
Chapter 2
Elliptic Boundary-Value Problems

In the first part of this chapter we focus on the question of well-posedness of
boundary-value problems for linear partial differential equations of elliptic type.
The second part is devoted to the construction and the error analysis of finite differ-
ence schemes for these problems. It will be assumed throughout that the coefficients
in the equation, the boundary data and the resulting solution are real-valued func-
tions.

2.1 Existence and Uniqueness of Solutions

Suppose that Ω is a bounded open set in R
n, k is a positive integer and aαβ , 0 ≤

|α|, |β| ≤ k, with α,β ∈ N
n, are real-valued-functions defined on Ω . We consider

the linear partial differential operator P(x, ∂) of order 2k defined by

P(x, ∂)u :=
∑

0≤|α|,|β|≤k

(−1)|α|∂α
(
aαβ(x)∂βu

)
, x ∈ Ω. (2.1)

The principal part P0(x, ∂) of the differential operator P(x, ∂) is defined by

P0(x, ∂)u :=
∑

|α|,|β|=k

(−1)|α|∂α
(
aαβ(x)∂βu

)
, x ∈ Ω.

P (x, ∂) is said to be an elliptic operator on Ω if, and only if,
∑

|α|,|β|=k

aαβ(x)ξαξβ > 0 ∀x ∈ Ω, ∀ξ ∈ R
n \ {0}.

P (x, ∂) is called uniformly elliptic on Ω if, and only if, there exists a positive real
number c̃ such that

∑

|α|,|β|=k

aαβ(x)ξαξβ ≥ c̃|ξ |2k ∀x ∈ Ω, ∀ξ ∈R
n. (2.2)
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Example 2.1 Consider the second-order partial differential operator, corresponding
to k = 1 above, defined by

P(x, ∂)u := −
n∑

i,j=1

∂

∂xj

(
aij (x)

∂u

∂xi

)

+
n∑

i=1

[
− ∂

∂xi

(
ai(x)u

)+ bi(x)
∂u

∂xi

]
+ c(x)u, (2.3)

with aij , i, j = 1, . . . , n; ai , bi , i = 1, . . . , n; and c being real-valued functions de-
fined on an open set Ω ⊂ R

n, and such that

n∑

i,j=1

aij (x)ξiξj ≥ c̃

n∑

i=1

ξ2
i ∀x ∈ Ω, ∀ξ = (ξ1, . . . , ξn) ∈ R

n, (2.4)

for a positive real number c̃, independent of x and ξ ; then P(x, ∂) is a second-order
uniformly elliptic operator on Ω .

Example 2.2 Consider the partial differential operator P(x, ∂), defined by

P(x, ∂)u := ∂2
1 M1(u) + 2∂1∂2M3(u) + ∂2

2 M2(u),

where ∂i := ∂/∂xi and ∂2
i := ∂2/∂x2

i for i = 1,2,

M1(u) := a1(x)∂2
1 u + a0(x)∂2

2 u,

M2(u) := a0(x)∂2
1 u + a2(x)∂2

2 u,

M3(u) := a3(x)∂1∂2u,

and ai , i = 0,1,2,3, are four real-valued functions defined on a bounded open set
Ω ⊂ R

2 such that there exist positive real numbers c1 and c2 for which

ai(x) ≥ c1, i = 1,2,3, a1(x)a2(x) − a2
0(x) ≥ c2 ∀x ∈ Ω.

Under these hypotheses P(x, ∂) is a fourth-order uniformly elliptic operator on Ω .
The same is true if the above inequalities satisfied by the coefficients ai are replaced
by

ai(x) ≥ c1, i = 1,2, a1(x)a2(x) − (a0(x) + a3(x)
)2 ≥ c2 ∀x ∈ Ω.

A partial differential equation on Ω is usually supplemented with boundary con-
ditions on ∂Ω . The differential equation in tandem with the boundary conditions
imposed forms a boundary-value problem.

Example 2.3 For the second-order partial differential equation considered in Exam-
ple 2.1 the following boundary conditions are the most common, with g denoting a
given real-valued function defined on the boundary ∂Ω in each case:
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➊ Dirichlet boundary condition: u = g on ∂Ω ;
➋ Oblique derivative boundary condition:

n∑

i,j=1

aij (x)
∂u

∂xi

νj +
n∑

i=1

ai(x)uνi + σ(x)u = g on ∂Ω,

where νj is the j th component of the unit outward normal vector ν to ∂Ω and σ

is a given real-valued function defined on ∂Ω such that

σ + 1

2

n∑

i=1

(ai + bi)νi ≥ 0 on ∂Ω.

The differential operator

u �→
n∑

i,j=1

aij (x)
∂u

∂xi

νj +
n∑

i=1

ai(x)uνi, x ∈ ∂Ω,

is called the co-normal derivative corresponding to the partial differential op-
erator from Example 2.1. A particularly important special case arises when
aij = δij , i, j = 1, . . . , n, and ai = 0, i = 1, . . . , n. Then, the oblique derivative
boundary condition becomes:

∂νu + σu = g on ∂Ω ,

and is referred to as Robin boundary condition. Here,

∂ν = ∂

∂ν
:=

n∑

i=1

νi

∂

∂xi

denotes the (outward) normal derivative on ∂Ω ; it is assumed that

σ + 1

2

n∑

i=1

biνi ≥ 0 on ∂Ω.

In particular, when σ = 0 on ∂Ω , the resulting boundary condition

∂νu = g on ∂Ω

is called a Neumann boundary condition.

In many problems that arise in applications boundary conditions of different kind
are enforced on different parts of the boundary; for example, ∂Ω may be the union
of two disjoint subsets ∂Ω1 and ∂Ω2, with Dirichlet boundary condition imposed
on ∂Ω1 and an oblique derivative boundary condition imposed on ∂Ω2. In most
of what follows we shall, for simplicity, confine ourselves to the study of elliptic



94 2 Elliptic Boundary-Value Problems

boundary-value problems subject to homogeneous Dirichlet boundary conditions
(corresponding, in the case of a second-order elliptic equation, to g ≡ 0 in Exam-
ple 2.3, part ➊).

Returning to the general elliptic equation of order 2k, we formulate the classical
homogeneous Dirichlet boundary-value problem.

Definition 2.1 Let Ω ⊂ R
n be a bounded open set and suppose that f ∈ C(Ω) and

aαβ ∈ C|α|(Ω), |α|, |β| ≤ k. A function

u ∈ C2k(Ω) ∩ Ck−1(Ω)

is a classical solution of the homogeneous Dirichlet problem if

P(x, ∂)u :=
∑

0≤|α|,|β|≤k

(−1)|α|∂α
(
aαβ(x)∂βu

)= f (x)

for every x in Ω , and

∂m
ν u = 0 on ∂Ω , for 0 ≤ m ≤ k − 1.

It is assumed here that the differential operator P(x, ∂), with x ∈ Ω , is elliptic or
uniformly elliptic on Ω . Frequently, the smoothness requirements on the data stated
in this definition are not satisfied. As is demonstrated by the next example, in such
instances the corresponding homogeneous Dirichlet boundary-value problem has no
classical solution.

Example 2.4 Let Ω = (−1,1)n ⊂ R
n and consider Poisson’s equation

−Δu := −
n∑

i=1

∂2u

∂x2
i

= f in Ω,

subject to the homogeneous Dirichlet boundary condition

u = 0 on ∂Ω.

Suppose further that f (x) = sgn( 1
2 − |x|), x ∈ Ω .

Clearly, this problem has no classical solution, u ∈ C2(Ω)∩C(Ω), for otherwise
Δu would be a continuous function on Ω , which is impossible as sgn( 1

2 − |x|) is
not continuous on Ω .

In order to overcome the limitations of Definition 2.1 highlighted by this exam-
ple, we generalize the notion of classical solution by weakening the differentiability
requirements on both the data and the corresponding solution.
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Definition 2.2 Let Ω ⊂ R
n be a bounded open set and suppose that f ∈ L2(Ω) and

aαβ ∈ M
(
W

2k−|β|
2 (Ω) → W

|α|
2 (Ω)

)
, |α|, |β| ≤ k. A function

u ∈ W 2k
2 (Ω) ∩ W̊ k

2 (Ω)

is a strong solution of the homogeneous Dirichlet problem if

P(x, ∂)u :=
∑

0≤|α|,|β|≤k

(−1)|α|∂α
(
aαβ(x)∂βu

)= f (x)

for almost every x in Ω .

While for classical solutions both the partial differential equation and the bound-
ary condition are assumed to hold in the pointwise sense, for strong solutions the
partial differential equation is to be understood in terms of equivalence classes con-
sisting of functions that are equal almost everywhere on Ω ; also, instead of being
imposed explicitly, the boundary condition has been incorporated into the function
space W 2k

2 (Ω) ∩ W̊ k
2 (Ω) in which a solution is sought. Unfortunately, it is not easy

to show that the homogeneous Dirichlet problem for the partial differential equation
(2.1) possesses a strong solution; in fact, as is illustrated by Example 2.5 below a
strong solution will not exist unless ∂Ω and the data are sufficiently smooth. Thus
we shall further relax the differentiability requirements on u and weaken the concept
of solution by converting the boundary-value problem into a variational problem.
The first step in this process is to create a bilinear functional associated with the
differential operator P(x, ∂) using integration by parts. Suppose that u ∈ W 2k

2 (Ω),
f ∈ L2(Ω), and v ∈ C∞

0 (Ω); then

∫

Ω

v(x)f (x)dx =
∫

Ω

vP (x, ∂)udx

=
∑

0≤|α|,|β|≤k

(−1)|α|
∫

Ω

v∂α
(
aαβ(x)∂βu

)
dx

=
∑

0≤|α|,|β|≤k

∫

Ω

aαβ(x)∂βu∂αv dx.

In the transition to the last expression, by partial integration, we made use of the fact
that suppv ⊂⊂ Ω . Motivated by this identity we introduce the following notation:

a(u, v) :=
∑

0≤|α|,|β|≤k

∫

Ω

aαβ(x)∂βu∂αv dx,

(f, v) :=
∫

Ω

f (x)v(x)dx.
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Clearly a(·, ·) is correctly defined for u that is merely in W̊ k
2 (Ω) and for v in the

same space; in fact, a(·, ·) is a bilinear functional on the product space W̊ k
2 (Ω) ×

W̊ k
2 (Ω); similarly, v �→ (f, v) is a linear functional on W̊ k

2 (Ω).
These considerations motivate the following definition.

Definition 2.3 Let Ω ⊂ R
n be a bounded open set and suppose that f ∈ W−k

2 (Ω)

and aαβ ∈ L∞(Ω), |α|, |β| ≤ k. A function

u ∈ W̊ k
2 (Ω)

is a weak solution of the homogeneous Dirichlet problem if

a(u, v) = 〈f, v〉
for every v ∈ W̊ k

2 (Ω), where now 〈·, ·〉 denotes the duality pairing between W−k
2 (Ω)

and W̊ k
2 (Ω), i.e. 〈f, v〉 signifies the value of the linear functional f ∈ W−k

2 (Ω) =
[W̊ k

2 (Ω)]′ at v ∈ W̊ k
2 (Ω).

Remark 2.1 By applying the Sobolev embedding theorem, it is easily seen that the
bilinear functional a(·, ·) is well defined under even weaker regularity hypotheses
on the coefficients aαβ . Indeed, it suffices to assume in Definition 2.3 that

aαβ ∈ M
(
W

k−|α|
2 → Lpβ (Ω)

)
, |α|, |β| ≤ k,

where pβ = 2 when |β| = k, pβ = 2n/(n + 2(k − |β|)) when 0 < k − |β| < n/2;
pβ > 1 (but arbitrarily close to 1) when k − |β| = n/2; and pβ = 1 when k − |β| >
n/2.

Next we show that the homogeneous Dirichlet boundary-value problem has a
unique weak solution. The proof is based on a simple application of the Lax–
Milgram theorem (Theorem 1.13) and the following result.

Theorem 2.4 (Gårding’s Inequality) Suppose that Ω ⊂ R
n is a Lipschitz domain.

Let P(x, ∂) be a linear partial differential operator of order 2k of the form (2.1)
such that, for some c̃ > 0, the uniform ellipticity condition (2.2) holds. Suppose also
that

aαβ ∈ C(Ω) for |α| = |β| = k

and

aαβ ∈ L∞(Ω) for |α|, |β| ≤ k.

Then, there exist constants c0 > 0 and λ0 ≥ 0 such that

a(v, v) + λ0‖v‖2
L2(Ω) ≥ c0‖v‖2

Wk
2 (Ω)

for all v ∈ W̊ k
2 (Ω). (2.5)
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The proof of this results is long and technical, and will not be presented here;
the interested reader is referred to Theorem 9.17 on p. 292 of Renardy and Rogers
[155], for example.

For second-order uniformly elliptic operators of the form (2.3) the proof of Gård-
ing’s inequality is much simpler, and we shall confine ourselves to this case; in fact,
as will be seen below, in the case of a second-order uniformly elliptic operator the
smoothness hypotheses on the coefficients in the principal part of the operator can
be slightly relaxed: they need not be continuous functions, as long as they belong to
L∞(Ω). We note that the bilinear functional corresponding to the operator (2.3) is
given by

a(u, v) =
n∑

i,j=1

∫

Ω

aij (x)
∂u

∂xi

∂v

∂xj

dx +
n∑

i=1

ai(x)u
∂v

∂xi

dx

+
∫

Ω

bi(x)
∂u

∂xi

v dx +
∫

Ω

c(x)uv dx, u, v ∈ W̊ 1
2 (Ω).

Theorem 2.5 Suppose that Ω ⊂ R
n is a Lipschitz domain. Let P(x, ∂) be the

second-order linear partial differential operator defined by (2.3) where aij , ai ,
bj ∈ L∞(Ω), i, j = 1, . . . , n, and c ∈ L∞(Ω) are such that, for some c̃ > 0, the
uniform ellipticity condition (2.4) holds. Then, there exist real numbers c0 > 0 and
λ0 ≥ 0 such that

a(v, v) + λ0‖v‖2
L2(Ω) ≥ c0‖v‖2

W 1
2 (Ω)

∀v ∈ W̊ 1
2 (Ω).

Proof Thanks to (2.4) and the Cauchy–Schwarz inequality we have that

a(v, v) =
n∑

i,j=1

∫

Ω

aij (x)
∂v

∂xi

∂v

∂xj

dx +
n∑

i=1

∫

Ω

ai(x)v
∂v

∂xi

dx

+
n∑

i=1

∫

Ω

bi(x)
∂v

∂xi

v dx +
∫

Ω

c(x)v2 dx

≥ c̃

∫

Ω

|∇v|2 dx −
∫

Ω

[
2

n∑

i=1

(
a2
i + b2

i

)
]1/2

|∇v||v|dx

− ‖c‖L∞(Ω)

∫

Ω

|v|2 dx,

where, as usual |∇u| = [
( ∂u
∂x1

)2 + · · · + ( ∂u
∂xn

)2
]1/2. By applying the elementary in-

equality

ab ≤ εa2 + 1

4ε
b2
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with ε = c̃/2, we obtain

a(v, v) ≥ c̃

2

∫

Ω

|∇v|2 dx − C‖v‖2
L2(Ω),

where

C = 1

c̃

∥∥∥∥∥

n∑

i=1

(
a2
i + b2

i

)
∥∥∥∥∥

L∞(Ω)

+ ‖c‖L∞(Ω).

Equivalently,

a(v, v) ≥ c̃

2
‖v‖2

W 1
2 (Ω)

−
(

C + c̃

2

)
‖v‖2

L2(Ω),

which proves Gårding’s inequality with c0 = c̃/2 and λ0 = C + (c̃/2). �

Remark 2.2 We note that Theorem 2.5 can be proved under even weaker hypotheses
on aij , ai and bi . Indeed, it suffices to assume that

aij ∈ M
(
L2(Ω) → L2(Ω)

)
, i, j = 1, . . . , n,

ai, bi ∈ M
(
W 1

2 (Ω) → L2(Ω)
)
, i = 1, . . . , n,

c ∈ M
(
W 1

2 (Ω) → Lp(Ω)
)
,

where p = 2n/(n+2) if n > 2; p > 1 (but arbitrarily close to 1) if n = 2; and p = 1
if n = 1.

We now state the main result of this section, which concerns the existence of a
weak solution to a homogeneous Dirichlet boundary-value problem.

Theorem 2.6 Let P(x, ∂) be a linear partial differential operator of order 2k of the
form (2.1), satisfying the conditions of Theorem 2.4 on a Lipschitz domain Ω ⊂ R

n.
Then, there exists a λ0 ≥ 0 such that, for any λ ≥ λ0 and any f ∈ W−k

2 (Ω), the
homogeneous Dirichlet problem for the operator

P̃ (x, ∂) = P(x, ∂) + λ

has a unique weak solution u ∈ W̊ k
2 (Ω). Furthermore, this solution satisfies

‖u‖Wk
2 (Ω) ≤ C‖f ‖

W−k
2 (Ω)

.

Proof According to Theorem 2.4 there exists a λ0 ≥ 0 such that the Gårding in-
equality (2.5) holds. For λ ≥ λ0 we consider the bilinear functional

ã(u, v) = a(u, v) + λ(u, v), u, v ∈ W̊ k
2 (Ω),
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associated with the operator P̃ . We shall prove that ã(·, ·) satisfies the conditions
of the Lax–Milgram theorem (Theorem 1.13) on W̊ k

2 (Ω) × W̊ k
2 (Ω). Let us take

U = W̊ k
2 (Ω) in Theorem 1.13 and recall that W̊ k

2 (Ω) is a real Hilbert space. The
U -coercivity of ã(·, ·) is a straightforward consequence of (2.5):

ã(v, v) = a(v, v) + λ‖v‖2
L2(Ω) ≥ c0‖v‖2

Wk
2 (Ω)

∀v ∈ W̊ k
2 (Ω).

We shall now verify that ã(·, ·) is bounded on W̊ k
2 (Ω) × W̊ k

2 (Ω). Given v, w ∈
W̊ k

2 (Ω), using the Cauchy–Schwarz inequality repeatedly we obtain the following
chain of inequalities, which ultimately lead to the conclusion that ã(·, ·) is a bounded
bilinear functional on W̊ k

2 (Ω) × W̊ k
2 (Ω):

∣∣ã(v,w)
∣∣ ≤ ∣∣a(v,w)

∣∣+ λ
∣∣(v,w)

∣∣

≤
∑

0≤|α|,|β|≤k

∫

Ω

∣∣aαβ(x)
∣∣∣∣∂βv

∣∣∣∣∂αw
∣∣dx + λ

∣∣(v,w)
∣∣

≤ max
0≤|α|,|β|≤k

‖aαβ‖L∞(Ω)

∑

0≤|α|,|β|≤k

∫

Ω

∣∣∂βv
∣∣∣∣∂αw

∣∣dx + λ
∣∣(v,w)

∣∣

≤ c1‖v‖U‖w‖U .

Thus, by the Lax–Milgram theorem (Theorem 1.13), for each f ∈ W−k
2 (Ω) = U ′,

there exists a unique weak solution u ∈ W̊ k
2 (Ω) to the homogeneous Dirichlet prob-

lem. �

In the case of second-order elliptic equations we have an analogous result.

Theorem 2.7 Let P(x, ∂) be a linear second-order partial differential operator of
the form (2.3), satisfying the conditions of Theorem 2.5 on a Lipschitz domain Ω ⊂
R

n. Then, there exists a λ0 ≥ 0 such that, for any λ ≥ λ0 and any f ∈ W−1
2 (Ω), the

homogeneous Dirichlet problem for the operator

P̃ (x, ∂) = P(x, ∂) + λ

has a unique weak solution u ∈ W̊ 1
2 (Ω), and this solution satisfies

‖u‖W 1
2 (Ω) ≤ C‖f ‖

W−1
2 (Ω)

.

Furthermore, if ai , bi ∈ W 1
p(Ω), i = 1, . . . , n, where p = n/2 when n > 2; p > 1

is arbitrary when n = 2; and p = 1 when n = 1; and

c(x) − 1

2

n∑

i=1

∂

∂xi

(
ai(x) + bi(x)

)≥ 0
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for almost every x ∈ Ω , then λ0 = 0. In other words, the homogeneous Dirichlet
problem corresponding to the operator P(x, ∂) has a unique weak solution u ∈
W̊ 1

2 (Ω) under these hypotheses.

Proof The first part of the theorem is proved in exactly the same way as the corre-
sponding statement in Theorem 2.6. In order to prove the second part let us observe
that, by the divergence theorem,
∫

Ω

[
ai(x) + bi(x)

] ∂v

∂xi

v dx = −1

2

∫

Ω

∂

∂xi

(
ai(x) + bi(x)

)
v2 dx ∀v ∈ W̊ 1

2 (Ω);

we note that because ai, bi ∈ W 1
p(Ω), i = 1, . . . , n, where p is as assumed, Hölder’s

inequality, followed by the application of Sobolev’s embedding theorem, implies
that the function appearing as the integrand on the right-hand side is an element of
L1(Ω). Therefore the right-hand side of this equality is meaningful.

Consequently,

a(v, v) ≥ c̃

n∑

i=1

∫

Ω

∣∣∣∣
∂v

∂xi

∣∣∣∣
2

dx. (2.6)

By applying the Friedrichs inequality (1.23) with s = 1 and p = 2, the right-hand
side of (2.6) can be further bounded below to obtain

a(v, v) ≥ c0‖v‖2
W 1

2 (Ω)
, (2.7)

where c0 = c̃/c
, and hence the W̊ 1
2 (Ω)-coercivity of the bilinear functional a(·, ·).

The boundedness of a(·, ·) on the space W̊ 1
2 (Ω) × W̊ 1

2 (Ω) follows from the bound-
edness of ã(·, ·) = a(·, ·) + λ(·, ·) by setting λ = 0. The required result is now ob-
tained from the Lax–Milgram theorem (Theorem 1.13). �

Remark 2.3 We note that Theorem 2.7 continues to hold when the regularity hy-
potheses of Theorem 2.5 are replaced by the weaker ones from Remark 2.2.

Having developed relatively straightforward sufficient conditions for the exis-
tence of a unique weak solution to an elliptic boundary-value problem, the question
that we now need to address is whether a weak solution might possess additional
regularity to qualify as a strong solution. The answer to this question very much
depends on additional regularity of the data (i.e. the coefficients, the right-hand side
of the partial differential equation, and the boundary ∂Ω). Since a general discus-
sion of regularity properties of weak solutions to elliptic boundary-value problems
is beyond the scope of this book, we shall confine ourselves to Poisson’s equation
subject to a homogeneous Dirichlet boundary condition, which is sufficiently illus-
trative of the key ideas. We begin with a simple example, which shows that a weak
solution to an elliptic boundary-value problem need not be a strong solution to the
problem, and that a strong solution may not even exist.
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Example 2.5 Suppose that Ω = {(x, y) ∈ R
2 : x2 + y2 < e−1} and let f (x, y) :=

−Δ(log | log(x2 + y2)|), with log := loge and the differential operator Δ under-
stood in the sense of distributions on Ω . It is easily seen by changing from Cartesian
co-ordinates to polar co-ordinates that the function u : (x, y) �→ log | log(x2 + y2)|
belongs to W̊ 1

2 (Ω) and that, therefore, f ∈ W−1
2 (Ω). Thus, u is the unique weak

solution to the boundary-value problem: −Δu = f on Ω (with the equality under-
stood as being between two elements of W−1

2 (Ω)), subject to the boundary condi-
tion u = 0 on ∂Ω . However, the function u is not a strong solution and, as a matter
of fact, the boundary-value problem has no strong solution, since f /∈ L2(Ω).

In fact, even if f belongs to Ws−2
2 (Ω), s ≥ 2, it does not automatically follow

that the weak solution to Poisson’s equation −Δu = f , with a homogeneous Dirich-
let boundary condition on ∂Ω , belongs to Ws

2 (Ω) ∩ W̊ 1
2 (Ω). Whether or not this is

the case depends on the smoothness of ∂Ω . In particular if Ω is a bounded polyg-
onal domain in R

2, the regularity of the solution is ultimately limited by the size
of the maximum internal angle of Ω ; the next theorem is a special case of a more
general result, due to Grisvard [61].

Theorem 2.8 Suppose that f ∈ Ws−2
2 (Ω), 1 ≤ s < 3, s �= 3/2,5/2, with Ω =

(0,1)2, and consider the homogeneous Dirichlet boundary-value problem for Pois-
son’s equation:

−Δu = f on Ω,

u = 0 on ∂Ω.

Then, the unique weak solution u in W̊ 1
2 (Ω) belongs to Ws

2 (Ω) ∩ W̊ 1
2 (Ω).

The limitation s < 3 on the Sobolev exponent in Theorem 2.8 is sharp in the
sense that the stated regularity result is invalid for s ≥ 3 unless f satisfies certain
compatibility conditions at the four corners of the square. More precisely, u belongs
to the space Ws

2 (Ω)∩ W̊ 1
2 (Ω) for s ∈N, s ≥ 3, provided that f ∈ Ws−2

2 (Ω) and the
following conditions hold at the four corners:

f = 0,

∂2
1 f − ∂2

2 f = 0,

· · · · · · · · · · · · · · · · · · · · ·
∂2k

1 f − ∂2k−2
1 ∂2

2 f + · · · + (−1)k∂2k
2 f = 0, with k =

[
s − 2

2

]
. (2.8)

The proof proceeds similarly to the one in Volkov [193], where an analogous reg-
ularity result was shown for classical solutions. For details we refer to the work of
Hell [70].

Next we formulate a result that concerns the existence of weak solutions to the
homogeneous Dirichlet problem for the fourth-order uniformly elliptic equation
considered in Example 2.2.
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Theorem 2.9 Let Ω ⊂ R
2 be a Lipschitz domain. Consider the partial differential

operator P(x, ∂), defined by

P(x, ∂)u := ∂2
1 M1(u) + 2∂1∂2M3(u) + ∂2

2 M2(u),

where

M1(u) := a1(x)∂2
1 (u) + a0(x)∂2

2 u,

M2(u) := a0(x)∂2
1 u + a2(x)∂2

2 u,

M3(u) := a3(x)∂1∂2u,

and ai ∈ L∞(Ω), i = 0,1,2,3, are such that there exist positive constants c1 and
c2 for which

ai(x) ≥ c1, i = 1,2,3, a1(x)a2(x) − a2
0(x) ≥ c2, x ∈ Ω.

Then, for any f ∈ W−2
2 (Ω), the homogeneous Dirichlet boundary-value problem

for P(x, ∂) has a unique weak solution u in W̊ 2
2 (Ω).

Proof The proof is, again, based on the Lax–Milgram theorem (Theorem 1.13); its
nontrivial part is to verify that the bilinear functional

a(u, v) = (M1(u), ∂2
1 v
)+ 2

(
M3(u), ∂1∂2v

)+ (M2(u), ∂2
2 v
)
, u, v ∈ W̊ 2

2 (Ω),

is W̊ 2
2 (Ω)-coercive. Clearly,

a(v, v) =
∫

Ω

[
a1(x)

∣∣∂2
1 v
∣∣2 + 2a3(x)|∂1∂2v|2

+ a2(x)
∣∣∂2

2 v
∣∣2 + 2a0(x)∂2

1 v∂2
2v
]

dx ∀v ∈ W̊ 2
2 (Ω).

As v is real-valued (by the convention stated at the beginning of the chapter), we
have the following identity:

a(v, v) = 1

2

∫

Ω

a1(x)

(
∂2

1 v + a0(x)

a1(x)
∂2

2 v

)2

dx

+ 1

2

∫

Ω

a2(x)

(
∂2

2 v + a0(x)

a2(x)
∂2

1 v

)2

dx

+ 1

2

∫

Ω

(
a1(x) − a2

0(x)

a2(x)

)∣∣∂2
1 v
∣∣2 dx

+ 1

2

∫

Ω

(
a2(x) − a2

0(x)

a1(x)

)∣∣∂2
2 v
∣∣2 dx
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+ 2
∫

Ω

a3(x)|∂1∂2v|2 dx ∀v ∈ W̊ 2
2 (Ω).

Therefore,

a(v, v) ≥ 1

2

∫

Ω

(
a1(x) − a2

0(x)

a2(x)

)∣∣∂2
1 v
∣∣2 dx

+ 1

2

∫

Ω

(
a2(x) − a2

0(x)

a1(x)

)∣∣∂2
2 v
∣∣2 dx

+ 2
∫

Ω

a3(x)|∂1∂2v|2 dx ∀v ∈ W̊ 2
2 (Ω).

By noting the assumptions on the coefficients ai , i = 0,1,2,3, it follows that there
exists a positive constant c̃ such that

a(v, v) ≥ c̃|v|2
W 2

2 (Ω)
∀v ∈ W̊ 2

2 (Ω).

Finally, by the Friedrichs inequality (1.23) with s = p = n = 2,

‖v‖2
W 2

2 (Ω)
≤ c
|v|2

W 2
2 (Ω)

∀v ∈ W̊ 2
2 (Ω),

and hence

a(v, v) ≥ c0‖v‖2
W 2

2 (Ω)
∀v ∈ W̊ 2

2 (Ω),

where c0 = c̃/c
. �

Remark 2.4 Suppose that the homogeneous Dirichlet boundary condition

∂m
ν u = 0 on ∂Ω for m = 0,1,

for the partial differential operator P(x, ∂) defined in Theorem 2.9 has been replaced
by the following set of boundary conditions:

u = 0, M1(u)ν1 + M3(u)ν2 = 0, M3(u)ν1 + M2(u)ν2 = 0 on ∂Ω.

The weak formulation of the corresponding boundary-value problem is: find u ∈
W 2

2 (Ω) ∩ W̊ 1
2 (Ω) such that

a(u, v) = 〈f, v〉
for every v ∈ W 2

2 (Ω) ∩ W̊ 1
2 (Ω). Again, by using the Lax–Milgram theorem (Theo-

rem 1.13), it is easy to prove that, under the same conditions on ai , i = 0,1,2,3, as
in Theorem 2.9, this problem too has a unique weak solution, now in the function
space W 2

2 (Ω) ∩ W̊ 1
2 (Ω).
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Finally, we return to the boundary-value problem considered in Example 2.4,
which has been shown to have no classical solution. By applying Theorem 2.7 with
aij (x) ≡ 1, i = j , aij (x) ≡ 0, i �= j , 1 ≤ i, j ≤ n, bi(x) ≡ 0, c(x) ≡ 0, f (x) =
sgn( 1

2 − |x|), and Ω = (−1,1)n, we see that there is a unique weak solution u ∈
W̊ 1

2 (Ω) to this problem. In fact, it can be shown that this weak solution belongs
to W 2

2 (Ω) ∩ W̊ 1
2 (Ω) and it is, therefore, a strong solution to the boundary-value

problem (see Grisvard [62, 63]).

Remark 2.5 The existence and uniqueness of a weak solution to a Neumann, Robin,
or oblique derivative boundary-value problem for a second-order uniformly elliptic
equation can be established in a similar fashion, using the Lax–Milgram theorem
(Theorem 1.13).

Remark 2.6 Theorems 2.6 and 2.7 imply that the weak formulation of the Dirichlet
boundary-value problem for the operator P̃ (x, ∂) = P(x, ∂)+λ, λ ≥ λ0 ≥ 0, is well-
posed in the sense of Hadamard; that is, for each f ∈ W−k

2 (Ω), there exists a unique
(weak) solution u ∈ W̊ k

2 (Ω); moreover, “small” changes in f give rise to “small”
changes in the corresponding solution u. The latter property follows by noting that
if u1 and u2 are weak solutions in W̊ k

2 (Ω) of the homogeneous Dirichlet problem
for P̃ (x, ∂) corresponding to right-hand sides f1 and f2 in W−k

2 (Ω), respectively,
then u1 − u2 is the unique weak solution in W̊ k

2 (Ω) of the homogeneous Dirichlet
boundary-value problem for the operator P̃ (x, ∂) corresponding to the right-hand
side f1 − f2 in W−k

2 (Ω). It thus follows from Theorems 2.6 and 2.7 that

‖u1 − u2‖Wk
2 (Ω) ≤ C‖f1 − f2‖W−k

2 (Ω)
,

where C is a positive constant, independent of u1, u2, f1 and f2; this implies the
continuous dependence of the solution to the homogeneous Dirichlet boundary-
value problem on the right-hand side of the equation.

2.2 Approximation of Elliptic Problems

We begin this section by outlining the general approach to the construction of fi-
nite difference schemes for elliptic boundary-value problems; we then introduce
basic results from the theory of finite difference schemes and present some classical
tools for the error analysis of finite difference schemes for partial differential equa-
tions with smooth solutions. The limitations of the classical theory will lead us to
consider finite difference schemes with mollified data, and we shall develop a theo-
retical framework for the error analysis of such nonstandard schemes. We conclude
by considering finite difference approximations of second- and fourth-order elliptic
equations with variable coefficients, and derive sharp error bounds in various mesh-
dependent (discrete) norms, under minimal smoothness requirements on the data
and the associated solution.
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2.2.1 Introduction to the Theory of Finite Difference Schemes

Assuming that Ω is a bounded open set in R
n, we consider a boundary-value prob-

lem on Ω of the general form

Lu = f in Ω, (2.9)

lu = g on Γ = ∂Ω, (2.10)

where L is a linear partial differential operator, and l is a linear operator that speci-
fies the boundary condition. For example, we may have

Lu := −
n∑

i,j=1

∂

∂xj

(
aij (x)

∂u

∂xi

)
+

n∑

i=1

bi(x)
∂u

∂xi

+ c(x)u,

where the aij (x), i, j = 1, . . . , n, satisfy (2.4), with one of the following choices of
the boundary operator l (Dirichlet, Neumann or oblique derivative):

lu := u,

or

lu := ∂u

∂ν
,

or

lu :=
n∑

i,j=1

aij (x)
∂u

∂xi

νj + σ(x)u,

where ν is the unit outward normal vector to Γ , νj is the j th component of ν,
j = 1, . . . , n, and σ is a bounded, nonnegative function defined on Γ .

The construction of a finite difference scheme for the boundary-value problem
(2.9), (2.10) consists of two basic steps: first, the domain Ω is replaced by a finite
set of points, called the mesh or grid, and second, the derivatives in the differential
equation and in the boundary condition are replaced by divided differences. To de-
scribe the first of these two steps more precisely, suppose that we have approximated
Ω = Ω ∪ Γ by the mesh

Ω
h := Ωh ∪ Γ h,

where Ωh ⊂ Ω is the set of interior mesh-points, and Γ h ⊂ Γ is the set of boundary
mesh-points. Typically the mesh consist of a finite set of points obtained by consid-
ering the intersections of n families of parallel hyperplanes, each element of each
family being perpendicular to one of the co-ordinate axes. If the domain Ω is not
axiparallel, adjustments may need to be made to the mesh near the boundary ∂Ω ,
which may be curved. The parameter h = (h1, . . . , hn) measures the spacing of the
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mesh; in particular, hi > 0 denotes the mesh-size in the ith co-ordinate direction.
Once the mesh has been constructed, we proceed by replacing the derivatives fea-
turing in L by divided differences, and approximate the boundary condition in a
similar fashion. This yields a finite difference scheme of the form

LhU(x) = fh(x), x ∈ Ωh, (2.11)

lhU(x) = gh(x), x ∈ Γ h, (2.12)

where Lh and lh are linear difference operators, representing discrete counterparts
of L and l, while fh and gh are suitable approximations of f and g, respectively. In
algebraic terms, (2.11), (2.12) is a system of linear equations involving the values
of the approximate solution U at the mesh-points.

Assuming that (2.11), (2.12) has a unique solution U , when the mesh spacing is
small the sequence of values of the approximate solution at the mesh-points, {U(x) :
x ∈ Ω

h}, is expected to resemble {u(x) : x ∈ Ω
h}, the set of values of the exact

solution u at the mesh-points. However the closeness of U(x) to u(x) at x ∈ Ω
h

is by no means obvious, and the proof of such approximation results represents
the central theme of this book. We shall consider a range of problems of the form
(2.9), (2.10), and derive sharp bounds on the error between the analytical solution
u (typically a weak solution) and its finite difference approximation U in terms of
positive powers of the discretization parameter h. Bounds of this kind imply, in
particular, that the error between the analytical solution u and its finite difference
approximation U converges to zero with a certain rate, in a certain norm, as h → 0.

2.2.2 Finite Difference Approximation in One Space Dimension

In this section we shall focus on the finite difference approximation of a two-point
boundary-value problem. We begin by developing some basic results about mesh-
functions (i.e. functions that are defined on the finite difference mesh), finite differ-
ence operators and mesh-dependent (discrete) norms.

2.2.2.1 Meshes, Mesh-Functions and Mesh-Dependent Norms

Meshes Suppose that N is a positive integer, N ≥ 2, let h := 1/N , and consider
the uniform mesh on the unit interval (0,1) of the real line, defined by

Ωh := {xi : xi = ih, i = 1, . . . ,N − 1}.
We further define

Ω
h := Ωh ∪ {0,1}.
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Let Sh denote the linear space of real-valued functions defined on the mesh Ω
h
,

and let Sh
0 be the linear space of all real-valued functions defined on the mesh Ω

h

that are equal to zero on Γ h := Ω
h \ Ωh. Any element of the set Sh (or of Sh

0 ) will
be referred to as a mesh-function.

For a mesh-function V ∈ Sh we define Vi := V (xi) = V (ih). We equip the linear
space Sh

0 with the inner product

(V ,W)h = (V ,W)L2(Ω
h) :=

∑

x∈Ωh

hV (x)W(x) =
N−1∑

i=1

hViWi, (2.13)

which closely resembles the inner product

(v,w) =
∫ 1

0
v(x)w(x)dx,

of the Hilbert space L2(Ω). The inner product (·, ·)h induces the norm ‖ · ‖h on Sh
0

defined by

‖V ‖h = ‖V ‖L2(Ω
h) := (V ,V )

1/2
h . (2.14)

Analogously, we equip the linear space Sh with the inner product

[V,W ]h = (V ,W)
L2(Ω

h
)
:= h

2

[
V (0)W(0) + V (1)W(1)

]+ (V ,W)h

and the induced norm

|[V ]|h = ‖V ‖
L2(Ω

h
)
:= [V,V ]1/2

h .

We shall also need the meshes

Ωh− := Ωh ∪ {0}, Ωh+ := Ωh ∪ {1}.
On the linear space of real-valued functions defined on the mesh Ωh−, we consider
the inner product

[V,W)h = (V ,W)L2(Ω
h−) :=

∑

x∈Ωh−

hV (x)W(x) =
N−1∑

i=0

hViWi

and the associated norm

|[V ‖h = ‖V ‖L2(Ω
h−) := [V,V )

1/2
h ,

with an analogous definition of the inner product (V ,W ]h = (V ,W)L2(Ω
h+) and the

corresponding norm ‖V ]|h = ‖V ‖L2(Ω
h+) on the linear space of real-valued mesh-

functions defined on Ωh+.
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Finite Difference Operators The forward, backward and central divided differ-
ence operators D+

x , D−
x and D0

x on the mesh Ωh are defined, respectively, by

D+
x V := V + − V

h
, D−

x V := V − V −

h
, D0

xV := 1

2

(
D+

x V + D−
x V

)
,

where we have used the notation

V ± = V ±(x) := V (x ± h).

With these definitions, we have the following discrete Leibniz formulae:

D+
x (V W) = (D+

x V
)
W+ + V

(
D+

x W
)= (D+

x V
)
W + V +(D+

x W
)
,

D−
x (V W) = (D−

x V
)
W− + V

(
D−

x W
)= (D−

x V
)
W + V −(D−

x W
)
,

and the summation-by-parts formula:
[
D+

x V ,W)h = −(V ,D−
x W

]
h

+ V (1)W(1) − V (0)W(0), (2.15)

which immediately yields the following result.

Lemma 2.10 Suppose that V ∈ Sh
0 ; then,

(−D+
x D−

x V ,V
)
h

=
N∑

i=1

h
∣∣D−

x Vi

∣∣2 =
N−1∑

i=0

h
∣∣D+

x Vi

∣∣2. (2.16)

Proof Let us write Ui = D−
x Vi , i = 1, . . . ,N , and note that

(−D+
x D−

x V ,V
)
h

= −(D+
x U,V

)
h

= −[D+
x U,V

)
h

= (U,D−
x V

]
h

= ∥∥D−
x V

]∣∣2
h
,

thanks to our assumption that V ∈ Sh
0 , which implies that V0 = V (0) = 0 and

VN = V (1) = 0, and using the identity (2.15). The second equality in (2.16) fol-
lows simply by noting that D−

x Vi = D+
x Vi−1, i = 1, . . . ,N , and shifting the index i

in the summation. �

The Discrete Laplace Operator on Sh
0 On the set Sh

0 , we define the linear oper-
ator Λ : Sh

0 → Sh
0 by

(ΛV )(x) :=
{

−D+
x D−

x V (x) if x ∈ Ωh,

0 if x ∈ Γ h = Ω
h \ Ωh.

Since

(ΛV,W)h = −(D+
x D−

x V ,W
)
h

= (D−
x V ,D−

x W
]
h

= (D−
x W,D−

x V
]
h

= [
D+

x V ,D+
x W

)
h

= [D+
x W,D+

x V
)
h

= (ΛW,V )h,
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Λ is a symmetric linear operator on Sh
0 . Moreover, thanks to (2.16),

(ΛV,V ) = ∥∥D−
x V

]∣∣2
h

= ∣∣[D+
x V

∥∥2
h

> 0 for all V ∈ Sh
0 \ {0},

and therefore Λ is positive definite on Sh
0 . Thus Λ has N −1 distinct positive eigen-

values, which are easily shown to be (see Samarskiı̆ [159], Sect. 2.4.2)

λk = 4

h2
sin2 kπh

2
, k = 1,2, . . . ,N − 1; (2.17)

these eigenvalues satisfy the inequalities

8 < λk <
4

h2
, k = 1,2, . . . ,N − 1. (2.18)

The corresponding N − 1 eigenfunctions V k , k = 1, . . . ,N − 1, satisfying ΛV k =
λkV

k , are

V k(x) = sin kπx, x ∈ Ω
h
, k = 1,2, . . . ,N − 1.

The set of eigenfunctions {V 1, . . . , V N−1} is an orthogonal system in Sh
0 with re-

spect to the inner product (·, ·)h; that is,

(
V k,V l

)
h

= 1

2
δkl, k, l = 1,2, . . . ,N − 1, (2.19)

where δkl is the Kronecker delta; in fact, {V 1, . . . , V N−1} forms a basis of the linear
space Sh

0 . Consequently an arbitrary mesh-function V ∈ Sh
0 can be expressed as a

linear combination of these eigenfunctions:

V (x) =
N−1∑

k=1

bk sin kπx, x ∈ Ω
h
, (2.20)

where

bk = 2
(
V,V k

)
h
.

By noting the orthogonality of the eigenfunctions we deduce the following discrete
Parseval identity:

‖V ‖2
h = 1

2

N−1∑

k=1

b2
k . (2.21)

Analogously,

∥∥D−
x V

]∣∣2
h

= ∣∣[D+
x V

∥∥2
h

= (ΛV,V )h = 1

2

N−1∑

k=1

λkb
2
k, (2.22)
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∥∥D+
x D−

x V
∥∥2

h
= (ΛV,ΛV )h = 1

2

N−1∑

k=1

λ2
kb

2
k . (2.23)

It follows from (2.18) and (2.21)–(2.23) that

∥∥D+
x D−

x V
∥∥

h
≥ 2

√
2
∥∥D−

x V
]∣∣

h
= 2

√
2
∣∣[D+

x V
∥∥

h
≥ 8‖V ‖h (2.24)

for each V ∈ Sh
0 .

Discrete Sobolev Norms on Sh
0 The discrete analogues of Sobolev seminorms

and norms are defined similarly to their ‘continuous’ counterparts introduced in
Chap. 1. In particular, we define

|V |1,h = |V |W 1
2 (Ωh) := ∥∥D−

x V
]∣∣

h
= ∣∣[D+

x V
∥∥

h
,

|V |2,h = |V |W 2
2 (Ωh) := ∥∥D+

x D−
x V

∥∥
h
,

‖V ‖k,h = ‖V ‖Wk
2 (Ωh) := (‖V ‖2

Wk−1
2 (Ωh)

+ |V |2
Wk

2 (Ωh)

)1/2
,

(2.25)

where k = 1,2, with the convention that W 0
2 (Ωh) = L2(Ω

h). The inequalities
(2.24) imply that the seminorms | · |W 1

2 (Ωh) and | · |W 2
2 (Ωh) are equivalent to the

norms ‖ · ‖W 1
2 (Ωh) and ‖ · ‖W 2

2 (Ωh), respectively, on Sh
0 .

Lemma 2.11 (Discrete Friedrichs Inequality) There exists a positive constant c


such that

‖V ‖2
W 1

2 (Ωh)
≤ c


∥∥D−
x V

∥∥2
L2(Ω

h+)
(2.26)

for all V ∈ Sh
0 .

Proof The last inequality in (2.24) implies (2.26) with c
 = 9/8. �

Lemma 2.12 (Discrete Sobolev Embedding) For all V ∈ Sh
0 the following inequal-

ity holds

‖V ‖∞,h := max
x∈Ω

h
|V (x)| ≤ 1

2

∥∥D−
x V

∥∥
L2(Ω

h+)
(2.27)

Proof Using the Cauchy–Schwarz inequality, we obtain from the identity

|Vi |2 = (1 − ih)|Vi |2 + ih|Vi |2 = (1 − ih)

∣∣∣∣∣

i∑

j=1

(
D−

x Vj

)
h

∣∣∣∣∣

2

+ ih

∣∣∣∣∣

N∑

j=i+1

(
D−

x Vj

)
h

∣∣∣∣∣

2
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that

|Vi |2 ≤ (1 − ih)

(
i∑

j=1

h

)
i∑

j=1

(
D−

x Vj

)2
h + ih

(
N∑

j=i+1

h

)
N∑

j=i+1

(
D−

x Vj

)2
h

= ih(1 − ih)

N∑

j=1

(
D−

x Vj

)2
h.

The required inequality then follows by taking the maximum over the index i ∈
{0,1, . . . ,N} and noting that, for all such i, 0 ≤ ih(1 − ih) ≤ 1/4. �

The Discrete Laplace Operator on Sh We define the linear operator Λ : Sh →
Sh by

(ΛV )(x) :=

⎧
⎪⎨

⎪⎩

− 2
h
D+

x V (0) if x = 0,

−D+
x D−

x V (x) if x ∈ Ωh,
2
h
D−

x V (1) if x = 1.

Assuming that each V ∈ Sh is extended outside Ω
h

as an even function, we have
that

(ΛV )(x) = (−D+
x D−

x V
)
(x) for x ∈ Ω

h
.

The linear operator Λ is symmetric with respect to the inner product [·, ·]h. The
eigenvalues of Λ are given by the formula (2.17), but now for k = 0,1,2, . . . ,N .
In fact, since λ0 = 0 is an eigenvalue, Λ : Sh → Sh is only nonnegative (positive
semidefinite) rather than positive definite; that is,

[ΛV,V ]h ≥ 0 for all V ∈ Sh \ {0}.
The eigenfunctions of Λ corresponding to the eigenvalues λk , k = 0, . . . ,N , are:

W 0(x) = 1, Wk(x) = coskπx, k = 1,2, . . . ,N;
these form an orthogonal system in the sense that

[
Wk,Wl

]
h

=
⎧
⎨

⎩

1 if k = l = 0,N,
1
2 if k = l = 1,2, . . . ,N − 1,
0 if k �= l,

and they span the linear space Sh; hence each mesh-function V ∈ Sh can be ex-
pressed as

V (x) = 1

2
a0 +

N−1∑

k=1

ak coskπx + 1

2
aN cosNπx, (2.28)
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where

ak = 2[V, coskπx]h, for k = 0,1, . . . ,N.

When V ∈ Sh
0 , the expansions (2.20) and (2.28) coincide at all points of the

mesh Ω
h
.

By noting the orthogonality of the eigenfunctions Wk , k = 0, . . . ,N , it is easily
seen that for any mesh-function V contained in Sh the following identities hold:

|[V ]|2h = 1

4
a2

0 + 1

2

N−1∑

k=1

a2
k + 1

4
a2
N,

∥∥D−
x V

]∣∣2
h

= [ΛV,V ]h = 1

2

N−1∑

k=1

λka
2
k + 1

4
λNa2

N,

|[ΛV ]|2h = 1

2

N−1∑

k=1

λ2
ka

2
k + 1

4
λ2

Na2
N.

Next, we introduce analogous discrete Sobolev norms on the linear space Sh,

consisting of all real-valued functions defined on the mesh Ω
h
.

Discrete Sobolev Norms on Sh Similarly as on Sh
0 , we introduce on Sh the fol-

lowing discrete analogues of the Sobolev norms ‖ · ‖Wk
2 (Ω), k = 1,2:

|[V ]|1,h = ‖V ‖
W 1

2 (Ω
h
)
:= (|[V ]|2h + ∥∥D−

x V
]∣∣2

h

)1/2
,

|[V ]|2,h = ‖V ‖
W 2

2 (Ω
h
)
:= (|[V ]|2h + ∥∥D−

x V
]∣∣2

h
+ |[ΛV ]|2h

)1/2
.

Fractional-Order Discrete Sobolev Norms Next we shall define fractional-
order Sobolev norms on Sh

0 and derive an interpolation inequality that relates these
to the integer-order discrete Sobolev norms defined earlier. We shall limit ourselves
to the case when the Sobolev index r is in the range (0,1) ∪ (1,2). We define the
seminorm | · |Wr

2 (Ωh) by

|V |Wr
2 (Ωh) :=

⎧
⎪⎨

⎪⎩

(
h2∑

x,y∈Ω
h
,x �=y

[V (x)−V (y)]2

|x−y|1+2r

)1/2
if 0 < r < 1,

(
h2∑

x,y∈Ωh−,x �=y

[D+
x V (x)−D+

x V (y)]2

|x−y|1+2r

)1/2
if 1 < r < 2,

and we introduce the corresponding fractional-order discrete Sobolev norm

‖V ‖Wr
2 (Ωh) := (‖V ‖2

W
[r]
2 (Ωh)

+ |V |2
Wr

2 (Ωh)

)1/2
, 0 < r < 2, r �= 1.

Higher order fractional-order discrete Sobolev norms can be defined similarly.
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Next we state an interpolation inequality that establishes a relationship between
fractional-order discrete Sobolev norms and the integer-order norms defined earlier.

Lemma 2.13 Suppose that r ∈ (0,1). Then, there exists a positive real number C(r)

such that, for each mesh-function V ∈ Sh
0 ,

‖V ‖Wr
2 (Ωh) ≤ C(r)‖V ‖1−r

L2(Ω
h)

‖V ‖r

W 1
2 (Ωh)

, 0 < r < 1.

Proof Given a mesh-function V ∈ Sh
0 , we decompose it as a finite linear combina-

tion of sine functions, as in (2.20), and define the norm Br(·) on Sh
0 in terms of the

corresponding expansion coefficients bk , k = 1, . . . ,N − 1, by

Br(V ) :=
(

1

2

N−1∑

k=1

k2rb2
k

)1/2

.

It is left to the reader to verify that Br(·) is indeed a norm on Sh
0 . By noting (2.17),

the elementary inequality

sinx ≥ 2

π
x, 0 ≤ x ≤ π/2,

and Hölder’s inequality with exponents p := 1/(1 − r) and p′ := 1/r we obtain

Br(V ) ≤
[

1

2

N−1∑

k=1

(
λk

4

)r

b2
k

]1/2

= 2−r

[
1

2

N−1∑

k=1

b
2(1−r)
k

(
λkb

2
k

)r
]1/2

≤ 2−r

(
1

2

N−1∑

k=1

b2
k

)(1−r)/2(
1

2

N−1∑

k=1

λkb
2
k

)r/2

,

and hence, by the discrete Parseval identities (2.21) and (2.22),

Br(V ) ≤ 2−r‖V ‖1−r

L2(Ω
h)

|V |r
W 1

2 (Ωh)
. (2.29)

The rest of the proof is devoted to showing that the norm Br(·) is equivalent to
‖ · ‖Wr

2 (Ωh). For this purpose, we extend the function V ∈ Sh
0 from

Ω
h = {kh : k = 0, . . . ,N}

to the mesh

{kh : k = 0,±1,±2, . . . ,±N}
as an odd function; that is, V (−x) := −V (x) for each x in Ω

h
. The resulting func-

tion is then further extended to the infinite lattice

hZ = {kh : k = 0,±1,±2, . . .}
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as a 2-periodic function; as before, h := 1/N and N ≥ 2. Let ωh := (−1,1) ∩ hZ

and ωh := [−1,1] ∩ hZ. For mesh-functions V defined on ωh we consider

Nr(V ) :=
{

h2

∑

x∈ωh


∑

t∈ωh,t �=0

[V (x) − V (x − t)]2

|t |1+2r

}1/2

,

where

h


∑

x∈ωh

W(x) := 1

2
h
[
W(−1) + W(1)

]+ h
∑

x∈ωh

W(x) = [W,1]L2(ω
h).

By noting the periodicity of the extended function (still denoted by V ) and the ex-
pansion (2.20), we obtain

Nr(V )2 = h2

∑

x∈ωh


∑

t∈ωh,t �=0

|t |−1−2rV (x)
[−V (x − t) + 2V (x) − V (x + t)

]

= h2

∑

x∈ωh


∑

t∈ωh,t �=0

|t |−1−2r
N−1∑

l=1

bl sin lπx

N−1∑

k=1

4bk sin2 kπt

2
sin kπx

=
N−1∑

l=1

N−1∑

k=1

blbkh


∑

x∈ωh

sin lπx sin kπxh


∑

t∈ωh,t �=0

|t |−1−2r4 sin2 kπt

2

= 8
N−1∑

k=1

b2
kh



∑

t∈Ωh+

t−1−2r sin2 kπt

2
.

Here we have used the notation

h



∑

t∈Ωh+

W(t) := h
∑

t∈Ωh

W(t) + 1

2
hW(1) = (W,1)h + 1

2
hW(1).

After further transformation, we obtain

Nr(V )2 = 16

(
π

2

)2r 1

2

N−1∑

k=1

k2rb2
kC(k, r),

where

C(k, r) := kπh

2



∑

t∈Ωh+

(
kπt

2

)−1−2r

sin2 kπt

2
.
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It is easily seen that C(k, r) is the Riemann sum for the integral

∫ kπ/2

0
x−1−2r sin2 x dx

and can be therefore bounded from below and above as follows:

1

8

(
2

π

)2r

≤ C(k, r) ≤ π2−2r

(
1 + 1

2 − 2r

)
+ 1

2r

(
2

π

)2r

.

Thus we deduce that Nr(·) and Br(·) are equivalent norms on Sh
0 .

By noting inequality (2.29), the equivalence of the seminorm | · |W 1
2 (Ωh) and the

norm ‖ · ‖W 1
2 (Ωh) on the linear space Sh

0 , in conjunction with the obvious inequality
|V |Wr

2 (Ωh) ≤ Nr(V ), we then arrive at the desired inequality. That completes the
proof. �

Remark 2.7 The lemma can also be proved by using the cosine expansion (2.28)
and the norm

Ar(V ) :=
(

1

2

N−1∑

k=1

k2ra2
k + 1

4
N2ra2

N

)1/2

.

It can be shown that this norm is equivalent to Nr(·), provided that V has been

extended periodically outside Ω
h

as an even function.

Remark 2.8 A similar argument shows, for r ∈ (1,2), that there exists a positive
real number C1(r) such that

‖V ‖Wr
2 (Ωh) ≤ C1(r)‖V ‖2−r

W 1
2 (Ωh)

‖V ‖r−1
W 2

2 (Ωh)
, 1 < r < 2.

Remark 2.9 Finally we note that, similarly as on Sh
0 , one can define a fractional-

order discrete Sobolev norm on Sh as follows:

‖V ‖2
Wr

2 (Ω
h
)
:= (‖V ‖2

W
[r]
2 (Ω

h
)
+ |V |2

Wr
2 (Ωh)

)1/2
, 0 < r < 2, r �= 1.

After this brief summary of notational conventions in one dimension, we consider
a simple one-dimensional model problem, construct its finite difference approxima-
tion and derive bounds on the error, in the discrete norms defined above, between
the analytical solution and its finite difference approximation.

2.2.3 Finite Difference Scheme for a Univariate Problem

We give a simple illustration of the general framework of finite difference ap-
proximation by considering the following two-point boundary-value problem for
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a second-order linear (ordinary) differential equation:

−u′′ + c(x)u = f (x), x ∈ (0,1), (2.30)

u(0) = 0, u(1) = 0. (2.31)

We shall assume that c ≥ 0 almost everywhere on (0,1), c ∈ L∞(0,1) and f ∈
W−1

2 (0,1).
The first step in the construction of a finite difference scheme for this boundary-

value problem is to define the mesh. Let N be an integer, N ≥ 2, and let h := 1/N

be the mesh-size; the mesh-points are xi := ih, i = 0, . . . ,N . We then define

Ωh := {xi : i = 1, . . . ,N − 1},
Γ h := {x0, xN } and Ω

h := Ωh ∪ Γ h.

Let us suppose that the unique weak solution u ∈ W̊ 1
2 (0,1) to this boundary-

value problem is sufficiently smooth (e.g. u ∈ C4([0,1])). Then, by Taylor series
expansion of u about the mesh-point xi , 1 ≤ i ≤ N − 1, we deduce that, as h → 0,

u(xi±1) = u(xi ± h)

= u(xi) ± hu′(xi) + h2

2
u′′(xi) ± h3

6
u′′′(xi) +O

(
h4),

so that

D+
x u(xi) := u(xi+1) − u(xi)

h
= u′(xi) +O(h),

D−
x u(xi) := u(xi) − u(xi−1)

h
= u′(xi) +O(h),

D0
xu(xi) := u(xi+1) − u(xi−1)

2h
= u′(xi) +O

(
h2)

and

D+
x D−

x u(xi) = D−
x D+

x u(xi)

= u(xi+1) − 2u(xi) + u(xi−1)

h2

= u′′(xi) +O
(
h2).

Recall that D+
x and D−

x are called the forward and backward divided difference
operator, respectively, D0

x is referred to as the central-difference operator, while
D+

x D−
x is the (symmetric) second divided difference operator. It follows from these

Taylor series expansions that, for a sufficiently smooth function u (e.g. for u ∈
C2([0,1])), D+

x u(xi) and D+
x u(xi) approximate u′(xi) to O(h) for i = 0, . . . ,N −1
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and i = 1, . . . ,N , respectively, while the central difference approximation D0
xu(xi)

is more accurate: it approximates u′(xi) to O(h2) for i = 1, . . . ,N −1 (provided that
u ∈ C3([0,1]). Similarly, the second divided difference D+

x D−
x u(xi) is an O(h2) ap-

proximation to u′′(xi), i = 1, . . . ,N −1, (as long as u ∈ C4([0,1]). Thus we replace
the second derivative u′′ in (2.30) by the second divided difference to obtain

−D+
x D−

x u(xi) + c(xi)u(xi) ≈ f (xi), i = 1, . . . ,N − 1, (2.32)

u(x0) = 0, u(xN) = 0. (2.33)

Here we have implicitly assumed that both c and f are continuous functions on the
interval (0,1); thus, c(xi) and f (xi) are correctly defined for all i = 1, . . . ,N − 1.
We shall also suppose that

c(x) ≥ 0 ∀x ∈ (0,1). (2.34)

Now (2.32) and (2.33) indicate that we should seek our approximation U to u by
solving the system of difference equations:

−D+
x D−

x Ui + c(xi)Ui = f (xi), i = 1, . . . ,N − 1, (2.35)

U0 = 0, UN = 0. (2.36)

Using matrix notation, this can be written as

AU = F,

where

A :=

⎡

⎢⎢⎢⎢⎢⎢⎣

2
h2 + c(x1) − 1

h2 0
− 1

h2
2
h2 + c(x2) − 1

h2

. . .
. . .

. . .

− 1
h2

2
h2 + c(xN−2) − 1

h2

0 − 1
h2

2
h2 + c(xN−1)

⎤

⎥⎥⎥⎥⎥⎥⎦
,

U := (U1,U2, . . . ,UN−1)
T

and

F := (f (x1), f (x2), . . . , f (xN−1)
)T

.

Thus A is a symmetric tridiagonal (N − 1) × (N − 1) matrix, and U and F are
column vectors of size N − 1.

We begin the analysis of the finite difference scheme (2.35), (2.36) by showing
that it has a unique solution; this will be achieved by proving that the matrix A is
nonsingular. For this purpose, we introduce the inner product (2.13). Let Sh

0 denote
the set of all real-valued functions V defined at the mesh-points xi , i = 0, . . . ,N ,
such that V0 = VN = 0.
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We define the linear operator A : Sh
0 → Sh

0 by

(AV )i := −D+
x D−

x Vi + c(xi)Vi, i = 1, . . . ,N − 1,

(AV )0 = (AV )N := 0.

Returning to the finite difference scheme (2.35), (2.36) and using Lemma 2.10 and
(2.34), we see that, for V ∈ Sh

0 ,

(AV,V )h = (−D+
x D−

x V + cV,V
)
h

= (−D+
x D−

x V ,V
)
h

+ (cV,V )h

≥
N∑

i=1

h
∣∣D−

x Vi

∣∣2 = ∥∥D−
x V

∥∥2
L2(Ω

h+)
, (2.37)

where the norm ‖ · ‖L2(Ω
h+) has been defined in the previous section. Thus, if AV =

0 for some V , then D−
x Vi = 0, i = 1, . . . ,N ; because V0 = VN = 0, this implies

that Vi = 0, i = 0, . . . ,N . Hence AV = 0 if, and only if, V = 0. We deduce that
A : Sh

0 → Sh
0 is invertible and, consequently, A is a nonsingular matrix; thus (2.35),

(2.36) has a unique solution, U = A−1F . We summarize our findings in the next
theorem.

Theorem 2.14 Suppose that c and f are continuous functions on the interval (0,1),
and c(x) ≥ 0 for x ∈ (0,1); then, the finite difference scheme (2.35), (2.36) pos-
sesses a unique solution U in Sh

0 .

We note that by Theorem 2.7, for c ∈ C([0,1]) satisfying (2.34) and f ∈
C([0,1]), the boundary-value problem (2.30), (2.31) has a unique weak solution
u ∈ W̊ 1

2 (0,1); in fact, by Sobolev’s embedding theorem u belongs to C([0,1]) and
therefore u′′ = f − cu ∈ C([0,1]). However to derive an error bound between u and
its finite difference approximation U we shall have to assume that u is even more
regular (the precise regularity hypothesis required in the analysis will be stated be-
low). A key ingredient in our error analysis will be the fact that the scheme (2.35),
(2.36) is stable (or discretely well-posed) in the sense that “small” perturbations in
the data result in “small” perturbations in the corresponding finite difference so-
lution. Actually, we shall prove the discrete version of the inequality appearing in
Remark 2.6. For this purpose, we shall consider the discrete L2 norm (2.14) and
the discrete Sobolev norm (2.25). From (2.37) and the discrete Friedrichs inequality
(2.26) we deduce, with c0 = 1/c
 = 8/9, that

(AV,V )h ≥ c0‖V ‖2
W 1

2 (Ωh)
. (2.38)

Now the stability of the finite difference scheme (2.35), (2.36) easily follows.
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Theorem 2.15 The scheme (2.35), (2.36) is stable in the sense that

‖U‖W 1
2 (Ωh) ≤ 1

c0
‖f ‖L2(Ω

h), (2.39)

where c0 = 8/9.

Proof From (2.38) and (2.35) we have that

c0‖U‖2
W 1

2 (Ωh)
≤ (AU,U)h = (f,U)h

≤ ‖f ‖L2(Ω
h)‖U‖L2(Ω

h) ≤ ‖f ‖L2(Ω
h)‖U‖W 1

2 (Ωh),

and hence we deduce (2.39). �

Theorem 2.15 implies that if U1 and U2 are solutions of the problem (2.35),
(2.36) corresponding to right-hand sides f1 and f2, respectively, then

‖U1 − U2‖W 1
2 (Ωh) ≤ 1

c0
‖f1 − f2‖L2(Ω

h).

Therefore, in analogy with the boundary-value problem (2.30), (2.31), the difference
scheme (2.35), (2.36) is well-posed in the sense of Remark 2.6. It is important to
note that the ‘stability constant’ 1/c0 is independent of the discretization parameter
h: the spacing of the finite difference mesh.

By exploiting this stability result it is easy to derive a bound on the error between
the analytical solution u, and its finite difference approximation U . We define the
global error, e, by

ei := u(xi) − Ui, i = 0, . . . ,N.

Obviously e0 = 0, eN = 0, and

Aei = ϕi, i = 1, . . . ,N − 1, (2.40)

where the mesh-function ϕ, defined by

ϕi := Au(xi) − f (xi), i = 1, . . . ,N − 1,

is called the truncation error of the finite difference scheme. A simple calculation
using (2.30) reveals that

ϕi = u′′(xi) − D+
x D−

x u(xi), i = 1, . . . ,N − 1.

Since the global error satisfies (2.40), we can apply (2.39) to deduce that

‖u − U‖W 1
2 (Ωh) = ‖e‖W 1

2 (Ωh) ≤ 1

c0
‖ϕ‖L2(Ω

h). (2.41)
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It remains to bound ‖ϕ‖L2(Ω
h).

Assuming now that u ∈ C4([0,1]), the Taylor series expansions stated at the
beginning of this section imply that

ϕi = u′′(xi) − D+
x D−

x u(xi) = O
(
h2);

thus, there exists a positive constant C, independent of h, such that

|ϕi | ≤ Ch2.

Consequently,

‖ϕ‖L2(Ω
h) =

(
N−1∑

i=1

h|ϕi |2
)1/2

≤ Ch2. (2.42)

Combining (2.41) and (2.42), it follows that

‖u − U‖W 1
2 (Ωh) ≤ C

c0
h2. (2.43)

In fact, a more careful treatment of the remainder term in the Taylor series expansion
of u reveals that, for i = 1, . . . ,N − 1,

ϕi = u′′(xi) − D+
x D−

x u(xi) = − 1

12
h2u′′′′(ξi), ξi ∈ (xi−1, xi+1).

Thus

|ϕi | ≤ 1

12
h2 max

x∈[0,1]
∣∣u′′′′(x)

∣∣, (2.44)

and hence

C = 1

12
max

x∈[0,1]
∣∣u′′′′(x)

∣∣

in (2.42). As c0 = 1/c
 and c
 = 9/8, we deduce that c0 = 8/9. Substituting the
values of the constants C and c0 into (2.43), it follows that

‖u − U‖W 1
2 (Ωh) ≤ 3

32
h2
∥∥u′′′′∥∥

C([0,1]).

Thus we have proved the following result.

Theorem 2.16 Let f ∈ C([0,1]), c ∈ C([0,1]), with c(x) ≥ 0 for all x ∈ [0,1],
and suppose that the corresponding solution of the boundary-value problem (2.30),
(2.31) belongs to C4([0,1]); then,

‖u − U‖W 1
2 (Ωh) ≤ 3

32
h2
∥∥u′′′′∥∥

C([0,1]). (2.45)
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We note that by the argument following Theorem 2.14 the hypotheses f ∈
C([0,1]), c ∈ C([0,1]), c ≥ 0 imply that the unique weak solution of the boundary-
value problem (2.30), (2.31) belongs to C2([0,1]), and it is therefore a classical
solution. Thus, the word solution in this theorem means classical solution.

It follows from (2.37) with V = e, (2.40), the Cauchy–Schwarz inequality, the
last inequality in (2.24), (2.27) and (2.44) that

‖u − U‖∞,h ≤ 1

48
√

2
h2
∥∥u′′′′∥∥

C([0,1]). (2.46)

We thus deduce the following result.

Theorem 2.17 Suppose that the assumptions of Theorem 2.16 are satisfied; then,
the error bound (2.46) holds.

This simple stability and error analysis of the finite difference scheme (2.35),
(2.36) already contains the key ingredients of a general error analysis of finite dif-
ference approximations, and it is instructive to highlight them here.

(1) The first step is to prove the stability of the scheme in an appropriate mesh-
dependent norm (cf. (2.39), for example). A typical stability result for the ab-
stract finite difference scheme (2.11), (2.12) considered at the beginning of the
section is of the form

c0 �U �Ωh ≤ ‖fh‖Ωh + ‖gh‖Γ h, (2.47)

where �·�Ωh , ‖ · ‖Ωh and ‖ · ‖Γ h are mesh-dependent norms involving mesh-

points of Ωh (or Ω
h
) and Γ h, respectively, and c0 is a positive constant, inde-

pendent of h.
(2) The second step is to estimate the size of the truncation error,

ϕΩh := Lhu − fh in Ωh,

ϕΓ h := lhu − gh on Γ h.

In the case of the finite difference scheme (2.11), (2.12), ϕΓ h = 0, and therefore
ϕΓ h did not appear explicitly in our error analysis. If

‖ϕΩh‖Ωh + ‖ϕΓ h‖Γ h → 0 as h → 0,

for a sufficiently smooth solution u of (2.9), (2.10), we say that the scheme
(2.11), (2.12) is consistent. If p is the largest positive real number such that

‖ϕΩh‖Ωh + ‖ϕΓ h‖Γ h ≤ Chp as h → 0,

(where C is a positive constant independent of h) for all sufficiently smooth u,
then the scheme is said to have order of accuracy p.
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The finite difference scheme (2.11), (2.12) is said to converge to (2.9), (2.10)
(and U is said to converge to u) in the norm �·�Ωh , if

�u − U �Ωh → 0 as h → 0.

If q is the largest positive real number such that, for all u sufficiently smooth,

�u − U �Ωh ≤ Chq as h → 0

(where C is a positive constant independent of h), then the scheme is said to have
order of convergence q .

From these definitions we deduce the following fundamental theorem.

Theorem 2.18 Suppose that the finite difference scheme (2.11), (2.12) for problem
(2.9), (2.10) is stable (i.e. (2.47) holds for all fh and gh and corresponding solution
U , with c0 independent of h) and that the scheme is consistent; then (2.11), (2.12) is
a convergent approximation of (2.9), (2.10) and the order of convergence is not less
than the order of accuracy.

Proof We define the global error e := u − U ; then,

Lhe = Lh(u − U) = Lhu − LhU = Lhu − fh.

Thus,

Lhe = ϕΩh

and similarly

lhe = ϕΓ h.

By stability,

c0 �u − U �Ωh = c0 �e�Ωh ≤ ‖ϕΩh‖Ωh + ‖ϕΓ h‖Γ h,

and hence we arrive at the stated result. �

Paraphrasing Theorem 2.18, stability and consistency of the scheme imply its
convergence. This abstract result is at the heart of the error analysis of finite differ-
ence approximations of differential equations.

2.2.4 The Multi-dimensional Case

Since the two-dimensional case is sufficiently representative, for the sake of nota-
tional simplicity we shall confine our attention to elliptic boundary-value problems
in the plane.
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Meshes and Divided Difference Operators Assuming that N is an integer,
N ≥ 2, we shall use a uniform square mesh Ωh with mesh-size h := 1/N over the
unit square Ω := (0,1)2, defined by

Ωh := {x = (x1, x2) = (ih, jh) : i, j = 1, . . . ,N − 1
}
,

and the square mesh

Ω
h := {(ih, jh) : i, j = 0, . . . ,N

}
.

Let Γ := ∂Ω be the boundary of Ω and define

Γ h := hZ2 ∩ Γ = Ω
h \ Ωh.

Analogously, let

Γik := {x ∈ Γ : xi = k, 0 < x3−i < 1}, i = 1,2, k = 0,1,

and define

Γ h
ik := Γik ∩ hZ2, Γ

h

ik := Γ ik ∩ hZ2, Γ h∗ := Γ h \ (∪i,kΓ
h
ik

)
.

Let us also introduce

Ωh
i := Ωh ∪ Γ h

i0, Ωh
i+2 := Ωh ∪ Γ h

i1, i = 1,2,

Ωh
kl := Ωh ∪ Γ h

1k ∪ Γ h
2l ∪ {(k, l)

}
, k, l = 0,1.

Let Sh be the set of all real-valued functions defined on the mesh Ω
h
. We shall

use the notation Vij := V (ih, jh). By Sh
0 we denote the set of all real-valued func-

tions defined on the mesh Ω
h

that vanish at all points of Γ h. The set Sh
0 is equipped

with the inner product

(V ,W)h = (V ,W)L2(Ω
h) := h2

∑

x∈Ωh

V (x)W(x) = h2
N−1∑

i,j=1

VijWij , (2.48)

and the norm

‖V ‖h = ‖V ‖L2(Ω
h) := (V ,V )

1/2
h .

The norms ‖ · ‖L2(Ω
h
i ) and ‖ · ‖L2(Ω

h
kl)

are defined analogously to ‖ · ‖L2(Ω
h).

The forward, backward and central divided difference operators on the mesh Ωh

are defined analogously as in the one-dimensional case:

D+
xi

V := V +i − V

h
, D−

xi
V := V − V −i

h
, D0

xi
V := 1

2

(
D+

xi
V + D−

xi
V
)
,
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where

V ±i := V ±i (x) = V (x ± hei ), ei := (δi1, δi2), i = 1,2,

and δik is the Kronecker delta.

Discrete Sobolev Norms Analogously as in the one-dimensional case, we define
the following discrete Sobolev seminorms on Sh:

|V |W 1
2 (Ωh) := (∥∥D+

x1
V
∥∥2

L2(Ω
h
1 )

+ ∥∥D+
x2

V
∥∥2

L2(Ω
h
2 )

)1/2

= (∥∥D−
x1

V
∥∥2

L2(Ω
h
3 )

+ ∥∥D−
x2

V
∥∥2

L2(Ω
h
4 )

)1/2
,

|V |W 2
2 (Ωh) := (∥∥D+

x1
D−

x1
V
∥∥2

L2(Ω
h)

+ ∥∥D+
x1

D+
x2

V
∥∥2

L2(Ω
h
00)

+ ∥∥D+
x2

D−
x2

V
∥∥2

L2(Ω
h)

)1/2

(2.49)

and the corresponding discrete Sobolev norms

‖V ‖Wk
2 (Ωh) := (‖V ‖2

Wk−1
2 (Ωh)

+ |V |2
Wk

2 (Ωh)

)1/2
, k = 1,2, (2.50)

with the notational convention W 0
2 (Ωh) := L2(Ω

h).
Let us also introduce the following inner products

[V,W ]h := h2
∑

x∈Ωh

V (x)W(x) + h2

2

∑

x∈Γ h\Γ h∗

V (x)W(x) + h2

4

∑

x∈Γ h∗

V (x)W(x),

[V,W ]i,h := h2
∑

x∈Ωh
i

V (x)W(x) + h2

2

∑

x∈Γ h\(Γ h
i0∪Γ

h
i1)

V (x)W(x), i = 1,2,

and the associated norms

|[V ]|h = |[V ]|L2(Ω
h) := [V,V ]1/2

h ,

|[V ]|i = |[V ]|i,h := [V,V ]1/2
i,h .

In analogy with the one-dimensional case, we define the following discrete
Sobolev seminorms and norms on Sh:

[V ]W 1
2 (Ωh) := (∣∣[D+

x1
V
]∣∣2

1 + ∣∣[D+
x2

V
]∣∣2

2

)1/2
,

[V ]W 2
2 (Ωh) := (|[Λ1V ]|2

L2(Ω
h)

+ ∥∥D+
x1

D+
x2

V
∥∥2

L2(Ω
h
00)

+ |[Λ2V ]|2
L2(Ω

h)

)1/2
,

|[V ]|Wk
2 (Ωh) := (|[V ]|2

Wk−1
2 (Ωh)

+ [V ]2
Wk

2 (Ωh)

)1/2
, k = 1,2,
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where

(ΛiV )(x) :=

⎧
⎪⎨

⎪⎩

− 2
h
D+

xi
V if x ∈ Γ

h

i0,

−D+
xi

D−
xi

V (x) if x ∈ Ωh ∪ Γ h
3−i,0 ∪ Γ h

3−i,1,

2
h
D−

xi
V if x ∈ Γ

h

i1.

The Discrete Laplace Operator on Sh
0 We consider the discrete analogue of the

Laplace operator in two space dimensions, defined on hZ2 by

ΔhV := D+
x1

D−
x1

V + D+
x2

D−
x2

V.

The mapping Λ : Sh
0 → Sh

0 defined, for V ∈ Sh
0 , by

(ΛV )(x) =
{−(ΔhV )(x) if x ∈ Ωh,

0 if x ∈ Γ h,

positive definite operator with respect to the inner product (·, ·)h. In particular, for
V ∈ Sh

0 we have that

(ΛV,V )h = (−ΔhV,V )h = |V |2
W 1

2 (Ωh)
. (2.51)

Furthermore,

‖ΔhV ‖2
h = ∥∥D+

x1
D−

x1
V
∥∥2

L2(Ω
h)

+ 2
∥∥D+

x1
D+

x2
V
∥∥2

L2(Ω
h
00)

+ ∥∥D+
x2

D−
x2

V
∥∥2

L2(Ω
h)

,

and therefore,

‖ΔhV ‖2
h ≥ |V |2

W 2
2 (Ωh)

.

Similarly,

‖ΔhV ‖2
h ≥ 16(−ΔhV,V )h ≥ 162‖V ‖2

h = 162‖V ‖2
L2(Ω

h)

and

|V |W 2
2 (Ωh) ≥ 2

√
2|V |W 1

2 (Ωh) ≥ 8
√

2‖V ‖L2(Ω
h), V ∈ Sh

0 . (2.52)

Consequently, on the linear space Sh
0 the seminorms | · |W 1

2 (Ωh) and | · |W 2
2 (Ωh) are

equivalent to the norms ‖ · ‖W 1
2 (Ωh) and ‖ · ‖W 2

2 (Ωh), respectively.

Lemma 2.19 (Discrete Friedrichs Inequality) There exists a positive real number
c
, independent of h, such that

‖V ‖2
W 1

2 (Ωh)
≤ c


(∥∥D+
x1

V
∥∥2

L2(Ω
h
1 )

+ ∥∥D+
x2

V
∥∥2

L2(Ω
h
2 )

)
(2.53)

for all V in Sh
0 .
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Proof Inequality (2.53) with c
 = 17/16 follows directly from the definition (2.49)
of the seminorm | · |W 1

2 (Ωh) and the second inequality in (2.52). �

Fractional-Order Discrete Sobolev Norms We define the fractional-order dis-
crete Sobolev seminorm | · |Wr

2 (Ωh) by

|V |2
Wr

2 (Ωh)
:=

2∑

i=1

h3
Nh∑

xi ,ti=0
xi �=ti

(N−1)h∑

x3−i=h

[V (x) − V (tiei + x3−ie3−i )]2

|xi − ti |1+2r

if 0 < r < 1, and by

|V |2
Wr

2 (Ωh)
:=

2∑

i=1

h3
(N−1)h∑

xi ,ti=0
xi �=ti

(N−1)h∑

x3−i=0

[D+
xi

V (x) − D+
xi

V (tiei + x3−ie3−i )]2

|xi − ti |1+2(r−1)

+
2∑

i=1

h3
Nh∑

x3−i ,t3−i=0
x3−i �=t3−i

(N−1)h∑

xi=0

[D+
xi

V (x) − D+
xi

V (xiei + t3−ie3−i )]2

|x3−i − t3−i |1+2(r−1)

if 1 < r < 2. We also introduce the associated fractional-order discrete Sobolev
norm by

‖V ‖Wr
2 (Ωh) := (‖V ‖2

W
[r]
2 (Ωh)

+ |V |2
Wr

2 (Ωh)

)1/2
, 0 < r < 2, r �= 1.

Similarly as in one dimension, we have the interpolation inequalities

‖V ‖Wr
2 (Ωh) ≤ C(r)‖V ‖1−r

L2(Ω
h)

‖V ‖r

W 1
2 (Ωh)

, 0 < r < 1,

‖V ‖Wr
2 (Ωh) ≤ C(r)‖V ‖2−r

W 1
2 (Ωh)

‖V ‖r−1
W 2

2 (Ωh)
, 1 < r < 2,

(2.54)

which follow directly from their one-dimensional counterparts.

2.2.5 Approximation of a Generalized Poisson Problem

In Sect. 2.2.3 we presented a detailed error analysis for a finite difference approx-
imation of a simple two-point boundary-value problem. Here we shall undertake a
similar study for the generalized Poisson equation in two space dimensions subject
to a homogeneous Dirichlet boundary condition:

−Δu + c(x, y)u = f (x, y) in Ω, (2.55)

u = 0 on Γ = ∂Ω, (2.56)
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where Ω := (0,1)× (0,1), c is a continuous function on Ω and c(x, y) ≥ 0. For the
sake of notational simplicity we have denoted the two independent variables by x

and y, instead of x1 and x2. As far as the smoothness of the function f is concerned,
we shall consider two distinct cases:

(a) First we shall assume that f is continuous on Ω . In this case, the error analysis
proceeds along the same lines as in Sect. 2.2.3.

(b) We shall then consider the case when f is in L2(Ω) only; then the boundary-
value problem (2.55), (2.56) does not necessarily have a classical solution; nev-
ertheless, a weak solution still exists. This lack of smoothness gives rise to some
technical difficulties both in the formulation of an adequate finite difference
scheme and its error analysis. Since the point values of f need not be mean-
ingful at the mesh-points (after all, f can be changed on a subset of Ω of zero
Lebesgue measure without altering it as an element of L2(Ω)), instead of sam-
pling the function f at the mesh-points we shall sample a mollified right-hand
side Thf . Also, since the analytical solution may not have a Taylor expansion
with the required number of terms, we shall apply a different technique, based
on integral representation theorems, to estimate the size of the truncation error.

We begin by considering the first of these two cases.
(a) (f ∈ C(Ω)) The first step in the construction of the finite difference approx-

imation to (2.55), (2.56) is to define the mesh. Let N be an integer, N ≥ 2, and let
h := 1/N ; the mesh-points are (xi, yj ), i, j = 0, . . . ,N , where xi := ih, yj := jh.
These mesh-points form the mesh

Ω
h := {(xi, yj ) : i, j = 0, . . . ,N

}
.

Similarly as in Sect. 2.2.2, we consider the set of interior mesh-points

Ωh := {(xi, yj ) : i, j = 1, . . . ,N − 1
}

and the set of boundary mesh-points

Γ h := Ω
h \ Ωh.

In analogy with (2.35), (2.36), the finite difference approximation of (2.55), (2.56)
is:

−(D+
x D−

x Uij + D+
y D−

y Uij

)+ c(xi, yj )Uij = f (xi, yj ), (xi, yj ) ∈ Ωh, (2.57)

U = 0 on Γ h. (2.58)

In expanded form, this can be written as follows:

−
(

Ui+1,j − 2Uij + Ui−1,j

h2
+ Ui,j+1 − 2Uij + Ui,j−1

h2

)
+ c(xi, yj )Uij

= f (xi, yj ) if (xi, yj ) ∈ Ωh, (2.59)
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Fig. 2.1 The set of interior mesh-points Ωh, denoted by •, the set of boundary mesh-points Γ h,
denoted by ×, and a typical five-point difference stencil

Uij = 0 if (xi, yj ) ∈ Γ h, (2.60)

where the divided difference operators D±
x = D±

x1
and D±

y = D±
x2

have been defined
in Sect. 2.2.2.

For each i and j , 1 ≤ i, j ≤ N − 1, the finite difference equation (2.59) involves
five values of the approximate solution U : Ui,j , Ui−1,j , Ui+1,j , Ui,j−1, Ui,j+1, as
indicated in Fig. 2.1; hence its name: five-point difference scheme. It is possible to
write (2.59), (2.60) as a system of linear equations

AU = F, (2.61)

where

U := (U11,U12, . . . ,U1,N−1,U21,U22, . . . ,U2,N−1, . . . ,

. . . ,Ui1,Ui2, . . . ,Ui,N−1, . . . ,UN−1,1,UN−1,2, . . . ,UN−1,N−1)
T,

F := (F11,F12, . . . ,F1,N−1,F21,F22, . . . ,F2,N−1, . . . ,

. . . ,Fi1,Fi2, . . . ,Fi,N−1, . . . ,FN−1,1,FN−1,2, . . . ,FN−1,N−1)
T,
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Fig. 2.2 The sparsity
structure of the banded matrix
A: K is an (N − 1)× (N − 1)

symmetric tridiagonal matrix,
J = (−1/h2)I , I is the
(N − 1) × (N − 1) identity
matrix, and O is the
(N − 1) × (N − 1) zero
matrix

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

K J O O · · · O O

J K J O · · · O O

O J K J · · · O O

O O J K · · · O O

· · · · · · · · · · · · · · · · · · · · ·
O O O O · · · K J

O O O O · · · J K

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

and A is an (N − 1)2 × (N − 1)2 sparse, banded matrix.
A typical row of the matrix contains five nonzero entries, corresponding to the

five values of U in the finite difference stencil shown in Fig. 2.1, while the sparsity
structure of A is indicated in Fig. 2.2.

Next we show that (2.57), (2.58) has a unique solution. We proceed in the same
way as in the previous section for the finite difference approximation of the two-
point boundary-value problem. For two functions, V and W , defined on Ωh, we
introduce the discrete L2-inner product (2.48):

(V ,W)h :=
N−1∑

i=1

N−1∑

j=1

h2VijWij .

Again, let Sh
0 denote the set of functions V defined on Ω

h
such that V = 0 on Γ h.

We define the linear operator

A : Sh
0 → Sh

0

at mesh-points of Ωh and Γ h, respectively, as follows:

(AV )ij := −(D+
x D−

x Vij + D+
y D−

y Vij

)+ c(xi)Vi, i, j = 1, . . . ,N − 1,

(AV )i0 = (AV )iN = (AV )0j = (AV )Nj := 0, i, j = 0, . . . ,N.

Returning to the analysis of the finite difference scheme (2.57), (2.58), we note
that, since c(x, y) ≥ 0 on Ω , by (2.51) and (2.49) we have that

(AV,V )h = (−D+
x D−

x V − D+
y D−

y V + cV,V
)
h

= (−D+
x D−

x V ,V
)
h

+ (−D+
y D−

y V ,V
)
h

+ (cV,V )h

≥
N∑

i=1

N−1∑

j=1

h2
∣∣D−

x Vij

∣∣2 +
N−1∑

i=1

N∑

j=1

h2
∣∣D−

y Vij

∣∣2, (2.62)

for any V in Sh
0 . This implies, just as in the one-dimensional analysis presented in

the previous section, that A is a nonsingular matrix. Indeed if AV = 0, then (2.62)
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yields:

D−
x Vij = Vij − Vi−1,j

h
= 0,

i = 1, . . . ,N,

j = 1, . . . ,N − 1;

D−
y Vij = Vij − Vi,j−1

h
= 0,

i = 1, . . . ,N − 1,

j = 1, . . . ,N.

Since V = 0 on Γ h, these imply that V = 0 on Ω
h
. Thus AV = 0 if, and only if,

V = 0. Hence A is nonsingular, and U = A−1F is the unique solution of (2.57),
(2.59); the solution may be found by solving the system of linear equations (2.61).

In order to prove the stability of the finite difference scheme (2.57), (2.58), we
consider, similarly as in the one-dimensional case, the discrete L2 norm

‖V ‖L2(Ω
h) := (V ,V )

1/2
h ,

and the discrete W 1
2 norm (see (2.50))

‖V ‖W 1
2 (Ωh) := (‖V ‖2

L2(Ω
h)

+ ∥∥D−
x V

∥∥2
L2(Ω

h
x )

+ ∥∥D−
y V

∥∥2
L2(Ω

h
y )

)1/2
,

where

Ωh
x := Ωh

3 = {(xi, yj ) : i = 1, . . . ,N, j = 1, . . . ,N − 1
}
,

Ωh
y := Ωh

4 = {(xi, yj ) : i = 1, . . . ,N − 1, j = 1, . . . ,N
}
.

The norm ‖·‖W 1
2 (Ωh) is the discrete analogue of the Sobolev norm ‖·‖W 1

2 (Ω) defined
by

‖u‖W 1
2 (Ω) :=

(
‖u‖2

L2(Ω) +
∥∥∥∥
∂u

∂x

∥∥∥∥
2

L2(Ω)

+
∥∥∥∥
∂u

∂y

∥∥∥∥
2

L2(Ω)

)1/2

.

In terms of this notation the inequality (2.62) has the following form:

(AV,V )h ≥ ∥∥D−
x V

∥∥2
L2(Ω

h
x )

+ ∥∥D−
y V

∥∥2
L2(Ω

h
y )

. (2.63)

The discrete Friedrichs inequality (2.53) and inequality (2.63) imply that

(AV,V )h ≥ c0‖V ‖2
W 1

2 (Ωh)
, (2.64)

where c0 = 1/c
 = 16/17.

Theorem 2.20 The scheme (2.57), (2.58) is stable in the sense that

‖U‖W 1
2 (Ωh) ≤ 1

c0
‖f ‖L2(Ω

h), (2.65)

where c0 = 16/17.
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Proof The proof of this stability result is completely analogous to that of its one-
dimensional counterpart (2.39), now using (2.64) and the Cauchy–Schwarz inequal-
ity. �

Having established the stability of the difference scheme (2.57), (2.58), we turn
to the question of its accuracy. We define the global error e by

eij := u(xi, yj ) − Uij , i, j = 0, . . . ,N,

and the truncation error ϕ by

ϕij := Au(xi, yj ) − f (xi, yj ), i, j = 1, . . . ,N − 1.

Then,

Aeij = ϕij , i, j = 1, . . . ,N − 1,

e = 0 on Γ h.

By noting (2.65) we have

‖u − U‖W 1
2 (Ωh) = ‖e‖W 1

2 (Ωh)

≤ 1

c0
‖ϕ‖L2(Ω

h). (2.66)

Thus, in order to obtain a bound on the global error, it suffices to estimate the size of
the truncation error in the ‖ · ‖L2(Ω

h) norm. To do so, let us assume that u ∈ C4(Ω);
then, by expanding each term in ϕ in a Taylor series about the point (xi, yj ), we
obtain

ϕij = Δu(xi, yj ) − (D+
x D−

x u(xi, yj ) + D+
y D−

y u(xi, yj )
)

=
[

∂2u

∂x2
(xi, yj ) − D+

x D−
x u(xi, yj )

]
+
[
∂2u

∂y2
(xi, yj ) − D+

y D−
y u(xi, yj )

]

= −h2

12

(
∂4u

∂x4
(ξi, yj ) + ∂4u

∂y4
(xi, ηj )

)
, i, j = 1, . . . ,N − 1,

where ξi ∈ (xi−1, xi+1), ηj ∈ (yj−1, yj+1).
Thus,

|ϕij | ≤ h2

12

(∥∥∥∥
∂4u

∂x4

∥∥∥∥
C(Ω)

+
∥∥∥∥
∂4u

∂y4

∥∥∥∥
C(Ω)

)
,

and we deduce that the truncation error ϕ satisfies the bound

‖ϕ‖L2(Ω
h) ≤ h2

12

(∥∥∥∥
∂4u

∂x4

∥∥∥∥
C(Ω)

+
∥∥∥∥
∂4u

∂y4

∥∥∥∥
C(Ω)

)
. (2.67)
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Finally (2.66) and (2.67) yield the following error bound.

Theorem 2.21 Let f ∈ C(Ω), c ∈ C(Ω), with c(x, y) ≥ 0, (x, y) ∈ Ω , and sup-
pose that the corresponding weak solution of the boundary-value problem (2.55),
(2.56) belongs to C4(Ω); then

‖u − U‖W 1
2 (Ωh) ≤ 17h2

192

(∥∥∥∥
∂4u

∂x4

∥∥∥∥
C(Ω)

+
∥∥∥∥
∂4u

∂y4

∥∥∥∥
C(Ω)

)
. (2.68)

Proof Recall that 1/c0 = c
 = 17/16, and combine (2.66) and (2.67). �

According to this result, the five-point difference scheme (2.57), (2.58) for the
boundary-value problem (2.55), (2.56) is second-order convergent, provided that u

is sufficiently smooth; i.e. u ∈ C4(Ω).
Elliptic regularity theory tells us (see, for example, Ladyzhenskaya and Ural’tseva

[118], Gilbarg and Trudinger [53] or Renardy and Rogers [155]) that if the right-
hand side and the coefficients are “sufficiently smooth”, then the associated classical
solution of the elliptic problem is “as smooth as one would expect” in the interior of
the domain on which the problem is posed; e.g. in the case of a second-order elliptic
boundary-value problem, if f ∈ Ck,α(Ω), k ≥ 0, 0 < α < 1, then u ∈ Ck+2,α(Ω).
Unfortunately, in general, the solution will not be smooth up to the boundary if the
boundary is not of class Ck+2,α , as is the case when Ω is a square. For a simple il-
lustration, we refer to Example 9.52 on p. 325 of Renardy and Rogers [155]; a more
detailed account of regularity theory for elliptic equations in domains with nons-
mooth boundaries is given in Grisvard [62, 63] and Dauge [28]. Thus, in general,
the solution of our simple model problem (2.55), (2.56), will not belong to C4(Ω)

even if f and c are smooth functions, because the boundary Γ = ∂Ω is only of
class C0,1. Consequently, the hypothesis u ∈ C4(Ω) that was made in the statement
of Theorem 2.21 is unrealistic (unless f satisfies suitable compatibility conditions
at the four corners of Ω (cf. (2.8))).

Our analysis has another limitation: it was performed under the assumption that
f ∈ C(Ω), which was necessary in order to ensure that the values of f are mean-
ingfully defined at the mesh-points. However, in applications one often encounters
differential equations where f is a lot less smooth (e.g. f is piecewise continu-
ous, or f ∈ L2(Ω), or f is a Borel measure). When f ∈ L2(Ω), for example, we
know that the homogeneous Dirichlet boundary-value problem for the partial differ-
ential equation −Δu + cu = f , with c bounded and nonnegative, still has a unique
weak solution in H 1

0 (Ω), so it is natural to ask whether one can construct a second-
order accurate finite difference approximation of the weak solution. This brings us
to case (b), formulated at the beginning of the section.

(b) (f ∈ L2(Ω)). We shall use the same finite difference mesh as in case (a), but
we shall modify the difference scheme (2.57), (2.58) to cater for the fact that f is
not continuous on Ω . The idea is to replace f (xi, yj ) in (2.57) by a cell-average
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Fig. 2.3 The cell Kij

of f :

(
T 11

h f
)
ij

:= 1

h2

∫

Kij

f (x, y)dx dy,

where the ‘cell’ Kij is defined by

Kij :=
(

xi − h

2
, xi + h

2

)
×
(

yj − h

2
, yj + h

2

)
,

with i, j = 1, . . . ,N − 1.
This seemingly ad hoc approach has the following justification. Integrating the

partial differential equation −Δu + cu = f over the cell Kij and using the diver-
gence theorem we have that

−
∫

∂Kij

∂u

∂ν
ds +

∫

Kij

cudx dy =
∫

Kij

f dx dy, (2.69)

where ∂Kij is the boundary of Kij , and ν is the unit outward normal to ∂Kij .
The normal vectors to ∂Kij point in the co-ordinate directions, so the normal

derivative ∂u/∂ν can be approximated by divided differences using the values of
u at the five mesh-points marked by • in Fig. 2.3, in conjunction with a midpoint
quadrature rule along each edge of Kij to approximate the contour integral featuring
in the first term of (2.69) (cf. Examples 2.6 and 2.7).

Approximating the second integral on the left by a midpoint quadrature rule, now
in two dimensions, on Kij , and dividing both sides by meas(Kij ) = h2, we obtain

−(D+
x D−

x u(xi, yj ) + D+
y D−

y u(xi, yj )
)+ c(xi, yj )u(xi, yj )

≈ 1

h2

∫

Kij

f (x, y)dx dy.
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We note here that (T 11
h f )ij is correctly defined for f ∈ L2(Ω); indeed,

∣∣(T 11
h f

)
ij

∣∣ = 1

h2

∣∣∣∣
∫

Kij

f (x, y)dx dy

∣∣∣∣

≤ 1

h2

(∫

Kij

12 dx dy

)1/2(∫

Kij

∣∣f (x, y)
∣∣2 dx dy

)1/2

= h−1‖f ‖L2(Kij )(< ∞). (2.70)

Thus we define our finite difference scheme for (2.55), (2.56) by

−(D+
x D−

x + D+
y D−

y

)
Uij + c(xi, yj )Uij = (

T 11
h f

)
ij
, (xi, yj ) ∈ Ωh, (2.71)

U = 0 on Γ h. (2.72)

Remark 2.10 Finite difference schemes that arise from integral formulations of a
differential equation, such as (2.69), are called finite volume methods.

Since we have not changed the difference operator on the left-hand side, the
argument presented in (a) concerning the existence and uniqueness of a solution to
the difference scheme (2.57), (2.58) still applies to (2.71), (2.72); therefore, (2.71),
(2.72) has a unique solution U in Sh

0 . Moreover, we have the following stability
result.

Theorem 2.22 The scheme (2.71), (2.72) is stable in the sense that

‖U‖W 1
2 (Ωh) ≤ 1

c0
‖f ‖L2(Ω), (2.73)

where c0 = 16/17.

Proof From (2.64) and (2.70) we have

c0‖U‖2
W 1

2 (Ωh)
≤ (AU,U)h = (T 11

h f,U
)
h

≤ ∥∥T 11
h f

∥∥
L2(Ω

h)
‖U‖L2(Ω

h) ≤ ∥∥T 11
h f

∥∥
L2(Ω

h)
‖U‖W 1

2 (Ωh)

≤ ‖f ‖L2(Ω)‖U‖W 1
2 (Ωh),

and hence (2.73). �

Having established the stability of the scheme (2.71), (2.72) we consider the
question of its accuracy. Let us define the global error, e, as before:

eij := u(xi, yj ) − Uij , i, j = 0, . . . ,N.
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Clearly, for i, j = 1, . . . ,N − 1 we have

Aeij = Au(xi, yj ) − AUij

= Au(xi, yj ) − (T 11
h f

)
ij

= −(D+
x D−

x u(xi, yj ) + D+
y D−

y u(xi, yj )
)+ c(xi, yj )u(xi, yj )

+
[
T 11

h

(
∂2u

∂x2

)
(xi, yj ) + T 11

h

(
∂2u

∂y2

)
(xi, yj ) − T 11

h (cu)(xi, yj )

]
.

(2.74)

By noting that

T 11
h

(
∂2u

∂x2

)
(xi, yj ) = 1

h

∫ yj +h/2

yj −h/2

∂u
∂x

(xi + h/2, y) − ∂u
∂x

(xi − h/2, y)

h
dy

= 1

h

∫ yj +h/2

yj −h/2
D+

x

∂u

∂x
(xi − h/2, y)dy

= D+
x

[
1

h

∫ yj +h/2

yj −h/2

∂u

∂x
(xi − h/2, y)dy

]
,

and that, similarly,

T 11
h

(
∂2u

∂y2

)
(xi, yj ) = D+

y

[
1

h

∫ xi+h/2

xi−h/2

∂u

∂y
(x, yj − h/2)dx

]
,

equality (2.74) can be rewritten as

Ae = D+
x ϕ1 + D+

y ϕ2 + ψ,

where

ϕ1(xi, yj ) := 1

h

∫ yj +h/2

yj −h/2

∂u

∂x
(xi − h/2, y)dy − D−

x u(xi, yj ),

ϕ2(xi, yj ) := 1

h

∫ xi+h/2

xi−h/2

∂u

∂y
(x, yj − h/2)dx − D−

y u(xi, yj ),

ψ(xi, yj ) := (cu)(xi, yj ) − T 11
h (cu)(xi, yj ).

Thus,

Ae = D+
x ϕ1 + D+

y ϕ2 + ψ in Ωh, (2.75)

e = 0 on Γ h. (2.76)



136 2 Elliptic Boundary-Value Problems

As the stability result (2.73) implies only the crude bound

‖e‖W 1
2 (Ωh) ≤ 1

c0

∥∥D+
x ϕ1 + D+

y ϕ2 + ψ
∥∥

L2(Ω
h)

,

which does not exploit the special form of the truncation error,

ϕ := D+
x ϕ1 + D+

y ϕ2 + ψ,

we shall proceed in a different way. The idea is to sharpen (2.73) by proving a
discrete analogue of the well-posedness result from Theorem 2.7; we recall that this
states that the following bound holds for the boundary-value problem (2.55), (2.56):

‖u‖
W̊ 1

2 (Ω)
≤ 1

c0
‖f ‖

W−1
2 (Ω)

.

In order to obtain a discrete counterpart of this inequality, we consider the discrete
negative Sobolev norm ‖ · ‖

W−1
2 (Ωh)

, defined by

‖V ‖
W−1

2 (Ωh)
:= sup

V ∈Sh
0 \{0}

|(V ,W)h|
‖W‖W 1

2 (Ωh)

.

Theorem 2.23 The scheme (2.71), (2.72) is stable in the sense that

‖U‖W 1
2 (Ωh) ≤ 1

c0

∥∥T 11
h f

∥∥
W−1

2 (Ωh)
, (2.77)

where c0 = 16/17.

Proof From (2.64), by noting the definition of the ‖ · ‖
W−1

2 (Ωh)
norm, we have that

c0‖U‖2
W 1

2 (Ωh)
≤ (AU,U)h = (T 11

h f,U
)
h

≤ ∥∥T 11
h f

∥∥
W−1

2 (Ωh)
‖U‖W 1

2 (Ωh),

and hence (2.77). �

Now we apply Theorem 2.23 to (2.75), (2.76) to deduce that

‖e‖W 1
2 (Ωh) ≤ 1

c0

∥∥D+
x ϕ1 + D+

y ϕ2 + ψ
∥∥

W−1
2 (Ωh)

. (2.78)

In order to bound the right-hand side of (2.78) let us consider the expression

(
D+

x ϕ1 + D+
y ϕ2 + ψ,W

)
h
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for W ∈ Sh
0 \ {0}. Using summation by parts, we shall pass the difference operators

D+
x and D+

y from ϕ1 and ϕ2, respectively, onto W . As W = 0 on the set Γ h, we
have that

(
D+

x ϕ1,W
)
h

=
N−1∑

j=1

h

(
N−1∑

i=1

h
ϕ1(xi+1, yj ) − ϕ1(xi, yj )

h
Wij

)

= −
N−1∑

j=1

h

(
N∑

i=1

hϕ1(xi, yj )
Wij − Wi−1,j

h

)

= −
N−1∑

j=1

h

(
N∑

i=1

hϕ1(xi, yj )D
−
x Wij

)

= −
N∑

i=1

N−1∑

j=1

h2ϕ1(xi, yj )D
−
x Wij

≤
(

N∑

i=1

N−1∑

j=1

h2
∣∣ϕ1(xi, yj )

∣∣2
)1/2( N∑

i=1

N−1∑

j=1

h2
∣∣D−

x Wij

∣∣2
)1/2

.

We thus deduce that
∣∣(D+

x ϕ1,W
)
h

∣∣≤ ‖ϕ1‖L2(Ω
h
x )

∥∥D−
x W

∥∥
L2(Ω

h
x )

. (2.79)

Similarly,
∣∣(D+

y ϕ2,W
)
h

∣∣≤ ‖ϕ2‖L2(Ω
h
y )

∥∥D−
y W

∥∥
L2(Ω

h
y )

. (2.80)

By the Cauchy–Schwarz inequality we also have that
∣∣(ψ,W)h

∣∣≤ ‖ψ‖L2(Ω
h)‖W‖L2(Ω

h). (2.81)

Now, by combining (2.79)–(2.81) and noting the elementary inequality

|a1b1 + a2b2 + a3b3| ≤
(
a2

1 + a2
2 + a2

3

)1/2(
b2

1 + b2
2 + b2

3

)1/2
,

we arrive at the bound
∣∣(D+

x ϕ1 + D+
y ϕ2 + ψ,W

)
h

∣∣

≤ (‖ϕ1‖2
L2(Ω

h
x )

+ ‖ϕ2‖2
L2(Ω

h
y )

+ ‖ψ‖2
L2(Ω

h)

)1/2

× (∥∥D−
x W

∥∥2
L2(Ω

h
x )

+ ∥∥D−
y W

∥∥2
L2(Ω

h
y )

+ ‖W‖2
L2(Ω

h)

)1/2

= (‖ϕ1‖2
L2(Ω

h
x )

+ ‖ϕ2‖2
L2(Ω

h
y )

+ ‖ψ‖2
L2(Ω

h)

)1/2‖W‖W 1
2 (Ωh).
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Dividing both sides by ‖W‖W 1
2 (Ωh) and taking the supremum over all W ∈ Sh

0 \ {0}
yields the following inequality:

∥∥D+
x ϕ1 + D+

y ϕ2 + ψ
∥∥

W−1
2 (Ωh)

≤ (‖ϕ1‖2
L2(Ω

h
x )

+ ‖ϕ2‖2
L2(Ω

h
y )

+ ‖ψ‖2
L2(Ω

h)

)1/2
.

(2.82)
Inserting (2.82) into (2.78) we obtain the following bound on the global error in
terms of the truncation error of the scheme.

Lemma 2.24 The global error, e := u − U , of the finite difference scheme (2.71),
(2.72) satisfies the bound

‖e‖W 1
2 (Ωh) ≤ 1

c0

(‖ϕ1‖2
L2(Ω

h
x )

+ ‖ϕ2‖2
L2(Ω

h
y )

+ ‖ψ‖2
L2(Ω

h)

)1/2
, (2.83)

where c0 = 16/17, and ϕ1, ϕ2 and ψ are defined by

ϕ1(xi, yj ) := 1

h

∫ yj +h/2

yj −h/2

∂u

∂x
(xi − h/2, y)dy − D−

x u(xi, yj ), (2.84)

ϕ2(xi, yj ) := 1

h

∫ xi+h/2

xi−h/2

∂u

∂y
(x, yj − h/2)dx − D−

y u(xi, yj ), (2.85)

ψ(xi, yj ) := (cu)(xi, yj ) − 1

h2

∫ xi+h/2

xi−h/2

∫ yj +h/2

yj −h/2
(cu)(x, y)dx dy, (2.86)

with i = 1, . . . ,N and j = 1, . . . ,N − 1 in (2.84); i = 1, . . . ,N − 1 and j =
1, . . . ,N in (2.85); and i, j = 1, . . .N − 1 in (2.86).

To complete the error analysis, it remains to bound ϕ1, ϕ2 and ψ . Using Taylor
series expansions it is easily seen that

∣∣ϕ1(xi, yj )
∣∣≤ h2

24

(∥∥∥∥
∂3u

∂x∂y2

∥∥∥∥
C(Ω)

+
∥∥∥∥
∂3u

∂x3

∥∥∥∥
C(Ω)

)
, (2.87)

∣∣ϕ2(xi, yj )
∣∣≤ h2

24

(∥∥∥∥
∂3u

∂x2∂y

∥∥∥∥
C(Ω)

+
∥∥∥∥
∂3u

∂y3

∥∥∥∥
C(Ω)

)
, (2.88)

∣∣ψ(xi, yj )
∣∣≤ h2

24

(∥∥∥∥
∂2(cu)

∂x2

∥∥∥∥
C(Ω)

+
∥∥∥∥
∂2(cu)

∂y2

∥∥∥∥
C(Ω)

)
, (2.89)

which yield the required bounds on ‖ϕ1‖L2(Ω
h
x ), ‖ϕ2‖L2(Ω

h
y ) and ‖ψ‖L2(Ω

h). We
thus arrive at the following theorem.

Theorem 2.25 Let f ∈ L2(Ω), c ∈ C2(Ω) with c(x, y) ≥ 0, (x, y) ∈ Ω , and sup-
pose that the corresponding weak solution of the boundary-value problem (2.55),
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(2.56) belongs to C3(Ω). Then,

‖u − U‖W 1
2 (Ωh) ≤ 17

384
h2M3, (2.90)

where

M3 =
{(∥∥∥∥

∂3u

∂x∂y2

∥∥∥∥
C(Ω)

+
∥∥∥∥
∂3u

∂x3

∥∥∥∥
C(Ω)

)2

+
(∥∥∥∥

∂3u

∂x2y

∥∥∥∥
C(Ω)

+
∥∥∥∥
∂3u

∂y3

∥∥∥∥
C(Ω)

)2

+
(∥∥∥∥

∂2(cu)

∂x2

∥∥∥∥
C(Ω)

+
∥∥∥∥
∂2(cu)

∂y2

∥∥∥∥
C(Ω)

)2}1/2

.

Proof As 1/c0 = 17/16, by substituting (2.87)–(2.89) into the right-hand side of
(2.83) the estimate (2.90) immediately follows. �

By comparing (2.90) with (2.68) we see that while the smoothness requirement
on the solution has been relaxed from u ∈ C4(Ω) to u ∈ C3(Ω), second-order con-
vergence has been retained.

The hypothesis u ∈ C3(Ω) can be further relaxed by using integral representa-
tions of ϕ1, ϕ2 and ψ instead of Taylor series expansions. We show how this is done
for ϕ1 and ψ ; ϕ2 is handled analogously to ϕ1. The argument is based on repeated
use the Newton–Leibniz formula

w(b) − w(a) =
∫ b

a

w′(x)dx.

In order to simplify the notation, let us write xi±1/2 := xi ± h/2 and yj±1/2 :=
yj ± h/2; we then have that

ϕ1(xi, yj ) = 1

h2

∫ xi

xi−1

∫ yj+1/2

yj−1/2

[
∂u

∂x
(xi−1/2, y) − ∂u

∂x
(x, yj )

]
dx dy

= 1

h2

∫ xi

xi−1

∫ yj+1/2

yj−1/2

[
∂u

∂x
(xi−1/2, y) − ∂u

∂x
(x, y)

]
dx dy

+ 1

h2

∫ xi

xi−1

∫ yj+1/2

yj−1/2

[
∂u

∂x
(x, y) − ∂u

∂x
(x, yj )

]
dx dy

= 1

h2

∫ yj+1/2

yj−1/2

[∫ xi

xi−1

(∫ xi−1/2

x

∂2u

∂x2
(ξ, y)dξ

)
dx

]
dy

+ 1

h2

∫ xi

xi−1

[∫ yj+1/2

yj−1/2

(∫ y

yj

∂2u

∂x∂y
(x, η)dη

)
dx

]
dy.
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We thus deduce by partial integration that

ϕ1(xi, yj ) = 1

h2

∫ yj+1/2

yj−1/2

[
x

∫ xi−1/2

x

∂2u

∂x2
(ξ, y)dξ

∣∣∣∣
x=xi

x=xi−1

+
∫ xi

xi−1

x
∂2u

∂x2
(x, y)dx

]
dy

+ 1

h2

∫ xi

xi−1

[
y

∫ y

yj

∂2u

∂x∂y
(x, η)dη

∣∣∣∣
y=yj+1/2

y=yj−1/2

−
∫ yj+1/2

yj−1/2

y
∂2u

∂x∂y
(x, y)dy

]
dx

= 1

h2

∫ yj+1/2

yj−1/2

[∫ xi−1/2

xi−1

(x − xi−1)
∂2u

∂x2
(x, y)dx

+
∫ xi

xi−1/2

(x − xi)
∂2u

∂x2
(x, y)dx

]
dy

− 1

h2

∫ xi

xi−1

[∫ yj

yj−1/2

(y − yj−1/2)
∂2u

∂x∂y
(x, y)dy

+
∫ yj+1/2

yj

(y − yj+1/2)
∂2u

∂x∂y
(x, y)dy

]
dx.

We define the piecewise quadratic functions

Ai(x) =
{

1
2 (x − xi−1)

2 if x ∈ [xi−1, xi−1/2],
1
2 (x − xi)

2 if x ∈ [xi−1/2, xi],

Bj (y) =
{

1
2 (y − yj−1/2)

2 if y ∈ [yj−1/2, yj ],
1
2 (y − yj+1/2)

2 if y ∈ [yj , yj+1/2],
and note that Ai and Bj are continuous functions of their respective arguments;
furthermore,

Ai(xi−1) = Ai(xi) = 0 and Bj (yj−1/2) = Bj (yj+1/2) = 0.

Integration by parts then yields

ϕ1(xi, yj ) = 1

h2

∫ yj+1/2

yj−1/2

[∫ xi

xi−1

A′
i (x)

∂2u

∂x2
(x, y)dx

]
dy

− 1

h2

∫ xi

xi−1

[∫ yj+1/2

yj−1/2

B ′
j (y)

∂2u

∂x∂y
(x, y)dy

]
dx



2.2 Approximation of Elliptic Problems 141

= − 1

h2

∫ yj+1/2

yj−1/2

[∫ xi

xi−1

Ai(x)
∂3u

∂x3
(x, y)dx

]
dy

+ 1

h2

∫ xi

xi−1

[∫ yj+1/2

yj−1/2

Bj (y)
∂3u

∂x∂y2
(x, y)dy

]
dx. (2.91)

Now

∣∣Ai(x)
∣∣≤ 1

8
h2, x ∈ [xi−1, xi] and

∣∣Bj (y)
∣∣≤ 1

8
h2, y ∈ [yj−1/2, yj+1/2],

and therefore,

∣∣ϕ1(xi, yj )
∣∣ ≤ 1

8

∫ xi

xi−1

∫ yj+1/2

yj−1/2

∣∣∣∣
∂3u

∂x3
(x, y)

∣∣∣∣dx dy

+ 1

8

∫ xi

xi−1

∫ yj+1/2

yj−1/2

∣∣∣∣
∂3u

∂x∂y2
(x, y)

∣∣∣∣dx dy.

Consequently,

‖ϕ1‖2
L2(Ω

h
x )

≤ h4

32

(∥∥∥∥
∂3u

∂x3

∥∥∥∥
2

L2(Ω)

+
∥∥∥∥

∂3u

∂x∂y2

∥∥∥∥
2

L2(Ω)

)
. (2.92)

Analogously,

‖ϕ2‖2
L2(Ω

h
y )

≤ h4

32

(∥∥∥∥
∂3u

∂y3

∥∥∥∥
2

L2(Ω)

+
∥∥∥∥

∂3u

∂x2∂y

∥∥∥∥
2

L2(Ω)

)
. (2.93)

In order to estimate ψ , we note that

ψ(xi, yj ) = 1

h2

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

(∫ xi

x

∂w

∂x
(s, y)ds

+
∫ yj

y

∂w

∂y
(x, t)dt +

∫ xi

x

∫ yj

y

∂2w

∂x∂y
(s, t)ds dt

)
dx dy

= − 1

h2

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

Ci(x)
∂2w

∂x2
(x, y)dx dy

− 1

h2

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

Bj (y)
∂2w

∂y2
(x, y)dx dy

+ 1

h2

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

(∫ xi

x

∫ yj

y

∂2w

∂x∂y
(s, t)ds dt

)
dx dy,
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where w(x,y) = c(x, y)u(x, y) and

Ci(x) =
{

1
2 (x − xi−1/2)

2 if x ∈ [xi−1/2, xi],
1
2 (x − xi+1/2)

2 if x ∈ [xi, xi+1/2].
Hence,

∣∣ψ(xi, yj )
∣∣ ≤ 1

8

(∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∣∣∣∣
∂2w

∂x2
(x, y)

∣∣∣∣dx dy

+
∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∣∣∣∣
∂2w

∂y2
(x, y)

∣∣∣∣dx dy

+ 2
∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∣∣∣∣
∂2w

∂x∂y

∣∣∣∣dx dy

)
,

so that, with w := cu, we have

‖ψ‖2
L2(Ω

h)
≤ 3h4

64

(∥∥∥∥
∂2w

∂x2

∥∥∥∥
2

L2(Ω)

+
∥∥∥∥
∂2w

∂y2

∥∥∥∥
2

L2(Ω)

+ 4

∥∥∥∥
∂2w

∂x∂y

∥∥∥∥
2

L2(Ω)

)
. (2.94)

By substituting (2.92)–(2.94) into the right-hand side of (2.83) and noting that
1/c0 = 16/17, we obtain the following result.

Theorem 2.26 Let f ∈ L2(Ω), c ∈ M(W 2
2 (Ω)), with c(x, y) ≥ 0 for all (x, y) in

Ω , and suppose that the corresponding weak solution of the boundary-value prob-
lem (2.55), (2.56) belongs to W 3

2 (Ω) ∩ W̊ 1
2 (Ω). Then,

‖u − U‖W 1
2 (Ωh) ≤ Ch2‖u‖W 3

2 (Ω), (2.95)

where C is a positive constant (computable from (2.83) and (2.92)–(2.94)), inde-
pendent of h and u.

We note that, by the analogue of Lemma 1.46 on a Lipschitz domain, M(W 2
2 (Ω))

⊂ W 2
2 (Ω), and therefore, by Sobolev embedding c ∈ M(W 2

2 (Ω)) is a continuous
function with well-defined values at the mesh-points.

It can be verified by numerical experiments that the error bound (2.95) is best
possible in the sense that further weakening of the regularity hypothesis on u leads
to a loss of second-order convergence. Error bounds of the type (2.95), where the
highest possible order of convergence is attained under the weakest hypothesis on
the smoothness of the solution, are called optimal or compatible with the smoothness
of the solution. Thus, for example, (2.95) is an optimal error bound for the difference
scheme (2.71), (2.72), but (2.90) is not. At this point it does not concern us whether
the smoothness requirements on the coefficients in the equation are the weakest
possible: that issue will be addressed later, in our discussion of optimal error bounds
under minimal smoothness hypotheses on the coefficients and the source term f .
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We shall now explore the convergence rate of the finite difference scheme in the
norm ‖ · ‖W 1

2 (Ωh) under even weaker regularity hypotheses on the solution, resulting

in a loss of second-order convergence established above for u ∈ W 3
2 (Ω) ∩ W̊ 1

2 (Ω).
Suppose, for example, that u ∈ W 2

2 (Ω) ∩ W̊ 1
2 (Ω). From (2.91), by noting that

∣∣A′
i (x)

∣∣≤ 1

2
h, x ∈ [xi−1, xi] and

∣∣B ′
j (y)

∣∣≤ 1

2
h, y ∈ [yj−1/2, yj+1/2],

we have that

∣∣ϕ1(xi, yj )
∣∣ ≤ 1

2h

∫ xi

xi−1

∫ yj+1/2

yj−1/2

∣∣∣∣
∂2u

∂x2
(x, y)

∣∣∣∣dx dy

+ 1

2h

∫ xi

xi−1

∫ yj+1/2

yj−1/2

∣∣∣∣
∂2u

∂x∂y
(x, y)

∣∣∣∣dx dy.

Consequently,

‖ϕ1‖2
L2(Ω

h
x )

≤ h2

2

(∥∥∥∥
∂2u

∂x2

∥∥∥∥
2

L2(Ω)

+
∥∥∥∥

∂2u

∂x∂y

∥∥∥∥
2

L2(Ω)

)
. (2.96)

Analogously,

‖ϕ2‖2
L2(Ω

h
y )

≤ h2

2

(∥∥∥∥
∂2u

∂y2

∥∥∥∥
2

L2(Ω)

+
∥∥∥∥

∂2u

∂x∂y

∥∥∥∥
2

L2(Ω)

)
. (2.97)

From (2.83), (2.96), (2.97) and (2.94), under the assumptions that c ∈ M(W 2
2 (Ω)),

c ≥ 0 on Ω and u ∈ W 2
2 (Ω) ∩ W̊ 1

2 (Ω), we deduce that:

‖u − U‖W 1
2 (Ωh) ≤ Ch‖u‖W 2

2 (Ω), (2.98)

where C is a positive constant, independent of h and u.

Application of Function Space Interpolation When u ∈ Ws
2 (Ω), 2 < s < 3, an

error bound can be obtained from (2.95) and (2.98) by function space interpolation.
For the sake of simplicity we shall confine ourselves to Poisson’s equation (i.e.
c(x, y) ≡ 0). In that case the constant C featuring in (2.95) and (2.98) represents
an absolute constant (i.e. it is independent of c(x, y)). Let us consider the mapping
L : u �→ u − U , with U understood as a linear function of f = −Δu. Evidently, L

is a linear operator. It follows from (2.95) that the operator L, considered as a linear
mapping L : W 3

2 (Ω) → W 1
2 (Ωh), is bounded and

‖L‖W 3
2 (Ω)→W 1

2 (Ωh) ≤ Ch2.

In the same way, it follows from (2.98) that the operator L, considered as a linear
mapping L : W 2

2 (Ω) → W 1
2 (Ωh), is bounded and

‖L‖W 2
2 (Ω)→W 1

2 (Ωh) ≤ Ch.
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By the results of Sect. 1.1.5, the operator L, considered as a linear mapping
L : (W 3

2 (Ω),W 2
2 (Ω))θ,q → (W 1

2 (Ωh),W 1
2 (Ωh))θ,q , is also bounded and, thanks

to (1.8),

‖L‖(W 3
2 (Ω),W 2

2 (Ω))θ,q→(W 1
2 (Ωh),W 1

2 (Ωh))θ,q
≤ (Ch2)1−θ

(Ch)θ = Ch2−θ .

Furthermore,
(
W 1

2

(
Ωh
)
,W 1

2

(
Ωh
))

θ,q
= W 1

2

(
Ωh
)
,

(
W 3

2 (Ω),W 2
2 (Ω)

)
θ,q

= W 3−θ
2 (Ω).

Thus we obtain the following error bound:

‖u − U‖W 1
2 (Ωh) ≤ Ch2−θ‖u‖

W 3−θ
2 (Ω)

, 0 < θ < 1.

By writing 3 − θ = s here and supplementing the resulting bounds with the ones
corresponding to the limiting cases s = 2 and s = 3, we deduce that

‖u − U‖W 1
2 (Ωh) ≤ Chs−1‖u‖Ws

2 (Ω), 2 ≤ s ≤ 3,

where C is a positive real number, independent of h and u.
In the next section we shall show how the tedious use of integral representa-

tion theorems can be avoided in the error analysis of finite difference methods by
appealing to the Bramble–Hilbert lemma and its variants.

2.3 Convergence Analysis on Uniform Meshes

In the previous section we derived an optimal bound on the global error between the
unique weak solution u to a homogeneous Dirichlet boundary-value problem for the
generalized Poisson equation and its finite difference approximation U , under the
hypothesis that u ∈ Ws

2 (Ω) ∩ W̊ 1
2 (Ω), s ∈ [2,3]. We used integral representations

for s = 2,3 in conjunction with function space interpolation for s ∈ (2,3). Here we
shall consider the same problem by using a different technique; our main tool will
be the Bramble–Hilbert lemma.

2.3.1 The Bramble–Hilbert Lemma

We begin by stating the Bramble–Hilbert lemma in its simplest form, in the case
of integer-order Sobolev spaces (cf. [20]). We shall then illustrate its use in the
error analysis of simple discretization methods and describe its generalizations to
fractional-order and anisotropic Sobolev spaces. We shall also formulate a multilin-
ear version of the Bramble–Hilbert lemma.
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Theorem 2.27 (Bramble–Hilbert Lemma) Let Ω ⊂ R
n be a Lipschitz domain and,

for a positive integer m and a real number p ∈ [1,∞], let η be a bounded linear
functional on the Sobolev space Wm

p (Ω) such that

Pm−1 ⊂ Ker(η),

where Pm−1 denotes the set of all polynomials of degree m−1 in n variables. Then,
there exists a positive real number C = C(m,p,n,Ω) such that

∣∣η(v)
∣∣≤ C‖η‖|v|Wm

p (Ω) ∀v ∈ Wm
p (Ω).

The proof of this result will be presented below in a more general context. First,
however, we consider a series of examples that illustrate the application of Theo-
rem 2.27.

Example 2.6 In this example we apply the Bramble–Hilbert lemma to provide a
bound on the error in the numerical quadrature rule

∫ 1

−1
v(t)dt ≈ 2v(0),

called the midpoint rule. We shall assume that v ∈ W 2
p(−1,1), 1 ≤ p ≤ ∞. In order

to estimate the error committed, let us consider the linear functional

η(v) :=
∫ 1

−1
v(t)dt − 2v(0)

defined on W 2
p(−1,1). Clearly, P1 ⊂ Ker(η) and

∣∣η(v)
∣∣ ≤

∫ 1

−1

∣∣v(t)
∣∣dt + 2

∣∣v(0)
∣∣

=
∫ 1

−1

∣∣v(t)
∣∣dt +

∣∣∣∣
∫ 1

−1

∫ 0

t

v′(s)ds dt +
∫ 1

−1
v(t)dt

∣∣∣∣

≤ 2
∫ 1

−1

∣∣v(t)
∣∣dt + 2

∫ 1

−1

∣∣v′(t)
∣∣dt

≤ 2 · 21− 1
p
(‖v‖Lp(−1,1) + ‖v′‖Lp(−1,1)

)

≤ 2 · 41− 1
p ‖v‖W 1

p(−1,1) ≤ 2 · 41− 1
p ‖v‖W 2

p(−1,1).

From the Bramble–Hilbert lemma we deduce that there exists a positive constant
C = C(p) such that

∣∣η(v)
∣∣≤ C|v|W 2

p(−1,1).
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In the next example we consider a similar analysis on the interval [−h,h]. Using
a scaling argument we shall reduce the problem to the one considered in Exam-
ple 2.6.

Example 2.7 Let us suppose that we are required to estimate the size of the error in
the midpoint rule on the interval [−h,h], for h > 0:

∫ h

−h

u(x)dx ≈ 2hu(0).

To do so, we consider the linear functional

ηh(u) :=
∫ h

−h

u(x)dx − 2hu(0),

and introduce the following change of variable, in order to map [−h,h] on the
‘canonical interval’ [−1,1]:

x = ht, t ∈ [−1,1], v(t) := u(x).

Then, with η as in the previous example,

ηh(u) = hη1(v) = hη(v).

Therefore, according to the final inequality in Example 2.6, and returning from the
interval [−1,1] to [−h,h],

∣∣ηh(u)
∣∣≤ Ch|v|W 2

p(−1,1) = Ch · h2− 1
p |u|W 2

p(−h,h).

In particular, for p = 2 we have that

∣∣ηh(u)
∣∣≤ Ch5/2|u|W 2

2 (−h,h).

Using the error bound for the midpoint rule on the interval [−h,h] established
in this last example by means of the Bramble–Hilbert lemma it is possible to obtain
an optimal-order bound on the global error in a finite difference approximation of a
two-point boundary-value problem. We shall explain how this is done. In the next
section we shall then extend the technique to multiple space dimensions.

Let us consider the two-point boundary-value problem

−u′′ = f (x), x ∈ (0,1),

u(0) = 0, u(1) = 0.

Given the nonuniform finite difference mesh 0 = x0 < x1 < · · · < xN = 1 with spac-
ing hi := xi − xi−1, i = 1, . . . ,N , we define �i := (hi+1 + hi)/2, i = 1, . . . ,N − 1,
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and introduce the backward and forward divided difference operators

D−
x Vi := Vi − Vi−1

hi

, D+
x Vi := Vi+1 − Vi

�i

,

and the following inner products and norms:

(V ,W)h :=
N−1∑

i=1

�iViWi, ‖V ‖L2(Ω
h) := (V ,V )

1/2
h ,

(V ,W ]h :=
N∑

i=1

hiViWi, ‖V ‖L2(Ω
h+) := (V ,V ]1/2

h ,

where Ωh := {x1, . . . , xN−1} and Ωh+ := {x1, . . . , xN }. Let us consider the following
finite difference approximation of the two-point boundary-value problem:

−D+
x D−

x Ui = T 1
h fi, i = 1, . . . ,N − 1,

U0 = 0, UN = 0,

where T 1
h f denotes the mollification of f defined by

T 1
h fi := 1

�i

∫ xi+1/2

xi−1/2

f (x)dx, i = 1, . . . ,N − 1.

In order to derive a bound on the global error e := u − U at the mesh-points, we
note that

−D+
x D−

x ei = −D+
x ηi, i = 1, . . . ,N − 1,

e0 = 0, eN = 0,

where

ηi := D−
x u(xi) − u′(xi−1/2)

= 1

2hi

[∫ hi

−hi

u′
(

xi−1/2 + 1

2
x

)
dx − 2hiu

′(xi−1/2)

]

= 1

2hi

ηhi

(
u′
(

xi−1/2 + 1

2
·
))

, i = 1, . . . ,N,

where ηhi
is as in Example 2.7. We thus deduce that

|ηi | ≤ Ch
3/2
i |u′|W 2

2 (xi−1,xi )
,

where C is a positive constant, independent of hi . Consequently,

‖η‖2
L2(Ω

h+)
=

N∑

i=1

hi |ηi |2 ≤ C2
N∑

i=1

hih
3
i |u′|2

W 2
2 (xi−1,xi )
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= C2
N∑

i=1

h4
i |u|2

W 3
2 (xi−1,xi )

≤ C2h4|u|2
W 3

2 (0,1)
,

where h = maxi hi . We complete the error analysis by showing that the quantity
‖D−

x e‖L2(Ω
h+) can be bounded in terms of ‖η‖L2(Ω

h+). Indeed, by summation by
parts and using the Cauchy–Schwarz inequality we obtain

∥∥D−
x e
∥∥2

L2(Ω
h+)

= (−D+
x D−

x e, e
)
h

= (−D+
x η, e

)
h

= (
η,D−

x e
]
h

≤ ‖η‖L2(Ω
h+)

∥∥D−
x e
∥∥

L2(Ω
h+)

.

Hence,
∥∥D−

x e
∥∥

L2(Ω
h+)

≤ ‖η‖L2(Ω
h+),

and therefore

|u − U |W 1
2 (Ωh) := ∥∥D−

x (u − U)
∥∥

L2(Ω
h+)

≤ Ch2|u|W 3
2 (0,1),

where C is a positive constant, independent of h and u. We note that we did not have
to impose any regularity requirements on the nonuniform mesh to prove this error
bound; in the next section, we shall develop a similar analysis in two dimensions.

First, however, we formulate a generalization of the Bramble–Hilbert lemma to
Sobolev spaces of any positive (not necessarily integer) order.

Theorem 2.28 Let Ω ⊂ R
n be a Lipschitz domain and, for real numbers s > 0 and

p ∈ [1,∞], let η be a bounded linear functional on the Sobolev space Ws
p(Ω) such

that, by writing s = m + α with m a nonnegative integer and 0 < α ≤ 1,

Pm ⊂ Ker(η).

Then, there exists a positive real number C = C(s,p,n,Ω) such that
∣∣η(v)

∣∣≤ C‖η‖|v|Ws
p(Ω) ∀v ∈ Ws

p(Ω).

Proof This result is a simple consequence of Theorem 1.13 with U0 = Lp(Ω),
U1 = Ws

p(Ω), S0(u) = ‖u‖Lp(Ω), S1(u) = ‖u‖Ws
p(Ω), S(u) = |η(u)|, by noting that,

according to the Theorem 1.36, Ws
p(Ω) is compactly embedded in Lp(Ω) for any

s > 0. �

One can apply this result to the midpoint rule to deduce, in the same manner as
in the integer-order case considered earlier, that the linear functional η defined on
Ws

p(−1,1), 1/p < s ≤ 2, 1 ≤ p ≤ ∞, by

η(v) =
∫ 1

−1
v(t)dt − 2v(0)
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satisfies the bound
∣∣η(v)

∣∣≤ C|v|Ws
p(−1,1),

for any v in Ws
p(Ω), 1/p < s ≤ 2, 1 ≤ p ≤ ∞. Thus in particular, with p = 2, we

obtain the following bound on the global error in the finite difference approximation
of the two-point boundary-value problem considered:

|u − U |W 1
2 (Ωh) ≤ Chs |u′|Ws

2 (0,1),

where h = maxi hi , provided that u ∈ Ws+1
2 (0,1) (whereby u′ ∈ Ws

2 (0,1)), 1/2 <

s ≤ 2. In the next section we extend this result to Poisson’s equation on the unit
square. First we shall however formulate a generalization of the Bramble–Hilbert
lemma to anisotropic Sobolev spaces of the type WA

p (Ω).
Let A ⊂R

n+ be a regular set of nonnegative real multi-indices (cf. Sect. 1.5). We
denote the convex hull in R

n of the set A by κ(A). Let ∂0κ(A) be the part of the
boundary of κ(A) that has empty intersection with the co-ordinate hyperplanes, and
let A∂ = A ∩ ∂0κ(A). Let B be a nonempty subset of A∂ such that B ∪ {0} is a
regular set of multi-indices, and define

ν(B) := {β ∈ N
n+ : ∂�α�xβ ≡ 0 ∀α ∈ B

}
.

Let PB denote the set of all polynomials in n variables of the form

P(x) =
∑

α∈ν(B)

pαxα.

Theorem 2.29 Suppose that Ω is a Lipschitz domain in R
n and let the sets A and

B of real nonnegative multi-indices satisfy the conditions formulated in the previous
paragraph. Then, there exists a positive real number C = C(A,B,p,n,Ω) such
that

inf
P∈PB

‖v − P‖WA
p (Ω) ≤ C

∑

α∈B

|v|α,p ∀v ∈ WA
p (Ω).

Moreover, if η is a bounded linear functional on WA
p (Ω), with norm ‖η‖, such that

PB ⊂ Ker(η),

then
∣∣η(v)

∣∣≤ C‖η‖
∑

α∈B

|v|α,p ∀v ∈ WA
p (Ω).

Proof This result is a simple consequence of Theorem 1.13 with U0 = Lp(Ω), U1 =
WA

p (Ω), S0(u) = ‖u‖Lp(Ω),

S1(u) = ‖u‖Lp(Ω) +
∑

α∈B

|v|α,p,
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and S(u) = |η(u)|, and noting that WA
p (Ω), equipped with the norm S1(·) is com-

pactly embedded in Lp(Ω). �

As a further generalization, we state the following multilinear version of the
Bramble–Hilbert lemma: this will be used extensively in the bilinear case through-
out the book.

Lemma 2.30 Suppose that Ak , Bk and Ωk satisfy the same conditions in R
nk ,

k = 1, . . . ,m, as A, B and Ω did in the previous theorem. Let (v1, . . . , vm) �→
η(v1, . . . , vm) be a bounded multilinear functional on the function space

WA1
p1

(Ω1) × · · · × WAm
pm

(Ωm),

which vanishes whenever one of its entries has the form vk = xα , x ∈ Ωk , α ∈ ν(Bk).
Then, there exists a real number

C = C(A1,B1,p1,Ω1, n1, . . . ,Am,Bm,pm,Ωm,nm)

such that

∣∣η(v1, . . . , vm)
∣∣≤ C‖η‖

m∏

k=1

∑

α∈Bk

|vk|α,pk

for every (v1, . . . , vm) in W
A1
p1 (Ω1) × · · · × W

Am
pm

(Ωm).

When m = 2, this result will be referred to as the bilinear version of the Bramble–
Hilbert lemma. In the case of standard, integer-order isotropic Sobolev spaces, the
bilinear version of the Bramble–Hilbert lemma can be found in Ciarlet [26], The-
orem 4.2.5. In the general case the proof is analogous, and is once again a simple
consequence of Theorem 2.29.

2.3.2 Optimal Error Bounds on Uniform Meshes

In this section we shall use the Bramble–Hilbert lemma to derive an optimal bound
on the global error of the finite difference (or, more precisely, finite volume) ap-
proximation (2.71), (2.72) of the homogeneous Dirichlet boundary-value problem
(2.55), (2.56) on a uniform mesh of size h; in the next section we shall extend this
analysis to nonuniform meshes. Thus, we consider the following finite difference
scheme:

−(D+
x D−

x + D+
y D−

y

)
Uij + c(xi, yj )Uij = (T 11

h f
)
ij
, (xi, yj ) ∈ Ωh, (2.99)

U = 0 on Γ h. (2.100)
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Let e := u − U denote the global error of the scheme; then, according to
Lemma 2.24,

‖e‖W 1
2 (Ωh) ≤ 1

c0

(‖ϕ1‖2
L2(Ω

h
x )

+ ‖ϕ2‖2
L2(Ω

h
y )

+ ‖ψ‖2
L2(Ω

h)

)1/2
, (2.101)

where ϕ1, ϕ2, and ψ are defined by

ϕ1(xi, yj ) := 1

h

∫ yj+1/2

yj−1/2

∂u

∂x
(xi−1/2, y)dy − D−

x u(xi, yj ),

ϕ2(xi, yj ) := 1

h

∫ xi+1/2

xi−1/2

∂u

∂y
(x, yj−1/2)dx − D−

y u(xi, yj ),

ψ(xi, yj ) := (cu)(xi, yj ) − 1

h2

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

(cu)(x, y)dx dy,

with xi±1/2 = xi ± h/2 and yj±1/2 = yj ± h/2.
We shall use the Bramble–Hilbert lemma to estimate ϕ1, ϕ2 and ψ in terms of

appropriate powers of the discretization parameter h and suitable Sobolev semi-
norms of the analytical solution u. We begin by considering ϕ1. Let us introduce the
change of variables

x = xi−1/2 + x̃h, −1

2
≤ x̃ ≤ 1

2
; y = yj + ỹh, −1

2
≤ ỹ ≤ 1

2
,

and define ṽ(x̃, ỹ) := h∂u
∂x

(x, y). Then,

ϕ1(xi, yj ) = 1

h
ϕ̃1(ṽ),

where

ϕ̃1(ṽ) :=
∫ 1/2

−1/2

∫ 1/2

−1/2

[
ṽ(0, ỹ) − ṽ(x̃,0)

]
dx̃ dỹ.

Thanks to the trace theorem (Theorem 1.42),
∣∣ϕ̃1(ṽ)

∣∣≤ Cs‖ṽ‖
Ws

2 (K̃)
, s > 1/2,

where

K̃ :=
(

−1

2
,

1

2

)
×
(

−1

2
,

1

2

)
,

and Cs = C(s) is a positive constant. Thus ϕ̃1 is a bounded linear functional (of the
argument ṽ) on Ws

2 (K̃) for s > 1/2.
Moreover, ϕ̃1 = 0 when ṽ(x̃, ỹ) = x̃kỹl , k, l ∈ {0,1}. According to Theo-

rem 2.28, there exists a positive constant C = C(s) such that
∣∣ϕ̃1(ṽ)

∣∣≤ C|ṽ|
Ws

2 (K̃)
, 1/2 < s ≤ 2.
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Hence, by defining

Kij := (xi−1/2, xi+1/2) × (yj−1/2, yj+1/2)

and returning from x̃ and ỹ to the original variables x and y, we deduce that

∣∣ϕ̃1(ṽ)
∣∣≤ Chs

∣∣∣∣
∂u

∂x

∣∣∣∣
Ws

2 (Kij )

, 1/2 < s ≤ 2,

so that
∣∣ϕ1(xi, yj )

∣∣≤ Chs−1
∣∣∣∣
∂u

∂x

∣∣∣∣
Ws

2 (Kij )

, 1/2 < s ≤ 2.

By noting that the Sobolev seminorm on the unit square is superadditive on the
family {Kij } of mutually disjoint Lebesgue-measurable subsets Kij of Ω , i.e. for
w ∈ Ws

2 (Ω) one has

(
N−1∑

i=1

N−1∑

j=1

|w|2Ws
2 (Kij )

)1/2

≤ |w|
Ws

2 (∪N−1
i,j=1Kij )

,

it follows with w = ∂u/∂x that

‖ϕ1‖L2(Ω
h
x ) ≤ Chs

∣∣∣∣
∂u

∂x

∣∣∣∣
Ws

2 (Ω)

, 1/2 < s ≤ 2, (2.102)

where C is a positive constant, dependent only on s. Analogously,

‖ϕ2‖L2(Ω
h
y ) ≤ Chs

∣∣∣∣
∂u

∂y

∣∣∣∣
Ws

2 (Ω)

, 1/2 < s ≤ 2. (2.103)

To complete the error analysis it remains to estimate ψ(xi, yj ). For this purpose
we shall write w := cu and note that

ψ(xi, yj ) = w(xi, yj ) − 1

h2

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

w(x,y)dx dy.

Let us also consider the following change of variables:

x = xi + x̃h, −1

2
≤ x̃ ≤ 1

2
; y = yj + ỹh, −1

2
≤ ỹ ≤ 1

2
,

and define w̃(x̃, ỹ) := w(x,y). Then,

ψ(xi, yj ) = ψ̃(w̃),

where

ψ̃(w̃) := w̃(0,0) −
∫ 1/2

−1/2

∫ 1/2

−1/2
w̃(x̃, ỹ)dx̃ dỹ.
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By Sobolev’s embedding theorem ψ̃ is a bounded linear functional (of w̃) on Ws
2 (K̃)

for s > 1, where, as before, K̃ := (−1/2,1/2)×(−1/2,1/2). Furthermore, ψ̃(w̃) =
0 whenever w̃ = x̃kỹl with k, l ∈ {0,1}. Thus, by the Bramble–Hilbert lemma,

∣∣ψ̃(w̃)
∣∣≤ C|w̃|

Ws
2 (K̃)

, 1 < s ≤ 2,

and consequently, after returning from the (x̃, ỹ) co-ordinate system to the original
variables x and y, we obtain the bound

∣∣ψ(xi, yj )
∣∣≤ Chs−1|w|Ws

2 (Kij ), 1 < s ≤ 2,

and finally, after squaring and summing over i, j = 1, . . . ,N − 1,

‖ψ‖L2(Ω
h) ≤ Chs |cu|Ws

2 (Ω), 1 < s ≤ 2. (2.104)

Thus, by assuming that the weak solution u ∈ Ws
2 (Ω) ∩ W̊ 1

2 (Ω) and that c ∈
M(Ws

2 (Ω)), for 1 < s ≤ 2, after substituting (2.102), (2.103) and (2.104) into
(2.101), we arrive at the following bound on the global error:

‖u − U‖W 1
2 (Ωh) ≤ Chs

(∣∣∣∣
∂u

∂x

∣∣∣∣
Ws

2 (Ω)

+
∣∣∣∣
∂u

∂y

∣∣∣∣
Ws

2 (Ω)

+ ‖c‖M(Ws
2 (Ω))‖u‖Ws

2 (Ω)

)
,

where C is a positive constant depending on s, but independent of h; or, more
crudely, after bounding |∂u/∂x|Ws

2 (Ω) + |∂u/∂y|Ws
2 (Ω) by ‖u‖

Ws+1
2 (Ω)

, and writing

s − 1 instead s, we obtain

‖u − U‖W 1
2 (Ωh) ≤ Chs−1‖u‖Ws

2 (Ω), 2 < s ≤ 3.

This should be compared with the error bound derived in the previous section using
integral representations based on the Newton–Leibniz formula for s = 2 and s = 3
and by function space interpolation for 2 < s < 3.

2.4 Convergence Analysis on Nonuniform Meshes

Our objective in this section is to develop the error analysis of finite difference (or,
more precisely, finite volume) approximations on nonuniform meshes for the model
Poisson equation with homogeneous Dirichlet boundary condition:

−Δu = f in Ω , (2.105)

u = 0 on Γ = ∂Ω , (2.106)

where Ω := (0,1) × (0,1). When f ∈ W−1
2 (Ω), this boundary-value problem has

a unique weak solution u in W̊ 1
2 (Ω); furthermore, if f ∈ Ws

2 (Ω) then u belongs to
Ws+2

2 (Ω), −1 ≤ s < 1, s �= ±1/2 (see, Theorem 2.8).



154 2 Elliptic Boundary-Value Problems

As has already been indicated earlier, the key idea behind the construction of a
finite volume method for (2.105), (2.106) is to make use of the divergence form of
the differential operator Δ = ∇ · ∇ appearing in the equation −Δu = f by inte-
grating both sides over mutually disjoint ‘cells’ Kij ⊂ Ω , and use the divergence
theorem to convert integrals over the cells Kij into contour integrals along their
boundaries, which are then discretized by means of numerical quadrature rules. This
construction gives rise to a finite difference scheme whose right-hand side involves
the integral average of f over individual cells, the particular form of the difference
scheme being dependent on the shapes of the cells and the numerical quadrature
formula used. For example, if Ω has been partitioned by a uniform square mesh of
mesh-size h, then the resulting scheme coincides with (2.71), (2.72) (with c ≡ 0).

2.4.1 Cartesian-Product Nonuniform Meshes

We begin by considering Cartesian-product nonuniform meshes. For the purposes
of the error analysis it is helpful to reformulate the finite volume scheme as a
Petrov–Galerkin finite element method based on bilinear or piecewise linear trial
functions on the underlying mesh and piecewise constant test functions on the dual
‘box mesh’. We shall prove that, as in the case of uniform meshes considered in the
previous section, the scheme is stable in the discrete W 1

2 norm. This stability result
will then, similarly to the arguments in the previous section, lead to an optimal-order
error bound in the discrete W 1

2 norm under minimal smoothness requirements on the
exact solution and without any additional assumptions on the spacing of the mesh.
In particular, the mesh is not required to be quasi-uniform (in a sense that will be
made precise). If quasi-uniformity is assumed, then an additional error bound holds,
in the discrete maximum norm. In the next section similar results will be derived for
a general one-parameter family of schemes.

The problem (2.105), (2.106) is approximated on the nonuniform mesh Ω
h
,

which is the Cartesian product of the one-dimensional meshes

{xi, i = 0, . . . ,M : x0 = 0, xi − xi−1 = hi, xM = 1},
{yj , j = 0, . . . ,N : y0 = 0, yj − yj−1 = kj , yN = 1}.

We then define

Ωh := Ω ∩ Ω
h
, Γ h := Γ ∩ Ω

h
,

Ωh
x := Ω

h ∩ ((0,1] × (0,1)
)
, Ωh

y := Ω
h ∩ ((0,1) × (0,1]),

Γ h
x := Ω

h ∩ ({0,1} × (0,1)
)
, Γ h

y := Ω
h ∩ ((0,1) × {0,1}).

To each mesh-point (xi, yj ) in Ωh we assign a cell

Kij := (xi−1/2, xi+1/2) × (yj−1/2, yj+1/2),
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Fig. 2.4 Section of the
Cartesian-product

nonuniform mesh Ω
h
,

showing nine mesh-points
and the cell Kij associated
with the mesh-point (xi , yj )

as shown in Fig. 2.4, where

xi−1/2 := xi − 1

2
hi, xi+1/2 := xi + 1

2
hi+1,

yj−1/2 := yj − 1

2
kj , yj+1/2 := yj + 1

2
kj+1,

and we denote the edge-lengths of the cell Kij by

�i := 1

2
(hi + hi+1) and kj := 1

2
(kj + kj+1).

A simple calculation based on the definition of the fractional-order Sobolev
norm shows that χij , the characteristic function of the set (−hi+1/2, hi/2) ×
(−kj+1/2, kj /2), belongs to Wτ

2 (R2) for all τ < 1/2. Assuming that f belongs
to Ws

2 (Ω) for some s > −1/2, and extending f from Ω onto R
2 by preserving its

Sobolev class, we deduce from Theorem 1.69 that the convolution χij ∗ f is a con-
tinuous function on R

2 (whose values on Ωh are independent of the particular form
of the extension). Convolution of (2.105) with χij then yields

− 1

meas Kij

∫

∂Kij

∂u

∂ν
ds = 1

meas Kij

(χij ∗ f )(xi, yj ), (2.107)

where ν denotes the unit outward normal vector to ∂Kij .
We remark that if f is a locally integrable function on Ω then, similarly as in the

case of uniform meshes considered earlier, the right-hand side of (2.107) is simply

(
T 11

h f
)
ij

= 1

�i kj

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

f (x, y)dx dy.

Let Sh signify the set of all real-valued continuous piecewise bilinear functions

defined on the rectangular partition of Ω induced by Ω
h
, and let Sh

0 be the subset of
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Sh consisting of those functions that vanish on Γ . Motivated by the form of (2.107),
we define the finite volume approximation of u as U ∈ Sh

0 satisfying

− 1

�i kj

∫

∂Kij

∂U

∂ν
ds = 1

�i kj

(χij ∗ f )(xi, yj ) for (xi, yj ) ∈ Ωh. (2.108)

First, we shall prove that this method is stable by proceeding in the same way as in
the case of uniform meshes considered in the previous section. To this end, we shall

rewrite (2.108) as a finite difference scheme on Ω
h

by using the averaging operator
μx defined by

μxVij := 1

8�i

(hiVi−1,j + 6�iVij + hi+1Vi+1,j ) (2.109)

and the divided differences

D−
x Vij := Vij − Vi−1,j

hi

and D+
x Vij := Vi+1,j − Vij

�i

,

with analogous definitions for μy , D−
y and D+

y . With these notational conventions,

−
∫

∂Kij

∂U

∂ν
ds = −�i kj

(
D+

x D−
x μy + D+

y D−
y μx

)
Uij . (2.110)

By inserting (2.110) into (2.108), the finite volume method (2.108) can be restated
as the finite difference scheme

−(D+
x D−

x μy + D+
y D−

y μx

)
U = T 11

h f in Ωh, (2.111)

U = 0 on Γ h, (2.112)

where
(
T 11

h f
)
ij

:= 1

�i kj

(χij ∗ f )(xi, yj ).

We begin the analysis of the scheme (2.111), (2.112) by investigating its stability
in the discrete W 1

2 norm, ‖ · ‖W 1
2 (Ωh), defined by

‖V ‖W 1
2 (Ωh) := (‖V ‖2

L2(Ω
h)

+ |V |2
W 1

2 (Ωh)

)1/2
,

where ‖ · ‖L2(Ω
h) is the discrete L2 norm on the linear space of real-valued mesh-

functions defined on Ωh:

‖V ‖L2(Ω
h) := (V ,V )

1/2
h , (V ,W)h :=

M−1∑

i=1

N−1∑

j=1

�i kjVijWij ,
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and | · |W 1
2 (Ωh) is the discrete W 1

2 seminorm defined by

|V |W 1
2 (Ωh) := (∥∥D−

x V
∥∥2

L2(Ω
h
x )

+ ∥∥D−
y V

∥∥2
L2(Ω

h
y )

)1/2
,

with

‖V ‖2
L2(Ω

h
x )

:= (V ,V ]2
x, (V ,W ]x :=

M∑

i=1

N−1∑

j=1

hikjVijWij ,

‖V ‖2
L2(Ω

h
y )

:= (V ,V ]2
y, (V ,W ]y :=

M−1∑

i=1

N∑

j=1

�ikjVijWij .

The associated discrete W−1
2 norm is then defined by

‖V ‖
W−1

2 (Ωh)
:= sup

W∈Sh
0 \{0}

|(V ,W)h|
‖W‖W 1

2 (Ωh)

.

Lemma 2.31 Suppose that V is a mesh-function defined on Ωh.

(a) If V = 0 on Γ h
x , then

(μxV,V ]y ≥ 1

2
‖V ‖2

L2(Ω
h
y )

. (2.113)

(b) If V = 0 on Γ h
y , then

(μyV,V ]x ≥ 1

2
‖V ‖2

L2(Ω
h
x )

. (2.114)

Proof We shall only prove inequality (2.113), the proof of (2.114) being analogous.
Let us assume for a moment that j is fixed, 1 ≤ j ≤ N . Then,

M−1∑

i=1

�i (μxVij )Vij = 1

8

M−1∑

i=1

(
hiVi−1,j Vij + 6�iV

2
ij + hi+1Vi+1,j Vij

)

≥ 1

8

(
M−1∑

i=1

5�iV
2
ij − 1

2

M∑

i=2

hiV
2
ij − 1

2

M−2∑

i=0

hi+1V
2
ij

)

≥ 1

2

M−1∑

i=1

�iV
2
ij .

We then multiply this by kj and sum through the index j ∈ {1, . . . ,N} to deduce the
desired inequality. �
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We shall also require the following discrete analogue of the Friedrichs inequality
on Cartesian-product nonuniform meshes.

Lemma 2.32 Suppose that V is a mesh-function defined on Ωh such that V = 0 on
Γh. Then,

‖V ‖2
W 1

2 (Ωh)
≤ 3

2
|V |2

W 1
2 (Ωh)

. (2.115)

Proof Let V be a mesh-function defined on Ωh such that V = 0 on Γh. Then, the
expression

‖V ‖2
L2(Ω

h)
=

M−1∑

i=1

N−1∑

j=1

�i kjV
2
ij

can be bounded as follows:

‖V ‖2
L2(Ω

h)
= 1

2

M−1∑

i=1

N−1∑

j=1

�i kjV
2
ij + 1

2

M−1∑

i=1

N−1∑

j=1

�i kjV
2
ij

= 1

2

(
M−1∑

i=1

N−1∑

j=1

�i kj

∣∣∣∣∣

i∑

m=1

hmD−
x Vmj

∣∣∣∣∣

2

+
M−1∑

i=1

N−1∑

j=1

�i kj

∣∣∣∣∣

j∑

n=1

knD
−
y Vin

∣∣∣∣∣

2)

≤ 1

2

M−1∑

i=1

N−1∑

j=1

�i kj

(
i∑

m=1

hm

)(
i∑

m=1

hm

∣∣D−
x Vmj

∣∣2
)

+ 1

2

M−1∑

i=1

N−1∑

j=1

�i kj

(
j∑

n=1

kn

)(
j∑

n=1

kn

∣∣D−
y Vin

∣∣2
)

≤ 1

2

(
M∑

m=1

N−1∑

j=1

hmkj

∣∣D−
x Vmj

∣∣2
)(

M−1∑

i=1

�i

i∑

m=1

hm

)

+ 1

2

(
M−1∑

i=1

N∑

n=1

�ikn

∣∣D−
y Vin

∣∣2
)(

N−1∑

j=1

kj

j∑

n=1

kn

)

≤ 1

2

(∥∥D−
x V

∥∥2
L2(Ω

h
x )

+ ∥∥D−
x V

∥∥2
L2(Ω

h
y )

)= 1

2
|V |2

W 1
2 (Ωh)

.

Adding |V |2
W 1

2 (Ωh)
to both sides completes the proof of the lemma. �

By using this discrete Friedrichs inequality we shall now prove that the finite
difference scheme is stable; the key to the proof is the following result.
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Theorem 2.33 Let LhV := −(D+
x D−

x μy + D+
y D−

y μx)V . Then,

‖V ‖W 1
2 (Ωh) ≤ 3

∥∥LhV
∥∥

W−1
2 (Ωh)

(2.116)

for any mesh-function V defined on Ω
h

and such that V = 0 on Γ h.

Proof By taking the (·, ·)h inner product of LhV with V we obtain
(−(D+

x D−
x μy

)
V,V

)
h

+ (−(D+
y D−

y μx

)
V,V

)
h

= (LhV,V
)
h
.

By performing summations by parts in the two terms on the left-hand side we get
(
D−

x μyV,D−
x V

]
x

+ (D−
y μxV,D−

y V
]
y

= (LhV,V
)
h
.

Since D−
x commutes with μy and D−

y commutes with μx , we can apply (2.113) and
(2.114) to obtain

1

2

(∥∥D−
x V

∥∥2
L2(Ω

h
x )

+ ∥∥D−
y V

∥∥2
L2(Ω

h
y )

)≤ (LhV,V
)
h
.

By recalling (2.115) and the definition of ‖ · ‖
W−1

2 (Ωh)
we get (2.116). �

Theorem 2.33 now implies the stability of the scheme.

Theorem 2.34 For any f ∈ Ws
2 (Ω), s > −1/2, the scheme (2.108) (or, equiva-

lently, (2.111), (2.112)) has a unique solution U . Moreover,

‖U‖W 1
2 (Ωh) ≤ 3

∥∥T 11
h f

∥∥
W−1

2 (Ωh)
.

Having proved stability, we are now ready to embark on the error analysis of
the scheme. We shall derive an optimal-order error bound for the finite difference
method (2.111), (2.112), which can also be seen as a superconvergence result for
the finite volume method (2.108) considered as a Petrov–Galerkin finite element
method, on a family of Cartesian-product nonuniform meshes. By superconvergence
we mean that O(h2) convergence of the error between u and its continuous piece-
wise bilinear approximation U is observed in the discrete W 1

2 norm while only O(h)

convergence will be seen if u − U is measured in the norm of the Sobolev space
W 1

2 (Ω). The result will be shown to hold without any additional assumptions on the
spacing of the mesh: in particular the mesh is not required to be quasi-uniform (the
definition of quasi-uniform mesh will be given in the statement of Theorem 2.38).

Theorem 2.35 Suppose that u ∈ Ws+1
2 (Ω) ∩ W̊ 1

2 (Ω), 1/2 < s ≤ 2. Then,

‖u − U‖W 1
2 (Ωh) ≤ Chs |u|

Ws+1
2 (Ω)

, (2.117)

where h = maxi,j (hi, kj ), and C = C(s) is a positive constant independent of u and
the discretization parameters.



160 2 Elliptic Boundary-Value Problems

In the proof of Theorem 2.35 we shall make use of anisotropic Sobolev spaces on
rectangular subdomains of R2. For ω = (a, b) × (c, d) and a pair (r, s) of nonneg-
ative real numbers, we denote by W

r,s
2 (ω) the anisotropic Sobolev space consisting

of all functions u ∈ L2(ω) such that

|u|
W

r,0
2 (ω)

:=
(∫ d

c

∣∣u(·, y)
∣∣2
Wr

2 (a,b)
dy

)1/2

< ∞,

|u|
W

0,s
2 (ω)

:=
(∫ b

a

∣∣u(x, ·)∣∣2
Ws

2 (c,d)
dx

)1/2

< ∞.

The linear space W
r,s
2 (ω) is a Banach space equipped with the norm

‖u‖W
r,s
2 (ω) := (‖u‖2

L2(ω) + |u|2
W

r,0
2 (ω)

+ |u|2
W

0,s
2 (ω)

)1/2
.

For s ≥ 0, W
s,s
2 (ω) coincides with the standard (isotropic) Sobolev space Ws

2 (ω),
and the norm ‖ · ‖W

s,s
2 (ω) is equivalent to the Sobolev norm ‖ · ‖Ws

2 (ω) (cf. Sect. 18
of Besov, Il’in and Nikol’skiı̆ [13]).

Proof of Theorem 2.35 Let us define the global error as e := u−U . Then, by apply-
ing the difference operator Lh defined in Theorem 2.33 to e and noting the definition
of the finite difference scheme, we deduce that

Lhe =
(

T 11
h

∂2u

∂x2
− D+

x D−
x μyu

)
+
(

T 11
h

∂2u

∂y2
− D+

y D−
y μxu

)
.

However,
(

T 11
h

∂2u

∂x2

)

ij

= 1

�i kj

∫ yj+1/2

yj−1/2

[
∂u

∂x
(xi+1/2, y) − ∂u

∂x
(xi−1/2, y)

]
dy

= D+
x

(
T 01−

∂u

∂x

)

ij

,

where
(
T 01− w

)
ij

= 1

kj

∫ yj+1/2

yj−1/2

w(xi−1/2, y)dy.

Consequently,

Lhe = D+
x η1 + D+

y η2 in Ωh,

e = 0 on Γ h,
(2.118)

where

η1 := T 01−
∂u

∂x
− D−

x μyu, η2 := T 10−
∂u

∂y
− D−

y μxu,
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and T 10− is defined analogously to T 01− above. By applying Theorem 2.33 to the finite
difference equations (2.118) we have that

‖e‖W 1
2 (Ωh) ≤ 3

∥∥D+
x η1 + D+

y η2
∥∥

W−1
2 (Ωh)

.

It remains to bound the right-hand side of this inequality. We observe to this end

that, for any mesh-function V defined on Ω
h

and vanishing on Γ h,

−(D+
x η1 + D+

y η2,V
)
h

= (η1,D
−
x V

]
x

+ (η2,D
−
y V

]
y
.

By noting the definition of the norm ‖ · ‖
W−1

2 (Ωh)
we thus deduce that

∥∥D+
x η1 + D+

y η2
∥∥

W−1
2 (Ωh)

≤ ‖η1‖L2(Ω
h
x ) + ‖η2‖L2(Ω

h
y ).

Hence,

‖u − U‖W 1
2 (Ωh) ≤ 3

(‖η1‖L2(Ω
h
x ) + ‖η2‖L2(Ω

h
y )

)
. (2.119)

It remains to bound the right-hand side of (2.119). We only consider the term in-
volving η1; the norm of η2 is bounded analogously.

To this end, we first define

(μyu)(x, yj ) := 1

8kj

[
kju(x, yj−1) + 6kju(x, yj ) + kj+1u(x, yj+1)

]
,

and for fixed x, 0 ≤ x ≤ 1, we let Iyw(x, ·) denote the univariate continuous piece-

wise linear interpolant of w(x, ·) on the mesh Ω
h

y . Then,

(μyw)(x, yj ) = 1

kj

∫ yj+1/2

yj−1/2

(Iyw)(x, y)dy,

and therefore,

(μyu)ij − (μyu)i−1,j =
∫ xi

xi−1

∂

∂x
(μyu)(x, yj )dx

=
∫ xi

xi−1

∂

∂x

1

kj

∫ yj+1/2

yj−1/2

(Iyu)(x, y)dx dy

= 1

kj

∫ xi

xi−1

∫ yj+1/2

yj−1/2

∂

∂x
(Iyu)(x, y)dx dy

= 1

kj

∫ xi

xi−1

∫ yj+1/2

yj−1/2

Iy

(
∂u

∂x

)
(x, y)dx dy.

Thus we find that (η1)ij can be expressed as

(η1)ij = 1

hikj

∫ xi

xi−1

∫ yj+1/2

yj−1/2

[
∂u

∂x
(xi−1/2, y) −

(
Iy

∂u

∂x

)
(x, y)

]
dx dy.
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By splitting η1 as the sum of η11 and η12, where

(η11)ij := 1

hikj

∫ xi

xi−1

∫ yj+1/2

yj

[
∂u

∂x
(xi−1/2, y) −

(
Iy

∂u

∂x

)
(x, y)

]
dx dy,

(η12)ij := 1

hikj

∫ xi

xi−1

∫ yj

yj−1/2

[
∂u

∂x
(xi−1/2, y) −

(
Iy

∂u

∂x

)
(x, y)

]
dx dy,

the task of estimating η1 is reduced to bounding η11 and η12.
Let us first consider η11. By introducing the change of variables

x = xi−1/2 + x̃hi, −1

2
≤ x̃ ≤ 1

2
; y = yj + ỹkj+1, 0 ≤ ỹ ≤ 1,

and defining ṽ(x̃, ỹ) := hi
∂u
∂x

(x, y), we can write

(η11)ij = kj+1

hikj

η̃11(ṽ),

where

η̃11(ṽ) :=
∫ 1/2

−1/2

∫ 1/2

0

[
ṽ(0, ỹ) − ṽ(x̃,0)(1 − ỹ) − ṽ(x̃,1)ỹ

]
dx̃ dỹ.

Now η̃11 can be regarded as a linear functional (with the argument ṽ) defined on
Ws

2 (K̃∗), where s > 1/2 and

K̃∗ :=
(

−1

2
,

1

2

)
× (0,1).

Thanks to the trace theorem (Theorem 1.42),

∣∣η̃11(ṽ)
∣∣≤ C‖ṽ‖

Ws
2 (K̃∗), s > 1/2,

and therefore |η̃11(·)| is a bounded sublinear functional on Ws
2 (K̃∗). Moreover, if

ṽ(x̃, ỹ) = x̃kỹl , k, l ∈ {0,1}, then η̃11(ṽ) = 0. By applying Theorem 1.9 with

U1 = Ws
2

(
K̃∗), U0 = L2

(
K̃∗),

S = |η̃11|, S1 = (| · |2
W

0,s
2 (K̃∗) + | · |2

W
s,0
2 (K̃∗)

)1/2
, S0 = ‖ · ‖

L2(K̃
∗),

and noting that for s > 0 the Sobolev space Ws
2 (K̃∗) is compactly embedded in

L2(K̃∗), we deduce that

∣∣η̃11(ṽ)
∣∣≤ C

(|ṽ|2
W

0,s
2 (K̃∗) + |ṽ|2

W
s,0
2 (K̃∗)

)1/2
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for 1/2 < s ≤ 2. By defining K−
ij := (xi−1, xi) × (yj−1, yj ), K−

i,j+1 := (xi−1, xi) ×
(yj , yj+1) and returning from the (x̃, ỹ)–variables to the original (x, y) co-
ordinates, we thus have that

∣∣η̃11(ṽ)
∣∣2 ≤ C

(
h2

i k
2s
j+1

hikj+1

∣∣∣∣
∂u

∂x

∣∣∣∣
2

W
0,s
2 (K−

i,j+1)

+ h
2(s+1)
i

hikj+1

∣∣∣∣
∂u

∂x

∣∣∣∣
2

W
s,0
2 (K−

i,j+1)

)
,

and therefore

∣∣(η11)ij
∣∣2 ≤ C

(
k2s+1
j+1

hik
2
j

∣∣∣∣
∂u

∂x

∣∣∣∣
2

W
0,s
2 (K−

i,j+1)

+ h2s−1
i kj+1

k2
j

∣∣∣∣
∂u

∂x

∣∣∣∣
2

W
s,0
2 (K−

i,j+1)

)
.

Analogously,

∣∣(η12)ij
∣∣2 ≤ C

(
k2s+1
j

hik
2
j

∣∣∣∣
∂u

∂x

∣∣∣∣
2

W
0,s
2 (K−

ij )

+ h2s−1
i kj

k2
j

∣∣∣∣
∂u

∂x

∣∣∣∣
2

W
s,0
2 (K−

ij )

)
.

By noting the superadditivity of the Sobolev seminorm on a family of mutually
disjoint Lebesgue-measurable subsets of Ω , we thus have that

‖η1‖2
L2(Ω

h
x )

≤ Ch2s

(∣∣∣∣
∂u

∂x

∣∣∣∣
2

W
0,s
2 (Ω)

+
∣∣∣∣
∂u

∂x

∣∣∣∣
2

W
s,0
2 (Ω)

)
, (2.120)

where h = maxi,j (hi, kj ). Analogously,

‖η2‖2
L2(Ω

h
y )

≤ Ch2s

(∣∣∣∣
∂u

∂y

∣∣∣∣
2

W
0,s
2 (Ω)

+
∣∣∣∣
∂u

∂y

∣∣∣∣
2

W
s,0
2 (Ω)

)
. (2.121)

By substituting (2.120) and (2.121) into (2.119) we thus obtain the desired error
bound

‖u − U‖W 1
2 (Ωh) ≤ Chs |u|

Ws+1
2 (Ω)

, 1/2 < s ≤ 2.

That completes the proof of the theorem. �

On a quasi-uniform mesh, the finite volume method (2.108) can be shown to be
(almost) optimally accurate in the discrete maximum norm ‖ · ‖∞,h defined by

‖V ‖∞,h := max
(x,y)∈Ω

h

∣∣V (x, y)
∣∣.

We shall say that {Ωh} is a family of quasi-uniform Cartesian-product meshes
on Ω = [0,1] × [0,1] if there exists a positive constant C
 such that

h := max
i,j

(hi, kj ) ≤ C
 min
i,j

(hi, kj ).
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Some auxiliary results are required to prove an error bound in the discrete maxi-
mum norm; these are formulated in the next two lemmas, the first of which states a
version of the inverse inequality (see, for example, Ciarlet [26], Theorem 3.2.6).

Lemma 2.36 Suppose that {Ωh} is a family of quasi-uniform Cartesian-product
meshes on Ω = [0,1] × [0,1], and let Sh be the linear space of continuous piece-

wise bilinear polynomials defined on the partition of Ω induced by Ω
h
. Suppose

that 1 ≤ q, r ≤ ∞. Then, there exists a positive constant C = C(C
, q, r), indepen-
dent of the discretization parameter h, such that

‖V ‖Lq(Ω) ≤ Chmin(0,(2/q)−(2/r))‖V ‖Lr(Ω) ∀V ∈ Sh.

Proof Consider the rectangle K−
ij := (xi−1, xi) × (yj−1, yj ), 1 ≤ i ≤ M , 1 ≤ j ≤

N , and the mapping (x̃, ỹ) �→ (x, y) defined by

x = xi−1 + x̃hi, y = yj−1 + ỹkj , (2.122)

which maps the unit square K̃+ := (0,1)2 onto K−
ij . Let us define

Ṽ (x̃, ỹ) := V (x, y),

where (x, y) is the image of (x̃, ỹ) under the transformation (2.122). Now

‖Ṽ ‖
Lr(K̃+)

= (hikj )
−1/r‖V ‖Lr(K

−
ij ),

and

‖V ‖Lq(K−
ij ) = (hikj )

1/q‖Ṽ ‖
Lq(K̃+)

.

Let P(K̃+) denote the linear space of all bilinear polynomials defined on the
square K̃+:

P
(
K̃+) := {(a + bx̃)(c + dỹ) : a, b, c, d ∈ R, 0 ≤ x̃, ỹ ≤ 1

}
.

Since P(K̃+) is finite-dimensional (in fact, the dimension of P(K̃+) is 4), the
norms ‖ · ‖

Lq(K̃+)
and ‖ · ‖

Lr(K̃+)
are equivalent on P(K̃+). Hence, there is a con-

stant C0 = C0(q, r) such that

‖Ṽ ‖
Lq(K̃+)

≤ C0‖Ṽ ‖
Lr(K̃+)

,

for all Ṽ in P(K̃+). Combining this with the two previous equalities yields

‖V ‖Lq(K−
ij ) ≤ C0(hikj )

(1/q)−(1/r)‖V ‖Lr(K
−
ij ),

and thus, by defining C1 = C0C
max(0,(2/r)−(2/q))

 , we get

‖V ‖Lq(K−
ij ) ≤ C1h

(2/q)−(2/r)‖V ‖Lr(K
−
ij ). (2.123)
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Let us suppose that q = ∞; then, there exist i0 and j0, 1 ≤ i0 ≤ M , 1 ≤ j0 ≤ N ,
such that

‖V ‖L∞(Ω) = ‖V ‖L∞(Ki0j0 ) ≤ C1h
−2/r‖V ‖Lr(Ki0j0 ) ≤ C1h

−2/r‖V ‖Lr(Ω),

which is the required result in the case of q = ∞.
Let us suppose now that q < ∞. It follows from (2.123) that

(∑

i,j

‖V ‖q

Lq(K−
ij )

)1/q

≤ C1h
(2/q)−(2/r)

(∑

i,j

‖V ‖q

Lr (K
−
ij )

)1/q

, (2.124)

where the sums are taken over all i and j , 1 ≤ i ≤ M , 1 ≤ j ≤ N .
We shall consider three cases. When r ≤ q , by noting that s �→ (

∑
i,j as

ij )
1/s

is monotonic decreasing on [1,∞) when 0 < aij ≤ 1, we have, with aij =
‖V ‖Lr(K

−
ij )/‖V ‖Lr(Ω), that

(∑

i,j

‖V ‖q

Lr (K
−
ij )

)1/q

≤
(∑

i,j

‖V ‖r

Lr (K
−
ij )

)1/r

.

When q < r < ∞, Hölder’s inequality for finite sums gives

(∑

i,j

‖V ‖q

Lr (K
−
ij )

)1/q

≤ (MN)(1/q)−(1/r)

(∑

i,j

‖V ‖r

Lr (K
−
ij )

)1/r

≤
(

C


h

)(2/q)−(2/r)(∑

i,j

‖V ‖r

Lr (K
−
ij )

)1/r

.

Finally, when r = ∞, we have that

(∑

i,j

‖V ‖q

L∞(K−
ij )

)1/q

≤
(

C


h

)2/q

max
ij

‖V ‖L∞(K−
ij ).

It remains to combine (2.124) with one of the three inequalities corresponding to
r ≤ q , q < r < ∞ and r = ∞ respectively to complete the proof. �

Lemma 2.37 Suppose that {Ωh} is a family of quasi-uniform Cartesian-product
meshes, and let Sh

0 be the linear space of continuous piecewise bilinear polynomials

defined on the partition of Ω induced by Ω
h

that vanish on Γ . Then, there exists a
positive constant C, independent of the discretization parameter h, such that,

‖V ‖L∞(Ω) ≤ C| logh|1/2‖∇V ‖L2(Ω) ∀V ∈ Sh
0 .
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Proof By Sobolev’s embedding theorem on a Lipschitz domain D ⊂R
n,

‖v‖Lp(D) ≤ q

(
nq

p

)1/n+1/p−1

ω
−1/n
n n−1/p‖∇v‖Lq(D) ∀v ∈ W̊ 1

2 (D),

where q = np/(n + p), and ωn := 2πn/2/Γ (n/2) is the surface area of the unit ball
in R

n (see inequality (2.3.21) in Maz’ya [136]). Specifically, by taking n = 2 and
D = Ω ,

‖v‖Lp(Ω) ≤ Cq

(
2q

p

)1/2+1/p−1

2−1/p‖∇v‖Lq(Ω) ∀v ∈ W̊ 1
2 (Ω),

with q = 2p/(2 + p). Also, by the previous lemma,

‖V ‖L∞(Ω) ≤ Ch−2/p‖V ‖Lp(Ω)

and, by an analogous argument to that in the proof of the previous lemma,

‖∇V ‖Lq(Ω) ≤ Chmin(0,2/q−1)‖∇V ‖L2(Ω),

for all V in Sh
0 . Setting p = | logh|(> 1), for sufficiently small h, and combining

the last three inequalities, we obtain the required result. �

Theorem 2.38 Suppose that {Ωh} is a family of quasi-uniform Cartesian-product
meshes, i.e. there exists a positive constant C
 such that

h = max
i,j

(hi, kj ) ≤ C
 min
i,j

(hi, kj ),

and let u ∈ Ws+1
2 (Ω) ∩ W̊ 1

2 (Ω), 1/2 < s ≤ 2. Then,

‖u − U‖∞,h ≤ Chs | logh|1/2|u|
Ws+1

2 (Ω)
,

where C = C(s) is a positive constant depending on C
, but independent of u and
the discretization parameter h.

Proof Let Ih : W̊ 1
2 (Ω) ∩ C(Ω) → Sh

0 denote the interpolation projector onto Sh
0

defined by (Ihu)(xi, yj ) = u(xi, yj ) for all (xi, yj ) ∈ Ω
h
. Then,

‖u − U‖∞,h = ∥∥Ihu − U
∥∥∞,h

≤ ∥∥Ihu − U
∥∥

L∞(Ω)
.

Thanks to Lemma 2.37,

‖V ‖L∞(Ω) ≤ C| logh|1/2‖V ‖W 1
2 (Ω) ∀V ∈ Sh

0 .

Also, the equivalence of the norms ‖ · ‖W 1
2 (Ω) and ‖ · ‖W 1

2 (Ωh) on Sh
0 implies that

‖V ‖W 1
2 (Ω) ≤ C‖V ‖W 1

2 (Ωh) ∀V ∈ Sh
0 .
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Hence,

‖u − U‖∞,h ≤ C| logh|1/2‖u − U‖W 1
2 (Ωh),

and therefore Theorem 2.35 yields

‖u − U‖∞,h ≤ Chs | logh|1/2|u|
Ws+1

2 (Ω)
. �

In the next section we extend the error analysis developed here to a more general
class of schemes.

2.4.2 An Alternative Scheme

Hitherto it was assumed that the trial space Sh in the finite volume method (which
was subsequently rewritten as a finite difference scheme) consisted of continu-
ous piecewise bilinear functions on the rectangular partition of Ω induced by the

Cartesian-product mesh Ω
h
. One can construct an alternative method, based on

continuous piecewise linear trial functions on triangles; to this end, we consider a
triangulation of Ω obtained from the original rectangular partition by subdividing
each rectangle into two triangles by the diagonal of positive slope. Let Sh denote
the set of all continuous piecewise linear functions on this triangulation, and let Sh

0
be the subset of Sh consisting of all those functions that vanish on Γ .

Similarly to (2.108), we define the finite volume approximation of u as U ∈ Sh
0

satisfying

− 1

�i kj

∫

∂Kij

∂U

∂ν
ds = 1

�i kj

(χij ∗ f )(xi, yj ) for (xi, yj ) ∈ Ωh. (2.125)

This scheme resembles the finite volume method (2.108). Indeed, a simple calcula-
tion reveals that (2.125) can be rewritten as the finite difference scheme

−(D+
x D−

x + D+
y D−

y

)
U = T 11

h f in Ωh, (2.126)

U = 0 on Γ h. (2.127)

In fact, both (2.111), (2.112) and (2.126), (2.127) can be embedded in the following
one-parameter family of finite difference schemes:

−(D+
x D−

x μθ
y + D+

y D−
y μθ

x

)
U = T 11

h f in Ωh, (2.128)

U = 0 on Γ h, (2.129)

where θ ∈ [0,1], and

μθ
xUij := 1

�i

[
θhiUi−1,j + (1 − 2θ)�iUij + θhi+1Ui+1,j

]
,
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with μθ
y defined analogously. The scheme (2.111), (2.112) (resp. (2.126), (2.127))

is obtained from (2.128), (2.129) with θ = 1/8 (resp. θ = 0). The rest of this section
is devoted to the analysis of the one-parameter family of schemes (2.126), (2.127).

By proceeding similarly as in the proofs of Lemmas 2.31, 2.32 and Theo-
rems 2.33 and 2.34 we arrive at the following set of results, whose proofs have
been omitted for the sake of brevity.

Lemma 2.39 Suppose that V is a mesh-function defined on Ω
h
, and let θ ∈

[0,1/4).

(a) If V = 0 on Γ h
x , then

(
μθ

xV,V
]
y

≥ (1 − 4θ)‖V ‖2
L2(Ω

h
y )

.

(b) If V = 0 on Γ h
y , then

(
μθ

yV,V
]
x

≥ (1 − 4θ)‖V ‖2
L2(Ω

h
x )

.

Theorem 2.40 Let LhV := −(D+
x D−

x μθ
y + D+

y D−
y μθ

x)V , and suppose that θ ∈
[0,1/4). Then,

‖V ‖W 1
2 (Ωh) ≤ 3

2(1 − 4θ)

∥∥LhV
∥∥

W−1
2 (Ωh)

,

for any mesh-function V defined on Ω
h

and such that V = 0 on Γ h.

Theorem 2.41 Suppose that θ ∈ [0,1/4). For any f ∈ Ws
2 (Ω), s > −1/2, (2.128),

(2.129) has a unique solution U . Moreover,

‖U‖W 1
2 (Ωh) ≤ 3

2(1 − 4θ)

∥∥T 11
h f

∥∥
W−1

2 (Ωh)
.

The central result of this section is the following error bound for the finite differ-
ence scheme (2.128), (2.129).

Theorem 2.42 Suppose that u ∈ W 3
2 (Ω) ∩ W̊ 1

2 (Ω), and let θ ∈ [0,1/4). Then,

‖u − U‖W 1
2 (Ωh) ≤ Ch2|u|W 3

2 (Ω),

where h = maxi,j (hi, kj ) and C = C(θ) is a positive constant independent of u and
the discretization parameters.

Proof Let us define the global error as e := u − U . We then have that

−(D+
x D−

x μθ
y + D+

y D−
y μθ

x

)
e = D+

x ηθ
1 + D+

y ηθ
2 in Ωh, (2.130)

e = 0 on Γ h, (2.131)
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where

ηθ
1 := η1 +

(
1

8
− θ

)
ζ1, ηθ

2 := η2 +
(

1

8
− θ

)
ζ2,

and

η1 := T 01−
∂u

∂x
− D−

x μyu, η2 := T 10−
∂u

∂y
− D−

y μxu,

as in the proof of Theorem 2.35, and

(ζ1)ij := h2
i D

−
x D+

y D−
y uij , (ζ2)ij := k2

jD
−
y D+

x D−
x uij .

By applying Theorem 2.40 to (2.130), (2.131) we then deduce that

‖e‖W 1
2 (Ωh) ≤ 3

2(1 − 4θ)

∥∥D+
x ηθ

1 + D+
y ηθ

2

∥∥
W−1

2 (Ωh)
.

Consequently,

‖u − U‖W 1
2 (Ωh) ≤ 3

2(1 − 4θ)

(‖η1‖L2(Ω
h
x ) + ‖η2‖L2(Ω

h
y )

)

+ 3|1 − 8θ |
16(1 − 4θ)

(‖ζ1‖L2(Ω
h
x ) + ‖ζ2‖L2(Ω

h
y )

)
. (2.132)

The first two terms on the right-hand side have already been bounded in the proof
of Theorem 2.35; we showed there that

‖η1‖L2(Ω
h
x ) ≤ Ch2

(∣∣∣∣
∂u

∂x

∣∣∣∣
W

0,2
2 (Ω)

+
∣∣∣∣
∂u

∂x

∣∣∣∣
W

2,0
2 (Ω)

)
(2.133)

and

‖η2‖L2(Ω
h
y ) ≤ Ch2

(∣∣∣∣
∂u

∂y

∣∣∣∣
W

0,2
2 (Ω)

+
∣∣∣∣
∂u

∂y

∣∣∣∣
W

2,0
2 (Ω)

)
. (2.134)

It therefore remains to bound the norms of ζ1 and ζ2. We observe in passing that
for θ = 1/8 the terms involving ζ1 and ζ2 are absent from (2.132).

To this end, let φi(x) (resp. ψj(y)) denote the standard continuous piecewise

linear finite element basis function on Ω
h

x (resp. Ω
h

y ) such that φi(xk) = δik (resp.
ψj(yk) = δjk); (ζ1)ij and (ζ2)ij can then be rewritten as

(ζ1)ij = h2
i

1

hikj

∫ xi

xi−1

∫ yj+1

yj−1

ψj (y)
∂3u

∂x∂y2
(x, y)dx dy,

(ζ2)ij = k2
j

1

�ikj

∫ xi+1

xi−1

∫ yj

yj−1

φi(x)
∂3u

∂x2∂y
(x, y)dx dy.
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Clearly,

‖ζ1‖L2(Ω
h
x ) ≤ Ch2

∣∣∣∣
∂u

∂x

∣∣∣∣
W

0,2
2 (Ω)

(2.135)

and

‖ζ2‖L2(Ω
h
y ) ≤ Ch2

∣∣∣∣
∂u

∂y

∣∣∣∣
W

2,0
2 (Ω)

. (2.136)

Inserting (2.133)–(2.136) in (2.132) we obtain the desired error bound. �

On a quasi-uniform mesh the scheme (2.128), (2.129) can be shown to be (al-
most) optimally accurate in the discrete maximum norm ‖ · ‖∞,h for any θ ∈
[0,1/4), by proceeding analogously as in the case of θ = 1/8.

Theorem 2.43 Suppose that {Ωh} is a family of quasi-uniform meshes, θ ∈
[0,1/4), and let u ∈ W 3

2 (Ω) ∩ W̊ 1
2 (Ω). Then,

‖u − U‖∞,h ≤ C(θ)h2| logh|1/2|u|W 3
2 (Ω).

The proof of this result is analogous to that of Theorem 2.38.

2.4.3 The Rotated Discrete Laplacian

In the previous section we considered the analysis of a one-parameter family of
finite difference schemes, parametrized by θ . For θ ∈ [0,1/4) we showed there that
the scheme is stable and we proved optimal-order error bounds in various norms.
A natural question is: what happens when θ = 1/4? This section is devoted to the
analysis of the resulting discretization.

Let us consider the finite difference scheme (2.128), (2.129), with θ = 1/4. For
the sake of notational simplicity we define

μ̂xVij := 1

4�i

(hiVi−1,j + 2�iVij + hi+1Vi+1,j ),

and μ̂y is defined analogously. In fact, by introducing

νxVij := 1

2
(Vij + Vi−1,j )

we can write

μ̂xVij = 1

2�i

(hiνxVij + hi+1νxVi+1,j ).
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Analogously, by letting

νyVij := 1

2
(Vij + Vi,j−1)

we have that

μ̂yVij = 1

2kj

(kj νyVij + kj+1νyVi,j+1).

In terms of this new notation, for θ = 1/4 the finite difference scheme (2.128),
(2.129) can be rewritten as follows:

−(D+
x D−

x μ̂y + D+
y D−

y μ̂x

)
U = T 11

h f in Ωh, (2.137)

U = 0 on Γ h. (2.138)

In particular, on a uniform mesh of size h, the resulting five-point finite difference
operator is given by

− 1

2h2
(Ui−1,j−1 + Ui−1,j+1 + Ui+1,j−1 + Ui+1,j+1 − 4Uij )

and is usually referred to as the rotated discrete Laplace operator.
We begin by showing that the scheme (2.137), (2.138) is stable. A preliminary

result in this direction stated in the next lemma concerns the averaging operators
μ̂x , νx , μ̂y and νy .

Lemma 2.44 Suppose that V is a function defined on the mesh Ωh.

(a) If V0j = VMj = 0 for j = 1, . . . ,N , then

(μ̂xV ,V ]y =
M∑

i=1

N∑

j=1

hikj |νxVij |2;

(b) If Vi0 = ViM = 0 for i = 1, . . . ,M , then

(μ̂yV ,V ]x =
M∑

i=1

N∑

j=1

hikj |νyVij |2.

Proof We shall prove (a); the proof of (b) is completely analogous. By noting the
definition of μ̂x we have that

(μ̂xV ,V ]y = 1

4

M−1∑

i=1

N∑

j=1

kj

[
hi+1Vi+1,j + Vij (hi+1 + hi) + hiVi−1,j

]
Vij

= 1

4

N∑

j=1

kj

[
M−1∑

i=1

(hi+1 + hi)V
2
ij + 2

M∑

i=1

hiVijVi−1,j

]
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= 1

4

M∑

i=1

N∑

j=1

hikj (Vij + Vi−1,j )
2,

and that completes the proof of (a). �

Lemma 2.45 Let LhV := −(D+
x D−

x μ̂y + D+
y D−

y μ̂x)V . Then,

(
LhV,V

)
h

=
M∑

i=1

N∑

j=1

hikj

(∣∣νyD
−
x Vij

∣∣2 + ∣∣νxD
−
y Vij

∣∣2)

for any mesh-function V defined on Ω
h

such that V = 0 on Γ h.

Proof This identity is a straightforward consequence of Lemma 2.44 by observing
that

(
LhV,V

)
h

= (
D−

x μ̂yV ,D−
x V

]
x

+ (D−
y μ̂xV ,D−

y V
]
y

= (
μ̂yD

−
x V ,D−

x V
]
x

+ (μ̂xD
−
y V ,D−

y V
]
y
,

where the first equality follows by summation by parts and the second by noting that
D−

x commutes with μ̂y and D−
y commutes with μ̂x . �

We deduce from Lemma 2.45 that

M∑

i=1

N∑

j=1

hikj

(∣∣νyD
−
x Vij

∣∣2 + ∣∣νxD
−
y Vij

∣∣2)= (LhV,V
)
h
,

for any function V defined on Ω
h

such that V = 0 on Γ h. Therefore, by applying
the Cauchy–Schwarz inequality on the right-hand side, noting that

Vij = νxVij + 1

2
hiD

−
x Vij , (2.139)

and letting

Wij := hiD
−
x Vij ,

we deduce that, for any such mesh-function V ,

M∑

i=1

N∑

j=1

hikj

(∣∣νyD
−
x Vij

∣∣2 + ∣∣νxD
−
y Vij

∣∣2)

≤ ∥∥LhV
∥∥

L2(Ω
h)

(
‖νxV ‖L2(Ω

h) + 1

2
‖W‖L2(Ω

h)

)
. (2.140)
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Now to complete the stability analysis of the finite difference scheme (2.137),
(2.138) it remains to relate the two norms in the brackets on the right-hand side
of (2.140) to the expression on the left. To do so, we state and prove two lemmas.

Lemma 2.46 Suppose that {Ωh} is a family of quasi-uniform meshes, i.e. there ex-
ists a positive constant C
 such that

h = max
i,j

(hi, kj ) ≤ C
 min
i,j

(hi, kj ).

Let V be a function defined on Ω
h

such that V = 0 on Γ h; then,

‖νxV ‖L2(Ω
h) ≤ 1

2
(1 + C
)

1/2

(
M∑

i=1

N∑

j=1

hikj

∣∣νxD
−
y Vij

∣∣2
)1/2

.

Proof Let Zij = νxVij ; then, because Zi0 = 0 for i = 1, . . . ,M , we have that

|Zij |2 =
(

j∑

n=1

knD
−
y Zin

)2

≤
(

j∑

n=1

kn

)(
j∑

n=1

kn

∣∣D−
y Zin

∣∣2
)

≤
j∑

n=1

kn

∣∣D−
y Zin

∣∣2

for i = 1, . . . ,M − 1 and j = 1, . . . ,N . Hence,

‖Z‖2
L2(Ω

h)
≤

M−1∑

i=1

j∑

n=1

�ikn

∣∣D−
y Zin

∣∣2, 1 ≤ j ≤ N.

Similarly, since ZiN = 0 for i = 1, . . . ,M , we also have that

‖Z‖2
L2(Ω

h)
≤

M−1∑

i=1

N∑

n=j+1

�ikn

∣∣D−
y Zin

∣∣2, 0 ≤ j ≤ N − 1.

By adding the last two inequalities we deduce that

‖Z‖2
L2(Ω

h)
≤ 1

2

M−1∑

i=1

N∑

n=1

�ikn

∣∣D−
y Zin

∣∣2.

Because νx commutes with D−
y this yields

‖νxV ‖2
L2(Ω

h)
≤ 1

2

M−1∑

i=1

N∑

j=1

�ikj

∣∣νxD
−
y Vij

∣∣2.
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Since �i ≤ 1
2hi(1 + C
) it follows that

‖νxV ‖2
L2(Ω

h)
≤ 1

4
(1 + C
)

M−1∑

i=1

N∑

j=1

hikj

∣∣νxD
−
y Vij

∣∣2,

and hence, by increasing the right-hand side of this inequality further by extending
the upper limit of the sum over i from M − 1 to M , we obtain the desired inequal-
ity. �

Our next result is concerned with bounding Wij := hiD
−
x Vij .

Lemma 2.47 Suppose that {Ωh} is a family of quasi-uniform meshes, i.e. there ex-
ists a positive constant C
 such that

h = max
i,j

(hi, kj ) ≤ C
 min
i,j

(hi, kj ).

Let V be a function defined on Ω
h

such that V = 0 on Γ h and let Wij = hiD
−
x Vij ;

then,

‖W‖L2(Ω
h) ≤ 2C


(
M∑

i=1

N∑

j=1

hikj

∣∣νyD
−
x Vij

∣∣2
)1/2

.

Proof By noting that Wi0 = 0 for i = 1, . . . ,M , we have that

Wij =
j∑

n=1

(−1)j−n(Win + Wi,n−1)

for i = 1, . . . ,M and j = 1, . . . ,N . Therefore,

|Wij |2 ≤ 4j

j∑

n=1

|νyWin|2 ≤ 4j

N∑

n=1

h2
i

∣∣νyD
−
x Vin

∣∣2.

As h2
i ≤ hhi and �i ≤ C
kn for all i ∈ {1, . . . ,M} and all n ∈ {1, . . . ,N}, and

h
∑N

j=1 jkj ≤ Nh ≤ C
, we deduce that

‖W‖2
L2(Ω

h)
≤ 4C2




M∑

i=1

N∑

n=1

hikn

∣∣νyD
−
x Vin

∣∣2,

and hence the desired inequality upon renaming the index n into j . �
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By combining (2.139), (2.140) and Lemmas 2.46 and 2.47, we deduce that

M∑

i=1

N∑

j=1

hikj

(∣∣νyD
−
x Vij

∣∣2 + ∣∣νxD
−
y Vij

∣∣2)

≤ C
∥∥LhV

∥∥
L2(Ω

h)

(
M∑

i=1

N∑

j=1

hikj

(∣∣νyD
−
x Vij

∣∣2 + ∣∣νxD
−
y Vij

∣∣2)
)1/2

.

This yields the inequality

(
M∑

i=1

N∑

j=1

hikj

(∣∣νyD
−
x Vij

∣∣2 + ∣∣νxD
−
y Vij

∣∣2)
)1/2

≤ C
∥∥LhV

∥∥
L2(Ω

h)
, (2.141)

and thereby the difference scheme is stable in the discrete W 1
2 norm defined by the

left-hand side of this inequality.

Remark 2.11 We note that stability has been proved in a weaker sense here, for
θ = 1/4, than in the previous section for θ ∈ [0,1/4). Indeed, for θ ∈ [0,1/4) we
deduce from Theorem 2.40 the stronger bound

[
M∑

i=1

N∑

j=1

hikj

(∣∣D−
x Vij

∣∣2 + ∣∣D−
y Vij

∣∣2)
]1/2

≤ C(θ)
∥∥LhV

∥∥
W−1

2 (Ωh)
, (2.142)

whose left-hand side is an upper bound on the left-hand side of (2.141).
Worse still, the stability of the scheme (2.137), (2.138) is not robust, in the

sense that when the homogeneous Dirichlet boundary condition is replaced by 1-
periodic boundary conditions in the two co-ordinate directions, on a uniform mesh
with spacing h = 1/(2M), M > 1, the resulting difference scheme is ill-posed for
any 1-periodic f . To see this, first take f = 0 and note that, in addition to the
trivial constant solution (which is, incidentally, also a solution to the boundary-
value problem), the difference scheme has the oscillatory chequer-board-like solu-
tion U


ij = (−1)i+j . Thus if U is a solution of the difference scheme with f �= 0
subject to 1-periodic boundary conditions in the two co-ordinate directions, then
U + αU
 is also a solution, for any real number α. In other words, the solution is
not unique. In fact, the finite difference scheme (2.137), corresponding to the choice
of θ = 1/4 in (2.128), with 1-periodic boundary condition, has infinitely many so-
lutions for any f . This is consistent with the fact that, with a 1-periodic boundary
condition, the expression appearing on the left-hand side of (2.142) has a nontriv-
ial kernel in the set of mesh-functions defined on a uniform mesh with spacing
h = 1/(2M), M > 1, and is therefore only a seminorm in that case rather than a
norm; and it is also consistent with the fact that, with θ ∈ [0,1/4), the stability con-
stant C(θ) of the scheme (2.128), (2.129) in the discrete W 1

2 (Ωh) norm, appearing
in (2.142), tends to +∞ as θ → 1/4 − 0.



176 2 Elliptic Boundary-Value Problems

2.5 Convergence Analysis in Lp Norms

Hitherto, with the exception of various error bounds in the discrete maximum norm,
we have been concerned with the error analysis of finite difference schemes in mesh-
dependent analogues of Hilbertian Sobolev norms, i.e. discrete Sobolev norms that
are induced by inner products.

In this section we develop a framework for the error analysis of finite difference
schemes in mesh-dependent versions of the Sobolev and Bessel-potential norms Ws

p

and Hs
p , respectively. For the sake of simplicity, we shall confine ourselves to finite

difference approximations of the homogeneous Dirichlet boundary-value problem
for Poisson’s equation on an open square Ω , assuming that the weak solution of
the boundary-value problem belongs to Ws

p(Ω), 0 ≤ s ≤ 4, 1 < p < ∞. We shall
make extensive use of the theory of discrete Fourier multipliers to investigate the
stability of the difference schemes considered, in conjunction with the Bramble–
Hilbert lemma in fractional-order Sobolev spaces to derive error bounds of optimal
order. The presentation in this section is based on the following sources: the journal
papers by Mokin [140] and Süli, Jovanović, Ivanović [173] and the monograph of
Samarskiı̆, Lazarov and Makarov [160].

2.5.1 Discrete Fourier Multipliers

In previous sections we relied on the use of energy estimates based on Hilbert space
techniques to show the stability of the finite difference schemes considered. In order
to extend these stability results to Lp norms, p �= 2, we require a new tool – discrete
Fourier multipliers. To this end, we shall state and prove below a discrete counter-
part of the Marcinkiewicz multiplier theorem. First, however, we shall introduce the
notion of discrete Fourier transform.

Suppose that N is a positive integer and h = π/N . We consider the mesh

R
n
h = hZn := {x ∈ R

n : x = hk, k ∈ Z
n
}

and the set of all 2π -periodic mesh-functions defined on R
n
h. We let

I := {−N + 1, . . . ,−1,0, . . . ,N}.
Then, any 2π -periodic function V defined on R

n
h is completely determined by its

values on the ‘basic cell’

ωh = hIn := {hk : k ∈ I
n
}
.

With each mesh-function V defined on ωh we associate its discrete Fourier trans-
form FV given by

(FV )(k) := hn
∑

x∈ωh

V (x)e−ıx·k, k ∈ I
n. (2.143)
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In order to distinguish the discrete Fourier transform from its integral counterpart
F defined in Chap. 1 we have used the calligraphic letter F here instead of F .
Clearly, FV is a 2N -periodic function of its variables k1, . . . , kn, and 2N is the
minimum period; thus it suffices to consider FV on the basic cell In. Hence our
choice of k ∈ I

n in (2.143).
For x ∈ ωh the following discrete Fourier inversion formula holds:

V (x) = 1

(2π)n

∑

k∈In
(FV )(k)eıx·k. (2.144)

Indeed, substituting (2.143) into the right-hand side of (2.144), we have that

1

(2π)n

∑

k∈In
eıx·k ∑

y∈ωh

hnV (y)e−ıy·k = 1

(2π)n

∑

y∈ωh

hnV (y)
∑

k∈In
eı(x−y)·k.

However, for any x, y ∈ ωh we have that

∑

k∈In
eı(x−y)·k =

{
(2N)n if x = y,
0 otherwise,

and hence (2.144), by noting that hn(2N)n = (2π)n.
We can write (2.144) as V = F−1FV where, for a sequence a = {a(k)}k∈In , the

inverse discrete Fourier transform F−1a of a is defined by

(
F−1a

)
(x) := 1

(2π)n

∑

k∈In
a(k)eıx·k, x ∈ ωh.

Assuming that V is a function defined on the mesh ωh, we consider the trigono-
metric polynomial TV given by

TV (x) = 1

(2π)n

∑

k∈In
(FV )(k)eıx·k, x ∈ (−π,π]n. (2.145)

According to the discrete Fourier inversion formula,

TV (x) = V (x) ∀x ∈ ωh;
in other words, TV interpolates V over the mesh ωh.

Next we introduce the space Lp(ωh), 1 ≤ p < ∞, consisting all mesh-functions
V defined on ωh such that, for some constant M , independent of the discretization
parameter h,

‖V ‖Lp(ωh) =
(

hn
∑

x∈ωh

∣∣V (x)
∣∣p
)1/p

≤ M.
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The following lemma establishes a useful relationship between the Lp norm of
a mesh-function V defined on ωh and the Lp norm of the associated trigonometric
interpolant TV on ω = T

n := (−π,π)n.

Lemma 2.48 Suppose that V ∈ Lp(ωh), 1 ≤ p < ∞, and let ω = (−π,π)n. Then,

‖V ‖Lp(ωh) ≤ (1 + π)n‖TV ‖Lp(ω).

Proof Let us suppose for simplicity that n = 1; for n > 1 the proof follows from the
case of n = 1 by induction over n. We shall first show that there exists a real number
ξ0 in the interval (−h,0) such that

‖TV ‖Lp(ω) =
(

h
∑

x∈ωh

∣∣TV (x + ξ0)
∣∣p
)1/p

, (2.146)

where now ω = (−π,π) and ωh = hI.
Indeed,

‖TV ‖p

Lp(ω) =
∫ π

−π

∣∣TV (x)
∣∣p dx =

N∑

k=−N+1

∫ xk

xk−1

∣∣TV (x)
∣∣p dx

=
N∑

k=−N+1

∫ h

0

∣∣TV (y + xk−1)
∣∣p dy

=
∫ h

0

∑

k∈I

∣∣TV (xk + y − h)
∣∣p dy.

Now the integrand is a continuous function of y on [0, h]; therefore, by the integral
mean-value theorem, there exists a ξ in (0, h) such that

∫ h

0

∑

k∈I

∣∣TV (xk + y − h)
∣∣p dy = h

∑

k∈I

∣∣TV (xk + ξ − h)
∣∣p.

Letting ξ0 := ξ − h and noting that k ∈ I if, and only if, x = xk ∈ ωh = hI, we
deduce (2.146).

Now consider

D :=
∣∣∣∣

(
h
∑

x∈ωh

∣∣V (x)
∣∣p
)1/p

−
(

h
∑

x∈ωh

∣∣TV (x + ξ0)
∣∣p
)1/p∣∣∣∣.

We shall prove that

D ≤ h
∥∥T ′

V

∥∥
Lp(ω)

. (2.147)
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This follows by noting that V (x) = TV (x) for x in ωh, and observing that by the
reverse triangle inequality, the Newton–Leibniz formula and Hölder’s inequality we
have that

D ≤
(∑

x∈ωh

h
∣∣TV (x) − TV (x + ξ0)

∣∣p
)1/p

=
(∑

x∈ωh

h

∣∣∣∣
∫ x

x+ξ0

T ′
V (t)dt

∣∣∣∣
p)1/p

≤
(∑

x∈ωh

h

(∫ x

x−h

∣∣T ′
V (t)

∣∣dt

)p)1/p

≤
(∑

x∈ωh

hhp−1
∫ x

x−h

∣∣T ′
V (t)

∣∣p dt

)1/p

= h
∥∥T ′

V

∥∥
Lp(ω)

.

Now using (2.146) and (2.147) we deduce that

‖V ‖Lp(ωh) = ‖V ‖Lp(ωh) −
(

h
∑

x∈ωh

∣∣TV (x + ξ0)
∣∣p
)1/p

+ ‖TV ‖Lp(ω)

≤ D + ‖TV ‖Lp(ω)

≤ h
∥∥T ′

V

∥∥
Lp(ω)

+ ‖TV ‖Lp(ω).

We bound the first term on the right-hand side further by applying Bernstein’s in-
equality to the trigonometric polynomial TV of degree N (see, Nikol’skiı̆ [144],
p. 115):

∥∥T ′
V

∥∥
Lp(ω)

≤ N‖TV ‖Lp(ω),

and noting that hN = π . Hence the required result for n = 1. �

After this brief preparation, we are now ready to discuss a discrete counterpart of
the Marcinkiewicz multiplier theorem, Theorem 1.75, due to Mokin [140] (see also
Samarskiı̆, Lazarov, Makarov [160]), which will be our main tool in the stability
analysis of finite difference schemes in discrete Lp norms. In order to state it, we
require the notion of total variation. For a 2N -periodic function a defined on Z

n,
the total variation of a over In is defined by

var(a) := sup
k∈Zn

max
0�=α∈{0,1}n

α∑

ν

∣∣Δαa(ν)
∣∣.
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Here Δα := Δ
α1
1 · · ·Δαn

n , as in Theorem 1.75, and, for α ∈ {0,1}n, we have used the
multi-index notation

α∑

ν

:=
α1∑

ν1

· · ·
αn∑

νn

where now, in contrast with the notational convention in Theorem 1.75,

αj∑

νj

:=
{

max
νj =±2|kj |−1

,...,±2|kj |−1 such that νj ∈I if αj = 0,
∑

νj =±2|kj |−1
,...,±2|kj |−1 such that νj ∈I if αj = 1.

In order to distinguish the total variation of a 2N -periodic function over I
n de-

fined here from total variation of a function on Z
n (as in the statement of the

Marcinkiewicz multiplier theorem, Theorem 1.75, stated in the previous chapter),
we have used the symbol ‘var’ here instead of our earlier notation ‘Var’. The set of
k ∈ Z

n for which the index set of
∑α

ν is nonempty is finite. Therefore, ‘sup’ in the
definition of var(a) can be replaced with ‘max’.

Theorem 2.49 (Discrete Marcinkiewicz Multiplier Theorem) Let a be a 2N -
periodic function defined on Z

n, and suppose that one of the following two con-
ditions holds:

(a) a is a bounded function on I
n with bounded variation; i.e. there exists a constant

M0 such that

max
k∈In

∣∣a(k)
∣∣≤ M0, var(a) ≤ M0;

(b) a can be extended to a function, still denoted by a, which is defined and contin-
uous on [−N + 1,N ]n, with ∂αa ∈ C([−N + 1,N ]n \ In) for every multi-index
α ∈ {0,1}n, and such that ξα∂αa(ξ) is bounded for every α ∈ {0,1}n; i.e. there
exists a constant M0 such that

max
α∈{0,1}n

sup
ξ∈[−N+1,N]n\In

∣∣ξα∂αa(ξ)
∣∣≤ M0.

Then, a is a discrete Fourier multiplier on Lp(ωh), 1 < p < ∞; that is,
∥∥F−1(aFV )

∥∥
Lp(ωh)

≤ C‖V ‖Lp(ωh),

for all V in Lp(ωh), where C = CpM0 and Cp is a positive constant, independent
of a, h and V .

A simple sufficient condition for var(a) ≤ M0 in part (a) of this theorem is that
var∗(a) ≤ M0, where var∗(a) is defined analogously to var(a), except that

∑αj
νj

is
defined as maxνj ∈I when αj = 0 and as

∑
νj ∈I when αj = 1. As there is then no

dependence on the diadic sets {±(2|kj | − 1), . . . ,±(2|kj | − 1)}, the symbol supk∈Zn

can be omitted from the definition of var∗(a).
The proof of the theorem relies on the following result.
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Lemma 2.50 Let ω = T
n := (−π,π)n.

1. Suppose that a(k) satisfies the hypotheses in part (a) of Theorem 2.49. Then, the
sequence {ã(k)}k∈Zn defined by

ã(k) =
{

a(k) for k ∈ I
n,

0 otherwise,

is a Fourier multiplier on Lp(ω), 1 < p < ∞.
2. Consider the sequence {b̃(k)}k∈Zn defined by b̃(k) = b(k1) · · ·b(kn), with

b(m) =
⎧
⎨

⎩

1 if m = 0,
mh/2

sin(mh/2)
if m ∈ I \ {0},

π/2 otherwise.

Then, {b̃(k)}k∈Zn is a Fourier multiplier on Lp(ω), 1 < p < ∞.
3. The sequence {ã(k)b̃(k)}k∈Zn is a Fourier multiplier on Lp(ω), 1 < p < ∞.

Proof The proof of this lemma is straightforward and proceeds as follows.
1. The stated result is obtained by noting that

sup
k∈Zn

∣∣ã(k)
∣∣= max

k∈In
∣∣a(k)

∣∣≤ M0,

and

Var(ã) ≤ max
{

max
k∈In

∣∣a(k)
∣∣,var(a)

}
≤ M0 =: M0(a),

and by applying Theorem 1.75 to the sequence ã = {ã(k)}k∈Zn .
2. The result is proved by noting that

sup
k∈Zn

∣∣b̃(k)
∣∣≤

(
π

2

)n

,

and

Var(b̃) ≤
(

π2

2

)n

=: M0(b),

and applying Theorem 1.75 to the sequence b̃ = {b̃(k)}k∈Zn .
3. The stated result follows by observing that

sup
k∈Zn

∣∣ã(k)b̃(k)
∣∣≤

(
π

2

)n

max
k∈In

∣∣a(k)
∣∣≤ M0(a)M0(b),

and

Var(ãb̃) ≤ 2nM0(a)M0(b) = π2nM0(a) =: M0(ab),

and applying Theorem 1.75 to the sequence ãb̃ = {ã(k)b̃(k)}k∈Zn . �
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We are now ready to prove Theorem 2.49.

Proof of Theorem 2.49 (a) Let us suppose that u is defined on ωh, and consider its
piecewise constant extension w to R

n, defined as follows:

w(x) :=
{

u(y), for ‖x − y‖∞ < h/2, y ∈ I
n,

2π -periodically extended to R
n,

where ‖ · ‖∞ denotes the norm on R
n defined by ‖x‖∞ := max1≤j≤n |xj |. Clearly,

‖w‖Lp(ω) = ‖u‖Lp(ωh), ω = T
n := (−π,π)n.

Furthermore, with the same notational conventions as in Sect. 1.9.5.1, w has the
Fourier series expansion

w(x) = 1

(2π)n

∑

k∈Zn

ŵ(k)eıx·k, x ∈ ω,

with Fourier coefficients

ŵ(k) =
∫

ω

w(x)e−ıx·k dx = c̃(k)hn
∑

x∈ωh

u(x)e−ıx·k,

where c̃(k) = c(k1) · · · c(kn) and

c(m) =
{

1 if m = 0,
sin(mh/2)

mh/2 if m ∈ Z \ {0}.

By noting from Lemma 2.50, part (2), that c(k) = 1/b(k) for k ∈ I and therefore
c̃(k) = 1/b̃(k) for k ∈ I

n, we have that

ŵ(k) = c̃(k)(Fu)(k) = 1

b̃(k)
(Fu)(k) for k ∈ I

n.

Now, the trigonometric polynomial of degree N defined by

TV : x ∈ ω �→ 1

(2π)n

∑

k∈In
a(k)(Fu)(k)eıx·k, x ∈ (−π,π]n,

is the trigonometric interpolant of the mesh-function V := F−1(aFu) defined
on ωh. Therefore, by Lemma 2.48, we have that

∥∥F−1(aFu)
∥∥

Lp(ωh)
≤ (1 + π)n

∥∥∥∥
1

(2π)n

∑

k∈In
a(k)(Fu)(k)eıx·k

∥∥∥∥
Lp(ω)

= (1 + π)n
∥∥∥∥

1

(2π)n

∑

k∈In
a(k)b̃(k)ŵ(k)eıx·k

∥∥∥∥
Lp(ω)
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= (1 + π)n
∥∥∥∥

1

(2π)n

∑

k∈Zn

ã(k)b̃(k)ŵ(k)eıx·k
∥∥∥∥

Lp(ω)

= (1 + π)n
∥∥(ãb̃ŵ)∨

∥∥
Lp(ω)

.

Here ·̂ and ·∨ denote the Fourier transform of a periodic distribution and its inverse
transform, defined in Sect. 1.9.5. Finally, by recalling from Lemma 2.50, part (3),
that the sequence {ã(k)b̃(k)}k∈Zn is a Fourier multiplier on Lp(ω) it follows that

∥∥F−1(aFu)
∥∥

Lp(ωh)
≤ (1 + π)nCpM0(ab)‖w‖Lp(ω)

= (1 + π)nCpM0(ab)‖u‖Lp(ωh),

where Cp is as in Theorem 1.75 and M0(ab) = π2nM0(a), as in the proof of
Lemma 2.50. Thus we have shown that

∥∥F−1(aFu)
∥∥

Lp(ωh)
≤ C1M0‖u‖Lp(ωh),

where C1 = (1 + π)nπ2nCp is a positive constant and M0 = M0(a) is the constant
from the statement of the theorem.

(b) This is a direct consequence of part (a), using the mean-value theorem in
those variables xj for which αj = 1 for a certain α ∈ {0,1}n. �

We shall now prove the converse of the inequality stated in Lemma 2.48, which
will be required in our subsequent considerations.

Lemma 2.51 Suppose that V is a mesh-function defined on ωh, and let TV be its
trigonometric interpolant defined by (2.145). Then, for 1 < p < ∞, there exists a
positive constant Cp , independent of h and V , such that

‖TV ‖Lp(ω) ≤ Cp‖V ‖Lp(ωh).

Proof We shall prove this result in one dimension (n = 1); the case of n > 1 is
dealt with by induction over n, starting from n = 1. In the proof of Lemma 2.48 we
showed that there exists a ξ0 in the interval (−h0,0) such that

‖TV ‖Lp(ω) =
(

h
∑

x∈ωh

∣∣TV (x + ξ0)
∣∣p
)1/p

= ∥∥TV (· + ξ0)
∥∥

Lp(ωh)

=
∥∥∥∥
∑

k∈I
(FV )(k)eıxkeıξ0k

∥∥∥∥
Lp(ωh)

. (2.148)
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Next we shall prove that the sequence {λ(k)}k∈I, with λ(k) := eıξ0k , is a discrete
Fourier multiplier on Lp(ωh). First, note that |eıξ0k| = 1; furthermore,

N∑

k=−N+1

∣∣eıξ0k − eıξ0(k−1)
∣∣ =

N∑

k=−N+1

∣∣1 − e−ıξ0
∣∣

≤ 2N |ξ0| ≤ 2Nh = 2π.

Hence, var(λ) ≤ 2π and, by Theorem 2.49, {λ(k)}k∈I is a discrete Fourier multiplier
on Lp(ωh). Thanks to (2.148) we then have that

‖TV ‖Lp(ω) = ∥∥F−1(λFV )
∥∥

Lp(ωh)
≤ 2πCp‖V ‖Lp(ωh),

where Cp is a positive constant, and hence the required result (with the constant
2πCp relabelled as Cp). �

After this interlude on discrete Fourier multipliers, we are ready to embark on
the error analysis of finite difference approximations to our elliptic model problem
in discrete Lp spaces.

2.5.2 The Model Problem and Its Approximation

Suppose that Ω = (0,π)2. For f ∈ W−1
2 (Ω), we consider the homogeneous Dirich-

let boundary-value problem

−Δu = f in Ω , (2.149)

u = 0 on Γ = ∂Ω. (2.150)

Throughout the section we shall suppose that the unique weak solution u ∈ W̊ 1
2 (Ω)

of (2.149), (2.150) belongs to Ws
p(Ω) for some s ≥ 0 and p ∈ (1,∞) (other than

s = 1 and p = 2, of course).
For a nonnegative integer N ≥ 2 let h := π/N , and define the meshes:

Ωh := {
(xi, yj ) : xi = ih, yj = jh, 1 ≤ i, j ≤ N − 1

}
,

Ω
h := {

(xi, yj ) : xi = ih, yj = jh, 0 ≤ i, j ≤ N
}
,

Γ h := Ω
h \ Ωh.

In addition to these, we shall also require the following meshes:

Γ h
x := Γ h ∩ ({0,π} × (0,π)

)
,

Γ h
y := Γ h ∩ ((0,π) × {0,π}),
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Γ h+ := Γ h ∩ ({π} × (0,π) ∪ (0,π) × {π}),
Ωh+ := Ωh ∪ Γ h+,

Ωh
x := Ωh ∪ (Γ h+ ∩ Γ h

x

)
,

Ωh
y := Ωh ∪ (Γ h+ ∩ Γ h

y

)
.

As before, we approximate the Laplace operator Δ = ∂2

∂x2 + ∂2

∂y2 by

D+
x D−

x + D+
y D−

y .

Since f has not been assumed to be a continuous function on Ω , we shall mollify
it before sampling it at the mesh-points. To do so, we shall use the mollifier T ν =
T ν

h with ν = (ν1, ν2) and h = π/N , defined in (1.35); for the sake of notational
simplicity, we shall write T

ν1ν2
h , or simply T ν1ν2 , instead of the more cumbersome

symbol T
(ν1,ν2)
h .

First we shall suppose that the weak solution of the boundary-value problem
(2.149), (2.150) belongs to Ws

p(Ω), s > 2/p, 1 < p < ∞; then, by Sobolev’s em-

bedding theorem, u is almost everywhere on Ω equal to a continuous function on
Ω , and

(
T 20

h

∂2u

∂x2

)
(x, y) = D+

x D−
x u(x, y), (x, y) ∈ Ωh,

(
T 02

h

∂2u

∂y2

)
(x, y) = D+

y D−
y u(x, y), (x, y) ∈ Ωh.

Therefore,

−(D+
x D−

x T 02
h + D+

y D−
y T 20

h

)
u = T 22

h f on Ωh, (2.151)

u = 0 on Γ h. (2.152)

This identity motivates us to consider the difference scheme

−(D+
x D−

x + D+
y D−

y

)
U = T 22

h f on Ωh, (2.153)

U = 0 on Γ h. (2.154)

The rest of this section is devoted to the error analysis of the finite difference scheme
(2.153), (2.154). First we introduce the natural discrete analogues of the Lp spaces
on Ωh.

A function V defined on Ωh (or on Ω
h

and equal to zero on Γ h) is said to belong
to Lp(Ωh), 1 < p < ∞, if there exists a positive constant M , independent of h, such
that

‖V ‖Lp(Ωh) :=
(

h2
∑

(x,y)∈Ωh

∣∣V (x, y)
∣∣p
)1/p

≤ M.
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If V is defined on Ωh+ (or on Ω
h

and equal to zero on Γ h \Γ h+), the norm ‖ ·‖Lp(Ωh)

is replaced by

‖V ‖Lp(Ωh+) :=
(

h2
∑

(x,y)∈Ωh+

∣∣V (x, y)
∣∣p
)1/p

.

For mesh-functions defined on Ωh
x and Ωh

y the norms ‖ · ‖Lp(Ωh
x ) and ‖ · ‖Lp(Ωh

y ) are
defined analogously.

The discrete analogues of the Sobolev norms W 1
p(Ω) and W 2

p(Ω) are defined,
respectively, by

‖V ‖W 1
p(Ωh) := (‖V ‖p

Lp(Ωh)
+ |V |p

W 1
p(Ωh)

)1/p
,

where

|V |W 1
p(Ωh) := (∥∥D−

x V
∥∥p

Lp(Ωh
x )

+ ∥∥D−
y V

∥∥p

Lp(Ωh
y )

)1/p;
and

‖V ‖W 2
p(Ωh) := (‖V ‖p

W 1
p(Ωh)

+ |V |p
W 2

p(Ωh)

)1/p
,

where

|V |W 2
p(Ωh) := (∥∥D+

x D−
x V

∥∥p

Lp(Ωh)
+ ∥∥D−

x D−
y V

∥∥p

Lp(Ωh+)

+ ∥∥D+
y D−

y V
∥∥p

Lp(Ωh)

)1/p
.

Let us recall the notion of discrete Fourier transform from the previous section.
However, as we are now working on (0,π)2 rather than (−π,π)2 and the functions
we shall be dealing with will satisfy a homogeneous Dirichlet boundary condition
rather then a periodic boundary condition, some adjustments have to be made before
the techniques developed in the previous section can be applied.

Suppose that V is defined on Ωh (or on Ω
h

and equal to zero on Γ h). We shall
consider the odd extension Ṽ of the mesh-function V to the mesh

ωh = hI2 = {(xi, yj ) : xi = ih, yj = jh, i, j = −N + 1, . . . ,N
}

contained in (−π,π]2. Thus

Ṽ (−x, y) = −Ṽ (x, y) and Ṽ (x,−y) = −Ṽ (x, y) for all (x, y) in Ωh.

After such an extension, Ṽ is further extended 2π -periodically in each co-ordinate
direction to the whole of hZ2. Let us note that

‖Ṽ ‖Lp(ωh) = 41/p‖V ‖Lp(Ωh). (2.155)



2.5 Convergence Analysis in Lp Norms 187

Lemma 2.52 Let us suppose that V is defined on Ωh (or on Ω
h

and equal to zero
on Γ h), and consider its odd extension Ṽ . The discrete Fourier transform F Ṽ has
the following properties:

1. For any k = (k1, k2) ∈ I
2,

F Ṽ (k1, k2) = −4h2
N−1∑

i=1

N−1∑

j=1

V (xi, yj ) sin(k1xi) sin(k2yj );

2. F Ṽ is an odd function on I
2; that is,

F Ṽ (−k1, k2) = −F Ṽ (k1, k2) and F Ṽ (k1,−k2) = −F Ṽ (k1, k2)

for all k = (k1, k2) ∈ I
2. Also, F Ṽ (0, k2) = F Ṽ (k1,0) = F Ṽ (0,0) = 0;

3. For 1 ≤ i, j ≤ N − 1,

V (xi, yj ) = − 1

π2

N−1∑

k1=1

N−1∑

k2=1

F Ṽ (k1, k2) sin(k1xi) sin(k2yj ).

The proof of this result is elementary and is left to the reader.
Lemma 2.52 implies that the values of F Ṽ on I

2 are completely determined
by the values of V on Ωh; conversely, V can be completely characterized on Ωh

(and Ṽ on ωh) by the values F Ṽ (k1, k2), k1, k2 = 1, . . . ,N − 1. Consequently, it is
meaningful to consider the discrete Fourier sine-transform Fσ V of a mesh-function

V defined on Ωh (or on Ω
h

and equal to zero on Γ h). Indeed, we let

Fσ V := −1

4
F Ṽ ,

and, for a function W defined on the set {(i, j) : 1 ≤ i, j ≤ N −1} with odd extension
W̃ to I

2, we put

F−1
σ W := −4F−1W̃ .

Thus,

Fσ V (k1, k2) = h2
N−1∑

i=1

N−1∑

j=1

V (xi, yj ) sin(k1xi) sin(k2yj )

and

F−1
σ W(x, y) =

(
2

π

)2 N−1∑

k1=1

N−1∑

k2=1

W(k1, k2) sin(k1x) sin(k2y).

In order to derive error bounds for the finite difference scheme under considera-
tion we shall need the following stability result.
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Lemma 2.53 Suppose that η1 and η2 are two functions defined on Ω
h

that vanish
on Γ h. Further, let e be the solution to the problem

−(D+
x D−

x + D+
y D−

y

)
e = D+

x D−
x η1 + D+

y D−
y η2 in Ωh, (2.156)

e = 0 on Γ h. (2.157)

Then, for any p ∈ (1,∞),

‖e‖Lp(Ωh) ≤ Cp

(‖η1‖Lp(Ωh) + ‖η2‖Lp(Ωh)

)
, (2.158)

|e|W 1
p(Ωh) ≤ Cp

(∥∥D−
x η1

∥∥
Lp(Ωh

x )
+ ∥∥D−

y η2
∥∥

Lp(Ωh
y )

)
, (2.159)

|e|W 2
p(Ωh) ≤ Cp

(∥∥D+
x D−

x η1
∥∥

Lp(Ωh)
+ ∥∥D+

y D−
y η2

∥∥
Lp(Ωh)

)
, (2.160)

where Cp is a positive constant, independent of h, e, η1 and η2.

Proof (1) Let us first prove (2.158). As

Fσ

(
D+

x D−
x e
)= −λ2

1Fσ e and Fσ

(
D+

y D−
y e
)= −λ2

2Fσ e,

where

λ1 = λ1(k1) := 2

h
sin

k1h

2
and λ2 = λ1(k2) := 2

h
sin

k2h

2
,

with k := (k1, k2), 1 ≤ k1, k2 ≤ N − 1, it follows that

e = F−1
σ (a1Fσ η1) +F−1

σ (a2Fσ η2),

where

al(k1, k2) := λ2
l (kl)

λ2
1(k1) + λ2

2(k2)
, 1 ≤ k1, k2 ≤ N − 1, l = 1,2.

We note that a1(k1, k2) and a2(k1, k2) can be defined for all k ∈ I
2 \ {0} by letting

al(−k1, k2) := al(k1, k2),

al(k1,−k2) := al(k1, k2),

al(−k1,−k2) := al(k1, k2),

for all k = (k1, k2), 1 ≤ k1, k2 ≤ N − 1, l = 1,2.
Let ẽ, η̃1 and η̃2 denote the odd extensions of the mesh-functions e, η1 and η2,

respectively, from Ωh to ωh. Then,

ẽ = F−1(a1F η̃1) +F−1(a2F η̃2).
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The fact that a1 and a2 are not defined at (0,0) is of no significance, since

(F η̃l)(0,0) = h2
N∑

i=−N+1

N∑

j=−N+1

η̃i (xi, yj ) = 0, l = 1,2,

which follows from our assumption that ηl , l = 1,2, vanish on Γ h, by noting that
η̃l is the odd extension of ηl .

Hence, by the triangle inequality,

‖ẽ‖Lp(ωh) ≤ ∥∥F−1(a1F η̃1)
∥∥

Lp(ωh)
+ ∥∥F−1(a2F η̃2)

∥∥
Lp(ωh)

.

Next we show that a1 and a2 are discrete Fourier multipliers on Lp(ωh).
Clearly 0 ≤ a1 ≤ 1 on I

2. Further, as a1 + a2 = 1,

x
∂a1

∂x
= 2a1(1 − a1)

xh

2
cot

xh

2
.

Thus, noting that |t cot t | ≤ 1 for |t | ≤ π/2, we have that
∣∣∣∣x

∂a1

∂x
(x, y)

∣∣∣∣≤
1

2
for (x, y) ∈ I

2.

Similarly, noting again that a1 + a2 = 1,

y
∂a1

∂y
= −2a1(1 − a1)

yh

2
cot

yh

2
.

Therefore,
∣∣∣∣y

∂a1

∂y
(x, y)

∣∣∣∣≤
1

2
for (x, y) ∈ I

2.

Finally,

xy
∂2a1

∂x∂y
= 4

(
y

∂a1

∂y

)
xh

2
cot

xh

2
,

and so,
∣∣∣∣xy

∂2a1

∂x∂y
(x, y)

∣∣∣∣≤ 2 for (x, y) ∈ I
2.

Hence, by Theorem 2.49, a1 is a discrete Fourier multiplier on Lp(ωh). By symme-
try, the same is true of a2.

Therefore,

‖ẽ‖Lp(ωh) ≤ Cp

(‖η̃1‖Lp(ωh) + ‖η̃2‖Lp(ωh)

)
,

from which (2.158) immediately follows by noting (2.155).
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(2) As we have seen in part (1),

F ẽ = a1F η̃1 + a2F η̃2.

Multiplying this identity by (1 − exp(−ık1h))/h we deduce that

D−
x ẽ = F−1(a1F

(
D−

x η̃1
))+F−1(b2F

(
D−

y η̃2
))

,

where

b2(k1, k2) := a2(k1, k2)
1 − e−ık1h

1 − e−ık2h
.

We have already shown in part (1) that a1 and a2 are discrete Fourier multipliers
on Lp(ωh). Similarly, using Theorem 2.49 we deduce that the same is true of (1 −
e−ık1h)/(1 − e−ık2h), and therefore of b2. Hence,

∥∥D−
x ẽ
∥∥

Lp(ωh)
≤ Cp

(∥∥D−
x η̃1

∥∥
Lp(ωh)

+ ∥∥D−
y η̃2

∥∥
Lp(ωh)

)
,

which yields
∥∥D−

x e
∥∥

Lp(Ωh
x )

≤ Cp

(∥∥D−
x η1

∥∥
Lp(Ωh

x )
+ ∥∥D−

y η2
∥∥

Lp(Ωh
y )

)
.

An identical bound holds for ‖D−
y e‖Lp(Ωh

y ), which, when added to the last inequal-
ity, yields (2.159).

(3) To prove (2.160), we note, by recalling the definitions of a1 and a2 from
part (1) of the proof, that

−λ2
1F ẽ = λ2

1

λ2
1 + λ2

2

(−λ2
1F η̃1

)+ λ2
1

λ2
1 + λ2

2

(−λ2
2F η̃2

)
.

Thus,

F
(
D+

x D−
x ẽ
)= λ2

1

λ2
1 + λ2

2

F
(
D+

x D−
x η̃1

)+ λ2
1

λ2
1 + λ2

2

F
(
D+

y D−
y η̃2

)
.

Equivalently,

D+
x D−

x ẽ = F−1
(

λ2
1

λ2
1 + λ2

2

F
(
D+

x D−
x η̃1

))+F−1
(

λ2
1

λ2
1 + λ2

2

F
(
D+

y D−
y η̃2

))
.

As λ2
l /(λ

2
1 +λ2

2), l = 1,2, are discrete Fourier multipliers on Lp(ωh), it follows that
∥∥D+

x D−
x ẽ
∥∥

Lp(ωh)
≤ Cp

(∥∥D+
x D−

x η̃1
∥∥

Lp(ωh)
+ ∥∥D+

y D−
y η̃2

∥∥
Lp(ωh)

)
,

which gives
∥∥D+

x D−
x e
∥∥

Lp(Ωh)
≤ Cp

(∥∥D+
x D−

x η1
∥∥

Lp(Ωh)
+ ∥∥D+

y D−
y η2

∥∥
Lp(Ωh)

)
.
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Identical bounds hold for ‖D+
y D−

y e‖Lp(Ωh) and ‖D−
x D−

y e‖Lp(Ωh+), which, when
added to the last inequality, yield (2.160). �

It is possible to derive bounds analogous to (2.159) and (2.160), but with e mea-
sured in a norm rather than a seminorm. To see this, we need the following prelim-
inary result that relates discrete Sobolev seminorms to the corresponding discrete
Sobolev norms.

Lemma 2.54 Suppose that V is a function defined on the mesh Ω
h

such that V = 0
on Γ h. Then, the following bounds hold:

(a) Assuming that 1 < p < ∞,

‖V ‖Lp(Ωh) ≤ 2−1/pπ |V |W 1
p(Ωh);

(b) There exists a constant Cp , independent of V and h, such that

|V |W 1
p(Ωh) ≤ Cp|V |W 2

p(Ωh), 1 < p < ∞;
(c) Assuming that 1 < p < ∞,

‖V ‖W 1
p(Ωh) ≤

(
1 + 1

2
πp

)1/p

|V |W 1
p(Ωh);

(d) With Cp denoting the constant from part (b),

‖V ‖W 2
p(Ωh) ≤

(
1 +

(
1 + 1

2
πp

)
C

p
p

)1/p

|V |W 2
p(Ωh), 1 < p < ∞.

Proof Part (c) is a direct consequence of (a), while (d) follows by combining (c)
and (b). We note that (c) is a discrete Friedrichs inequality, which generalizes
Lemma 2.19. It remains to prove (a) and (b).

(a) As V = 0 on Γ h, we can write

Vij =
i∑

k=1

hD−
x Vkj .

By Hölder’s inequality for finite sums,

|Vij |p ≤ (ih)p/q
i∑

k=1

h|D−
x Vkj |p, where

1

p
+ 1

q
= 1.

Multiplying by h2, increasing the upper limit in the sum on the right to N , and
summing through i, j = 1, . . . ,N − 1, we get that

‖V ‖p

Lp(Ωh)
≤ hp

(
N−1∑

i=1

ip/q

)
∥∥D−

x V
∥∥p

Lp(Ωh
x )

.
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Now

N−1∑

i=1

ip/q ≤ 1 +
∫ N−1

1
xp/q dx = 1 + (N − 1)(p/q)+1 − 1

(p/q) + 1
≤ N(p/q)+1 = Np,

and therefore, since Nh = π , we deduce that

‖V ‖p

Lp(Ωh)
≤ πp

∥∥D−
x V

∥∥p

Lp(Ωh
x )

.

Analogously,

‖V ‖p

Lp(Ωh)
≤ πp

∥∥D−
y V

∥∥p

Lp(Ωh
y )

.

By adding the last two inequalities we deduce (a).
(b) Let W := −(D+

x D−
x + D+

y D−
y )V . Using the same technique and the same

notation as in the proof of Lemma 2.53, and observing that

(
1 − e−ık1x

h

)(
1

λ2
1(k1, k2) + λ2

2(k1, k2)

)

and
(

1 − e−ık2y

h

)(
1

λ2
1(k1, k2) + λ2

2(k1, k2)

)

are discrete Fourier multipliers on Lp(ωh), we deduce from Theorem 2.49 that

∥∥D−
x V

∥∥
Lp(Ωh

x )
≤ Cp‖W‖Lp(Ωh),

and
∥∥D−

y V
∥∥

Lp(Ωh
y )

≤ Cp‖W‖Lp(Ωh).

Hence

|V |W 1
p(Ωh) ≤ 21/pCp‖W‖Lp(Ωh),

and therefore, by the triangle inequality,

|V |W 1
p(Ωh) ≤ 21/pCp

(∥∥D+
x D−

x V
∥∥

Lp(Ωh)
+ ∥∥D+

y D−
y V

∥∥
Lp(Ωh)

)
.

Thus, by noting the inequality a + b ≤ 21−(1/p)(ap + bp)1/p for a, b ≥ 0,

|V |W 1
p(Ωh) ≤ 2Cp|V |W 2

p(Ωh).

Renaming the constant 2Cp into Cp then yields the stated inequality. �

Combining the last two lemmas, we arrive at the following result.
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Lemma 2.55 Suppose that η1 and η2 are two functions defined on Ω
h

that vanish
on Γ h. Let further e denote the solution of the problem

−(D+
x D−

x + D+
y D−

y

)
e = D+

x D−
x η1 + D+

y D−
y η2 in Ωh, (2.161)

e = 0 on Γ h. (2.162)

Then, there exists a positive constant Cp , independent of h, such that

‖e‖Lp(Ωh) ≤ Cp

(‖η1‖Lp(Ωh) + ‖η2‖Lp(Ωh)

)
, (2.163)

‖e‖W 1
p(Ωh) ≤ Cp

(∥∥D−
x η1

∥∥
Lp(Ωh

x )
+ ∥∥D−

y η2
∥∥

Lp(Ωh
y )

)
, (2.164)

‖e‖W 2
p(Ωh) ≤ Cp

(∥∥D+
x D−

x η1
∥∥

Lp(Ωh)
+ ∥∥D+

y D−
y η2

∥∥
Lp(Ωh)

)
. (2.165)

Now we are ready to state the main result of this section.

Theorem 2.56 Let u be the weak solution of the boundary-value problem (2.149),
(2.150), let U be the solution of the finite difference scheme (2.153), (2.154) and
suppose that m ∈ {0,1,2}. Assuming that u belongs to Ws

p(Ω), with m ≤ s, 2/p <

s ≤ m + 2, 1 < p < ∞, the following error bound holds:

‖u − U‖Wm
p (Ωh) ≤ Chs−m|u|Ws

p(Ω),

with a positive constant C = C(p,m, s), independent of h.

Proof (a) Let us first suppose that m = 2 and s ≥ 2. We define the global error e

on Ω
h

by eij := u(xi, yj ) − Uij . It follows from (2.151)–(2.154) that e satisfies
(2.161), (2.162) with

η1 = u − T 02
h u and η2 = u − T 20

h u.

Now η1 (resp. η2) is defined on the mesh Ωh ∪ Γ h
x (resp. Ωh ∪ Γ h

y ) and equal to
zero on Γ h

x (resp. Γ h
y ). According to (2.165), in order to obtain the desired error

bound for m = 2, it suffices to estimate ‖D+
x D−

x η1‖Lp(Ωh) and ‖D+
y D−

y η2‖Lp(Ωh).
To do so, we define the squares

K0
ij := (xi−1, xi+1) × (yj−1, yj+1),

K̃0 := (−1,1) × (−1,1),

and consider the affine mapping (x, y) ∈ K0
ij �→ (x̃, ỹ) ∈ K̃0, where

x = x(x̃) := (i + x̃)h, y = y(ỹ) := (j + ỹ)h.

Let ũ(x̃, ỹ) = u(x(x̃), y(ỹ)). We then have the following equalities:
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(
D+

x D−
x η1

)
ij

= u(xi+1, yj ) − 2u(xi, yj ) + u(xi−1, yj )

h2

−
∫ 1

−1
θ2(ỹ)

u(xi+1, yj + ỹh) − 2u(xi, yj + ỹh) + u(xi−1, yj + ỹh)

h2
dỹ

= 1

h2

{
ũ(1,0) − 2ũ(0,0) + ũ(−1,0)

−
∫ 1

−1
θ2(ỹ)

[
ũ(1, ỹ) − 2ũ(0, ỹ) + ũ(−1, ỹ)

]
dỹ

}
,

where θ2(ỹ) = 1 − |ỹ|, ỹ ∈ (−1,1).
Now (D+

x D−
x η1)ij is a bounded linear functional on Ws

p(K̃0), s > 2/p, whose

kernel contains P3(K̃
0). According to the Bramble–Hilbert lemma,
∣∣(D+

x D−
x η1

)
ij

∣∣≤ Ch−2|ũ|
Ws

p(K̃0)

for 2/p < s ≤ 4. Thus, by changing from the (x̃, ỹ) to the (x, y) co-ordinate system,
we have that

∣∣(D+
x D−

x η1
)
ij

∣∣≤ Ch−2hs−2/p|u|Ws
p(K0

ij )

for 2/p < s ≤ 4. Hence,
∥∥D+

x D−
x η1

∥∥
Lp(Ωh)

≤ Chs−2|u|Ws
p(Ω), 2/p < s ≤ 4.

Likewise,
∥∥D+

y D−
y η2

∥∥
Lp(Ωh)

≤ Chs−2|u|Ws
p(Ω), 2/p < s ≤ 4,

which, after insertion into (2.165), completes the proof for the case m = 2.
(b) Let m = 1 and s ≥ 1. By (2.164) it suffices to bound ‖D−

x η1‖Lp(Ωh
x ) and

‖D−
y η2‖Lp(Ωh

y ). We proceed in the same way as in part (a) to deduce that

(
D−

x η1
)
ij

= 1

h

{
ũ(1,0) − ũ(0,0) −

∫ 1

−1
θ2(ỹ)

[
ũ(1, ỹ) − ũ(0, ỹ)

]
dỹ

}

is a bounded linear functional on Ws
p(K̃0), s > 2/p, whose kernel contains P2(K̃

0).
Therefore,

∥∥D−
x η1

∥∥
Lp(Ωh

x )
≤ Chs−1|u|Ws

p(Ω), 2/p < s ≤ 3,

and, similarly,
∥∥D−

y η2
∥∥

Lp(Ωh
y )

≤ Chs−1|u|Ws
p(Ω), 2/p < s ≤ 3.
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Inserting these into (2.164) we obtain the desired error bound for m = 1.
(c) Let m = 0 and s ≥ 0. We need to estimate ‖η1‖Lp(Ωh) and ‖η2‖Lp(Ωh). Since

(η1)ij = ũ(0,0) −
∫ 1

−1
θ2(ỹ)ũ(0, ỹ)dỹ

is a bounded linear functional on Ws
p(K̃0), s > 2/p, whose kernel contains P1(K̃

0),
it follows that

‖η1‖Lp(Ωh) ≤ Chs |u|Ws
p(Ω), 2/p < s ≤ 2,

and, likewise,

‖η2‖Lp(Ωh) ≤ Chs |u|Ws
p(Ω), 2/p < s ≤ 2.

Substituting these into (2.163) we obtain the desired error bound for m = 0. That
completes the proof of the theorem. �

In the remainder of this section we shall discuss the rate of convergence of the
finite difference scheme (2.153), (2.154) in the case when 0 ≤ s < 1 + 1/p, which
also covers the case 0 ≤ s ≤ 2/p. Let us define the function space W̃ s

p(Ω), 1 < p <

∞, by

W̃ s
p(Ω) =

{
Ws

p(Ω), 0 ≤ s ≤ 1/p,

{w : w ∈ Ws
p(Ω),w = 0 on Γ }, 1/p < s < 1 + 1/p.

We observe that if u, the weak solution of the boundary-value problem (2.149),
(2.150) belongs Ws

p(Ω) then u ∈ W̃ s
p(Ω). Let Ω∗ := (−π,2π) × (−π,2π); the

extension of u by 0 is a continuous linear operator from W̃ s
p(Ω) into Ws

p(Ω∗),
0 ≤ s < 1 + 1/p, s �= 1/p, 1 < p < ∞ (cf. Triebel [182], Sect. 2.10.2, Lemma and
Remark 1 on p. 227 and Theorem 1 on p. 228). Hence

u �→ u∗ = odd extension of u

is a continuous mapping from W̃ s
p(Ω) into Ws

p(Ω∗), 0 ≤ s < 1 + 1/p, s �= 1/p,

1 < p < ∞. Moreover, (T 11
h u∗)(x, y) = 0 for (x, y) ∈ Γ h.

Theorem 2.57 Let u be the weak solution of the boundary-value problem (2.149),
(2.150), let U be the solution of the finite difference scheme (2.153), (2.154) and
suppose that m ∈ {0,1}. Assuming that u belongs to Ws

p(Ω) with m ≤ s, 0 ≤ s <

1 + 1/p, s �= 1/p and 1 < p < ∞, the following error bound holds:

∥∥T 11
h u − U

∥∥
Wm

p (Ωh)
≤ Chs−m|u|Ws

p(Ω),

with a positive constant C = C(p,m, s), independent of h.
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Proof The proof is completely analogous to that of Theorem 2.56, except that we

now define the global error e on Ω
h

by

eij = (T 11
h u∗)(xi, yj ) − Uij .

Clearly eij = 0 for (xi, yj ) ∈ Γ h, and eij = (T 11
h u)(xi, yj ) − Uij when (xi, yj ) ∈

Ωh. In addition, it follows from (2.151)–(2.154) that e satisfies (2.156), (2.157) with

η1 = T 11
h u∗ − T 02

h u∗ and η2 = T 11
h u∗ − T 20

h u∗.

Again, η1 (resp. η2) is defined on the mesh Ωh ∪ Γ h
x (resp. Ωh ∪ Γ h

y ) and is equal
to zero on Γ h

x (resp. Γ h
y ). The rest of the proof is the same as in the case of Theo-

rem 2.56, except that now s ∈ [0,1/p) ∪ (1/p,1 + 1/p). �

2.5.3 Convergence in Discrete Bessel-Potential Norms

This section is devoted to error estimation in discrete Bessel-potential norms.

A function v defined on Ωh ⊂ (0,π)2 (or on Ω
h ⊂ [0,π]2 and equal to zero on Γ h)

is said to belong to the discrete Bessel-potential space Hs
p(Ωh), with −∞ < s < ∞,

1 < p < ∞, if there exists a function V ∈ Lp(Ωh) such that

v = Is,hV := F−1
σ

((
1 + |k|2)−s/2Fσ V

)=F−1((1 + |k|2)−s/2F Ṽ
)
,

where Ṽ is the odd extension of V from Ωh to ωh = hI2, defined to be zero on Γ h,
and further extended 2π -periodically to the whole of hZ2. We then define (compare
with the definition in Sect. 1.9.5.3)

‖v‖Hs
p(Ωh) := ‖V ‖Lp(Ωh) = 4−1/p‖Ṽ ‖Lp(ωh),

where the last equality is a consequence of (2.155).
First we shall prove equivalence of the discrete Sobolev norm ‖ ·‖Wm

p (Ωh) and the
norm ‖ · ‖Hm

p (Ωh) for integer m; then, the error bounds in discrete Bessel-potential
norms of integer order will follow from the error bounds derived in Theorems 2.56
and 2.57. Error bounds in fractional-order discrete Bessel-potential norms will be
derived from these by function space interpolation. We need the following prelimi-
nary result in the univariate case.

Lemma 2.58 Let W be a mesh-function defined on ωh = hI, where I = {−N +
1, . . . ,N}, and let TW be the trigonometric interpolant of W on (−π,π] given by
(2.145), with n = 1. Then, there exists a constant Cp , independent of h and W , such
that the following inequalities hold, with ω = (−π,π):

(a) ‖D−
x W‖Lp(ωh) ≤ ‖T ′

W‖Lp(ω) ≤ Cp‖D−
x W‖Lp(ωh);
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(b) ‖D+
x D−

x W‖Lp(ωh) ≤ ‖T ′′
W‖Lp(ω) ≤ Cp‖D+

x D−
x W‖Lp(ωh).

Proof (a) Since W and TW coincide at the mesh-points,

D−
x W(xi) = D−

x TW (xi) = 1

h

∫ xi

xi−1

T ′
W(x)dx.

Thus,

h
∣∣D−

x W(xi)
∣∣p ≤

∫ xi

xi−1

∣∣T ′
W(x)

∣∣p dx.

Summing over all xi in ωh, we deduce that
∥∥D−

x W
∥∥

Lp(ωh)
≤ ∥∥T ′

W

∥∥
Lp(ω)

.

To deduce the second inequality, let us note that

T ′
W(x) = 1

2π

∑

k∈I
(ık)FW(k)eıxk,

and

F
(
D−

x W
)
(k) = 1 − e−ıkh

h
FW(k).

Therefore,

T ′
W(x) = 1

2π

∑

k∈I

ıkh

1 − e−ıkh
F
(
D−

x W
)
(k)eıxk.

Since T ′
W is a trigonometric polynomial of degree N , it follows from (2.146) that

there is a ξ0 in (−h,0) such that
∥∥T ′

W

∥∥
Lp(ω)

= ∥∥T ′
W(· + ξ0)

∥∥
Lp(ωh)

.

Letting

λ(kh) := ıkh

1 − e−ıkh

and

μ(k) := λ(kh)eıkξ0 ,

the last equality can be rewritten as follows:
∥∥T ′

W

∥∥
Lp(ω)

= ∥∥F−1(μF
(
D−

x W
))∥∥

Lp(ωh)
.

A simple calculation shows that both λ and var(λ) are bounded by a constant, in-
dependent of h. It remains to apply part (a) of Theorem 2.49 to deduce that λ is a
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discrete Fourier multiplier on Lp(ωh), and therefore the same is true of μ. Hence
the upper bound in part (a).

(b) Let us define Z = D+
x W . Then, D+

x D−
x W = D−

x Z and by part (a) of this
lemma we have that

∥∥D+
x D−

x W
∥∥

Lp(ωh)
= ∥∥D−

x Z
∥∥

Lp(ωh)
≤ ∥∥T ′

Z

∥∥
Lp(ω)

.

Since

FZ(k) = F
(
D+

x W
)
(k) = eıkh − 1

h
FW(k),

it follows that

TZ(x) = 1

2π

∑

k∈I
FZ(k)eıxk

= 1

2π

∑

k∈I

eıkh − 1

h
FW(k) = D+

x TW (x).

By noting that TW (x) is a 2π -periodic function of x we deduce that

∥∥T ′
Z

∥∥p

Lp(ω)
= ∥∥D+

x T ′
W

∥∥p

Lp(ω)
= h−p

∫ π

−π

∣∣T ′
W(x + h) − T ′

W(x)
∣∣p dx

= h−p

∫ π

−π

∣∣∣∣
∫ x+h

x

T ′′
W(ξ)dξ

∣∣∣∣
p

dx ≤ 1

h

∫ π

−π

∫ x+h

x

∣∣T ′′
W(t)

∣∣p dt dx

= 1

h

∫ π

−π

∣∣T ′′
W(t)

∣∣p
(∫ t

t−h

dx

)
dt =

∫ π

−π

∣∣T ′′
W(t)

∣∣p dt = ∥∥T ′′
W

∥∥p

Lp(ω)
.

Hence we obtain the first inequality in (b). The second inequality is proved in the
same way as in part (a), by observing that

T ′′
W(x) = 1

2π

∑

k∈I

(ıkh)2

(eıkh − 1)(1 − e−ıkh)
F
(
D+

x D−
x W

)
(k)eıxk.

Thus, by noting that with ξ0 ∈ (−h,0] as in part (a) the function μ1 defined on I by

μ1(k) := (ıkh)2

(eıkh − 1)(1 − e−ıkh)
eıkξ0 =

( kh
2

sin kh
2

)2

eıkξ0

is bounded by π/2 and var(μ1) is bounded by a constant, independent of h, it
follows from part (a) of Theorem 2.49 that μ1 is a discrete Fourier multiplier on
Lp(ωh), and hence the upper bound stated in part (b). �

Lemma 2.58 has the following extension to two space dimensions.
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Lemma 2.59 Let W be a mesh-function defined on ωh = hI2, where I = {−N +
1, . . . ,N}, and let TW be the trigonometric interpolant of W on (−π,π]2 given by
(2.145), with n = 2. There is a constant Cp > 0, independent of h and W , such that
the following inequalities hold, with ω = (−π,π)2:

(a)

1

1 + π

∥∥D−
x W

∥∥
Lp(ωh)

≤
∥∥∥∥

∂

∂x
TW

∥∥∥∥
Lp(ω)

≤ Cp

∥∥D−
x W

∥∥
Lp(ωh)

and

1

1 + π

∥∥D−
y W

∥∥
Lp(ωh)

≤
∥∥∥∥

∂

∂y
TW

∥∥∥∥
Lp(ω)

≤ Cp

∥∥D−
y W

∥∥
Lp(ωh)

;

(b)

1

1 + π

∥∥D+
x D−

x W
∥∥

Lp(ωh)
≤
∥∥∥∥

∂2

∂x2
TW

∥∥∥∥
Lp(ω)

≤ Cp

∥∥D+
x D−

x W
∥∥

Lp(ωh)
,

∥∥D−
x D−

y W
∥∥

Lp(ωh)
≤
∥∥∥∥

∂2

∂x∂y
TW

∥∥∥∥
Lp(ω)

≤ Cp

∥∥D−
x D−

y W
∥∥

Lp(ωh)

and

1

1 + π

∥∥D+
y D−

y W
∥∥

Lp(ωh)
≤
∥∥∥∥

∂2

∂y2
TW

∥∥∥∥
Lp(ω)

≤ Cp

∥∥D+
y D−

y W
∥∥

Lp(ωh)
.

Proof The proof of this result is a straightforward consequence of Lemma 2.58,
and Lemmas 2.48 and 2.51 with n = 1; Lemma 2.58 is applied in the co-ordinate
direction in which differentiation has taken place, and Lemmas 2.48 and 2.51 in the
other direction. �

Lemma 2.60 The norms ‖ · ‖Wm
p (Ωh) and ‖ · ‖Hm

p (Ωh) are equivalent, uniformly in
h, for m = 0,1,2 and 1 < p < ∞; i.e. there exist two constants C1 and C2, inde-

pendent of h, such that for all functions V defined on Ωh (or on Ω
h

and equal to
zero of Γ h),

C1‖V ‖Wm
p (Ωh) ≤ ‖V ‖Hm

p (Ωh) ≤ C2‖V ‖Wm
p (Ωh).

Proof The statement is obviously true for m = 0 with C1 = C2 = 1. Now for m =
1,2 we shall proceed as follows. Let Ṽ denote the odd extension of V to ωh = hI2,
where I = {−N + 1, . . . ,N}. Further, let T

Ṽ
denote the trigonometric interpolant of

Ṽ defined by (2.145) with n = 2. By applying Lemma 2.59 with W = Ṽ , we deduce
the existence of two positive constants C1 and C2, independent of V and h, (with
C2 = C2(p) and C1 independent of p), such that

C1‖V ‖W 1
p(Ωh) ≤ ‖T

Ṽ
‖W 1

p(ω) ≤ C2‖V ‖W 1
p(Ωh)
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and

C1‖V ‖W 2
p(Ωh) ≤ ‖T

Ṽ
‖W 2

p(ω) ≤ C2‖V ‖W 2
p(Ωh).

For p ∈ (1,∞) and a nonnegative integer m the Sobolev norm ‖ · ‖Wm
p (ω) on

ω = T
2, is equivalent to the periodic Bessel-potential norm ‖ · ‖Hm

p (ω) defined by

‖v‖Hm
p (ω) := ∥∥((1 + |k|2)m/2

v̂
)∨∥∥

Lp(ω)

(see, Schmeiser and Triebel [162]), where ·̂ and ·∨ denote the Fourier transform of
a periodic distribution and its inverse, defined in Sect. 1.9.5; therefore,

C1‖V ‖Wm
p (Ωh) ≤ ∥∥((1 + |k|2)m/2

T̂
Ṽ

)∨∥∥
Lp(ω)

≤ C2‖V ‖Wm
p (Ωh), m = 1,2.

Finally, since ((1 + |k|2)m/2T̂
Ṽ
)∨ = TF−1((1+|k|2)m/2F Ṽ )

on ω, we have by Lem-
mas 2.48 and 2.51 that

C1‖V ‖Wm
p (Ωh) ≤ ∥∥F−1((1 + |k|2)m/2F Ṽ

)∥∥
Lp(ωh)

≤ C2‖V ‖Wm
p (Ωh), m = 1,2,

from which the result follows by noting that

∥∥F−1((1 + |k|2)m/2F Ṽ
)∥∥

Lp(ωh)
= 41/p

∥∥F−1
σ

((
1 + |k|2)m/2Fσ V

)∥∥
Lp(Ωh)

= 41/p‖V ‖Hm
p (Ωh), m = 1,2. �

We shall now use function space interpolation to obtain scales of error bounds in
fractional-order discrete Bessel-potential norms. We start with a generalization of
an interpolation inequality of Mokin (cf. Theorem 5 in [141]).

Lemma 2.61 Let α and β be two nonnegative real numbers such that α < β and
suppose that 1 < p < ∞. There exists a positive constant C, independent of h, such
that for any real number r , α ≤ r ≤ β ,

‖V ‖Hr
p(Ωh) ≤ C‖V ‖1−μ

Hα
p (Ωh)

‖V ‖μ

H
β
p (Ωh)

∀V ∈ Hβ
p

(
Ωh
)
,

where μ = (r − α)/(β − α).

Proof Let us first prove the result for α = 0. We define W := I−r,hV ; then

‖V ‖Hr
p(Ωh) = ‖W‖Lp(Ωh) = 4−1/p‖W̃‖Lp(ωh)

≤ 4−1/p(1 + π)2‖T
W̃

‖Lp(ω) = 4−1/p(1 + π)2‖T
Ṽ
‖Hr

p(ω).

Also,

‖T
Ṽ
‖Hr

p(ω) ≤ C‖T
Ṽ
‖1−(r/β)

Lp(ω) ‖T
Ṽ
‖r/β

H
β
p (ω)

,
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(see, Nikol’skiı̆ [144], p. 310) where C = C(p, r, s) is a positive constant, and by
Lemma 2.51 we have that

‖T
Ṽ
‖Lp(ω) ≤ 41/pC‖V ‖Lp(Ωh) and ‖T

Ṽ
‖
H

β
p (ω)

≤ 41/pC‖V ‖
H

β
p (Ωh)

.

Combining the last four inequalities, we deduce the statement of the lemma in the
case of α = 0.

For α > 0, let us define W := I−α,hV . Then,

‖W‖
H

β−α
p (Ωh)

= ‖V ‖
H

β
p (Ωh)

and ‖W‖Hr−α
p (Ωh) = ‖V ‖Hr

p(Ωh);
moreover, as 0 ≤ r − α ≤ β − α, it follows from the case of α = 0 above that

‖W‖Hr−α
p (Ωh) ≤ C‖W‖1−μ

Lp(Ωh)
‖W‖μ

H
β−α
p (Ωh)

,

and hence the desired inequality. �

Lemma 2.61 will play a key role in the proof of the next theorem, concerned with
optimal error bounds in fractional-order discrete Bessel-potential norms.

Theorem 2.62 Let u be the weak solution of the boundary-value problem (2.149),
(2.150), let U be the solution of the finite difference scheme (2.153), (2.154). If u

belongs to Ws
p(Ω), 2/p < s ≤ 2 and 0 ≤ r ≤ 2, or 2/p < s ≤ 3 and 1 ≤ r ≤ 2, with

1 < p < ∞ and r ≤ s, then we have that

‖u − U‖Hr
p(Ωh) ≤ Chs−r |u|Ws

p(Ω),

with a positive constant C, dependent on p, r and s, but independent of h.

Proof Let us suppose that u belongs to Ws
p(Ω), 2/p < s ≤ 2, 1 < p < ∞ and

0 ≤ r ≤ 2. We apply Lemma 2.61 with α = 0, β = 2 and Theorem 2.56 to obtain
the error bound.

Similarly, if u belongs to Ws
p(Ω), 2/p < s ≤ 3, 1 < p < ∞ and 1 ≤ r ≤ 2, then

we take α = 1 and β = 2 in Lemma 2.61 in combination with Theorem 2.56 to
deduce the error bound. �

By invoking Lemma 2.61 with α = 0 and β = 1, we obtain from Theorem 2.57,
using function space interpolation, the following scale of error bounds in fractional-
order discrete Bessel-potential norms.

Theorem 2.63 Let u be the weak solution of the boundary-value problem (2.149),
(2.150), let U be the solution of the finite difference scheme (2.151), (2.152). If u

belongs to Ws
p(Ω), 0 ≤ s < 1 + 1/p, s �= 1/p, 1 < p < ∞, 0 ≤ r ≤ 1 and r ≤ s,

then
∥∥T 11

h u − U
∥∥

Hr
p(Ωh)

≤ Chs−r |u|Ws
p(Ω),

with a positive constant C, dependent on p, r and s, but independent of h.
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The error bounds stated in Theorems 2.56, 2.57, 2.62, and 2.63 cover the range
of possible Sobolev indices, s ∈ [0,4], for which the solution U of the difference
scheme (2.151), (2.152) converges to the weak solution u (or its mollification T 11

h u)
of the boundary-value problem (2.149), (2.150), provided that u ∈ Ws

p(Ω). To con-
clude, we note that to derive these results it is not essential that u is weak solution:
indeed, if we assume that u ∈ Ws

p(Ω) with s > 1/p is a solution of the boundary-
value problem in the sense of distributions and that it satisfies a homogeneous
Dirichlet boundary condition in the sense of the trace theorem, the error bounds
obtained above still hold.

2.6 Approximation of Second-Order Elliptic Equations with
Variable Coefficients

Hitherto we have been concerned with the construction and error analysis of fi-
nite difference schemes for second-order linear elliptic equations of the form
−Δu+c(x, y)u = f (x, y). In particular, we derived optimal-order error bounds un-
der minimal smoothness requirements on the solution. Here we shall extend these
results to elliptic equations with variable coefficients in the principal part of the
differential operator, under minimal regularity hypotheses on the solution and the
coefficients.

In Sect. 2.6.1 we consider the Dirichlet problem for a second-order elliptic equa-
tion with variable coefficients in the principal part of the operator. The finite differ-
ence approximation of this problem is shown to be convergent, with optimal order,
in the discrete W 1

2 norm. In Sects. 2.6.2 and 2.6.3 similar results are proved in the
discrete W 2

2 norm and in the discrete L2 norm; then, using function space inter-
polation, these bounds are extended to fractional-order discrete Wr

2 norms, with
r ∈ [0,2], in Sect. 2.6.4. In Sect. 2.6.5 we focus on elliptic equations with separated
variables and derive optimal bounds in the discrete L2 norm, which are compatible
with our hypotheses on the smoothness of the data.

2.6.1 Convergence in the Discrete W 1
2 Norm

As a model problem, we shall consider the following homogeneous Dirichlet
boundary-value problem for a second-order linear elliptic equation with variable
coefficients on the open unit square Ω = (0,1)2:

Lu := −
2∑

i,j=1

∂i(aij ∂ju) + au = f in Ω,

u = 0 on Γ = ∂Ω.

(2.166)
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For the sake of notational simplicity, we have denoted the two independent variables
here by x1 and x2 instead of x and y.

We shall suppose that (2.166) has a solution in Ws
2 (Ω), which satisfies the par-

tial differential equation in the sense of distributions and the boundary condition
in the sense of the trace theorem, with the right-hand side f being an element of
Ws−2

2 (Ω). In order for the solution of this problem to have a well-defined trace
on ∂Ω it is necessary to assume that s > 1/2. It is then natural to require that the
coefficients aij and a belong to appropriate spaces of multipliers; that is,

aij ∈ M
(
Ws−1

2 (Ω)
)
, a ∈ M

(
Ws

2 (Ω) → Ws−2
2 (Ω)

)
.

According to the results in Sect. 1.8 the following conditions are sufficient in order
to ensure that this is the case:

(a) if |s − 1| > 1, then

aij ∈ W
|s−1|
2 (Ω), a ∈ W

|s−1|−1
2 (Ω);

(b) if 0 ≤ |s − 1| ≤ 1, then

aij ∈ W |s−1|+δ
p (Ω), a = a0 +

2∑

i=1

∂iai,

a0 ∈ L2+ε(Ω), ai ∈ W |s−1|+δ
p (Ω),

where ε > 0; and δ > 0, p ≥ 2/|s − 1| for 0 < |s − 1| < 1; δ = 0, p > 2 for
s = 0; δ = 0, p = ∞ when s = 1.

In addition to these assumptions on the smoothness of the data, we shall adopt the
following structural hypotheses on the coefficients aij and a:

• there exists a c0 > 0 such that

2∑

i,j=1

aij (x)ξiξj ≥ c0

2∑

i=1

ξ2
i ∀x ∈ Ω, ∀ξ = (ξ1, ξ2) ∈ R

2;

• the matrix (aij ) ∈ R
2×2 is symmetric, i.e.

aij = aji, i, j = 1,2;
• the coefficient a is nonnegative in the sense of distributions; i.e.

〈aϕ,ϕ〉D′×D ≥ 0 ∀ϕ ∈D(Ω).

We shall construct a finite difference approximation of this boundary-value prob-

lem on the uniform mesh Ω
h := Ωh ∪ Γ h of mesh-size h := 1/N , with N ≥ 2,

defined in Sect. 2.2.4.
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When s ≤ 3, our hypotheses on the smoothness of the data do not guarantee that
the forcing function f and the coefficient a are continuous on Ω : it is therefore
necessary to mollify them so as to ensure that they have well-defined values at the
mesh-points.

These observations lead us to consider the following finite difference approxima-
tion of the boundary-value problem:

LhU = T 22
h f on Ωh,

U = 0 on Γ h,
(2.167)

with

LhU := −1

2

2∑

i,j=1

[
D+

xi

(
aijD

−
xj

U
)+ D−

xi

(
aijD

+
xj

U
)]+ (T 22

h a
)
U,

where D±
xi

V , i = 1,2, are the divided difference operators in the xi co-ordinate
direction defined in Sect. 2.2.4, and T 22

h is the mollifier with mesh-size h defined in
Sect. 1.9.2.

It is helpful to note that the two-dimensional mollifier T 22
h can be expressed in

terms of the one-dimensional mollifiers T1 = T1,h and T2 = T2,h, acting in the x1
and x2 co-ordinate direction, respectively, as

T 22
h = T 2

1 T 2
2 .

For a locally integrable function w defined on Ω ,

T1w(x1, x2) := 1

h

∫ x1+h/2

x1−h/2
w(ξ1, x2)dξ1,

T 2
1 w(x1, x2) := 1

h

∫ x1+h

x1−h

(
1 −

∣∣∣∣
x1 − ξ1

h

∣∣∣∣

)
w(ξ1, x2)dξ1;

T2w and T 2
2 w can be represented analogously. When w is a distribution, Ti and T 2

i

are defined as convolutions of w with the scaled univariate B-splines θ1
h and θ2

h ,
respectively, as explained in Sect. 1.9.

We note that (2.167) is the standard symmetric seven-point difference scheme
with mollified right-hand side and mollified coefficient a.

With the notations from Sect. 2.2.4, we consider the discrete L2 inner product
(V ,W)h (see (2.48)) in the linear space Sh

0 of real-valued mesh-functions defined on

Ω
h

that vanish on Γ h, the associated discrete L2 norm ‖V ‖L2(Ω
h), and the discrete

Sobolev norms ‖V ‖W 1
2 (Ωh) and ‖V ‖W 2

2 (Ωh).
The error bounds stated in the next theorem are compatible with the smoothness

hypotheses (a) and (b) formulated above, for the coefficients appearing in the partial
differential equation.
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Theorem 2.64 The difference scheme (2.167) satisfies the following error bounds
in the W 1

2 (Ωh) norm:

‖u − U‖W 1
2 (Ωh) ≤ Chs−1

(
max
i,j

‖aij‖Ws−1
2 (Ω)

+ ‖a‖
Ws−2

2 (Ω)

)
‖u‖Ws

2 (Ω),

for 2 < s ≤ 3, (2.168)

and

‖u − U‖W 1
2 (Ωh) ≤ Chs−1

(
max
i,j

‖aij‖Ws−1+δ
p (Ω)

+ max
i

‖ai‖Ws−1+δ
p (Ω)

+ ‖a0‖L2+ε(Ω)

)
‖u‖Ws

2 (Ω), for 1 < s ≤ 2, (2.169)

where p, δ and ε are as in condition (b) above, and C is a positive constant, inde-
pendent of h.

Before embarking on the proofs of these error bounds we shall make some pre-
liminary observations. Let u denote the solution of the boundary-value problem
(2.166) and let U be the solution of the finite difference scheme (2.167). When
s > 1, as in Theorem 2.64, the function u is continuous on Ω and therefore the
global error e := u − U is correctly defined on the uniform mesh Ω

h
. In addition,

it is easily seen that

Lhe =
2∑

i,j=1

D−
xi

ηij + η on Ωh,

e = 0 on Γ h,

(2.170)

where

ηij := T +
i T 2

3−i (aij ∂ju) − 1

2

(
aijD

+
xj

u + a+i
ij D−

xj
u+i

)
, i = 1,2,

and

η := (T 2
1 T 2

2 a
)
u − T 2

1 T 2
2 (au).

Here, for a locally integrable function w defined on Ω , we have used the asym-
metric mollifiers T ±

i w, defined at x = (x1, x2) by

(
T ±

i w
)
(x) := (Tiw)

(
x ± 1

2
hei

)
, with ei := (δi1, δi2), i = 1,2.

By taking the (·, ·)h inner product of Lhe with e and performing summations
by parts in the leading terms on the left- and right-hand sides, in exactly the same
manner as in the argument that led to the estimate (2.83) stated in Lemma 2.24, we
arrive at the following result.
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Lemma 2.65 The difference scheme (2.170) is stable, in the sense that

‖e‖W 1
2 (Ωh) ≤ C

(
2∑

i,j=1

‖ηij‖L2(Ω
h
i ) + ‖η‖L2(Ω

h)

)
, (2.171)

where C is a positive constant, independent of h.

The error analysis of the finite difference scheme (2.167) is thereby reduced to
estimating the right-hand side in the inequality (2.171). To this end, we decompose
ηij as follows:

ηij = ηij1 + ηij2 + ηij3 + ηij4,

where

ηij1 := T +
i T 2

3−i (aij ∂ju) − (T +
i T 2

3−iaij

)(
T +

i T 2
3−i∂j u

)
,

ηij2 :=
[
T +

i T 2
3−iaij − 1

2

(
aij + a+i

ij

)](
T +

i T 2
3−i∂j u

)
,

ηij3 := 1

2

(
aij + a+i

ij

)[
T +

i T 2
3−i∂j u − 1

2

(
D+

xj
u + D−

xj
u+i

)]

and

ηij4 := −1

4

(
aij − a+i

ij

)(
D+

xj
u − D−

xj
u+i

)
.

We shall also perform a decomposition of η, but the form of this decomposition will
depend on whether 1 < s ≤ 2 or 2 < s ≤ 3.

When 1 < s ≤ 2, we shall write

η = η0 + η1 + η2,

where

η0 := (T 2
1 T 2

2 a0
)
u − T 2

1 T 2
2 (a0u)

and

ηi := (T 2
1 T 2

2 ∂iai

)
u − T 2

1 T 2
2 (u∂iai), i = 1,2.

Whereas if 2 < s ≤ 3, we shall use the decomposition

η = η3 + η4,

where

η3 := (T 2
1 T 2

2 a
)(

u − T 2
1 T 2

2 u
)
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and

η4 := (T 2
1 T 2

2 a
)(

T 2
1 T 2

2 u
)− T 2

1 T 2
2 (au).

Proof of Theorem 2.64 We introduce the ‘elementary rectangles’

K0 = K0(x) := {y = (y1, y2) : |yj − xj | < h,j = 1,2
}

and

Ki = Ki(x) := {y : xi < yi < xi + h, |y3−i − x3−i | < h
}
, i = 1,2.

The linear transformation y = x + hx̃ defines a bijective mapping of the ‘canonical
rectangles’

K̃0 := {x̃ = (x̃1, x̃2) : |x̃j | < 1, j = 1,2
}

and

K̃i := {x̃ : 0 < x̃i < 1, |x̃3−i | < 1}, i = 1,2,

onto K0 and Ki , respectively. Further, we define

ãij (x̃) := aij (x + hx̃), ũ(x̃) := u(x + hx̃),

and so on. The value of ηij1 at a mesh-point x ∈ Ωh
i can be expressed as

ηij1(x) = 1

h

[∫

K̃i

(
1 − |x̃3−i |

)
ãij (x̃)

∂ũ

∂x̃j

dx̃

−
∫

K̃i

(
1 − |x̃3−i |

)
ãij (x̃)dx̃ ×

∫

K̃i

(
1 − |x̃3−i |

) ∂ũ

∂x̃j

dx̃

]
.

Hence we deduce that ηij1(x) is a bounded bilinear functional of the argument

(ãij , ũ) ∈ Wλ
q

(
K̃i
)× W

μ

2q/(q−2)

(
K̃i
)
,

where λ ≥ 0, μ ≥ 1 and q > 2. Furthermore, ηij1 = 0 whenever ãij is a constant
function or ũ is a polynomial of degree 1. By applying the bilinear version of the
Bramble–Hilbert lemma (cf. Lemma 2.30 with m = 2), we deduce that

∣∣ηij1(x)
∣∣≤ C

h
|ãij |Wλ

q (K̃i )
|ũ|

W
μ
2q/(q−2)

(K̃i )
, 0 ≤ λ ≤ 1, 1 ≤ μ ≤ 2.

Returning from the canonical variables (x̃1, x̃2) to the original variables (x1, x2) we
obtain

|ãij |Wλ
q (K̃i )

= hλ−2/q |aij |Wλ
q (Ki)
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and

|ũ|
W

μ
2q/(q−2)

(K̃i )
= hμ−(q−2)/q |u|Wμ

2q/(q−2)
(Ki).

Therefore,
∣∣ηij1(x)

∣∣≤ Chλ+μ−2|aij |Wλ
q (Ki)|u|Wμ

2q/(q−2)
(Ki), 0 ≤ λ ≤ 1,1 ≤ μ ≤ 2.

By summing through the mesh-points in Ωh
i and applying Hölder’s inequality

we then deduce, for 0 ≤ λ ≤ 1 and 1 ≤ μ ≤ 2, the bound

‖ηij1‖L2(Ω
h
i ) ≤ Chλ+μ−1|aij |Wλ

q (Ω)|u|Wμ
2q/(q−2)

(Ω). (2.172)

Let us choose λ = s − 1, μ = 1 and q = p. Thanks to the Sobolev embedding
theorem (cf. Theorem 1.34),

Ws−1+δ
p (Ω) ↪→ Ws−1

p (Ω) and Ws
2 (Ω) ↪→ W 1

2p/(p−2)(Ω), 1 < s ≤ 2.

Thus, (2.172) yields

‖ηij1‖L2(Ω
h
i ) ≤ Chs−1‖aij‖Ws−1+δ

p (Ω)
‖u‖Ws

2 (Ω), 1 < s ≤ 2. (2.173)

Analogous bounds hold for ηij2, ηij4, η1 and η2. Now suppose that q > 2; then, the
following Sobolev embeddings hold:

W
λ+μ−1
2 (Ω) ↪→ Wλ

q (Ω) for μ > 2 − 2/q

and

W
λ+μ
2 (Ω) ↪→ W

μ

2q/(q−2)(Ω) for λ > 2/q.

Setting λ + μ = s in (2.172) yields

‖ηij1‖L2(Ω
h
i ) ≤ Chs−1‖aij‖Ws−1

2 (Ω)
‖u‖Ws

2 (Ω), 2 < s ≤ 3. (2.174)

The functional ηij4 is bounded in a similar fashion.
For s > 2, ηij2 is a bilinear functional of the argument

(aij , u) ∈ Ws−1
2

(
Ki
)× W 1∞

(
Ki
)

and ηij2 = 0 whenever aij is a polynomial of degree 1 or if u is a constant func-
tion. By applying Lemma 2.65 and the embedding Ws

2 (Ω) ↪→ W 1∞(Ω) we obtain a
bound on ηij2, which is of the form (2.174).

By a similar argument, ηij3(x) is a bounded bilinear functional of the argument

(aij , u) ∈ C
(
K

i)× Ws
2

(
Ki
)
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for s > 1 and it vanishes whenever u is a polynomial of degree 2. By noting the
embeddings

Ws−1+δ
p (Ω) ↪→ C(Ω) for 1 < s ≤ 2

and

Ws−1
2 (Ω) ↪→ C(Ω) for s > 2,

we obtain bounds of the form (2.173) and (2.174) for ηij3.
Let 2 < q < 2/(3 − s). When 2 < s ≤ 3, η3(x) is a bounded bilinear functional

of the argument

(a,u) ∈ Lq

(
K0)× Ws−1

2q/(q−2)

(
K0).

Moreover, η3 = 0 when u is a polynomial of degree 1. By noting the Bramble–
Hilbert lemma and the Sobolev embeddings

Ws−2
2 (Ω) ↪→ Lq(Ω) and Ws

2 (Ω) ↪→ Ws−1
2q/(q−2)(Ω)

we obtain

‖η3‖L2(Ω
h) ≤ Chs−1‖a‖

Ws−2
2 (Ω)

‖u‖Ws
2 (Ω), 2 < s ≤ 3. (2.175)

When 2 < s ≤ 3, η4 is a bounded bilinear functional of

(a,u) ∈ Ws−2
2

(
K0)× W 1∞

(
K0)

and η4 = 0 whenever a or u is a constant function. Using the same technique as
before, together with the embedding

Ws
2 (Ω) ↪→ W 1∞(Ω),

we obtain a bound of the form (2.175) for η4.
Finally, let 2 < q < min{2 + ε,2/(2 − s)}. Then, for 1 < s ≤ 2, η0(x) is a

bounded bilinear functional of the argument

(a0, u) ∈ Lq

(
K0)× Ws−1

2q/(q−2)

(
K0)

and it vanishes when u is a constant function. By noting the embeddings

L2+ε(Ω) ↪→ Lq(Ω) and Ws
2 (Ω) ↪→ Ws−1

2q/(q−2)(Ω)

we obtain

‖η0‖L2(Ω
h) ≤ Chs−1‖a0‖L2+ε(Ω)‖u‖Ws

2 (Ω), 1 < s ≤ 2. (2.176)

Finally, by combining (2.171) with (2.172)–(2.176) we deduce the desired bounds
on the global error. �
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2.6.2 Convergence in the Discrete W 2
2 Norm

In this section we consider the error analysis of the scheme (2.167) in the discrete
W 2

2 norm (2.50).
From the error bound (2.168) in the W 1

2 (Ωh) norm derived in the previous sec-
tion for the difference scheme (2.167) and the inverse inequality

|V |W 2
2 (Ωh) ≤

√
6

h
|V |W 1

2 (Ωh) ∀V ∈ Sh
0 , (2.177)

we immediately deduce, with V = e, the following error bound in the W 2
2 (Ωh) norm

‖u − U‖W 2
2 (Ωh) ≤ Chs−2

(
max
i,j

‖aij‖Ws−1
2 (Ω)

+ ‖a‖
Ws−2

2 (Ω)

)
‖u‖Ws

2 (Ω)

for 2 < s ≤ 3. (2.178)

In order to derive an analogous error bound when 3 < s ≤ 4 it is necessary to
establish the discrete counterpart of the elliptic regularity result

‖v‖W 2
2 (Ω) ≤ C‖Lv‖L2(Ω) ∀v ∈ W 2

2 (Ω) ∩ W̊ 1
2 (Ω),

called the second fundamental inequality, following the terminology of Lady-
zhenskaya and Ural’tseva [118]. A result of this kind was proved for the finite dif-
ference operator Lh by D’yakonov [39]; it states that

|V |W 2
2 (Ωh) ≤ C‖LhV ‖L2(Ω

h) ∀V ∈ Sh
0 , (2.179)

where

C := C(a11, a12, a22, a) = C0
(
1 + ∥∥T 22

h a
∥∥

Lq(Ωh)

)(
1 + max

i,j
‖aij‖q/(q−2)

W 1
q (Ωh)

)
,

with 2 < q ≤ ∞; here ‖·‖Lq(Ωh) and ‖·‖W 1
q (Ωh) are mesh-dependent norms defined,

for q < ∞, by

‖V ‖Lq(Ωh) :=
(

h2
∑

x∈Ωh

∣∣V (x)
∣∣q
)1/q

,

‖V ‖W 1
q (Ωh) :=

(
‖V ‖q

Lq(Ωh)
+

2∑

i=1

∥∥D+
xi

V
∥∥q

Lq(Ωh
i )

)1/q

,

where ‖ · ‖Lq(Ωh
i ) is defined in the same way as ‖ · ‖Lq(Ωh), except that the sum is

taken over mesh-points in Ωh
i instead of Ωh. When q = ∞,

‖V ‖L∞(Ωh) = ‖V ‖∞,h := max
x∈Ωh

∣∣V (x)
∣∣,
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with an analogous definition of ‖V ‖W 1∞(Ωh).
By applying the Bramble–Hilbert lemma it is easily shown that

‖aij‖W 1
q (Ωh) ≤ C1‖aij‖W 1

q (Ω) and
∥∥T 2

1 T 2
2 a
∥∥

Lq(Ωh)
≤ C2‖a‖Lq(Ω),

where C1 and C2 are independent of h. Thus we can assume in (2.179) that

C = C(a11, a12, a22, a)

:= C3(1 + ‖a‖Lq(Ω))
(

1 + max
i,j

‖aij‖q/(q−2)

W 1
q (Ω)

)
, 2 < q ≤ ∞.

Following the terminology of Ladyzhenskaya and Ural’tseva again, we note that
the discrete version of the first fundamental inequality is

c0|V |2
W 1

2 (Ωh)
≤ (LhV,V )h ∀V ∈ Sh

0 . (2.180)

For the difference operator Lh appearing in (2.167) the first fundamental inequality
is easily shown using summation by parts, in the same way as in the case of the
result stated in Lemma 2.65.

Now we are ready to consider the error analysis of the difference scheme (2.167)
in the norm W 2

2 (Ωh) for u ∈ Ws
2 (Ω) when 3 < s ≤ 4.

It follows from (2.170) and (2.177) that

‖e‖W 2
2 (Ωh) ≤ C

(
2∑

i,j=1

∥∥D−
xi

ηij

∥∥
L2(Ω

h
i )

+ ‖η‖L2(Ω
h)

)
, (2.181)

where C is a positive constant, independent of h. By bounding D−
xi

ηij and η analo-
gously as in the previous section, we obtain the error bound (2.178) for 3 < s ≤ 4.
Thus we deduce that (2.178) holds for 2 < s ≤ 4 (see also Berikelashvili [10]).

2.6.3 Convergence in the Discrete L2 Norm

The derivation of an optimal error bound in the L2(Ω
h) norm is based on a tech-

nique that is usually referred to as a duality argument: it uses the adjoint of the
difference operator Lh and the second fundamental inequality for the adjoint of the
difference operator Lh. Since in our case the difference operator Lh is symmetric
and, more specifically, selfadjoint on the finite-dimensional space Sh

0 of real-valued

mesh-functions defined on Ω
h

that vanish on Γ h, equipped with the inner prod-
uct of L2(Ω

h), the second fundamental inequality for the adjoint of Lh is, in fact,
identical to the second fundamental inequality for Lh, stated in (2.179).



212 2 Elliptic Boundary-Value Problems

For the sake of simplicity, we shall restrict ourselves to the case when a(x) ≡ 0;
the boundary-value problem (2.166) then becomes

−
2∑

i,j=1

∂i(aij ∂ju) = f in Ω, u = 0 on Γ = ∂Ω , (2.182)

and the corresponding finite difference scheme is

LhU := −1

2

2∑

i,j=1

[
D+

xi

(
aijD

−
xj

U
)+ D−

xi

(
aijD

+
xj

U
)]= T 22

h f in Ωh,

U = 0 on Γ h.

(2.183)

The error analysis of this scheme in the L2(Ω
h) norm is based on the observation

that the global error e := u − U is the solution of the difference scheme

Lhe =
2∑

i,j=1

D−
xi

ηij in Ωh, e = 0 on Γ h, (2.184)

where the ηij are the same as in (2.170). The right-hand side can be rewritten as
follows:

2∑

i,j=1

D−
xi

ηij =
2∑

i=1

(
Liiξii +Kiχi +

2∑

j=1

D−
xi

υij

)
, (2.185)

where

LiiV := −D−
xi

[(
T +

i T 2
3−iaii

)
D+

xi
V
]
, KiV := D−

xi

[(
T +

i T 2
3−iai,3−i

)
D+

x3−i
V
]
,

and

ξij := u − 1

2

(
T −

3−iT
+
3−j u + T +

3−iT
−
3−j u

)
,

χi := �i − 1

2

(
ξi,3−i + ξ

+i,−(3−i)
i,3−i

)
,

�i := 1

4

[(
T −

3−iT
+
i u − T +

3−iT
−
i u
)− (T −

3−iT
+
i u − T +

3−iT
−
i u
)+i,−(3−i)]

,

υij := T +
i T 2

3−i (aij ∂ju) − (T +
i T 2

3−iaij

)(
T +

i T 2
3−i∂j u

)

+ 1

2

[(
T +

i T 2
3−iaij

)(
D+

xj
u + D−

xj
u+i

)− aijD
+
xj

u − a+i
ij D−

xj
u+i

]
.

Here we have assumed that the solution u ∈ Ws
2 (Ω) ∩ W̊ 1

2 (Ω), 0 ≤ s ≤ 2, has been
extended, preserving its Sobolev class, to the square (−h0,1 + h0)

2 where h0 is a
fixed positive constant such that h < h0.
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Lemma 2.66 Suppose that aij ∈ W 1
q (Ω), q > 2. The solution of the finite difference

scheme (2.184) then satisfies the bound

‖e‖L2(Ω
h) ≤ C

2∑

i=1

(
‖ξii‖L2(Ω

h) + ‖ξi,3−i‖L2(Ω
h
)

+ ‖�i‖L2(Ω
h
i−1,2−i )

+
2∑

j=1

‖υij‖L2(Ω
h
i )

)
, (2.186)

where C is a positive constant, independent of h.

Proof The proof is based on a duality argument. Let us consider the auxiliary func-
tion W , defined as the solution of the finite difference scheme

LhW = e in Ωh, W = 0 on Γ h.

We note in passing that in general one would have written (Lh)
∗, the adjoint of Lh,

on the left-hand side instead of Lh; however, in our case Lh is selfadjoint. Thus,
crucially, (e,LhW)h = (Lhe,W)h. It then follows from (2.184) and (2.185) that

‖e‖2
L2(Ω

h)
= (e,LhW)h = (Lhe,W)h

=
2∑

i=1

[
(Liiξii ,W)h + (Kiχi,W)h +

2∑

j=1

(
D−

xi
υij ,W

)
h

]

=
2∑

i=1

[
(ξii ,LiiW)h + (χi,K∗

i W
)
i−1,2−i,h

−
2∑

j=1

(
υij ,D

+
xi

W
)
i,h

]

≤
2∑

i=1

(
‖ξii‖L2(Ω

h)‖LiiW‖L2(Ω
h) + ‖χi‖L2(Ω

h
i−1,2−i )

∥∥K∗
i W
∥∥

L2(Ω
h
i−1,2−i )

+
2∑

j=1

‖υij‖L2(Ω
h
i )

∥∥D+
xi

W
∥∥

L2(Ω
h
i )

)
,

where

K∗
i W = D−

x3−i

[(
T +

i T 2
3−iai,3−i

)
D+

xi
W
]
.

The second fundamental inequality (2.179) implies that

‖LiiW‖L2(Ω
h),

∥∥K∗
i W
∥∥

L2(Ω
h
i−1,2−i )

,
∥∥D+

xi
W
∥∥

L2(Ω
h
i )

are all bounded by

C‖LhW‖L2(Ω
h) = C‖e‖L2(Ω

h),
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and hence, after substitution of the defining expression for χi , we deduce the in-
equality (2.186). �

We observe that for the second fundamental inequality to hold it is necessary that
aij ∈ W 1

q (Ω), q > 2; thus we can only expect a sharp error bound when s = 2. Let
us assume that this is indeed the case, and we proceed to estimate the terms that
appear on the right-hand side of the inequality (2.186).

We begin by noting that ξij and �i are bounded linear functionals on W 2
2 (Ω) that

vanish on all polynomials of degree 1. By the Bramble–Hilbert lemma,

‖ξii‖L2(Ω
h), ‖ξi,3−i‖L2(Ω

h
)
, ‖�i‖L2(Ω

h
i−1,2−i )

≤ Ch2‖u‖W 2
2 (Ω). (2.187)

Arguing in the same way as in the previous section, υij is decomposed into three
terms that are bounded by means of the Bramble–Hilbert lemma to obtain:

‖υij‖L2(Ω
h
i ) ≤ Ch2(‖aij‖W 1∞(Ω)‖u‖W 2

2 (Ω) + ‖aij‖W 2∞(Ω)‖u‖W 1
2 (Ω)

)
. (2.188)

From (2.186)–(2.188) we deduce the following error bound for the difference
scheme (2.183):

‖u − U‖L2(Ω
h) ≤ Ch2 max

i,j
‖aij‖W 2∞(Ω)‖u‖W 2

2 (Ω). (2.189)

While the power of h in the error bound (2.189) is optimal in the sense that it
is compatible with the smoothness of u, the bound is not entirely satisfactory as
the coefficients aij are required to belong to W 2∞(Ω), which, in the light of the hy-
potheses (a) and (b) from the beginning of Sect. 2.6.1, can be seen as an excessively
strong assumption on the regularity of the coefficients aij . The requirement for the
additional smoothness of the coefficients aij can be attributed to our crude bound
on D−

xi
υij in (2.186).

An improved estimate can be obtained by considering an alternative scheme
where the coefficients aij have been mollified:

L̂hU :=
2∑

i,j=1

LijU = T 22
h f in Ωh,

U = 0 on Γ h,

(2.190)

where

LijU := −1

2
D−

xi

[(
T +

i T 2
3−iaij

)
D+

xj

(
U + U+i,−j

)]
.

For this scheme the global error e := u − U satisfies

L̂he =
2∑

i=1

(
Liiξii +Kiχi +

2∑

j=1

D−
xi

ηij1

)
in Ωh, z = 0 on Γ h,
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where ξii , χi and ηij1 are as before. Assuming that aij ∈ W 1
q (Ω), q > 2, and pro-

ceeding in the same manner as in the case of our previous scheme where the coeffi-
cients aij were not mollified, we obtain the bound

‖e‖L2(Ω
h) ≤ C

2∑

i=1

(
‖ξii‖L2(Ω

h) + ‖ξi,3−i‖L2(Ω
h
)
+ ‖�i‖L2(Ω

h
i−1,2−i )

+
2∑

j=1

‖ηij1‖L2(Ω
h
i )

)
.

Using the estimates (2.187) and (2.172) derived earlier and slightly strengthening
the smoothness requirements on the aij by demanding that aij ∈ W 1∞(Ω), we arrive
at the error bound

‖u − U‖L2(Ω
h) ≤ Ch2 max

i,j
‖aij‖W 1∞(Ω)‖u‖W 2

2 (Ω), (2.191)

which is now almost compatible with the smoothness of the data in the sense that
we assumed aij ∈ W 1∞(Ω) instead of the minimal smoothness requirement aij ∈
W 1

q (Ω), q > 2.
Let us now discuss the case when u belongs to the fractional-order Sobolev space

Ws
2 (Ω), 1 < s ≤ 2. Allowing some incompatibility between the smoothness of the

coefficients and the corresponding solution by assuming instead of our initial hy-
pothesis

u ∈ Ws
2 (Ω), aij ∈ W |s−1|+δ

p (Ω), 1 < s ≤ 2,

that

u ∈ Ws
2 (Ω), 1 < s ≤ 2; aij ∈ W 1∞(Ω)

and arguing as above, instead of (2.191) we arrive at the error bound

‖u − U‖L2(Ω
h) ≤ Chs max

i,j
‖aij‖W 1∞(Ω)‖u‖Ws

2 (Ω),1 < s ≤ 2.

This error bound is again incompatible with the smoothness of the data, except in
the case of s = 2 when it coincides with (2.191).

2.6.4 Convergence in Discrete Fractional-Order Norms

By noting our error bounds in integer-order discrete Sobolev norms and the inter-
polation inequalities (2.54) we can obtain new bounds in fractional-order discrete
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Sobolev norms. Thus, for example, for the scheme (2.167) from (2.168) and (2.178),
we have that

‖u − U‖Wr
2 (Ωh) ≤ Chs−r

(
max
i,j

‖aij‖Ws−1
2 (Ω)

+ ‖a‖
Ws−2

2 (Ω)

)
‖u‖Ws

2 (Ω),

for 1 ≤ r ≤ 2 < s ≤ 3.

From (2.169), (2.177) and (2.54) we deduce that

‖u − U‖Wr
2 (Ωh) ≤ Chs−r

(
max
i,j

‖aij‖Ws−1+δ
p (Ω)

+ max
i

‖ai‖Ws−1+δ
p (Ω)

+ ‖a0‖L2+ε(Ω)

)
‖u‖Ws

2 (Ω), for 1 ≤ r < s ≤ 2.

Similarly, from (2.191), (2.54), the inverse inequality

|V |W 1
2 (Ωh) ≤ 2

√
2

h
‖V ‖L2(Ω

h) ∀V ∈ Sh
0

with V = e and (2.177) we obtain the following error bound for the difference
scheme (2.190):

‖u − U‖Wr
2 (Ωh) ≤ Ch2−r max

i,j
‖aij‖W 1∞(Ω)‖u‖W 2

2 (Ω), 0 ≤ r ≤ 2.

In the next section we shall further sharpen these error bounds in the special
case of an equation where the off-diagonal entries in the coefficient matrix (aij ) are
identically zero.

2.6.5 Convergence in the Discrete L2 Norm: Separated Variables

In Sect. 2.6.3 we saw that the derivation of optimal error bounds in the L2(Ω
h)

norm under minimal smoothness requirements on the coefficients aij is associated
with technical difficulties. The error bounds that we obtained are satisfactory in this
respect only when s = 2, while for s < 2 they are incompatible with the natural
minimal regularity requirements on the coefficients. These results can be improved
in the case of a differential equation that separates the two variables; that is, when

−
2∑

i=1

∂i(ai∂iu) = f in Ω ,

u = 0 on Γ = ∂Ω ,

(2.192)

where

ai = ai(xi), i = 1,2,
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are such that there exist positive constants c0 and c1 with

0 < c0 ≤ ai(xi) ≤ c1 for all xi ∈ (0,1), i = 1,2.

In order to ensure that the ai belong to the function space of multipliers
M(Ws−1

2 (Ω)), we shall suppose that

ai ∈ W |s−1|+δ
p (0,1),

where the real numbers s, p and δ are assumed to satisfy the following conditions:

p = 2, δ = 0 when |s − 1| > 1/2,

p > 2, δ > 0 when s = 1/2 or s = 3/2,

p ≥ 1/|s − 1|, δ > 0 when 0 < |s − 1| < 1/2,

p = ∞, δ = 0 when s = 1.

(2.193)

Let us introduce the following univariate mollifiers:

(Sif )(x) := 1

h

∫ xi+h

xi−h

κi(t)f
(
x + (t − xi)ei

)
dt, i = 1,2,

where

κi(t) :=
{∫ t

xi−h
dτ

ai (τ )

/ ∫ xi

xi−h
dτ

ai (τ )
, t ∈ (xi − h,xi),

∫ xi+h

t
dτ

ai (τ )

/ ∫ xi+h

xi

dτ
ai (τ )

, t ∈ (xi, xi + h).

These operators satisfy the identity

Si

(
∂i(ai∂iu)

)= D−
xi

(
âiD

+
xi

u
)
,

where âi is the harmonic average of ai , defined by

âi (xi) :=
(

1

h

∫ xi+h

xi

dτ

ai(τ )

)−1

, i = 1,2.

In particular when ai(xi) ≡ 1, we have that

Si = T 2
i = T +

i T −
i .

We approximate the boundary-value problem (2.192) by the following finite dif-
ference scheme:

−
2∑

i=1

b3−iD
−
xi

(
âiD

+
xi

U
) = S1S2f in Ωh, (2.194)

U = 0 on Γ h, (2.195)
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where bi := Si(1), i = 1,2. We define the global error by

e := u − U, where u :=
{

T 11
h u, if 0 < s ≤ 1,

u, if 1 < s ≤ 2.

Then, e is easily seen to be a solution of the following finite difference scheme on

the mesh Ω
h
:

−
2∑

i=1

b3−iD
−
xi

(
âiD

+
xi

e
) =

2∑

i=1

D−
xi

(
âiD

+
xi

ψi

)
in Ωh,

e = 0 on Γ h,

where ψi = S3−i (u) − b3−iu, i = 1,2. It is easy to show by a duality argument (cf.
the proof of Lemma 2.66) that

‖e‖L2(Ω
h) ≤ C

(‖ψ1‖L2(Ω
h) + ‖ψ2‖L2(Ω

h)

)
. (2.196)

The task of deriving an error bound for the difference scheme (2.194) has thus been
reduced to estimating the expression on the right-hand side of (2.196). We shall
discuss the cases 1/2 < s ≤ 1 and 1 < s ≤ 2 separately.

First suppose that 1/2 < s ≤ 1. Clearly, the value of ψi at a node x ∈ Ωh is a
bounded linear functional of u ∈ Ws

2 (K0), s > 1/2, where

K0 = K0(x) = {y = (y1, y2) : |yj − xj | < h, j = 1,2
}
.

Moreover, ψi = 0 when u is a constant function. By applying the Bramble–Hilbert
lemma we deduce that

|ψi | ≤ Chs−1|u|Ws
2 (K0), 1/2 < s ≤ 1.

Summing over the nodes of the mesh Ωh we obtain, for i = 1,2, that

‖ψi‖L2(Ω
h) ≤ Chs |u|Ws

2 (Ω), 1/2 < s ≤ 1. (2.197)

Now let us consider the case 1 < s ≤ 2. The key difficulty in obtaining an error
bound is that ψ3−i represents a nonlinear functional of ai , i = 1,2; nevertheless
ψ3−i , i = 1,2, may be conveniently decomposed and, thereby, the nonlinear terms
can be directly estimated. Let us write

ψ3−i = ψ3−i,1 + ψ3−i,2 + ψ3−i,3,

where

ψ3−i,1 :=
∫ 1

0

[
u(x + hτei ) − 2u(x) + u(x − hτei )

](∫ xi−hτ

xi−h

dσ

ai(σ )

)
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×
(∫ xi

xi−h

dσ

ai(σ )

)−1

dτ,

ψ3−i,2 :=
∫ 1

0

[
u(x + hτei ) − u(x)

](∫ xi+h

xi

dσ

ai(σ )

∫ xi

xi−h

dσ

ai(σ )

)−1

×
(∫ xi+h

xi+hτ

dσ

ai(σ )

)
h−1

∫ xi

xi−h

∫ xi+h

xi

ai(t) − ai(t
′)

ai(t)ai(t ′)
dt dt ′ dτ,

ψ3−i,3 :=
∫ 1

0

[
u(x + hτei ) − u(x)

](∫ xi

xi−h

dσ

ai(σ )

)−1

× h−1(1 − τ)−1
∫ xi−hτ

xi−h

∫ xi+h

xi+hτ

ai(t) − ai(t
′)

ai(t)ai(t ′)
dt dt ′ dτ.

The value of ψ3−i,1 at x ∈ Ωh is a bounded linear functional of u ∈ Ws
2 (K0), s > 1,

which vanishes whenever u is a polynomial of degree 1. Using the Bramble–Hilbert
lemma we obtain

‖ψ3−i,1‖L2(Ω
h) ≤ Chs |u|Ws

2 (Ω), 1 < s ≤ 2. (2.198)

For 3/2 < s ≤ 2,ψ3−i,2 is a bounded linear functional of u ∈ Ws
2 (K0):

|ψ3−i,2| ≤ Chλ−1/2(h−1‖u‖L2(K
0) + |u|W 1

2 (K0)

+ hs−1|u|Ws
2 (K0)

)|ai |Wλ
2 (I 0), λ > 0,

where I 0 = I 0(xi) := (xi − h,xi + h). Moreover, ψ3−i,2 = 0 when u is a constant
function, and therefore the term h−1‖u‖L2(K

0) on the right-hand side can be elim-
inated by applying the Bramble–Hilbert lemma. Summing over the nodes in the
mesh Ωh yields

‖ψ3−i,2‖L2(Ω
h) ≤ Chλ+1/2

(
max

xi

|u|W 1
2 (Ωh,i )

+ hs−1|u|Ws
2 (Ω)

)
|ai |Wλ

2 (0,1),

where

Ωh,i = Ωh,i(x) := {y ∈R
2 : xi − h < yi < xi + h, 0 < y3−i < 1

}
.

Choosing λ = s − 1 and invoking the boundary-layer estimate (see Oganesyan and
Rukhovets [148], Chap. I, §8)

‖v‖L2(0,ε) ≤ CF(ε)‖v‖Ws
2 (0,1), 0 < ε < 1, 0 ≤ s ≤ 1, (2.199)

where

F(ε) :=
⎧
⎨

⎩

εs 0 ≤ s < 1/2,

ε1/2| log ε| s = 1/2,

ε1/2 1/2 < s ≤ 1,
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which implies that

|u|W 1
2 (Ωh,i )

≤ Ch1/2‖u‖Ws
2 (Ω), s > 3/2,

we thus obtain the bound

‖ψ3−i,2‖L2(Ω
h) ≤ Chs‖ai‖Ws−1

2 (0,1)
‖u‖Ws

2 (Ω), 3/2 < s ≤ 2. (2.200)

Similarly,

‖ψ3−i,2‖L2(Ω
h) ≤ Chs‖ai‖Ws−1+δ

p (0,1)
‖u‖Ws

2 (Ω), 1 < s ≤ 3/2, (2.201)

with p as in (2.193). An analogous bound holds for ψ3−i,3. Combining (2.196) with
(2.197), (2.198), (2.200) and (2.201) we thus obtain the following result.

Theorem 2.67 Suppose that u ∈ Ws
2 (Ω) and ai ∈ W

|s−1|
p (Ω), i = 1,2, with 1/2 <

s ≤ 2 and p as in (2.193). Then, the finite difference scheme (2.194) satisfies the
error bound

‖u − U‖L2(Ω
h) ≤ Chs max

i
‖ai‖W

|s−1|+δ
p (0,1)

‖u‖Ws
2 (Ω), (2.202)

where C is a positive constant, independent of h.

Unlike our earlier optimal error bounds in the L2(Ω
h) norm, (2.202) is now also

compatible with the smoothness of the coefficients.
We note that for 0 < s ≤ 1/2 the function S1S2f , with f ∈ Ws−2

2 (Ω), is not nec-
essarily continuous on Ω ; in this case the right-hand side of the difference scheme
(2.194) is not defined at the mesh-points. A more fundamental difficulty is that
u ∈ Ws

2 (Ω) does not have a trace on Γ = ∂Ω when s ≤ 1/2, and it makes no sense,
therefore, to demand that it satisfies a homogeneous Dirichlet boundary condition
on Γ .

2.7 Fourth-Order Elliptic Equations

This section is devoted to boundary-value problems for fourth-order elliptic equa-
tions with variable coefficients of the form

Lu := ∂2
1M1(u) + 2∂1∂2M3(u) + ∂2

2 M2(u) = f (x), x ∈ Ω, (2.203)

where Ω = (0,1)2 and

M1(u) := a1∂
2
1 u + a0∂

2
2 u,

M2(u) := a0∂
2
1 u + a2∂

2
2 u,
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M3(u) := a3∂1∂2u.

We shall assume that

ai ≥ c0 > 0, i = 1,2,3, a1a2 − a2
0 ≥ c1 > 0, x ∈ Ω,

u ∈ Ws
2 (Ω), f ∈ Ws−4

2 (Ω), 2 < s ≤ 4.
(2.204)

In order for (2.204) to hold it is necessary that the coefficients ai belong to the
multiplier space M(Ws−2

2 (Ω)). According to the results in Sect. 1.8, the following
conditions are sufficient for that to be the case:

ai ∈ Ws−2+ε
p (Ω), i = 0,1,2,3, (2.205)

where

p = 2, ε = 0 when 3 < s ≤ 4,

p > 2, ε = 0 when s = 3,

p ≥ 2/(s − 2), ε > 0 when 2 < s < 3.

We begin by considering the partial differential equation (2.203) subject to the
boundary conditions

u = 0 on Γ = ∂Ω;
∂2
i u = 0 on Γi0 ∪ Γi1, i = 1,2,

(2.206)

where

Γik := {x ∈ Γ : xi = k,0 < x3−i < 1}, i, k = 0,1.

By adopting the same notation as in Sects. 2.2.4 and 2.7 we approximate the
boundary-value problem (2.203), (2.206) by the finite difference scheme

LhU = T 22
h f, on Ωh, (2.207)

U = 0, on Γ h,

D+
xi

D−
xi

U = 0, on Γ h
i0 ∪ Γ h

i1, i = 1,2,
(2.208)

where Γ h
ik = Γik ∩ Γ h,

LhU := D+
x1

D−
x1

m1(U) + 2D−
x1

D−
x2

m3(U) + D+
x2

D−
x2

m2(U),

and

m1(U) := a1D
+
x1

D−
x1

U + a0D
+
x2

D−
x2

U,

m2(U) := a0D
+
x1

D−
x1

U + a2D
+
x2

D−
x2

U,
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m3(U) := â3D
+
x1

D+
x2

U,

with

â3(x) := a3

(
x1 + 1

2
h,x2 + 1

2
h

)
.

Let us note that the difference scheme also involves mesh-points in hZ2 that are
contained in [−h,1 + h]2. Thus we shall suppose that the solution u and the coeffi-
cients ai have been extended onto the larger square (−h0,1 + h0)

2 preserving their
Sobolev class; here h0 is a positive constant, h0 > h.

Next we develop the error analysis of this finite difference scheme. The global
error e := u − U is easily seen to satisfy the following difference scheme:

Lhe = D+
x1

D−
x1

ϕ1 + 2D−
x1

D−
x2

ϕ3 + D+
x2

D−
x2

ϕ2, x ∈ Ωh, (2.209)

e = 0, x ∈ Γ h,

D+
xi

D−
xi

e = D+
xi

D−
xi

u, x ∈ Γ h
i0 ∪ Γ h

i1, i = 1,2,
(2.210)

where

ϕi := mi(u) − T 2
3−iMi(u), i = 1,2; ϕ3 := m3(u) − T +

1 T +
2 M3(u).

Thus (2.206), (2.208) and (2.210) imply that

mi(e) = ϕi, x ∈ Γ h
i0 ∪ Γ h

i1, i = 1,2.

By taking the inner product of (2.209) with e, performing summations by parts and
applying the Cauchy–Schwarz inequality we get

‖e‖2
W 2

2 (Ωh)
≤ C

(‖ϕ1‖2
L2(Ω

h)
+ ‖ϕ2‖2

L2(Ω
h)

+ ‖ϕ3‖2
L2(Ω

h
00)

)
. (2.211)

Theorem 2.68 Assuming that the data and the corresponding solution of the
boundary-value problem (2.203), (2.206) obey the conditions (2.204) and (2.205),
the difference scheme (2.207), (2.208) satisfies the error bound

‖u − U‖W 2
2 (Ωh) ≤ Chs−2 max

i
‖ai‖Ws−2+ε

p (Ω)
‖u‖Ws

2 (Ω), 5/2 < s ≤ 4. (2.212)

Proof In order to prove the error bound (2.212) it suffices to bound the terms on the
right-hand side of the inequality (2.211). Let us begin by representing ϕ1 as the sum

ϕ1 =
8∑

j=1

ϕ1,j ,
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where

ϕ1,k := a2−k

(
D+

xk
D−

xk
u − T 2

1 T 2
2 ∂2

k u
)
,

ϕ1,k+2 := (
a2−k − T 2

1 T 2
2 a2−k

)(
T 2

1 T 2
2 ∂2

k u
)
,

ϕ1,k+4 := (
T 2

1 T 2
2 a2−k

)(
T 2

1 T 2
2 ∂2

k u
)− T 2

1 T 2
2

(
a2−k∂

2
k u
)
,

ϕ1,k+6 := T 2
1 T 2

2

(
a2−k∂

2
k u
)− T 2

2

(
a2−k∂

2
k u
)
, k = 1,2,

with an analogous representation of ϕ2. Further, let

ϕ3 = ϕ3,1 + ϕ3,2,

where

ϕ3,1 := (
â3 − T +

1 T +
2 a3

)
D+

x1
D+

x2
u,

ϕ3,2 := (
T +

1 T +
2 a3

)
D+

x1
D+

x2
u − T +

1 T +
2 (a3∂1∂2u).

When s ≥ 2, the value of ϕ1,1 at a mesh-point x ∈ Ωh is a bounded linear functional
of u ∈ Ws

2 (K0):

|ϕ1,1| ≤ C(h)‖a1‖C(Ω)‖u‖Ws
2 (K0).

Moreover, ϕ1,1 = 0 when u is a polynomial of degree 3. By the Bramble–Hilbert
lemma,

|ϕ1,1| ≤ Chs−3‖a1‖C(Ω)|u|Ws
2 (K0), 2 ≤ s ≤ 4.

By noting the Sobolev embedding Ws−2+ε
p (K0) ↪→ C(K0), s > 2, and summing

over the mesh-points in Ωh we thus obtain

‖ϕ1,1‖L2(Ω
h) ≤ Chs−2‖a1‖Ws−2+ε

p (Ω)
|u|Ws

2 (Ω), 2 ≤ s ≤ 4. (2.213)

The term ϕ1,2 is bounded in the same way. Next ϕ1,3(x), x ∈ Ωh, is a bounded
bilinear functional of (a1, u) ∈ Wλ

p(K0)×W 2
q (K0), with λp > 2;q = ∞ when p =

2; and q = 2p/(p − 2) when p > 2. Moreover, ϕ1,3 = 0 when either a1 or u is a
polynomial of degree 1. From the bilinear version of the Bramble–Hilbert lemma
(cf. Lemma 2.30 with m = 2) we deduce that

|ϕ1,3| ≤ Chλ−1‖a1‖Wλ
p(K0)|u|W 2

q (K0), 2/p < λ ≤ 2,

and thereby

‖ϕ1,3‖L2(Ω
h) ≤ Chλ‖a1‖Wλ

p(Ω)‖u‖W 2
q (Ω).
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By choosing λ = s − 2 + ε and noting the Sobolev embeddings

Ws
2 (Ω) ↪→ W 2∞(Ω), s > 3,

and

Ws
2 (Ω) ↪→ W 2

2p/(p−2)(Ω), 2 < s ≤ 3,

we obtain

‖ϕ1,3‖L2(Ω
h) ≤ Chs−2‖a1‖Ws−2+ε

p (Ω)
‖u‖Ws

2 (Ω), 2 < s ≤ 4. (2.214)

The terms ϕ1,4 and ϕ3,1 are bounded in the same way.
For λ ≥ 0, μ ≥ 2 and q > 2 the value of ϕ1,5(x) at x ∈ Ωh is a bounded bilinear

functional of (a1, u) ∈ Wλ
q (K0) × W

μ

2q/(q−2)(K
0). Furthermore, ϕ1,5 = 0 when a1

is a constant function or when u is a polynomial of degree 2. By the bilinear version
of the Bramble–Hilbert lemma,

‖ϕ1,5‖L2(Ω
h) ≤ Chλ+μ−2‖a1‖Wλ

q (Ω)‖u‖W
μ
2q/(q−2)

(Ω),

where 0 ≤ λ ≤ 1 and 2 ≤ μ ≤ 3. Now let λ + μ = s. When λ + μ > 3, there exists
a q = q(λ,μ) such that λ ≥ 2/q ≥ 3 − μ; then,

Ws−2+ε
p (Ω) = W

λ+μ−2+ε
2 (Ω) ↪→ Wλ

q (Ω)

and

Ws
2 (Ω) = W

λ+μ
2 (Ω) ↪→ W

μ

2q/(q−2)(Ω).

Analogously, when 2 < λ+μ ≤ 3, there exists a real number q such that λ ≥ 2/q ≥
2/p − (μ − 2). In this case,

Ws−2+ε
p (Ω) = Wλ+μ−2+ε

p (Ω) ↪→ Wλ
q (Ω)

and

Ws
2 (Ω) = W

λ+μ
2 (Ω) ↪→ W

μ

2q/(q−2)(Ω).

It follows from these embeddings that

‖ϕ1,5‖L2(Ω
h) ≤ Chs−2‖a1‖Ws−2+ε

p (Ω)
‖u‖Ws

2 (Ω), 2 < s ≤ 4. (2.215)

The terms ϕ1,6 and ϕ3,2 are bounded in the same way.
When λ > 1/2, the value of ϕ1,7(x) at x ∈ Ωh is a bounded linear functional of

a1∂
2
1u ∈ Wλ

2 (K0), which vanishes on all polynomials of degree 1. By the Bramble–
Hilbert lemma, we have that

‖ϕ1,7‖L2(Ω
h) ≤ Chλ|a1∂

2
1 u|Wλ

2 (Ω), 1/2 < λ ≤ 2.



2.7 Fourth-Order Elliptic Equations 225

By choosing λ = s − 2, the inequality
∣∣a1∂

2
1 u
∣∣
Wλ

2 (Ω)
≤ C‖a1‖Wλ+ε

p (Ω)

∥∥∂2
1 u
∥∥

Wλ
2 (Ω)

implies that

‖ϕ1,7‖L2(Ω
h) ≤ Chs−2‖a1‖Ws−2+ε

p (Ω)
‖u‖Ws

2 (Ω), 5/2 < s ≤ 4. (2.216)

The term ϕ1,8 is bounded in the same way. Finally (2.213)–(2.216) and (2.211) yield
the desired error bound (2.212). �

We note that for 2 < s ≤ 5/2 the function T 22
h f is not necessarily continuous on

Ω and therefore the right-hand side in the difference equation (2.207) is not defined
for this range of values of the Sobolev index s. In fact, for s ≤ 5/2, the second-
normal derivative of u ∈ Ws

2 (Ω) does not have a trace on Γi0 ∪ Γi1 and therefore
the boundary-value problem (2.203)–(2.206) is not meaningful as stated for this
range of s.

Now let us consider the partial differential equation (2.203) subject to the homo-
geneous Dirichlet boundary conditions

u = 0 on Γ ,

∂iu = 0 on Γi0 ∪ Γi1, i = 1,2.
(2.217)

With the notational conventions from Sects. 2.2.4 and 2.7 equation (2.203) is again
approximated by (2.207), and the boundary conditions (2.217) are discretized as
follows:

U = 0 on Γ h,

D0
xi

U = 0 on Γ h
i0 ∪ Γ h

i1, i = 1,2.
(2.218)

The error e := u − U satisfies (2.209) and the boundary conditions

e = 0 on Γ h,

D0
xi

e = D0
xi

u on Γ h
i0 ∪ Γ h

i1, i = 1,2.
(2.219)

Defining ζi = ζi(x) by

ζi := (D0
xi

u − ∂iu
)
/h, i = 1,2,

the derivative boundary condition in (2.219) can be rewritten as

D0
xi

e = hζi, x ∈ Γ h
i0 ∪ Γ h

i1, i = 1,2.

Theorem 2.69 The following bound holds on the global error e := u − U between
the analytical solution u and its finite difference approximation U :
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‖u − U‖W 2
2 (Ωh) ≤ Chmin{s−2,3/2}| logh|1−|sgn(s−7/2)|

× max
i

‖ai‖Ws−2+ε
p (Ω)

‖u‖Ws
2 (Ω), 5/2 < s < 4. (2.220)

Proof We begin by noting that

‖e‖2
W 2

2 (Ωh)
≤ C

(
‖ϕ1‖2

L2(Ω
h
1 ∪Γ h

11)
+ ‖ϕ2‖2

L2(Ω
h
2 ∪Γ h

21)
+ ‖ϕ3‖2

L2(Ω
h
00)

+
2∑

i=1

h2
∑

x∈Γ h
i0∪Γ h

i1

ζ 2
i (x)

)
. (2.221)

The first three terms on the right-hand side of (2.221) are bounded in the same
way as in the case of the boundary-value problem (2.203), (2.204) considered ear-
lier. The only new ingredient in the analysis is the estimation of the last term in
(2.221), which we discuss below.

When s > 2, ζi represents a bounded linear functional of u ∈ Ws
2 (K0), which

vanishes on all polynomials of degree 2. By applying the Bramble–Hilbert lemma
we obtain

(
h2
∑

x∈Γ h
i0

ζ 2
i (x)

)1/2

≤ Chs−2|u|Ws
2 (Ωi0), 2 < s ≤ 3, (2.222)

where

Ωi0 = Ωhi(0) := {x : −h < xi < h, 0 < x3−i < 1}.
By noting the boundary-layer estimate (2.199), we deduce from (2.222) that

(
h2
∑

x∈Γ h
i0

ζ 2
i

)1/2

≤ Chmin{s−2,3/2}| logh|1−|sgn(s−7/2)|‖u‖Ws
2 (Ω), 2 < s ≤ 4.

(2.223)

For x ∈ Γ h
i1 the terms ζi , i = 1,2, are bounded analogously. From (2.221), (2.223)

and our earlier bounds on ϕ1, ϕ2 and ϕ3 we obtain the desired error bound (2.220)
for the difference scheme (2.207), (2.218).

For s < 7/2 the solution of (2.203), (2.217) has an even extension (i.e. an exten-
sion as an even function) across Γ that preserves the Sobolev class Ws

2 . With such
an even extension of u, ζi = 0 on Γ h

i0 ∪Γ h
i1, and (2.220) is then a direct consequence

of (2.207)–(2.216) and (2.221). �
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Finally, we consider the partial differential equation (2.203) subject to the natural
boundary conditions

Mi(u) = 0 and ∂iMi(u) + 2∂3−iM3(u) = 0 on Γi0 ∪ Γi1, i = 1,2;

M3(u) = 0 on Γ∗ = {(0,0), (0,1), (1,0), (1,1)
}
.

(2.224)

The solution of problem (2.203), (2.224) is unique, up to the addition of a polyno-
mial of degree 1. In order to ensure that we have a unique solution, we shall assume
that, in addition to (2.224), the values of u at three vertices of Ω have been fixed;
that is,

u(0,0) = c00, u(0,1) = c01, u(1,0) = c10. (2.225)

With the notational conventions from Sects. 2.2.4 and 2.7, the conditions (2.224),
(2.225) are approximated by

mi(U) = 0, D0
xi

mi(U) + D−
x3−i

[
m3(U) + m3(U)−i

]= 0,

on Γ
h

i0 ∪ Γ
h

i1, i = 1,2; (2.226)

m3(U) + m3(U)−1 + m3(U)−2 + m3(U)−1,−2 = 0 onΓ∗;
U(0,0) = c00, U(0,1) = c01, U(1,0) = c10,

(2.227)

where Γ
h

ik := Γ ik ∩ Γ h. Let us observe that the difference scheme also involves
points exterior to Ω that are at a distance ≤ 2h from Γ ; therefore (2.203), (2.226),
(2.227) has fewer equations than unknowns. In order to account for the missing
equations, we also discretize the partial differential equation at the boundary mesh-
points. Let us introduce the asymmetric mollifiers

T 2±
i f := 2

∫ 1

0
(1 − t)f (x ± thei )dt, i = 1,2,

and the additional equations

LhU =

⎧
⎪⎪⎨

⎪⎪⎩

T 2+
i T 2

3−if for x ∈ Γ h
i0

T 2−
i T 2

3−if for x ∈ Γ h
i1,

T 2+
1 T 2+

2 f for x = (0,0),

and analogously for x = (0,1), (1,0), (1,1).

(2.228)

Theorem 2.70 The difference scheme (2.203), (2.226), (2.228) satisfies the error
bound

|[u − U ]|W 2
2 (Ωh) ≤ Chmin{s−2,3/2}| logh|1−|sgn(s−7/2)|

×max
i

‖ai‖Ws−2+ε
p (Ω)

‖u‖Ws
2 (Ω), 3 < s ≤ 4,

where C is a positive constant, independent of h.
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Proof The global error e := u − U satisfies the inequality

|[e]|2
W 2

2 (Ωh)
≤ C

(|[ϕ1]|2L2(Ω
h)

+ |[ϕ2]|2L2(Ω
h)

+ ‖ϕ3‖2
L2(Ω

h
00)

+ |[φ1]|2L2(Ω
h)

+ |[φ2]|2L2(Ω
h)

)
, (2.229)

where, for i = 1,2,

φi :=

⎧
⎪⎨

⎪⎩

T 2
3−iMi(u) − T 2+

3−iMi(u) on Γ
h

i0,

T 2
3−iMi(u) − T 2−

3−iMi(u) on Γ
h

i1,
0 at the remaining mesh-points.

The terms ϕ1, ϕ2 and ϕ3 are estimated in the same way as before. Finally, φi is a
bounded linear functional of Mi(u) ∈ Wλ

2 (Ω),λ > 1/2, which vanishes on all con-
stant functions. Using the Bramble–Hilbert lemma and the boundary-layer estimate
(2.199) we obtain

|[φi]|L2(Ω
h) ≤ Chmin{s−2,3/2}| logh|1−|sgn(s−7/2)|

× max
j

‖aj‖Ws−2+ε
p (Ω)

‖u‖Ws
2 (Ω), 3 < s ≤ 4. (2.230)

The desired error bound follows from (2.229), (2.230) and our earlier bounds on the
terms ϕ1, ϕ2 and ϕ3. �

2.8 An Elliptic Interface Problem

The technique of convergence analysis introduced in earlier sections of this chapter
can be extended to finite difference schemes for more general boundary-value prob-
lems. As an example, we consider here a model partial differential equation with a
singular coefficient. Problems of the kind discussed here are usually referred to as
interface problems or transmission problems. For further details we refer the reader
to Jovanović and Vulkov [101].

Let Ω = (0,1)2 and Γ = ∂Ω . A typical point in Ω will be denoted by x =
(x1, x2). Let further Σ be the intersection of the line segment x2 = ξ , 0 < ξ < 1,
with Ω . We consider the Dirichlet boundary-value problem

Lu + k(x)δΣ(x)u = f (x) in Ω, u = 0 on Γ, (2.231)

where δΣ(x) = δ(x2 − ξ) is the Dirac distribution concentrated on Σ , k(x) = k(x1)

and L is the symmetric elliptic operator introduced in (2.166); i.e.

Lu := −
2∑

i,j=1

∂i(aij ∂ju) + au.

The Dirac distribution δΣ belongs to the Sobolev space W−λ
2 (Ω), with λ > 1/2.

Equation (2.231) must be therefore understood in a weak sense: we seek u ∈ W̊ 1
2 (Ω)
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such that

〈Lu,v〉 + (kδΣ)(uv) = 〈f, v〉 ∀v ∈ W̊ 1
2 (Ω), (2.232)

where 〈f, v〉 denotes the duality pairing between the spaces W−1
2 (Ω) and W̊ 1

2 (Ω),
and

(kδΣ)(w) :=
∫

Σ

kw

∣∣∣∣
Σ

dΣ, w ∈ W 1
1 (Ω),

where w|Σ ∈ L1(Σ) denotes the trace of w ∈ W 1
1 (Ω) on Σ , and k ∈ L∞(Σ).

Alternatively, problem (2.232) can be restated as follows: find u ∈ W̊ 1
2 (Ω) such

that

a(u, v) = 〈f, v〉 ∀v ∈ W̊ 1
2 (Ω), (2.233)

where

a(u, v) =
∫

Ω

(
2∑

i,j=1

aij ∂ju∂iv + auv

)
dx +

∫

Σ

k(uv)

∣∣∣∣
Σ

dΣ. (2.234)

Thus, (2.233) can be seen as the weak formulation of the boundary-value problem
(2.231). A relevant point in this respect is that for the domain Ω = (0,1)2 ⊂ R

2

the product uv of u,v ∈ W̊ 1
2 (Ω) belongs to W̊ 1

p(Ω) for all p ∈ [1,2) and thus by
Theorem 1.42 (see also Theorem 1.5.1.3 on p. 38 of Grisvard [62] for p ∈ (1,2)

and Theorem 2.10 on p. 37 of Giusti [54] for p = 1), the boundary integral term in
(2.234) is meaningful. The following assertion concerning the existence of a unique
weak solution is an immediate consequence of the Lax–Milgram theorem and the
trace theorem for W 1

2 (Ω).

Lemma 2.71 Suppose that

f ∈ W−1
2 (Ω), aij , a ∈ L∞(Ω), k ∈ L∞(Σ), aij = aji, a ≥ 0, k ≥ 0,

∃c0 > 0 ∀ξ = (ξ1, ξ2) ∈R
2 ∀x ∈ Ω :

2∑

i,j=1

aij (x)ξiξj ≥ c0

2∑

i=1

ξ2
i .

Then, there exists a unique weak solution u ∈ W̊ 1
2 (Ω) to the boundary-value prob-

lem (2.233), (2.234), and

‖u‖W 1
2 (Ω) ≤ C‖f ‖

W−1
2 (Ω)

.

Let us now assume that the coefficients aij , i, j = 1,2, and a of the differen-
tial operator L belong to the Hölder space C0,λ(Ω), with λ > |θ | and |θ | < 1/2.
The bilinear functional a(·, ·) can then be continuously extended to W̊ 1−θ

2 (Ω) ×
W̊ 1+θ

2 (Ω). The following assertion can be proved by applying Theorem 3.3 in Nečas
[143].
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Lemma 2.72 Suppose that

f ∈ Wθ−1
2 (Ω), |θ | < 1/2, aij , a ∈ C0,λ(Ω), λ > |θ |, k ∈ L∞(Σ),

aij = aji, a ≥ 0, k ≥ 0,

∃c0 > 0 ∀ξ = (ξ1, ξ2) ∈R
2 ∀x ∈ Ω :

2∑

i,j=1

aij (x)ξiξj ≥ c0

2∑

i=1

ξ2
i .

Then, there exists a unique solution u ∈ W̊ 1+θ
2 (Ω) to the boundary-value problem

(2.233), (2.234).

In the case when f does not contain a concentrated singularity on Σ , such as
δΣ , problem (2.233), (2.234) can be shown to be the weak formulation of the fol-
lowing boundary-value problem with transmission (conjugation) conditions on the
interface Σ :

Lu = f in Ω− ∪ Ω+, u = 0 on Γ,

[u]Σ = 0,

[
2∑

j=1

a2j ∂ju

]

Σ

= ku|Σ,
(2.235)

where Ω− := (0,1) × (0, ξ), Ω+ := (0,1) × (ξ,1), and

[u]Σ := u(x1, ξ + 0) − u(x1, ξ − 0).

In this sense, the boundary-value problems (2.231) and (2.235) are equivalent.
Higher regularity of the solution can be proved under additional assumptions on

the data. For s ≥ 2 we define the subspace Ŵ s
2 (Ω) of W̊ 1

2 (Ω), consisting of all
u ∈ W̊ 1

2 (Ω) such that

∂i
1u ∈ L2(Ω), i = 0,1, . . . , s,

∂i−1
1 ∂2u ∈ L2(Ω), i = 1,2, . . . , s,

∂
i−j

1 ∂
j

2 u ∈ L2
(
Ω−)∩ L2

(
Ω+), i = j, j + 1, . . . , s, j = 2,3, . . . , s,

with the norm ‖ · ‖Ŵ s
2 (Ω) defined by

‖u‖2
Ŵ s

2 (Ω)
:=

s∑

i=0

∥∥∂i
1u
∥∥2

L2(Ω)
+

s∑

i=1

∥∥∂i−1
1 ∂2u

∥∥2
L2(Ω)

+
s∑

j=2

s∑

i=j

(∥∥∂i−j

1 ∂
j

2 u
∥∥2

L2(Ω
−)

+ ∥∥∂i−j

1 ∂
j

2 u
∥∥2

L2(Ω
+)

)
.

Obviously,

Ŵ s
2 (Ω) ⊂ W̃ s

2 (Ω) := W̊ 1
2 (Ω) ∩ Ws

2

(
Ω−)∩ Ws

2

(
Ω+).
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Lemma 2.73 Suppose that in addition to the assumptions of Lemma 2.71 we have
that

f ∈ L2(Ω), aij ∈ W 1∞(Ω), k ∈ W 1∞(Σ);
then, u ∈ Ŵ 2

2 (Ω). If, in addition,

∂1f ∈ L2(Ω), ∂2f ∈ L2
(
Ω±), aij ∈ W 2∞(Ω),

a ∈ W 1∞(Ω), k ∈ W 2∞(Σ)

and

f = a12 = ∂1a11 = 0 for x1 = 0 and x1 = 1,

then u ∈ Ŵ 3
2 (Ω).

Proof For x ∈ Ω− ∪ Ω+ (2.235) can be written as

a11∂
2
1 u + 2a12∂1∂2u + a22∂

2
2u = −

2∑

i,j=1

∂iaij ∂ju + au − f. (2.236)

Multiplying (2.236) by ∂2
1 u, integrating over Ω and performing partial integration

we obtain
∫

Ω

[
a11
(
∂2

1 u
)2 + 2a12∂

2
1 u∂1∂2u + a22(∂1∂2u)2]dx +

∫

Σ

k(∂1u)2
∣∣∣∣
Σ

dΣ

= I1 + I2 + I3,

where

I1 := −
∫

Ω

(
2∑

i,j=1

∂iaij ∂ju − au + f

)
∂2

1 udx,

I2 :=
∫

Ω

(
∂2a22∂2u∂2

1 u − ∂1a22∂2u∂1∂2u
)

dx,

I3 := −
∫

Σ

k′u∂1udΣ.

Further,

∫

Ω

[
a11
(
∂2

1u
)2 + 2a12∂

2
1 u∂1∂2u + a22(∂1∂2u)2]dx +

∫

Σ

k(∂1u)2 dΣ

≥ c0
(∥∥∂2

1 u
∥∥2

L2(Ω)
+ ‖∂1∂2u‖2

L2(Ω)

)
.
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The integrals I1, I2 and I3 can be bounded by applying the Cauchy–Schwarz in-
equality with ε ∈ (0,1) as follows:

|I1| ≤ ε
∥∥∂2

1u
∥∥2

L2(Ω)
+ C

ε

(‖u‖2
W 1

2 (Ω)
+ ‖f ‖2

L2(Ω)

)
.

Similarly,

|I2| ≤ ε
(∥∥∂2

1 u
∥∥2

L2(Ω)
+ ‖∂1∂2u‖2

L2(Ω)

)+ C

ε
‖∂2u‖2

L2(Ω)

and

|I3| ≤ ε‖∂1u‖2
L2(Σ) + C

ε
‖u‖2

L2(Σ)

≤ C1ε
(∥∥∂2

1 u
∥∥2

L2(Ω)
+ ‖∂1∂2u‖2

L2(Ω)

)+ C

ε
‖u‖2

W 1
2 (Ω)

.

Hence, by selecting a sufficiently small ε > 0, we obtain the bound

∥∥∂2
1 u
∥∥2

L2(Ω)
+ ‖∂1∂2u‖2

L2(Ω) ≤ C‖f ‖2
L2(Ω).

From (2.236) we immediately have that

∥∥∂2
2 u
∥∥

L2(Ω
±)

≤ C
(∥∥∂2

1u
∥∥

L2(Ω)
+ ‖∂1∂2u‖L2(Ω) + ‖u‖W 1

2 (Ω) + ‖f ‖L2(Ω)

)
,

which proves the first part of the lemma.
When the assumptions of the second part of the lemma are satisfied, we deduce

from (2.231) that

∂2
1 u = 0 on Γ .

By differentiating (2.231) one obtains

L∂2
1u + k(x)δΣ(x)∂2

1 u = f1(x), x ∈ Ω,

where

f1 := ∂2
1 f +

2∑

i,j=1

∂i

(
2∂1aij ∂1∂ju + ∂2

1 aij ∂ju
)

− 2∂1a∂1u − ∂2
1 au − 2k′δΣ∂1u − k′′δΣu ∈ W−1

2 (Ω).

By applying Lemma 2.71 we then deduce the regularity result stated in the second
part of the lemma. �

For further details regarding the analysis of elliptic boundary-value problems in
domains with corners we refer to Grisvard [62] and Dauge [28].
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2.8.1 Finite Difference Approximation

In the sequel we shall assume that the weak solution of the boundary-value problem
(2.231) belongs to W̃ s

2 (Ω), s > 2, and that the coefficients of the equation satisfy
the following regularity hypotheses:

aij ∈ Ws−1
2

(
Ω−)∩ Ws−1

2

(
Ω+)∩ C(Ω), a ∈ Ws−2

2

(
Ω−)∩ Ws−2

2

(
Ω+)

and

k ∈ Ws−1
2 (Σ).

We define

‖u‖W̃ s
2 (Ω) := (‖u‖2

W 1
2 (Ω)

+ ‖u‖2
Ws

2 (Ω−)
+ ‖u‖2

Ws
2 (Ω+)

)1/2
.

In particular, for s = 0 we set

‖u‖W̃ 0
2 (Ω) = ‖u‖L̃2(Ω) := (‖u‖2

L2(Ω) + ‖u‖2
L2(Σ)

)1/2
.

For the sake of simplicity we shall also assume that ξ is a rational number. Let

Ω
h

be a uniform square mesh on Ω with mesh-size h := 1/N , where N is an integer
such that ξN is also an integer. We shall use the notations from Sect. 2.2 and define

Σh := Ωh ∩ Σ and Σh− := Σh ∪ {(0, ξ)}.

Let us approximate the boundary-value problem (2.231) on the mesh Ω
h

by the
following finite difference scheme with mollified right-hand side:

LhU + kδΣhU = T 2
1 T 2

2 f in Ωh, U = 0 on Γ h, (2.237)

where

LhU := −1

2

2∑

i,j=1

[
D+

xi

(
aijD

−
xj

U
)+ D−

xi

(
aijD

+
xj

U
)]+ (T 2

1 T 2
2 a
)
U

and

δΣh(x) = δh(x2 − ξ) :=
{

0 for x ∈ Ωh \ Σh,

1/h for x ∈ Σh

is the discrete Dirac delta-function.
Further, we define the asymmetric mollifiers T 2−

2 and T 2+
2 by

T 2−
2 f (x1, x2) := 2

h

∫ x2

x2−h

(
1 + x′

2 − x2

h

)
f
(
x1, x

′
2

)
dx′

2,
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T 2+
2 f (x1, x2) := 2

h

∫ x2+h

x2

(
1 − x′

2 − x2

h

)
f
(
x1, x

′
2

)
dx′

2.

In addition to the discrete inner products and norms defined in Sect. 2.6.1 we intro-
duce

(U,V )Σh := h
∑

x∈Σh

U(x)V (x), ‖U‖L2(Σ
h) := (U,U)

1/2
Σh ,

|U |
W

1/2
2 (Σh)

:=
(

h2
∑

x∈Σh−

∑

x′∈Σh−,x′ �=x

|U(x) − U(x′)|2
|x1 − x′

1|2
)1/2

.

The following lemma holds.

Lemma 2.74 Let U ∈ Sh
0 and let V be a mesh-function defined on Σh−. Then,

∣∣(D−
x1

V,U
)
Σh

∣∣≤ C‖U‖W 1
2 (Ωh)|V |

W
1/2
2 (Σh)

.

Proof Similarly as in the proof of Lemma 2 in Jovanović and Popović [92], we
expand U and V in the following Fourier sums:

U(x1, x2) =
N−1∑

k=1

N−1∑

l=1

bkl sin kπx1 sin lπx2 =
N−1∑

k=1

Bk(x2) sin kπx1, (2.238)

V (x1) =
N−1∑

k=1

ak coskπ

(
x1 + h

2

)
. (2.239)

Hence we have that

D−
x1

V (x1) = −
N−1∑

k=1

√
λkak sin kπx1, where λk := 4

h2
sin2 kπh

2
.

Using the orthogonality of sine functions, we deduce that

(
D−

x1
V,U

)
Σh = −1

2

N−1∑

k=1

√
λkakBk(x2)

≤
(

1

2

N−1∑

k=1

√
λka

2
k

)1/2(
1

2

N−1∑

k=1

√
λkB

2
k (x2)

)1/2

. (2.240)

Let us consider the following sum (over mesh-points):

N2(V ) := h2
1−h∑

x1,t1=−1,t1 �=0

(
V (x1) − V (x1 − t1)

t

)2

, (2.241)
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where the mesh-function V has been extended outside Σh− by (2.239). Using the
periodicity and orthogonality of cosine functions, we then deduce that

N2(V ) = h2
1−h∑

x1=−1

1−h∑

0�=t1=−1

−V (x1 + t1) + 2V (x1) − V (x1 − t1)

t2
1

V (x1)

= 4
N−1∑

k=1

√
λka

2
k Ik,

where

Ik :=
kπh

2

sin kπh
2

Jk, Jk := kπh

2

1−h∑

t1=h

(
sin kπt1

2
kπt1

2

)2

.

We note that

1 ≤
kπh

2

sin kπh
2

≤ π

2

and that Jk is a Riemann sum for
∫ kπ/2

0

( sin τ
τ

)2dτ , which therefore satisfies the fol-
lowing two-sided bound:

1

π
≤ Jk ≤ π

2
+ 2

π
.

Hence,

4

π

N−1∑

k=1

√
λka

2
k ≤ N2(V ) ≤ (π2 + 4

)N−1∑

k=1

√
λka

2
k .

From (2.241), using the periodicity of the cosine function, we also have that

N2(V ) = h2
1−h∑

x1,x
′
1=−1,x1 �=x′

1

(
V (x1) − V (x′

1)

x1 − x′
1

)2

≤ 4|V |2
W

1/2
2 (Σh)

,

whereby

N−1∑

k=1

√
λka

2
k ≤ π |V |2

W
1/2
2 (Σh)

. (2.242)

On the other hand, since Bk(0) = 0, we obtain

B2
k (x2) = h

x2−h∑

x′
2=0

D+
x2

(
B2

k

(
x′

2

))= h

x2−h∑

x′
2=0

(
D+

x2
Bk

(
x′

2

))(
Bk

(
x′

2 + h
)+ Bk

(
x′

2

))
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≤ εkh

1−h∑

x′
2=h

B2
k

(
x′

2

)+ 1

εk

h

1−h∑

x′
2=0

(
D+

x2
Bk

(
x′

2

))2
,

with εk > 0, k = 1, . . . ,N − 1, to be chosen.
Selecting εk = √

λk for k = 1, . . . ,N − 1, and using the discrete Parseval identi-
ties (2.21) and (2.22), we have that

1

2

N−1∑

k=1

√
λkB

2
k (x2) ≤ ∥∥D+

x1
U
∥∥2

L2(Ω
h
1 )

+ ∥∥D+
x2

U
∥∥2

L2(Ω
h
2 )

≤ ‖U‖2
W 1

2 (Ωh)
. (2.243)

Finally, the assertion follows from the inequalities (2.240), (2.242) and (2.243)
with C = √

π/2. That completes the proof. �

2.8.2 Convergence in the Discrete W 1
2 Norm

Let u be the solution of the boundary-value problem (2.231) and let U denote the
solution of the finite difference scheme (2.237). The global error e := u − U then
satisfies the finite difference scheme

Lhe + kδΣhe = ϕ in Ωh, e = 0 on Γ h, (2.244)

where

ϕ :=
2∑

i,j=1

D−
xi

ηij + η + δΣhμ,

ηij := T +
i T 2

3−i (aij ∂ju) − 1

2

(
aijD

+
xj

u + a+i
ij D−

xj
u+i

)
,

η := (
T 2

1 T 2
2 a
)
u − T 2

1 T 2
2 (au),

μ := ku − T 2
1 (ku).

Let us decompose η1j and η as follows:

η1j = η̃1j + δΣhη̂1j and η = η̃ + δΣhη̂,

where

η̂11 := h2

6
T +

1

([a11∂1∂2u + ∂2a11∂1u]Σ
)
,

η̂12 := h2

6
T +

1

([
a12∂

2
2 u + ∂2a12∂2u

]
Σ

)− h2

4
T +

1

([
∂1(a12∂2u)

]
Σ

)
,
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η̂ := −h2

6

[(
T 2

1 a
)(

T 2
1 ∂2u

)]
Σ

.

By performing summations by parts and applying Lemma 2.74 we deduce the
following bound:

‖z‖W 1
2 (Ωh) ≤ C

[
2∑

j=1

(‖η2j‖L2(Ω
h
2 ) + ‖η̃1j‖L2(Ω

h
1 ) + |η̂1j |W 1/2

2 (Σh)

)

+ ‖η̃‖L2(Ω
h) + ‖η̂‖L2(Σ

h) + ‖μ‖L2(Σ
h)

]
. (2.245)

Hence, in order to estimate the convergence rate of the finite difference scheme
(2.244), it suffices to bound the terms on the right-hand side of (2.245).

The terms η2j , j = 1,2, have been bounded in Sect. 2.6.1. After summation over
the mesh Ωh

2 we obtain

‖η2j‖L2(Ω
h
2 ) ≤ Chs−1(‖a2j‖Ws−1

2 (Ω−)
‖u‖Ws

2 (Ω−)

+ ‖a2j‖Ws−1
2 (Ω+)

‖u‖Ws
2 (Ω+)

)
, 2 < s ≤ 3. (2.246)

The terms η̃1j for x ∈ Ωh
1 \ Σh− can be bounded in the same way. For x ∈ Σh− we

set

η̃11 :=
3∑

k=1

(
η−

11,k + η+
11,k

)
,

η̃12 :=
4∑

k=1

(
η−

12,k + η+
12,k

)
,

where

η±
11,1 := 1

2
T +

1 T 2±
2 (a11∂1u) − 1

2

(
T +

1 T 2±
2 a11

)(
T +

1 T 2±
2 ∂1u

)

± h

6

(
T +

1 ∂2a11
)[(

T +
1 T 2±

2 ∂1u
)− (T +

1 ∂1u
)]

± h

6

[
a11 + a+1

11

2

(
T +

1 ∂1∂2u
)− T +

1 (a11∂1∂2u)

]

± h

6

[(
T +

1 ∂2a11
)(

T +
1 ∂1u

)− T +
1 (∂2a11∂1u)

]∣∣
x2=ξ±0,

η±
11,2 := 1

2

[(
T +

1 T 2±
2 a11

)− a11 + a+1
11

2
∓ h

3

(
T +

1 ∂2a11
)](

T +
1 T 2±

2 ∂1u
)∣∣

x2=ξ±0,
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η±
11,3 := a11 + a+1

11

4

[(
T +

1 T 2±
2 ∂1u

)− ux1 ∓ h

3

(
T +

1 ∂1∂2u
)]∣∣∣∣

x2=ξ±0
,

η±
12,1 := 1

2
T +

1 T 2±
2 (a12∂2u) − 1

2

(
T +

1 T 2±
2 a12

)(
T +

1 T 2±
2 ∂2u

)

± h

6

(
T +

1 ∂2a12
)[(

T +
1 T 2±

2 ∂2u
)− (T +

1 ∂2u
)]

± h

6

[
a12 + a+1

12

2

(
T +

1 ∂2
2 u
)− T +

1

(
a12∂

2
2 u
)]

± h

6

[(
T +

1 ∂2a12
)(

T +
1 ∂2u

)− T +
1 (∂2a12∂2u)

]

± h

4
T +

1

(
∂1a12

(
T ±

2 ∂2u − ∂2u
))∣∣

x2=ξ±0,

η±
12,2 := 1

2

[(
T +

1 T 2±
2 a12

)− a12 + a+1
12

2
∓ h

3

(
T +

1 ∂2a12
)](

T +
1 T 2±

2 ∂2u
)∣∣

x2=ξ±0,

η+
12,3 := a12 + a+1

12

4

[(
T +

1 T 2+
2 ∂2u

)− D+
x2

u + D+
x2

u+1

2
− h

3

(
T +

1 ∂2
2 u
)]

+ h

4
T +

1

(
a12
(
T +

2 ∂1∂2u − ∂1∂2u
))∣∣

x2=ξ+0,

η−
12,3 := a12 + a+1

12

4

[(
T +

1 T 2−
2 ∂2u

)− D+
x2

u + D+
x2

u+1

2
− h

3

(
T +

1 ∂2
2 u
)]

+ h

4
T +

1

(
a12
(
T −

2 ∂1∂2u − ∂1∂2u
))∣∣

x2=ξ−0,

η+
12,4 := −1

8

(
a+1

12 − a12
)(

D+
x2

u+1 − ux2

)∣∣
x2=ξ+0,

η−
12,4 := −1

8

(
a+1

12 − a12
)(

D−
x2

u+1 − ux̄2

)∣∣
x2=ξ−0.

The terms η±
1j,k can be bounded analogously to the corresponding terms η1j,k con-

sidered in Sect. 2.6.1. Thus we obtain:

‖η̃1j‖L2(Ω
h
1 ) ≤ Chs−1(‖a1j‖Ws−1

2 (Ω−)
‖u‖Ws

2 (Ω−)

+ ‖a1j‖Ws−1
2 (Ω+)

‖u‖Ws
2 (Ω+)

)
, 2.5 < s ≤ 3. (2.247)

For x ∈ Ωh \ Σh, the term η̃ can be bounded in the same way as the correspond-
ing term η in Sect. 2.6.1. For x ∈ Σh we use the following decomposition:

η̃ = η+
(1) + η−

(1) + η+
(2) + η−

(2),
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where

η±
(1) := 1

2

(
T 2

1 T 2±
2 a

)[
u − (T 2

1 T 2±
2 u

)± h

3

(
T 2

1 ∂2u
)]∣∣∣∣

x2=ξ±0
,

η±
(2) := 1

2

[(
T 2

1 T 2±
2 a

)(
T 2

1 T 2±
2 u

)− T 2
1 T 2±

2 (au)

± h

6

((
T 2

1 a
)− (T 2

1 T 2±
2 a

))(
T 2

1 ∂2u
)]∣∣∣∣

x2=ξ±0
.

These terms can be bounded analogously to the terms η3 and η4 discussed in
Sect. 2.6.1. Hence we deduce that

‖η̃‖L2(Ω
h) ≤ Chs−1(‖a‖

Ws−2
2 (Ω−)

‖u‖Ws
2 (Ω−)

+ ‖a‖
Ws−2

2 (Ω+)
‖u‖Ws

2 (Ω+)

)
, 2 < s ≤ 3. (2.248)

The value of μ at the node (x1, ξ) ∈ Σh is a bounded linear functional of
ku ∈ Ws−1

2 (ı), ı = (x1 − h,x1 + h) × {ξ}, s > 3/2, which vanishes on all linear
polynomials. Using the Bramble–Hilbert lemma one then obtains that

‖μ‖L2(Σ
h) ≤ Chs−1‖ku‖

Ws−1
2 (Σ)

≤ Chs−1‖k‖
Ws−1

2 (Σ)

(‖u‖Ws
2 (Ω−) + ‖u‖Ws

2 (Ω+)

)
, 1.5 < s ≤ 3.

(2.249)

The term η̂ can be bounded directly:

‖η̂‖L2(Σ
h) ≤ Ch2(‖a‖L2(Σ

+)‖∂2u‖
C(Ω

+
)
+ ‖a‖L2(Σ

−)‖∂2u‖
C(Ω

−
)

)

≤ Ch2(‖a‖
Ws−2

2 (Ω+)
‖u‖Ws

2 (Ω+) + ‖a‖
Ws−2

2 (Ω−)
‖u‖Ws

2 (Ω−)

)
, s > 2.5,

(2.250)

where we have used the following notation:

‖a‖L2(Σ
±) := ∥∥a(·, ξ ± 0)

∥∥
L2(0,1)

.

For a function ϕ ∈ Wλ
2 (Σ), 0 < λ ≤ 1/2, the seminorm |T +

1 ϕ|
W

1/2
2 (Σh)

can be

estimated directly:

∣∣T +
1 ϕ
∣∣
W

1/2
2 (Σh)

≤ 2λ+1/2hλ−1/2|ϕ|Wλ
2 (Σ) ≤ Chλ−1/2‖ϕ‖

W
λ+1/2
2 (Ω±)

.

We thus deduce that
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|η̂11|W 1/2
2 (Σh)

≤ Chs−1(‖a11∂1∂2u‖
Ws−2

2 (Ω+)
+ ‖a11∂1∂2u‖

Ws−2
2 (Ω−)

+ ‖∂2a11∂1u‖
Ws−2

2 (Ω+)
+ ‖∂2a11∂1u‖

Ws−2
2 (Ω−)

)

≤ Chs−1(‖a11‖Ws−1
2 (Ω+)

‖u‖Ws
2 (Ω+) + ‖a11‖Ws−1

2 (Ω−)
‖u‖Ws

2 (Ω−)

)
,

(2.251)

for 2.5 < s ≤ 3, and analogously

|η̂12|W 1/2
2 (Σh)

≤ Chs−1(‖a12‖Ws−1
2 (Ω+)

‖u‖Ws
2 (Ω+)

+ ‖a12‖Ws−1
2 (Ω−)

‖u‖Ws
2 (Ω−)

)
, for 2.5 < s ≤ 3. (2.252)

Hence, from (2.245)–(2.252) we obtain the main result of this section.

Theorem 2.75 Suppose that the solution of the boundary-value problem (2.231) be-
longs to the function space W̃ s

2 (Ω), and that the coefficients of the equation (2.231)
satisfy the following regularity hypotheses:

aij ∈ Ws−1
2

(
Ω+)∩ Ws−1

2

(
Ω−)∩ C(Ω),

a ∈ Ws−2
2

(
Ω+)∩ Ws−2

2

(
Ω−), k ∈ Ws−1

2 (Σ).

Then, the finite difference scheme (2.244) converges and the following error bound
holds:

‖u − U‖W 1
2 (Ωh)

≤ Chs−1
(

max
i,j

‖aij‖Ws−1
2 (Ω+)

+ max
i,j

‖aij‖Ws−1
2 (Ω−)

+ ‖a‖
Ws−2

2 (Ω+)
+ ‖a‖

Ws−2
2 (Ω−)

+ ‖k‖
Ws−1

2 (Σ)

)
‖u‖W̃ s

2 (Ω), 2.5 < s ≤ 3,

where C = C(s) is a positive constant, independent of h.

2.9 Bibliographical Notes

The principal purpose of this chapter has been to develop a technique for the deriva-
tion of error bounds, which are compatible with the smoothness of the data, for finite
difference approximations of boundary-value problems for second- and fourth-order
linear elliptic partial differential equations. The technique is based on the Bramble–
Hilbert lemma and its generalizations (see Bramble and Hilbert [20, 21], Dupont
and Scott [37], Dražić [32], Jovanović [79]).

According to the definition of Lazarov, Makarov and Samarskiı̆ [125], an error
bound of the form

‖u − U‖Wr
2 (Ωh) ≤ Chs−r‖u‖Ws

2 (Ω), s > r, (2.253)
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is said to be compatible with the smoothness of the solution to the boundary–value
problem. Similar error bounds, in ‘continuous’ norms, of the form

‖u − uh‖Wr
2 (Ω) ≤ Chs−r‖u‖Ws

2 (Ω), 0 ≤ r ≤ 1 < s ≤ p + 1,

are typical for finite elements methods (see e.g. Strang and Fix [169], Ciarlet [26],
Brenner and Scott [23]) and are usually referred to as optimal; here uh denotes the
finite element approximation of the analytical solution u using continuous piecewise
polynomials of degree p.

In the case of equations with variable coefficients the constant C in the error
bound (2.253) depends on norms of the coefficients. One of our main objectives in
this chapter has therefore been to understand this dependence in the case of various
second-order and fourth-order linear elliptic model problems with variable coeffi-
cients. Specifically, we proved error bounds that are of the typical form

‖u − U‖Wr
2 (Ωh) ≤ Chs−r

(
max
i,j

‖aij‖Ws−1
p (Ω)

+ ‖a‖
Ws−2

p (Ω)

)
‖u‖Ws

2 (Ω).

To the best of our knowledge, error bounds of the form (2.253) were first derived
by Weinelt [195], for r = 1 and s = 2,3, in case of Poisson’s equation. Subse-
quently, bounds of the form (2.253) were obtained by Lazarov, Makarov, Samarskiı̆,
Weinelt, Jovanović, Ivanović, Süli, Gavrilyuk, Voı̆tsekhovskiı̆, Berikelashvili and
others, by systematic use of the Bramble–Hilbert lemma.

For example, families of finite difference schemes for Poisson’s equation and
the generalized Poisson equation with mollified right-hand sides were introduced
by Jovanović [111] and Ivanović, Jovanović and Süli [75, 106], and scales of error
bounds of the form (2.253) were established in the case of both integer and fractional
values of s.

A procedure for determining the constant in the Bramble–Hilbert lemma, using
the mapping of elementary rectangles on a canonical rectangle, was proposed by
Lazarov [119]; see also [37] and [38] for related issues.

In the papers of Lazarov [119], Lazarov and Makarov [123] and Makarov and
Ryzhenko [130, 131], the convergence of various difference schemes was exam-
ined for Poisson’s equation in cylindrical, polar and spherical coordinates, and error
bounds of the form (2.253) were derived under the assumption that the analytical
solutions to these problems belong to appropriate weighted Sobolev spaces. Finite
difference approximations of Poisson’s equation by special classes of finite volume
and finite difference schemes on nonuniform meshes were studied by Süli [171]
and Jovanović and Matus [73]. In particular, the results in Sects. 2.4 and 2.4.2 are
based on the paper [171]. The analysis presented in Sect. 2.4.3 was stimulated by
discussions with Professor Rupert Klein, Free University Berlin. For related work,
we refer to the paper of Oevermann and Klein [147].

A finite difference scheme with enhanced accuracy for second-order elliptic
equations with constant coefficients was derived by Jovanović, Süli and Ivanović
[108], and similar results were obtained later by Voı̆tsekhovskiı̆ and Novichenko
[188].
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Difference schemes for the biharmonic equation with a nonsmooth source
term were considered by Lazarov [120], Gavrilyuk, Lazarov, Makarov and Pir-
nazarov [50], Ivanović, Jovanović and Süli [76], and for systems of partial differ-
ential equations in linear elasticity theory by Kalinin and Makarov [114, 129] and
Voı̆tsekhovskiı̆ and Kalinin [187].

The convergence of the so-called exact difference schemes was investigated by
Lazarov, Makarov and Samarskiı̆ [125].

The error analysis of finite difference schemes for linear partial differential equa-
tions with variable coefficients was developed later. The first attempts in this direc-
tion were focused on finite difference schemes for the generalized Poisson equation
with a variable coefficient in the lowest-order term (Lazarov, Makarov and Weinelt
[126, 196], Voı̆tsekhovskiı̆, Makarov and Shabliı̆ [189]); subsequently, problems
with variable coefficients in the principal part of the partial differential operator were
considered (Godev and Lazarov [58], Jovanović, Ivanović and Süli [110], Jovanović
[83]). Partial differential equations where the coefficient of the lowest-order term
belongs to a negative Sobolev space were considered by Voı̆tsekhovskiı̆, Makarov
and Rybak [192], and Jovanović [83]. Zlotnik [203, 205] obtained different error
estimates for discretizations of elliptic problems with variable coefficients.

Fourth-order equations with variable coefficients were studied by Gavrilyuk,
Prikazchikov and Khimich [51], and Jovanović [84]. Quasilinear equations in ar-
bitrary domains, solved by a combination of finite difference and fictitious do-
main methods, were studied by Voı̆tsekhovskiı̆ and Gavrilyuk [186], Voı̆tsekhovskiı̆,
Gavrilyuk and Makarov [191] and Jovanović [80, 81].

The technique described above was also used for the solution of eigenvalue prob-
lems (Prikazchikov and Khimich [151]), variational inequalities (Voı̆tsekhovskiı̆,
Gavrilyuk and Sazhenyuk [190], Gavrilyuk and Sazhenyuk [49]) and in the analy-
sis of supraconvergence on nonuniform meshes (Marletta [134]). Berikeshvili sys-
tematically used the same technique for the numerical approximation of a general
class of elliptic problems, including equations of higher order, systems of ellip-
tic equations, problems with nonlocal boundary conditions, etc.; for further details,
we refer to the survey paper [11], which also contains an extensive bibliography.
Berikeshvili, Gupta and Mirianashvili [12] investigated the convergence of fourth-
order compact difference schemes for three-dimensional convection-diffusion equa-
tions. Jovanović and Vulkov [101] studied the finite difference approximation of
elliptic interface problems with variable coefficients.

Recently, a group of mathematicians (Barbeiro, Ferreira, Emmrich, Grigorieff
et al.) exploited the techniques discussed in this chapter for the analysis of super-
and supraconvergence effects in finite-difference and finite-element schemes (see
Barbeiro [5], Barbeiro, Ferreira and Grigorieff [6], Emmrich [44], Emmrich and
Grigorieff [45] and Ferreira and Grigorieff [47]).

There has also been work on the convergence analysis of finite difference
schemes in discrete Wk

p norms, for p �= 2; see, for example, Lazarov and Mokin
[124], Lazarov [121], Godev and Lazarov [57], Drenska [33, 34], Süli, Jovanović
and Ivanović [173, 174]. In this case, the derivation of a priori estimates is tech-
nically more complex—the theory of discrete Fourier multipliers, developed by
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Mokin [140], is used instead of standard discrete energy estimates. Error bounds for
the difference schemes under consideration are then obtained by combining these a
priori estimates with the use of the Bramble–Hilbert lemma, as we have described
in this chapter.

An alternative technique for the derivation of error bounds of the form (2.253)
in fractional-order norms is based on function space interpolation, and was used by
Jovanović [89].

Our goal in the rest of the book is to extend the methodology developed in the
present chapter to time-dependent problems. In Chap. 3 we shall be concerned with
parabolic partial differential equations, while in Chap. 4 we focus on hyperbolic
equations.
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