAsA,.

Proposition. In the above notation, the following relation holds:
> EA} =nR®+ (n—4)EO”, (1)
i=1
Proof. Using the identity (8) in Theorem 4, Sect. 2.17 for M = E and
M = O, namely

n?. - MG? :niMA?— Z AiAia

i=1 1<i<j<n
we obtain .
n?-EG*=nY EA}— Y  AA3 (2)
i=1 1<i<j<n
and
n?-0G? = nR?* - Z AZ-A? (3)
1<i<j<n
Setting s = > a;, we have
i=1

EG=|ZE—ZG|=E-%}:‘g}-”_2=”_2-0E. (4)

n n
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From the relations (2), (3), and (4), we derive that

nZEAf =n?.EG? —n?-0OG*? + n’R?
i=1

= (n—2)?0E? —40E? + n*R? = n(n — 4) - EO* + n*R?,

or equivalently,

> EA} =nR®+ (n-4)EO?,

=1

as desired. O

Applications

(1) For n = 3, from relation (1), we obtain

OgA? + 0 A2 + 09 A2 = 3R2 — 002, (5)

Using the formula in Corollary 1 in Sect. 4.6.4, we can express the
right-hand side in (5) in terms of the fundamental invariants of trian-
gle A1A2A32

3

1 1
OQA% + OgAg + OQA% = ZRQ - 57"2 —2Rr + 552. (6)

From formula (5), it follows that the following inequality holds for every
triangle A; As As:

Og A7 + Og A3 + O9A3 < 3R?, (7)

with equality if and only if the triangle is equilateral.
For n = 4, we obtain the interesting relation

4
> EA} = 4R’ (8)

i=1

The point F is the unique point in the plane of the quadrilateral
A1 Ay A3 Ay satisfying relation (8).
For n > 4, from relation (1), the inequality

> EA} >nR? (9)
1=1

follows. Equality holds only in the polygon A; As - - - A,, with the property
E=0.
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(4) The Cauchy—Schwarz inequality and inequality (7) give

3 2 3
(Z R- ogAi> < (3R%)D 0 A7 < 9R*.
1=1

i=1
This is equivalent to
OgA1 + OgAs + OgAs < 3R. (10)

(5) Using the same inequality and the relation (8), we have

4 2 4
(RZ EAZ-> <4R?-Y EA; = 16R",
=1

i=1

or equivalently,
4

> EA; <4R. (11)

i=1
(6) Using the relation

2EA; = 2le — ay] :2}3—6”

= |s — 2a|,
the inequalities (4), (5) become respectively

Z|—CL1+CL2+CL3|S6R
cyc

and

Z|—a1+a2—|—a3+a4|§8R.

cyc

The above inequalities hold for all complex numbers of the same
modulus R.

4.13 Some Geometric Transformations of the Complex
Plane

4.13.1 Translation

Let zp be a fixed complex number and let ¢,, be the mapping defined by
ty: C—=C, ty(2) =2+ 20.

The mapping t,, is called the translation of the complex plane by complex
number zg.



4.13 Some Geometric Transformations of the Complex Plane 165

M'(t1(2))

M(z)

Mo(zo)

Figure 4.17.

Taking into account the geometric interpretation of the addition of two
complex numbers (see Sect. 1.2.3), we have Fig.4.17, giving the geometric
image of t,,(2).

In Fig.4.17, OMoM'M is a parallelogram and OM’ is one of its diago-
nals. Therefore, the mapping t,, corresponds in the complex plane C to the

translation t oL by the vector OMj in the case of the Euclidean plane.
It is clear that the composition of two translations ¢,, and t,, satisfies the
relation

tzl o tZz = t21+22'

It is also clear that the set T of all translations of the complex plane is
a group with respect to the composition of mappings. The group (7, o) is
abelian, and its unit is tp = 1¢, translation by the complex number 0.

4.13.2 Reflection in the Real Axis

Consider the mapping s : C — C, s(z) = Z. If M is the point with coordinate
z, then the point M'(s(z)) is obtained by reflecting M across the real axis
(see Fig.4.18). The mapping s is called the reflection in the real axis. It is
clear that sos = 1¢.

4.13.3 Reflection in a Point

Consider the mapping so : C — C, s¢(z) = —=z. Since so(z)+z = 0, the origin
O is the midpoint of the segment [M(z)M’(z)]; hence M’ is the reflection of
point M across O (Fig.4.19).
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M(z)

M'(s(2))

Figure 4.18.

The mapping sg is called the reflection in the origin.
Consider a fixed complex number zy and the mapping

$20 : C = C, 5,0(2) =229 — 2.

If zo, 2z, S,,(2) are the coordinates of points My, M, M’  then My is the
midpoint of the segment [MM’]. Hence M’ is the reflection of M in M
(Fig. 4.20).

The mapping s, is called the reflection in the point My(zo). It is clear
that the following relation holds: s,, o0 s, = 1c.

M(z)

M'(-z)

Figure 4.19.

4.13.4 Rotation

Let a = costg + isinty be a complex number having modulus 1 and let r, be
the mapping given by r, : C — C, r4(2) = az. If z = p(cost +isint), then
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M'(so(2))

Mo(z0)

M(z)

Figure 4.20.

ra(2) = az = plcos(t + to) + isin(t + to)],

and hence M'(r,(z)) is obtained by rotating point M(z) about the origin
through the angle o (Fig.4.21).
The mapping r, is called the rotation with center O and angle ty = arga.

4.13.5 Isometric Transformation of the Complex
Plane

A mapping f : C — C is called an isometry if it preserves distance, i.e., for
all z1, z2 € C, |f(z1) — f(22)] = |21 — 22]-

Theorem 1. Translations, reflections (in the real axis or in a point), and
rotations about center O are isometries of the complex plane.

M'(ry(2))

~
N
N\

\
\

fo M(2)

Figure 4.21.



168 4 More on Complex Numbers and Geometry
Proof. For the translation t,,, we have
|tz (21) =tz (22)] = (21 + 20) — (22 4 20)[ = |21 — 22]-
For the reflection s across the real axis, we obtain
[s(21) = s(22)| = [71 = 22| = |21 — 22| = |21 — 22},

and the same goes for the reflection in a point. Finally, if r, is a rotation,
then

[ra(z1) — ra(22)] = |az1 — aza| = |al|z1 — 22| = |21 — 23], since |a] = 1. O

We can easily check that the composition of two isometries is also an
isometry. The set Iso(C) of all isometries of the complex plane is a group
with respect to the composition of mappings, and (7, o) is a subgroup of
that group.

Problem. Let A1AsA3As be a cyclic quadrilateral inscribed in a circle
with center O, and let Hy, Hy, Hs, H, be the orthocenters of triangles
A2A3A4, A1A3A4, A1A2A4, AlAgAg, Tespectively.

Prove that quadrilaterals Ay A3 AsAy and HiHoH3sHy are congruent.

(Balkan Mathematical Olympiad, 1984)

Solution. Consider the complex plane with origin at the circumcenter, and
denote by the corresponding lowercase letter the coordinates of a point de-
noted by an uppercase letter.

If s=a;4+as+as+ay, then hy =as+as+ag =s—ay, ho =s—ag, hy =
s — a3, hy = s — ay. Hence the quadrilateral Hy Ho H3H, is the reflection of
quadrilateral A1 A; A3 A4 across the point with coordinate f.

The following result describes all isometries of the complex plane.

Theorem 2. Every isometry of the complex plane is a mapping f : C — C
with f(z) =az+0b or f(z) = az+ b, where a, b € C and |a| = 1.

Proof. Let b= f(0), ¢= f(1), and a = ¢ —b. Then
la| = le=b] = [f(1) = f(O)| = [1 - O] = 1.

Consider the mapping g : C — C, given by g(z) = az+b. It is not difficult to
prove that g is an isometry, with g(0) = b = f(0) and g(1) = a+b=c = f(1).
Hence h = ¢~ ! is an isometry, with 0 and 1 as fixed points. By definition,
it follows that every real number is a fixed point of h, and hence h = 1¢ or
h = s, the reflection in the real axis. Hence g = f or ¢ = f o s, and the proof
is complete. O

The above result shows that every isometry of the complex plane is the
composition of a rotation and a translation or the composition of a rotation
with a reflection in the origin O and a translation.
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4.13.6 Morley’s Theorem

In 1899, Frank Morley, then professor of mathematics at Haverford College,
came across a result so surprising that it entered mathematical folklore under
the name “Morley’s Miracle.” Morley’s marvelous theorem states that the
three points of intersection of the adjacent trisectors of the angles of any
triangle form an equilateral triangle.

The theorem was mistakenly attributed to Napoleon Bonaparte, who made
some contributions to geometry.

There are various proofs of this nice result, such as those by J. Conway,
D.J. Newman, L. Bankoff, and N. Dergiades.

Here we present a new proof published in 1998, by Alain Connes. His proof
is derived from the following result:

Theorem 1 (Alain Connes). Consider the transformations f; : C — C,
fi(z) = a;z+b;, i =1,2,3, of the complex plane, where all coefficients a; are
different from zero. Assume that the mappings fi1 o fa, foo fs, fso fi, and
fio fao fs are not translations, equivalently, that ayas, asas,asay, ajazas €
C\{1}. Then the following statements are equivalent:

(1) f{ o f3 o f§ =1c.

(2)j3 =1 and a+jB+ j?y =0, where j = ajazaz # 1 and o, B3, v are the

respective unique fived points of the mappings f1 o fa, fao fs, f3o fi.

Proof. Note that (f1 o f2)(2) = a1a22z + a1bs + b1, aras # 1,

(fQ (¢] fg)(z) = Q20a3z + CLng + b2, aga3 7§ 1,
(fs o f1)(z) = aza1z + azby + b3, azay # 1,

. aibs +b aiazbs + asb
FlX(f10f2):{12 1}:{132 31—'a},

1—0,1&2 Cbg—j

i o g = [ ) _ (oot oy _ )

1 —asas ay —j
. asbi + b3 azazby + azbs
FlX(fBOfl)_{l—amh}_{ w-j

where Fix(f) denotes the set of fixed points of the mapping f.
For the cubes of f1, f2, f3, we have the formulas

[P (2) = alz+bi(a] + a1 + 1),
f3(2) = a3z + ba(a3 + az + 1),
f3(z) = aj + bs(a3 + as + 1),
whence
(fi o f3 o f3)(z) = ala3a3z + afa3bs(a3 + as + 1)

+a3by(a3 + ag + 1) + by (a? +ay +1).
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Therefore, f o f3 o f§ = idc if and only if aja3a3 = 1 and
ajazbs(aj + as + 1) + atba(a3 + az + 1) + bi(af + a1 + 1) = 0.

To prove the equivalence of statements (1) and (2) we have to show that
a+ jB+ j%v is different from the free term of f o f3 o f3 by a multiplicative
constant. Indeed, using the relation 52 = 1 and implicitly j2 +j +1 =0, we
have successively

at+iB+ify=a+iB+(-1—jly=a—-v+jB—7)

al—j ag—j

az —j az —j

_a1a3bs +azby  aza3by + azbs n <a1a2b3 +aibs  azazhy + a253)

ajazazbs + asasby — ayasbsj — asb1j— a2a§b1 — agasbs + azasbrj + azbsj
(a2 = j)(as — j)

_a1a§b3 + ajagbs — ajasbsj — ar1bej— ajasasb; — ajazbs 4+ asasbyj + azbsj
(a1 = j)(az2 — j)

1 <b2j — asazb1j? — a1azbaj — azb1j — a2a3by — azazbs + asbsj

as—j as —Jj
+a1a§b3j + alazsz + a1a2b3 - a1b2j2 - b1j2 + a2a3b1j2 + a2b3j2>
ay—j

1 . . . .
= —(a1boj — b1 — afasbaj — arasbij — arazazby — bsj

(a1 — j)(az — j)(asz — j)
+a1a2b3j - b2j2 + a2a3b1 + a1a3b2j2 + a3b1j2 + agagblj + azagbgj - a2b3j2

+a2b3j2 + b2j2 + bgj - a1a3b2j2 — a3b1j2 + a2a3b1j2 + a2a3b3j2
—aya3bsj® — arasbaj® — arasbsj + arbs + by — azasby — asbs)

1 . . . .
= (—a1baj? — alazbej — arazbij — azbyj

(a1 —j)(az — j)(as — j)
—a2a§b1 — a2a3b3 — aa§b3j2 — a1a2b2j2 — a2b3)

1
2.2 2 2
=— (a3a3a3bs + ajaza3bs

(a1 — j)(az — j)(as — j)
—i—a%azagbl + alagagbl + a2a§b1 + asaszbs + a?agagbg + a?agagbz + agbs)

1
= - [a2a3b1 (1 + a1 + af) + afazazby(1 + as + a3)

(a1 — j)(az — j)(az — j)
+asbs(l+ a3 +a

1 +ajaja3)]

2
S 4243 [a?agbg(l + az + ag)

(a1 —j)(az — j)(as — j)
+a3bo(1 4 ag + a2) + by (1 +ay +a?)]. 0
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Theorem 2 (Morley). The three points A'(«), B'(5), C'(7) of the adjacent
trisectors of the angles of any triangle ABC' form an equilateral triangle.

Figure 4.22.

Proof (Alain Connes). Let us consider the rotations fi = 74,22, fa = 75,2y,

1. 1.
f3 = rc 2, with centers A, B, C and angles z = §A, y = §B, z = §C
(Fig.4.22).

Note that Fix (f1 o fo) = {A'}, Fix (f20 f3) = {B'}, Fix (f30 f1) = {C"}
(see Fig.4.23).

All
g f 5
A B
x A
A"=fr(A)
Figure 4.23.
X" C

X’

A\LB
X

Figure 4.24.
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To prove that triangle A’B’C’ is equilateral, it is sufficient to show, by
Proposition 2, in Sect. 2.4 and above Theorem 1 in Sect. 4.13.6, that f; o
]‘230]“33 = 1¢. The composition sacos4p of reflections sy and sap across the
lines AC and AB is a rotation about center A through angle 6z (Fig. 4.24).

Therefore, fi = sac o sap, and analogously, f§ = spaospc and
I3 = scposca. It follows that

3 3 .3
fiofdofs =sac054B05BA0SBCOScBOSca = lc.

4.13.7 Homothecy

Given a fixed nonzero real number k, the mapping hy : C — C, hi(2) = kz,
is called the homothety of the complex plane with center O and magnitude k.

Figures 4.25 and 4.26 show the position of point M’(hj(z)) in the cases
k>0and k < 0.

Points M (z) and M'(hy(z)) are collinear with center O, which lies on the
line segment M M’ if and only if k& < 0.

Moreover, the following relation holds:

|OM'| = |k||OM]|.

Point M’ is called the homothetic point of M with center O and magnitude k.

M(z))

M'(hi(2))

(0] k>0

Figure 4.25.

It is clear that the composition of two homotheties hy, and hg, is also a
homothety, that is,

hk1 o hkg = h/kllklz'

The set H of all homotheties of the complex plane is an abelian group with
respect to the composition of mappings. The identity of the group (H, o) is
h1 = 1¢, the homothety of magnitude 1.
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M(z))

k<0

M'(hi(2))

Figure 4.26.

Problem. Let M be a point inside an equilateral triangle ABC and let
My, Ms, Ms be the feet of the perpendiculars from M to the sides
BC, CA, AB, respectively. Find the locus of the centroid of the triangle
M1 Mo Ms.

Solution. Let 1, ¢, €2 be the coordinates of points A, B, C, where
€ = cos 120° 4 7 sin 120°. Recall that

e24+e+1=0and e =1.

If m, my, meo, ms are the coordinates of points M, M;, M,, Ms, we have

my = =-(1+e+m—em),

N = DN

my = =(e + &> +m —m),

2

1
my = = (e + 1 +m — e*m).

2
Let g be the coordinate of the centroid of the triangle M; MsMs. Then

1
6

—_

m
g= g(m1+m2+m3) =20 +e+eH)+3m-—m(l+e+%)) = 5
1

and hence OG = QOM.

The locus of G is the interior of the triangle obtained from ABC under a

1

homothety of center O and magnitude 5 In other words, the vertices of this
Lo

11
triangle h dinates —, —¢, —¢€~.
riangle have coordinates 5, 5, g€
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4.13.8 Problems

1. Prove that the composition of two isometries of the complex plane is an
isometry.

2. An isometry of the complex plane has two fixed points A and B. Prove
that every point M of line AB is a fixed point of the transformation.

3. Prove that every isometry of the complex plane is a composition of a
rotation with a translation and possibly also with a reflection in the real
axis.

4. Prove that the mapping f : C — C, f(z) =i-Z + 4 — i, is an isometry.
Analyze f as in the previous problem.

5. Prove that the mapping g : C — C, g(z) = —iz + 1 + 2i, is an isometry.
Analyze g as in the previous problem.
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