Preface

Boundary-value problems and initial-boundary-value problems for partial differen-
tial equations of continuum mechanics and mathematical physics that arise in ap-
plications in the physical sciences and engineering frequently contain ‘nonsmooth’
or ‘singular’ data, such as jumps in the coefficients in the equation, caused by dis-
continuities in material properties, or concentrated loads that are modelled as point
sources, or indeed discontinuities in the solution at interfaces in transmission prob-
lems. There is a wealth of such practical examples. The present book, which arose
from series of lectures given by the authors over a number of years at the University
of Belgrade and the University of Oxford, respectively, is devoted to the construction
and the mathematical analysis of numerical methods for the approximate solution
of such problems. More specifically, we focus on the numerical solution of linear
partial differential equations by variously generalized finite difference schemes in
instances when the coefficients, source terms or initial or boundary data belong to
spaces of weakly differentiable functions, e.g. Sobolev, Besov or Bessel-potential
spaces of nonnegative order, or certain spaces of distributions, such as negative-
order Sobolev, Besov or Bessel-potential spaces.

The fundamental mathematical result that underpins the convergence analysis
of discretization methods for linear partial differential equations, and finite differ-
ence methods in particular, is the Lax equivalence theorem (cf. [156], Sect. 3.5),
which, loosely speaking, states that a sequence of numerical solutions, generated
on a family of meshes by means of a consistent finite difference approximation of
a well-posed initial/boundary-value problem for a linear partial differential equa-
tion, converges to the analytical solution of the problem if, and only if, the finite
difference method is stable.

Consistency of a finite difference scheme amounts to the requirement that the
truncation error, defined by inserting the unknown analytical solution to the partial
differential equation into the finite difference approximation of the equation, when
measured in a suitable mesh-dependent norm, converges to zero, possibly at a cer-
tain rate, which is typically a positive power of the maximum mesh-size #, in the
limit of & converging to zero.
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The conventional mathematical tool for investigating the consistency of a finite
difference approximation to a partial differential equation is multivariate Taylor se-
ries expansion. The truncation error is expanded to terms of order as high as is
necessary so as to extract the highest possible power of 4 admitted by the finite dif-
ference scheme; the power of & in question is referred to as the order of accuracy
or order of consistency of the finite difference method. The underlying assumption
in such, frequently tedious, but completely elementary calculations based on Taylor
series expansions is that the solution to the partial differential equation is sufficiently
smooth, to the extent that it admits a Taylor series expansion up to derivatives whose
order is as high as is needed in order to extract the highest possible power of & from
the truncation error.

When confronted with partial differential equations whose solutions are known
not to be differentiable or even continuous, and Taylor series expansion of the ana-
Iytical solution, and thereby of the truncation error of the finite difference scheme,
fails to make sense due to lack of regularity in the classical sense, a natural question
is whether there are alternative mathematical tools one can resort to in a systematic
fashion. A second, closely related and even more basic question is, of course, how,
in the first place, should one construct finite difference approximations to partial
differential equations whose coefficients, source terms or initial or boundary data
are so ‘rough’ that sampling them at the points of the computational mesh is, quite
evidently, a meaningless endeavour.

It is the mathematical analysis of these two questions that the present mono-
graph is devoted to. The second question posed above, concerning the construc-
tion of finite difference schemes for partial differential equations with nonsmooth
data, is addressed by mollifying the data through convolution (possibly in the
sense of distributions) with suitable functions with compact support, which are
typically (multivariate) B-splines whose support is commensurate with the mesh-
size h. As for the first question, regarding the analysis of consistency in the ab-
sence of meaningful Taylor series expansions, we resort to a technique that is fa-
miliar in the realm of finite element methods but is seemingly alien to the world
of finite difference schemes: interpreting the truncation error as a linear func-
tional on a suitable function space (typically a certain Sobolev space of nonneg-
ative order), scaling to a canonical ‘element’, which is chosen to be a scaled-
up version of the support of the B-spline used in the definition of the mollifica-
tion, followed by an application of a result known as the Bramble—Hilbert lemma
and, finally, rescaling. The Bramble-Hilbert lemma plays the role of Taylor se-
ries expansion with remainder of the truncation error up to the highest possible
derivative, with the lower-order terms in the Taylor polynomial cancelling: it sim-
ply states that a bounded linear functional on a Sobolev space with the prop-
erty that the linear functional vanishes on polynomials of degree one less than
the (positive) differentiability index of the Sobolev space, can be bounded by the
highest-order Sobolev seminorm of the space. The subsequent rescaling from the
canonical element then relies on the fact that the highest-order Sobolev semi-
norm is a homogeneous function of a certain degree in the mesh-size A (the ho-
mogeneity index of the Sobolev seminorm being dependent on the differentiabil-
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ity and integrability indices of the Sobolev seminorm and the number of dimen-
sions).

Our objective throughout the book is to systematically develop this methodology
based on the combination of mollification of the nonsmooth data on the one hand
and the application of variants of the Bramble-Hilbert lemma in conjunction with
scaling arguments on the other, for a range of linear elliptic, parabolic and hyper-
bolic partial differential equations.

Chapter 1 provides a brief survey of some basic results from linear functional
analysis, the theory of distributions and function spaces, Fourier multipliers and
mollifiers in function spaces, and function space interpolation. Chapter 2 is con-
cerned with the construction and the convergence analysis of finite difference
schemes for elliptic boundary-value problems. One of the key contributions of the
chapter is the derivation of optimal-order bounds on the error between the analytical
solution and its finite difference approximation for elliptic equations with variable
coefficients under minimal regularity hypotheses on the coefficients and the solu-
tion, the minimal regularity hypotheses on the coefficients being expressed in terms
of spaces of multipliers in Sobolev spaces. In Chaps. 3 and 4 of the book we then
pursue an analogous programme for some model linear parabolic and hyperbolic
equations.

We shall consider finite difference methods on both uniform and nonuniform
computational meshes. In order to avoid cluttering the presentation with the inclu-
sion of technical details that are secondary to the central theme of the book, we shall
confine ourselves throughout to boundary-value problems and initial-boundary-
value problems on axiparallel domains. Curved boundaries give rise to additional
complexities, which we do not address. Having said this, the starting point of a
convergence analysis for any finite difference method is a stability result, which is
typically a discrete counterpart of a stability or regularity result for the differential
problem under consideration. For elliptic equations in arbitrary domains discrete
versions of interior regularity results in L, and, more generally, L, type norms
were developed by Thomée and Westergren [179] and Shreve [166], respectively.
Discrete versions of interior Schauder estimates were proved by Thomée [175]. For
Lipschitz domains, discrete versions of elliptic regularity results, up to the boundary,
were established by Hackbusch in [66] and [67]. For parabolic problems discrete in-
terior regularity results in arbitrary spatial domains were proved by Brandt [22] and
Bondesson [18, 19]. These, and related results, can be seen as a starting point for
the development of a theoretical framework in arbitrary domains, analogous to the
one considered here on axiparallel domains.

There are of course several excellent books concerned with the mathematical
theory of finite difference schemes for partial differential equations. A classical
source in the field is the influential monograph by R.D. Richtmyer and K.W. Morton:
Difference Methods for Initial-Value Problems [156]; some other significant books
include the following: A.A. Samarskii: The Theory of Difference Schemes [159],
J. Strikwerda: Finite Difference Schemes and Partial Differential Equations [170],
B. Gustafsson, H.-O. Kreiss and J. Oliger: Time Dependent Problems and Difference
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Methods [64], the short monograph by P. Brenner, V. Thomée and L.B. Wahlbin en-
titled Besov Spaces and Applications to Difference Methods for Initial Value Prob-
lems [24], the monograph by A.A. Samarskii, R.D. Lazarov and L. Makarov: Finite
Difference Schemes for Differential Equations with Weak Solutions (in Russian)
[160], and Chap. 4 and Sects. 9.2, 10.2.2 and 11.3 of the book by W. Hackbusch
entitled Elliptic Differential Equations: Theory and Numerical Treatment [68]. In-
stead of replicating the material contained in those and other books on the analysis
of finite difference schemes for partial differential equations, our aim here has been
to focus on ideas that have not been covered elsewhere in the literature previously,
at least not in the form of a book. While we have made every effort to ensure that
the text is reasonably accessible and self-contained, a disclaimer is in order: it is
fair to say that this monograph has been written with a mathematical audience in
mind. Some of the material we have included here has been successfully used in
third- and fourth-year mathematics undergraduate courses on the numerical analysis
of partial differential equations (e.g. Chap. 1, Sects. 1.1-1.4; Chap. 2, Sects. 2.1-
2.4; Chap. 3, Sects. 3.1, 3.2; Chap. 4, Sects. 4.1, 4.2); however, the vast majority
of the theoretical questions we discuss are firmly beyond the scope of the under-
graduate numerical analysis syllabus, and will be of primary interest to graduate
students, researchers and specialists working in the field of numerical analysis of
partial differential equations. Readers will certainly find it helpful to possess prior
knowledge of elements of linear functional analysis, the theory of linear partial dif-
ferential equations, and basic concepts from the theory of distributions and function
spaces. Although we chose to focus on linear problems throughout, it is neverthe-
less hoped that the methodology that is systematically developed here in the case
of linear partial differential equations has some bearing on the mathematical anal-
ysis of finite difference approximations of nonlinear partial differential equations
with nonsmooth solutions, particularly those that arise from continuum mechanics
and the sciences in general. The recent upsurge of interest in numerical algorithms
for atomistic models of crystalline materials, such as quasi-continuum methods,
whose analysis relies on techniques from the theory of finite difference methods
[14, 15, 29, 132, 133, 149, 150, 194], has provided added impetus to this book:
we hope that some of the technical tools developed here will also prove useful to
researchers working in that field.
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