Chapter 2
Elliptic Boundary-Value Problems

In the first part of this chapter we focus on the question of well-posedness of
boundary-value problems for linear partial differential equations of elliptic type.
The second part is devoted to the construction and the error analysis of finite differ-
ence schemes for these problems. It will be assumed throughout that the coefficients
in the equation, the boundary data and the resulting solution are real-valued func-
tions.

2.1 Existence and Uniqueness of Solutions

Suppose that £2 is a bounded open set in R", k is a positive integer and aqg, 0 <
lal, |B] <k, with «, B € N", are real-valued-functions defined on £2. We consider
the linear partial differential operator P (x, ) of order 2k defined by

P(x,d)u = Z (=D (agp(x)8Pu), x e 5. (2.1)
0<|al,|BI<k

The principal part Py(x, d) of the differential operator P(x, ) is defined by
Po(x, d)u := Z (=D 3% (agp(x)8Pu), xe .
el |B1=k
P(x, d) is said to be an elliptic operator on §2 if, and only if,
D agp(x)E*EP >0 Vx e, VE€R"\{0).
lal,1Bl=k

P(x,0) is called uniformly elliptic on §2 if, and only if, there exists a positive real
number ¢ such that

Y agp(0)E*EP =551 Vx e, VEER" (2.2)
lal,|1Bl=k
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Example 2.1 Consider the second-order partial differential operator, corresponding
to k = 1 above, defined by

29 3
P, ui=—3 g(aij(x)a—;>
J i

i, j=1

+ Z[ (a; (x)u) + b; (x)—:| +c(x)u, (2.3)

Xi

with a;j,i,j=1,...,n;5a;, b;,i =1,...,n; and c being real-valued functions de-
fined on an open set £2 C R", and such that

Yo aj(EEZEY E VxeQ VE=(,.. E)ER, (24
i,j=1 i=1

for a positive real number ¢, independent of x and &; then P (x, d) is a second-order
uniformly elliptic operator on £2.

Example 2.2 Consider the partial differential operator P (x, d), defined by
P(x, d)u = 37 My () + 28192 M3 () + 853 Ma (u),
where 9; := 3/dx; and 87 := 3%/9x? fori = 1,2,
My () := ay (x)d3%u + ao(x)d3u,
My (u) = ao(x)d?u + ax(x)d3u,
M3(u) := a3 (x)0;dxu,

and a;, i =0, 1,2, 3, are four real-valued functions defined on a bounded open set
2 ¢ R? such that there exist positive real numbers c¢; and ¢, for which

ai(x)y>cy, i=1,2,3, al(x)az(x)—ag(x)ZCg Vx € £2.

Under these hypotheses P (x, d) is a fourth-order uniformly elliptic operator on §2.
The same is true if the above inequalities satisfied by the coefficients a; are replaced
by

ai(x)>cy, i=1,2, ai(x)az(x) — (ao(x) +a3()c))2 >c Vxef2.

A partial differential equation on £2 is usually supplemented with boundary con-
ditions on 052. The differential equation in tandem with the boundary conditions
imposed forms a boundary-value problem.

Example 2.3 For the second-order partial differential equation considered in Exam-
ple 2.1 the following boundary conditions are the most common, with g denoting a
given real-valued function defined on the boundary 952 in each case:
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O Dirichlet boundary condition: u = g on 9£2;
® Oblique derivative boundary condition:

1 ou .
Y @y (5v+ Y a@u +o(u=g  ond,
ij=1 ! i=1

where v; is the jth component of the unit outward normal vector v to 952 and o
is a given real-valued function defined on 92 such that

1 n
o+ 3 Z(a,- +b;)v; >0 onads2.

i=1
The differential operator
n au n
[ E a~x—v'+E a;i(x)uv;, x €082,
u = lj( )axi j - i () uv;

is called the co-normal derivative corresponding to the partial differential op-
erator from Example 2.1. A particularly important special case arises when
ajj=46;j,i,j=1,...,n,and q; =0, i =1, ..., n. Then, the oblique derivative
boundary condition becomes:

u+ou=g onoas2,

and is referred to as Robin boundary condition. Here,

9 " 9
9, = — = ;—
v av ;vlaxi

denotes the (outward) normal derivative on 9§2; it is assumed that

1 n
a+§Zbivi >0 onads2.

i=1
In particular, when o = 0 on 042, the resulting boundary condition
du=g onaisf2

is called a Neumann boundary condition.

In many problems that arise in applications boundary conditions of different kind
are enforced on different parts of the boundary; for example, 92 may be the union
of two disjoint subsets 0§21 and d£2,, with Dirichlet boundary condition imposed
on 3£2; and an oblique derivative boundary condition imposed on 9£2;. In most
of what follows we shall, for simplicity, confine ourselves to the study of elliptic
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boundary-value problems subject to homogeneous Dirichlet boundary conditions
(corresponding, in the case of a second-order elliptic equation, to g =0 in Exam-
ple 2.3, part @).

Returning to the general elliptic equation of order 2k, we formulate the classical
homogeneous Dirichlet boundary-value problem.

Definition 2.1 Let £2 C R” be a bounded open set and suppose that f € C(£2) and
agp € C11(R2), |af, |B| < k. A function

ueC*@)ynck1(2)

is a classical solution of the homogeneous Dirichlet problem if

P(x,d)u = Z (=D (agp (x)8Pu) = f(x)

0<lel|,|8I<k
for every x in £2, and

3'u=0 ondf2,forO<m<k—1.

It is assumed here that the differential operator P (x, d), with x € £2, is elliptic or
uniformly elliptic on 2. Frequently, the smoothness requirements on the data stated
in this definition are not satisfied. As is demonstrated by the next example, in such
instances the corresponding homogeneous Dirichlet boundary-value problem has no
classical solution.

Example 2.4 Let 2 = (—1, 1)" C R" and consider Poisson’s equation

" 9%u
—Au=-) —=f in®,

2
v 0x;
subject to the homogeneous Dirichlet boundary condition
u=0 onas2.

Suppose further that f(x) = sgn(% —|x]), x € £2.

Clearly, this problem has no classical solution, u € C 2(2)NC(R2), for otherwise
Au would be a continuous function on 2, which is impossible as sgn(% — |x]) is
not continuous on £2.

In order to overcome the limitations of Definition 2.1 highlighted by this exam-
ple, we generalize the notion of classical solution by weakening the differentiability
requirements on both the data and the corresponding solution.
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Definition 2.2 Let £2 C R" be a bounded open set and suppose that f € L,(§2) and
awp € M(W;*P1(2) > Wi*l(2)), |al, |B] < k. A function

ue Wik(2) N Wi ($2)
is a strong solution of the homogeneous Dirichlet problem if

Px,dyu:= > (=13 (app(x)0Pu) = f(x)

0<lel|,|8|<k

for almost every x in 2.

While for classical solutions both the partial differential equation and the bound-
ary condition are assumed to hold in the pointwise sense, for strong solutions the
partial differential equation is to be understood in terms of equivalence classes con-
sisting of functions that are equal almost everywhere on §2; also, instead of being
imposed explicitly, the boundary condition has been incorporated into the function
space W22k(.{2) N Wf(ﬂ) in which a solution is sought. Unfortunately, it is not easy
to show that the homogeneous Dirichlet problem for the partial differential equation
(2.1) possesses a strong solution; in fact, as is illustrated by Example 2.5 below a
strong solution will not exist unless d£2 and the data are sufficiently smooth. Thus
we shall further relax the differentiability requirements on # and weaken the concept
of solution by converting the boundary-value problem into a variational problem.
The first step in this process is to create a bilinear functional associated with the
differential operator P (x, d) using integration by parts. Suppose that u € Wzk(.Q ),
f €Ly(2),and v € C;°(£2); then

/v(x)f(x)dx:/ vP(x,d)udx
2 2

= Y (—1)'“‘/va“(aaﬁ(x)aﬂu)dx
2

0<|al,1BI<k

= Y /aa/g(x)aﬁuaavdx

O<lal.|B<k

In the transition to the last expression, by partial integration, we made use of the fact
that suppv CC §2. Motivated by this identity we introduce the following notation:

a(u,v) = Z / aalg(x)aﬂuaav dx,

O<lal.|Bl<k

(f,v) 1=/ fx)v(x)dx.
Q
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Clearly a(-, ) is correctly defined for u that is merely in Wé‘ (£2) and for v in the
same space; in fact, a(-, -) is a bilinear functional on the product space Wf (£2) x
Wé‘ (£2); similarly, v — (f, v) is a linear functional on Wé‘(()).

These considerations motivate the following definition.

Definition 2.3 Let £2 C R” be a bounded open set and suppose that f € W, k)
and agg € Loo(£2), ||, |B] < k. A function

ue W5(82)
is a weak solution of the homogeneous Dirichlet problem if

a(u,v) = (f,v)

forevery v € Vi/é‘(.Q), where now (-, -) denotes the duality pairing between W, k (£2)
and Wé‘(Q), i.e. (f, v) signifies the value of the linear functional f € W;"(Q) =
[WE(2)T at v e W(£2).

Remark 2.1 By applying the Sobolev embedding theorem, it is easily seen that the
bilinear functional a(-, -) is well defined under even weaker regularity hypotheses
on the coefficients aqg. Indeed, it suffices to assume in Definition 2.3 that

aap € M(Wy "' > L, (2)), ol 1Bl <k,

where pg =2 when || =k, pg =2n/(n +2(k — |B])) when 0 < k — |B] < n/2;
ppg > 1 (but arbitrarily close to 1) when k — || =n/2; and pg =1 when k — |B] >
n/2.

Next we show that the homogeneous Dirichlet boundary-value problem has a
unique weak solution. The proof is based on a simple application of the Lax—
Milgram theorem (Theorem 1.13) and the following result.

Theorem 2.4 (Géarding’s Inequality) Suppose that 2 C R”" is a Lipschitz domain.
Let P(x,d) be a linear partial differential operator of order 2k of the form (2.1)
such that, for some ¢ > 0, the uniform ellipticity condition (2.2) holds. Suppose also
that

agp € C(82) for|a|=|B8l=k
and
aap € Loo($2)  for|af, |B] < k.

Then, there exist constants co > 0 and Ay > 0 such that

a (v, v) + 2ollv Iy 2) = ollvllye g, forall ve Wy (). (2.5)
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The proof of this results is long and technical, and will not be presented here;
the interested reader is referred to Theorem 9.17 on p. 292 of Renardy and Rogers
[155], for example.

For second-order uniformly elliptic operators of the form (2.3) the proof of Gérd-
ing’s inequality is much simpler, and we shall confine ourselves to this case; in fact,
as will be seen below, in the case of a second-order uniformly elliptic operator the
smoothness hypotheses on the coefficients in the principal part of the operator can
be slightly relaxed: they need not be continuous functions, as long as they belong to
L ($2). We note that the bilinear functional corresponding to the operator (2.3) is
given by

a(u,v) = Z/alj(x) " d +Za,(x)u—dx

i,j=1

9 .
+/ bi(x)—uvdx—}—/ cuvdy, u,ve W ().
Q 0x; Q

Theorem 2.5 Suppose that 2 C R" is a Lipschitz domain. Let P(x,d) be the
second-order linear partial differential operator defined by (2.3) where a;j, a;,
bj € Lo(82), 1, j=1,...,n, and c € Loo(82) are such that, for some ¢ > 0, the
uniform ellipticity condition (2.4) holds. Then, there exist real numbers co > 0 and
Xo = 0 such that

a(,v) +rolvlZ, e >co||v||W ‘o) YVE W1 (82).

Proof Thanks to (2.4) and the Cauchy—Schwarz inequality we have that

a(v,v) = Z/a,](x) v d +Z/ al(x)v—

i,j=1

n
ov
+ /b-(x)—vdx—l—/ c(x)v*dx
; (9] ! Bxi Q
n 1/2
zé“f IVvIde—f |:22(a1-2+bi2) V| |v] dx
§2 2L o

- ||c||Lm<g>/ P dx,
2

where, as usual |Vu| = [ (2 = 24 ( 33;; )2]1/ *. By applying the elementary in-
equality

1
ab < ca® + —b?
4e
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with ¢ = ¢/2, we obtain

C
a(v.v) > 5/ Vol dy — Clol2, 0,
2

where
L~ 2 2
C=- > (@ +57) +llellLa)-
i=1 Loo(82)
Equivalently,
> C o2 C ¢ 2
a(v, ) = Sl o) = | €+ 5 ) IVIL )

which proves Gérding’s inequality with ¢ = ¢/2 and A9 = C + (¢/2). 0

Remark 2.2 'We note that Theorem 2.5 can be proved under even weaker hypotheses
on a;j, a; and b;. Indeed, it suffices to assume that

aij € M(L2(2) > La(2)), i,j=1,....n,
ai, by € M(W3(2) > L2(22)), i=1,...,n,

ce M(W5(2) = L,(£2)),

where p =2n/(n+2) if n > 2; p > 1 (but arbitrarily close to 1) ifn =2;and p =1
ifn=1.

‘We now state the main result of this section, which concerns the existence of a
weak solution to a homogeneous Dirichlet boundary-value problem.

Theorem 2.6 Let P(x, d) be a linear partial differential operator of order 2k of the
form (2.1), satisfying the conditions of Theorem 2.4 on a Lipschitz domain §2 C R".
Then, there exists a Ly > 0 such that, for any . > Ao and any f € W;k(.Q), the
homogeneous Dirichlet problem for the operator

P(x,9)=P(x,d)+ A
has a unique weak solution u € Wf (82). Furthermore, this solution satisfies
”u”Wé‘(_Q) = C”f”Wz_k(.Q)'

Proof According to Theorem 2.4 there exists a A9 > 0 such that the Garding in-
equality (2.5) holds. For A > 1o we consider the bilinear functional

a(u, v) = a(u,v) +r(u,v), u,veWs(),
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associated with the operator P. We shall prove that a(-, -) satisfies the conditions
of the Lax—Milgram theorem (Theorem 1.13) on Wé‘(.Q) X Wé‘(.Q). Let us take

U= Wé‘(.Q) in Theorem 1.13 and recall that Wé‘(.@) is a real Hilbert space. The
U-coercivity of a(-, -) is a straightforward consequence of (2.5):

a(,v) =a(,v) +AvlZ, g = colvl} Vo e WE(92).

W5 (£2)
We shall now verify that a(-, ) is bounded on Wé‘(.Q) X Wé‘(.Q). Given v, w €

Wf(ﬂ), using the Cauchy—Schwarz inequality repeatedly we obtain the following
chain of inequalities, which ultimately lead to the conclusion that a(-, -) is a bounded
bilinear functional on Wé‘(.Q) X Wé‘(.Q):

|lav, w)| < |a(, w)|+A|(v, w)|

=< Z /‘aaﬂ(x)HaﬂvHB‘xw’dx—I—)L‘(v w)’
0<lal,|Bl<k
B
= ocial ik 9ol @ 2 /]a v|[0%w|dx + | (v, w)]

O<lel.|Bl=<k

< cillvllyllwllz-

Thus, by the Lax-Milgram theorem (Theorem 1.13), for each f € W, k(Q) =

there exists a unique weak solution u € Wé‘ (£2) to the homogeneous Dirichlet prob-
lem. O

In the case of second-order elliptic equations we have an analogous result.

Theorem 2.7 Let P(x, d) be a linear second-order partial differential operator of
the form (2.3), satisfying the conditions of Theorem 2.5 on a Lipschitz domain §2 C
R". Then, there exists a Ao > 0 such that, for any A > Ao and any f € Wz_l(.Q), the
homogeneous Dirichlet problem for the operator

P(x,0)=P(x,d)+ A
has a unique weak solution u € W21 (£2), and this solution satisfies
”u”Wzl(_Q) = C||f||W;1(Q)'

Furthermore, if a;, b; € W;,(.Q), i=1,...,n,where p=n/2whenn>2;p>1
is arbitrary when n =2; and p = 1 when n = 1; and

1 @
LOEEDD o (@) +bi@) 20
i=1
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for almost every x € 2, then Ay = 0. In other words, the homogeneous Dirichlet
problem corresponding to the operator P(x,d) has a unique weak solution u €
W21 (82) under these hypotheses.

Proof The first part of the theorem is proved in exactly the same way as the corre-
sponding statement in Theorem 2.6. In order to prove the second part let us observe
that, by the divergence theorem,

. oo e L2 N2 V100
/Q[a,(x)—i—bl(x)]a)Civdx— 2/!28Xi(a,(x)+b,(x))v dx VYveW,(£2);

we note that because a;, b; € WII,(.Q), i=1,...,n,where p is as assumed, Holder’s
inequality, followed by the application of Sobolev’s embedding theorem, implies
that the function appearing as the integrand on the right-hand side is an element of
L1(82). Therefore the right-hand side of this equality is meaningful.

Consequently,

2
dx. (2.6)

n
av
a(v,v) >c¢ / —
ig]: k9 ax,-
By applying the Friedrichs inequality (1.23) with s = 1 and p = 2, the right-hand
side of (2.6) can be further bounded below to obtain

2
av.v) z collvliyy g 2.7
where co = ¢/c,, and hence the Wzl (§2)-coercivity of the bilinear functional a(-, -).
The boundedness of a(-, -) on the space Wzl (£2) x Wzl (82) follows from the bound-
edness of a(-,-) =a(-,-) + A(-, -) by setting A = 0. The required result is now ob-
tained from the Lax—Milgram theorem (Theorem 1.13). O

Remark 2.3 We note that Theorem 2.7 continues to hold when the regularity hy-
potheses of Theorem 2.5 are replaced by the weaker ones from Remark 2.2.

Having developed relatively straightforward sufficient conditions for the exis-
tence of a unique weak solution to an elliptic boundary-value problem, the question
that we now need to address is whether a weak solution might possess additional
regularity to qualify as a strong solution. The answer to this question very much
depends on additional regularity of the data (i.e. the coefficients, the right-hand side
of the partial differential equation, and the boundary d£2). Since a general discus-
sion of regularity properties of weak solutions to elliptic boundary-value problems
is beyond the scope of this book, we shall confine ourselves to Poisson’s equation
subject to a homogeneous Dirichlet boundary condition, which is sufficiently illus-
trative of the key ideas. We begin with a simple example, which shows that a weak
solution to an elliptic boundary-value problem need not be a strong solution to the
problem, and that a strong solution may not even exist.
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Example 2.5 Suppose that 2 = {(x,y) e R? : x> + y> <e~!} and let f(x,y) :=
—A(log | log(x? + y?)|), with log := log. and the differential operator A under-
stood in the sense of distributions on £2. It is easily seen by changing from Cartesian
co-ordinates to polar co-ordinates that the function u : (x, y) > log |log(x* + y?)|
belongs to W21 (£2) and that, therefore, f € W, 1(.Q). Thus, u is the unique weak
solution to the boundary-value problem: —Au = f on £2 (with the equality under-
stood as being between two elements of W, L)), subject to the boundary condi-
tion u = 0 on d52. However, the function u is not a strong solution and, as a matter
of fact, the boundary-value problem has no strong solution, since f ¢ L»(£2).

In fact, even if f belongs to WZS 72(9), s > 2, it does not automatically follow
that the weak solution to Poisson’s equation —Au = f, with a homogeneous Dirich-
let boundary condition on 352, belongs to W3 (£2) N W2l (£2). Whether or not this is
the case depends on the smoothness of d£2. In particular if £2 is a bounded polyg-
onal domain in R?, the regularity of the solution is ultimately limited by the size
of the maximum internal angle of §2; the next theorem is a special case of a more
general result, due to Grisvard [61].

Theorem 2.8 Suppose that f € Wzs_z(.Q), 1 <s<3,s5s#3/2,5/2, with 2 =
(0, 1)2, and consider the homogeneous Dirichlet boundary-value problem for Pois-
son’s equation:

—Au=f onS2,
u=0 onaf2.

Then, the unique weak solution u in W2l (82) belongs to WZS )N W21 (£2).

The limitation s < 3 on the Sobolev exponent in Theorem 2.8 is sharp in the
sense that the stated regularity result is invalid for s > 3 unless f satisfies certain
compatibility conditions at the four corners of the square. More precisely, # belongs
to the space W3 (£2) N Wzl (£2) for s e N, s > 3, provided that f € W;fz(.Q) and the
following conditions hold at the four corners:

f=0.
07 f =03 f =0,

—2
aF %292 4.y (—1fa2kf =0, withk:[sT}. (2.8)

The proof proceeds similarly to the one in Volkov [193], where an analogous reg-
ularity result was shown for classical solutions. For details we refer to the work of
Hell [70].

Next we formulate a result that concerns the existence of weak solutions to the
homogeneous Dirichlet problem for the fourth-order uniformly elliptic equation
considered in Example 2.2.
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Theorem 2.9 Let 2 C R? be a Lipschitz domain. Consider the partial differential
operator P(x, d), defined by

P(x, d)u 1= 03 M (u) + 28,8 M3 () + 93 Mo (w),
where

My (u) := ay (x)d7 () + ag(x)d3u,
My (u) = ap(x)d}u + ax(x)d3u,
M3(u) = az(x)002u,

and a; € Loo(82),1 =0, 1,2,3, are such that there exist positive constants c¢1 and
ca for which

aix)=c, =123 a@ak -aqgx) =c, xe.

Then, for any f € W, 2(2), the homogeneous Dirichlet boundary-value problem
for P(x, d) has a unique weak solution u in sz(ﬂ).

Proof The proof is, again, based on the Lax—Milgram theorem (Theorem 1.13); its
nontrivial part is to verify that the bilinear functional

a(u,v) = (My(w), 37v) +2(M3(u), 31920) + (Mau), 33v), u,v e W3 (),

is Wg(ﬂ)—coercive. Clearly,

a(v,v>=/ [a1(0)[370] + 2a3(0)[01 202
2
+ar(0)|33v] 4+ 2a0(x)dFvd3v]dx Vo e WE(Q).

As v is real-valued (by the convention stated at the beginning of the chapter), we
have the following identity:

1 5 ap(x) ., 2
a(v,v):E/Qal(x)<81v+ ( )82v> dx

ai(x

—i—l/ ar(x) 82v+a0(x)82v)2dx
2)a 2w !

2
+1/ <a1(x)—a°(x))|afu|2dx
2Ja

az(x)
1 a3 (x)
4 5/Q(az(ao - al(x))

‘82211 *dx
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+2f a3(x)]918v>dx Vv € W3(82).
2

Therefore,

2
a(v,v) > l/ (a](x)— aO(X)>|812v|2dx
2 /)0

az(x)

1 a% (x)
+i&@“”_mu>

+2/ az(x)|3102v>dx Vv e Wi ().
2

)gﬁm

By noting the assumptions on the coefficients a;, i =0, 1, 2, 3, it follows that there
exists a positive constant ¢ such that

a(v,v) > 5“"%@(9) Yo e W3 ().

Finally, by the Friedrichs inequality (1.23) withs = p=n =2,

2 £,2
Wl S calblyz g, Yo EW3(2).
and hence
2 )
a(v,v) > collv Yv e W5(S52),
@.0) = llvlfa g, 3($2)
where cy = ¢/cx. O

Remark 2.4 Suppose that the homogeneous Dirichlet boundary condition
'u=0 ond2 for m=0,1,

for the partial differential operator P (x, d) defined in Theorem 2.9 has been replaced
by the following set of boundary conditions:

u=0, Mi(u)v +M3@u)v, =0, M3(u)vy + Mr(u)v, =0 on ds2.
The weak formulation of the corresponding boundary-value problem is: find u €
W3 (£2) N W, (£2) such that

a(u,v) = (f,v)

for every v € W22 )N W21 (£2). Again, by using the Lax—Milgram theorem (Theo-
rem 1.13), it is easy to prove that, under the same conditions on a;, i =0, 1, 2, 3, as

in Theorem 2.9, this problem too has a unique weak solution, now in the function
space W3 (£2) N W, (£2).
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Finally, we return to the boundary-value problem considered in Example 2.4,
which has been shown to have no classical solution. By applying Theorem 2.7 with
aijx)=1,i=j,ajx)=0,i#j,1<i,j<n bi(x)=0,clx)=0, f(x) =
sgn(% — |x]), and £2 = (-1, 1)", we see that there is a unique weak solution u €
W21 (£2) to this problem. In fact, it can be shown that this weak solution belongs

to W22(Q) N Wzl (£2) and it is, therefore, a strong solution to the boundary-value
problem (see Grisvard [62, 63]).

Remark 2.5 The existence and uniqueness of a weak solution to a Neumann, Robin,
or oblique derivative boundary-value problem for a second-order uniformly elliptic
equation can be established in a similar fashion, using the Lax—Milgram theorem
(Theorem 1.13).

Remark 2.6 Theorems 2.6 and 2.7 imply that the weak formulation of the Dirichlet
boundary-value problem for the operator P (x,0)=P(x,0)+A, A > Ao >0,is well-
posed in the sense of Hadamard, that is, for each f € W, k(£2), there exists a unique
(weak) solution u € Wé‘ (£2); moreover, “small” changes in f give rise to “small”
changes in the corresponding solution u. The latter property follows by noting that
if uy and uy are weak solutions in Wé‘(.Q) of the homogeneous Dirichlet problem
for P(x,d) corresponding to right-hand sides f; and f> in W, k), respectively,
then u1 — u is the unique weak solution in Wé‘(.Q) of the homogeneous Dirichlet
boundary-value problem for the operator P (x, d) corresponding to the right-hand
side f1 — f2in W, k (£2). It thus follows from Theorems 2.6 and 2.7 that

lur = u2llyr gy < Clfi— f2||w;"(:z)’

where C is a positive constant, independent of u1, u2, f1 and f>; this implies the
continuous dependence of the solution to the homogeneous Dirichlet boundary-
value problem on the right-hand side of the equation.

2.2 Approximation of Elliptic Problems

We begin this section by outlining the general approach to the construction of fi-
nite difference schemes for elliptic boundary-value problems; we then introduce
basic results from the theory of finite difference schemes and present some classical
tools for the error analysis of finite difference schemes for partial differential equa-
tions with smooth solutions. The limitations of the classical theory will lead us to
consider finite difference schemes with mollified data, and we shall develop a theo-
retical framework for the error analysis of such nonstandard schemes. We conclude
by considering finite difference approximations of second- and fourth-order elliptic
equations with variable coefficients, and derive sharp error bounds in various mesh-
dependent (discrete) norms, under minimal smoothness requirements on the data
and the associated solution.
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2.2.1 Introduction to the Theory of Finite Difference Schemes

Assuming that £2 is a bounded open set in R”, we consider a boundary-value prob-
lem on 2 of the general form

Lu=f in£2, (2.9)
lu=g onl =082, (2.10)
where L is a linear partial differential operator, and [ is a linear operator that speci-
fies the boundary condition. For example, we may have
n

9 u . du
Lu=—Y —(ajx)— bi (x) — :
u i]z_:l i, (au (x)ax,-> + 2 l(x)ax,' + c(x)u

where the a;;(x), i, j =1, ..., n, satisfy (2.4), with one of the following choices of
the boundary operator / (Dirichlet, Neumann or oblique derivative):

lu:=u,
or
d
lu:= —u,
ov
or

n
du
lu = ijz_laij(X)a—xivj +o(x)u,

where v is the unit outward normal vector to I, v; is the jth component of v,
j=1,...,n,and o is a bounded, nonnegative function defined on I".

The construction of a finite difference scheme for the boundary-value problem
(2.9), (2.10) consists of two basic steps: first, the domain Qs replaced by a finite
set of points, called the mesh or grid, and second, the derivatives in the differential
equation and in the boundary condition are replaced by divided differences. To de-
scribe the first of these two steps more precisely, suppose that we have approximated
2 =R UT by the mesh

o' .=ohurh,

where 2" C 2 is the set of interior mesh-points, and I'* C T is the set of boundary
mesh-points. Typically the mesh consist of a finite set of points obtained by consid-
ering the intersections of n families of parallel hyperplanes, each element of each
family being perpendicular to one of the co-ordinate axes. If the domain §2 is not
axiparallel, adjustments may need to be made to the mesh near the boundary 942,
which may be curved. The parameter & = (h1, ..., h,) measures the spacing of the
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mesh; in particular, #; > 0 denotes the mesh-size in the ith co-ordinate direction.
Once the mesh has been constructed, we proceed by replacing the derivatives fea-
turing in £ by divided differences, and approximate the boundary condition in a
similar fashion. This yields a finite difference scheme of the form

LiUx) = fu(x), xeh, @2.11)
WU®x) = gn(x), xel™, (2.12)

where L, and [, are linear difference operators, representing discrete counterparts
of £ and [, while f; and gj are suitable approximations of f and g, respectively. In
algebraic terms, (2.11), (2.12) is a system of linear equations involving the values
of the approximate solution U at the mesh-points.

Assuming that (2.11), (2.12) has a unique solution U, when the mesh spacing is
small the sequence of values of the approximate solution at the mesh-points, {U (x) :
X € Eh}, is expected to resemble {u(x) : x € ﬁh}, the set of values of the exact
solution u at the mesh-points. However the closeness of U (x) to u(x) at x € Eh
is by no means obvious, and the proof of such approximation results represents
the central theme of this book. We shall consider a range of problems of the form
(2.9), (2.10), and derive sharp bounds on the error between the analytical solution
u (typically a weak solution) and its finite difference approximation U in terms of
positive powers of the discretization parameter 4. Bounds of this kind imply, in
particular, that the error between the analytical solution u and its finite difference
approximation U converges to zero with a certain rate, in a certain norm, as 4 — 0.

2.2.2 Finite Difference Approximation in One Space Dimension

In this section we shall focus on the finite difference approximation of a two-point
boundary-value problem. We begin by developing some basic results about mesh-
functions (i.e. functions that are defined on the finite difference mesh), finite differ-
ence operators and mesh-dependent (discrete) norms.

2.2.2.1 Meshes, Mesh-Functions and Mesh-Dependent Norms

Meshes Suppose that N is a positive integer, N > 2, let h := 1/N, and consider
the uniform mesh on the unit interval (0, 1) of the real line, defined by

Q" ={xi:x;=ih,i=1,...,N—1}.

‘We further define
2" =eruo, 1.
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Let S denote the linear space of real-valued functions defined on the mesh 5’1,
and let Sg be the linear space of all real-valued functions defined on the mesh o

that are equal to zero on I'" := o \ £2". Any element of the set S" (or of S(’)’) will
be referred to as a mesh-function.

For a mesh-function V € §" we define V; := V(x;) = V (ih). We equip the linear
space Sg with the inner product

N-1
V. W=V, W)p,on = > hVOWE) =Y hViW,, (2.13)
i=1

xenh

which closely resembles the inner product
1
(v, w) = / v(x)w(x)dx,
0

of the Hilbert space L(£2). The inner product (-, -), induces the norm || - || on Sg
defined by

1/2
IVIIn =1Vl yom = (V. V)2 2.14)

Analogously, we equip the linear space S” with the inner product

h
V. Wh= (V. W), o = S [VOWO) + VIOW D] + (V. W),
and the induced norm

1/2

Vir=1VI =[V,V],

Ly(@")
‘We shall also need the meshes

o .=0"ujo, Qb =huy.

On the linear space of real-valued functions defined on the mesh 2" we consider
the inner product

N—-1
[V, Win=(V, W), @nyi= D hVOW@) =D hViW
i=0

xenh

and the associated norm
1/2
Vin =1V @n =V, V),

with an analogous definition of the inner product (V, W], = (V, W) La(2") and the
corresponding norm ||V], = ||V|| Ly@h) on the linear space of real-valued mesh-

functions defined on .Qi
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Finite Difference Operators = The forward, backward and central divided differ-
ence operators D, D and Dg on the mesh £2;, are defined, respectively, by

i, VT-V V-V~

DIV = PR Ve PR .

where we have used the notation
VE=VEQ) = V(x £h).
With these definitions, we have the following discrete Leibniz formulae:
DI (VW)= (D} V)WT +V(DfW)=(DfV)W+V*H(DIWw),
Dy (VW)= (D V)W~ +V(D; W) = (Dy V)W +V~(D; W),
and the summation-by-parts formula:
[DIV. W)y =—(V.D; W], + V(HW (1) = V(O W(0), (2.15)

which immediately yields the following result.

Lemma 2.10 Suppose that V € Sh: then,
N N-1
(=DIDIV.V), =D h[Dy Vil = 3" | DFvil. (2.16)
i=1 i=0

Proof Letus write U; = D V;,i =1,..., N, and note that

(_D:D;Vv V)h = —(DjU, V)h = _[D;U’ V)h = (U’ Dx_V]h = HD;V] i’

thanks to our assumption that V € S(’)’, which implies that Vo = V(0) = 0 and
Vy = V(1) =0, and using the identity (2.15). The second equality in (2.16) fol-
lows simply by noting that D" V; = Dj Vi—1,i=1,..., N, and shifting the index i
in the summation. O

The Discrete Laplace Operator on Sg On the set S(’)’, we define the linear oper-
ator A : Sg — S(})’ by

AVI) —-D}ID;V(x) ifxeRh,
X) = —
ifxerh=a"\ 2"
Since
(AV. W)y = =(Df Dy V. W), = (D; V. Dy W], = (D; W, D; V],

=[DfVv.DIW), =[DIW,D}fV), =AW, V),
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A is a symmetric linear operator on S(’)'. Moreover, thanks to (2.16),
AV, V)= Dy V] =[[DiV]; >0 forall Ves}\ {0},

and therefore A is positive definite on Sé’. Thus A has N — 1 distinct positive eigen-
values, which are easily shown to be (see Samarskii [159], Sect. 2.4.2)

4 kmh
Ak:ﬁsinz%, k=1,2,,N—1, (217)

these eigenvalues satisfy the inequalities

8 <M < k=1,2,...,N—1. (2.18)

ﬁv

The corresponding N — 1 eigenfunctions V¥, k=1,..., N — 1, satisfying AVFK =
Aka, are
VE(x) =sinkzx, xe2', k=1,2,...,N —1.

The set of eigenfunctions {V',..., VN~!} is an orthogonal system in Sé’ with re-
spect to the inner product (-, -); that is,

k y/1 1
(V5 V) =38, kil=12,.. N-1, (2.19)
where &, is the Kronecker delta; in fact, {V1 ..., VN ’1} forms a basis of the linear

space Sg. Consequently an arbitrary mesh-function V € Sé’ can be expressed as a
linear combination of these eigenfunctions:

N—1
V@)=Y bisinknx, xef' (2.20)
k=1
where
b =2(V,V¥),.

By noting the orthogonality of the eigenfunctions we deduce the following discrete
Parseval identity:

lel
2_ 1 2
VI =5 ]; b 2.21)

Analogously,

N-1
1
|D; V] = [DF V| = AV, V), = 5 2 kb, (2.22)
k=1
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N—-1

_ 1
| DDV} = AV, AV), = 5 ; AbE. (2.23)
It follows from (2.18) and (2.21)—(2.23) that
| DTV, = 2v2 DoV, =2v2[[DF V], =81V (224

foreach V € Sé’.

Discrete Sobolev Norms on S(’)’ The discrete analogues of Sobolev seminorms
and norms are defined similarly to their ‘continuous’ counterparts introduced in
Chap. 1. In particular, we define

VI =1V lyyan = D5 V], = [DF V]

h!
_ - +n-
Viah = 1VIy2an = | DEDI V], (2.25)
_ L 2 2 1/2
IVl =1V wsan = (VI gy + 1V Byt )

where k = 1,2, with the convention that Wg(.Qh) = Lz(.Qh). The inequalities
(2.24) imply that the seminorms | - |W21 @h and | - |W22 (h) are equivalent to the

norms || - ||W21 2" and || - ||W22(.Qh)’ respectively, on Sg.

Lemma 2.11 (Discrete Friedrichs Inequality) There exists a positive constant c,
such that

2 — 2
IV ny = = 15V (2.26)
forall V e Sg.
Proof The last inequality in (2.24) implies (2.26) with ¢, =9/8. g

Lemma 2.12 (Discrete Sobolev Embedding) Forall V € Sg the following inequal-
ity holds

[
IV lloo,n =f€%§ |V (x)] < §||DX VHLZ(M) (2.27)

Proof Using the Cauchy—Schwarz inequality, we obtain from the identity

i 2 N 2
Vil = —i)|Vi* +ih|Vi|> = (1 — i)Y (D7 Vj)h| +ih| Y (D7 V))h
j=1 j=i+l
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that

|V,~|2§(1—ih)(2i:h> ; (DXVj)2h+ih< i h) i (D7 V,)’h

j=1 / j=1 j=i+1 / j=i+1

N
=ih(1—ih) Y (D;V;)’h.
j=1

The required inequality then follows by taking the maximum over the index i €

{0, 1,..., N} and noting that, for all such i, 0 <ih(l1 —ih) < 1/4. O
The Discrete Laplace Operator on S  We define the linear operator A : §" —
S" by
—2DFV(0)  ifx=0,
(AV)(x):={ =D} D;V(x) ifxe Q"
2DV (1) ifx=1.

. . . —=h .
Assuming that each V € S” is extended outside £2" as an even function, we have
that

AV)(x) = (=D D7 V)(x) forxe$2".

The linear operator A is symmetric with respect to the inner product [-, -];,. The
eigenvalues of A are given by the formﬂla (2.17), but now for k =0,1,2,..., N.
In fact, since Ao = 0 is an eigenvalue, A : S — S" is only nonnegative (positive
semidefinite) rather than positive definite; that is,

[AV,V], >0 forall Ve S"\{0}.
The eigenfunctions of A corresponding to the eigenvalues A, k =0, ..., N, are:

wox) =1, WK(x) =cosknx, k=1,2,...,N;

these form an orthogonal system in the sense that

1 ifk=1=0,N,
(Whow'], =11 ifk=i=12... . N-1,
0 ifk#l

and they span the linear space S”; hence each mesh-function V € S” can be ex-
pressed as

N—-1

1
Vix)= an + ,; aicoskmx + EaN cosNmx, (2.28)
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where
a, =2[V,coskmx],, fork=0,1,...,N.
When V € Sg, the expansions (2.20) and (2.28) coincide at all points of the
mesh ﬁh
By noting the orthogonality of the eigenfunctions WX, k =0, . , it is easily
seen that for any mesh-function V contained in S” the following 1dent1tles hold:

N-1
V1;=<a5+= > ai +<ay.
k=1
N 1
- 1
|D; V], =[AV, V], = ];)Lkak + 4kNaN,

[AV]} = Z}\ ak+ x

Next, we introduce analogous discrete Sobolev norms on the linear space S”,
- . —h
consisting of all real-valued functions defined on the mesh £2.

Discrete Sobolev Norms on S”" Similarly as on S(’)’, we introduce on S” the fol-
lowing discrete analogues of the Sobolev norms || - || wh@)» k=1,2:

Vi =1Vl = (VI3 + |pr v,

W(.Q)

[VI2h = IVl gy = (VI + [ DT V]G + 1AVIE) 2.

Fractional-Order Discrete Sobolev Norms Next we shall define fractional-
order Sobolev norms on Sg and derive an interpolation inequality that relates these
to the integer-order discrete Sobolev norms defined earlier. We shall limit ourselves
to the case when the Sobolev index r is in the range (0, 1) U (1, 2). We define the
seminorm | - [y on) by

172
2 V@) -V .

IV Iy oy = (%, ezt HETRE) a Ho=r=1
282 2 (D} V(D) —Df V()P -

(h Zx)yegﬁ,ﬁgy Kyt ) ifl <r <2,

and we introduce the corresponding fractional-order discrete Sobolev norm

1/2
IV lhwg i@ = (V11 gy + Vg ) 2 0<r<2,r#l

Higher order fractional-order discrete Sobolev norms can be defined similarly.
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Next we state an interpolation inequality that establishes a relationship between
fractional-order discrete Sobolev norms and the integer-order norms defined earlier.

Lemma 2.13 Suppose thatr € (0, 1). Then, there exists a positive real number C (r)
such that, for each mesh-function V € Sg,
O<r<l.

IVillws@n = <COIVI, VI

L (.Qh)I W (£2hy’

Proof Given a mesh-function V € Sh, we decompose it as a finite linear combina-
tion of sine functions, as in (2.20), and define the norm B, (-) on Sé’ in terms of the

corresponding expansion coefficients by, k =1,..., N — 1, by
PNl 1/2
B (V)= (5 > k%,%> .
k=1

It is left to the reader to verify that B, (-) is indeed a norm on Sg. By noting (2.17),
the elementary inequality

. 2
sinx > —x, 0<x<m/2,
T

and Holder’s inequality with exponents p :=1/(1 —r) and p’ := 1/r we obtain

1§:<¥)Z%Tﬂ=2_[ }:#“r)x# }

B.(V) < |:—
2 k=1

N—1 (1-r)/2 11\/_1 r/2
2
2(z5n) (D)

and hence, by the discrete Parseval identities (2.21) and (2.22),

1/2

B.(V) <27 |Vl (2.29)

L (_Qh |V|W (_Qh)

The rest of the proof is devoted to showing that the norm B, (-) is equivalent to
-1l Wy (2h)- For this purpose, we extend the function V € Sg from

={kh:k=0,...,N}
to the mesh
{kh:k=0,%1,42,..., N}

as an odd function; that is, V(—x) := —V (x) for each x in ﬁh. The resulting func-
tion is then further extended to the infinite lattice

Z=1{kh:k=0,+1,42, ..}
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as a 2-periodic function; as before, & :=1/N and N > 2. Let ol = (-1, D) NhZ
and @" :=[—1, 11N hZ. For mesh-functions V defined on @" we consider

* * 1/2
[V(x) = V(x -]
Ny (V)= h2 Z Z |t|1+2’ ’

xea re@” 140

where
h Z W)= h[W(=D+WD]+h Y W) =[W. 1], -
g xewh

By noting the periodicity of the extended function (still denoted by V') and the ex-
pansion (2.20), we obtain

NP =R2Y S Y VW[V =) 2V @)~ V4]

xea re@” 140

=hn? Z Z 11|71~ 2’ijlslnlmc Z4bksm —smknx

xea re@” 140

* *
kmt
bibxh Y sinlwx sinkmxh 712 4sin® ==
Z > > 5
I=1 k=1 xeah tea” 10

—Szbkhzt_l o g 2k7”

= reh

N—-1N

Here we have used the notation
— 1 1
hg@:i W(t):= hg@:h W(t) + EhW(l) =W, Dn+ EhW(l).
After further transformation, we obtain
N (V)? = 16( >2r : NZI Kby C (k. 1),
2 k=1

where

krh = (knt\“'7T . kwt
Ck,r):=—— — sin® —

2 2 2
te.Qi
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It is easily seen that C(k, r) is the Riemann sum for the integral
km /2
/ x 71727 sin% x dx
0

and can be therefore bounded from below and above as follows:

1/2 2’<C(k ) < g2 LY, (2 2
g\z) = =T 2-2 ) T \%) -

Thus we deduce that N, () and B, (-) are equivalent norms on S{)’.
By noting inequality (2.29), the equivalence of the seminorm | - |W21 2" and the

norm || - || W) (2hy ON the linear space S, in conjunction with the obvious inequality
IVIwr@my < Nr(V), we then arrive at the desired inequality. That completes the
proof. g

Remark 2.7 The lemma can also be proved by using the cosine expansion (2.28)
and the norm

172
A,(V)::( Zk” + - N2’ ) )

It can be shown that this norm is equivalent to N, (-), provided that V has been
. .. —h .
extended periodically outside £2° as an even function.

Remark 2.8 A similar argument shows, for r € (1, 2), that there exists a positive
real number C(r) such that

IIVIIWr(Qh)<C1(V)|IVII VI, - l<r<2.

W) ((zh) Wz(Qh)
Remark 2.9 Finally we note that, similarly as on Sg, one can define a fractional-
order discrete Sobolev norm on S” as follows:

IVIE = (IVI?

1/2
@ )

W@ n +|V|Wr(gh) , O<r<2,r#1.

After this brief summary of notational conventions in one dimension, we consider
a simple one-dimensional model problem, construct its finite difference approxima-
tion and derive bounds on the error, in the discrete norms defined above, between

the analytical solution and its finite difference approximation.

2.2.3 Finite Difference Scheme for a Univariate Problem

We give a simple illustration of the general framework of finite difference ap-
proximation by considering the following two-point boundary-value problem for
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a second-order linear (ordinary) differential equation:

—u" +ec(xu=fx), xe(,1), (2.30)
u(0) =0, u(l)=0. (2.31)

We shall assume that ¢ > 0 almost everywhere on (0, 1), ¢ € Ls(0,1) and f €
wy o, D).

The first step in the construction of a finite difference scheme for this boundary-
value problem is to define the mesh. Let N be an integer, N > 2, and let h :=1/N
be the mesh-size; the mesh-points are x; :=ih,i =0, ..., N. We then define

Q" ={x;ii=1,...,N—1},
I'":={xo,xy} and Q" =erurh

Let us suppose that the unique weak solution u € W21 (0, 1) to this boundary-
value problem is sufficiently smooth (e.g. u € C4([O, 1])). Then, by Taylor series
expansion of u about the mesh-point x;, 1 <i < N — 1, we deduce that, as h — 0,

u(xi+1) =u(x; £h)
/ h2 V4 h3 " 4
= u(x) & hu' () + S-u” (x0) & —=u (xi) + O(n*),

so that
Dute) o= "D ) 1 0w,
D u(x;) = M —u'(x;) + Oh),
DOu(xy) = M(xi+1)2_hu(xi71) — () + (’)(hz)
and

DD u(x;) = D7D u(x;)
_u(xigr) — 2u(x;) +ulxi—1)
- 3
=u"(x;)) + O(h?).

Recall that D] and Dy are called the forward and backward divided difference
operator, respectively, Dg is referred to as the central-difference operator, while
DDy is the (symmetric) second divided difference operator. It follows from these
Taylor series expansions that, for a sufficiently smooth function u (e.g. for u €
C([0, 1)), Dj‘u(xl-) and Dju(xi) approximate u’(x;) to O(h) fori =0,...,N—1
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andi =1, ..., N, respectively, while the central difference approximation Dgu(x,-)
is more accurate: it approximates u’(x;) to O fori=1,...,N—1 (provided that
u € C3([0, 1]). Similarly, the second divided difference D D7 u(x;) is an O(h?) ap-
proximation to u” (x;),i =1,..., N —1, (aslongas u € C*([0, 1]). Thus we replace
the second derivative u” in (2.30) by the second divided difference to obtain

—D;rD;u(xi) +cxpulx) ~ f(x), i=1,...,N—1, (2.32)
u(xp) =0, u(xy)=0. (2.33)

Here we have implicitly assumed that both ¢ and f are continuous functions on the
interval (0, 1); thus, c(x;) and f(x;) are correctly defined foralli =1,..., N — 1.
We shall also suppose that

c(x)>0 Vxe(0,1). (2.34)

Now (2.32) and (2.33) indicate that we should seek our approximation U to u by
solving the system of difference equations:

—DID Ui +c)Ui = f(xi), i=1,...,N—1, (2.35)
Uy=0, Uy=0. (2.36)

Using matrix notation, this can be written as

AU =F,
where
h%+c(x1) h% 0
A= : ) ,
—% S +cbnvo) —%
0 % Z +clxy-1)
U:= (U, Us,...,Uy-D"
and

F = (fx), f(xz),...,f(xN_l))T.

Thus A is a symmetric tridiagonal (N — 1) x (N — 1) matrix, and U and F are
column vectors of size N — 1.

We begin the analysis of the finite difference scheme (2.35), (2.36) by showing
that it has a unique solution; this will be achieved by proving that the matrix A is
nonsingular. For this purpose, we introduce the inner product (2.13). Let Sé’ denote
the set of all real-valued functions V defined at the mesh-points x;, i =0,..., N,
such that Vo = Vy =0.
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We define the linear operator A : Sg — S(’)' by

(AV); :=—D:D;Vi +cx)Vi, i=1,...,N—1,
(AV)o=(AV)y :=0.

Returning to the finite difference scheme (2.35), (2.36) and using Lemma 2.10 and
(2.34), we see that, for V € Sé’,

(AV, V), = (=D} DV +cV, V),
(=DIDIV. V), + (V. V)

N
_ 2 — 2
=D D Vil =DV, . (2.37)
i=1
where the norm || - || Ly2h) has been defined in the previous section. Thus, if AV =

0 for some V, then D V; =0,i =1,..., N; because Vp = Vy =0, this implies
that V; =0,i =0,...,N. Hence AV =0 if, and only if, V = 0. We deduce that
A: S{)’ — S{)‘ is invertible and, consequently, A is a nonsingular matrix; thus (2.35),
(2.36) has a unique solution, U = A~! F. We summarize our findings in the next
theorem.

Theorem 2.14 Suppose that c and f are continuous functions on the interval (0, 1),
and c¢(x) > 0 for x € (0, 1); then, the finite difference scheme (2.35), (2.36) pos-
sesses a unique solution U in Sé’.

We note that by Theorem 2.7, for ¢ € C([0, 1]) satisfying (2.34) and f €
C([0, 1]), the boundary-value problem (2.30), (2.31) has a unique weak solution
ue V(i/21 (0, 1); in fact, by Sobolev’s embedding theorem u belongs to C ([0, 1]) and
therefore u” = f —cu € C([0, 1]). However to derive an error bound between u and
its finite difference approximation U we shall have to assume that u is even more
regular (the precise regularity hypothesis required in the analysis will be stated be-
low). A key ingredient in our error analysis will be the fact that the scheme (2.35),
(2.36) is stable (or discretely well-posed) in the sense that “small” perturbations in
the data result in “small” perturbations in the corresponding finite difference so-
lution. Actually, we shall prove the discrete version of the inequality appearing in
Remark 2.6. For this purpose, we shall consider the discrete Ly norm (2.14) and
the discrete Sobolev norm (2.25). From (2.37) and the discrete Friedrichs inequality
(2.26) we deduce, with co = 1/c, = 8/9, that

(AV, V)i = coll VI - (2.38)

Now the stability of the finite difference scheme (2.35), (2.36) easily follows.
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Theorem 2.15 The scheme (2.35), (2.36) is stable in the sense that

1
10 wjeny = 1 Mo (2.39)
where co = 8/9.
Proof From (2.38) and (2.35) we have that
ol 31 gy = (AU, Ubn = (f, Ui
= Ly @m ULy @m = Wl @m IU ) anys
and hence we deduce (2.39). O

Theorem 2.15 implies that if U; and U, are solutions of the problem (2.35),
(2.36) corresponding to right-hand sides f; and f>, respectively, then

1
|Uy — U2||W2|(Qh) =< C_()”fl _f2||L2(.Qh)'

Therefore, in analogy with the boundary-value problem (2.30), (2.31), the difference
scheme (2.35), (2.36) is well-posed in the sense of Remark 2.6. It is important to
note that the ‘stability constant’ 1/c is independent of the discretization parameter
h: the spacing of the finite difference mesh.

By exploiting this stability result it is easy to derive a bound on the error between
the analytical solution u, and its finite difference approximation U. We define the
global error, e, by

e =ulx;)—U;, i=0,...,N.
Obviously eg =0, ey =0, and
Aei=¢;, i=1,...,N—1, (2.40)
where the mesh-function ¢, defined by
g =Aulxj)— f(x)), i=1,...,N—1,

is called the truncation error of the finite difference scheme. A simple calculation
using (2.30) reveals that

¢i=u"(x;)— DD u(x;), i=1,...,N—1.

Since the global error satisfies (2.40), we can apply (2.39) to deduce that

1
flu — U”Wzl(.Qh) = ”e“Wzl(.Qh) = %HQDHLZ(Q}‘)‘ (241)



120 2 Elliptic Boundary-Value Problems

It remains to bound [[¢|| ., -

Assuming now that u € C*([0, 1]), the Taylor series expansions stated at the
beginning of this section imply that

i =u"(x;) — DY Dy u(x;) = O(h);
thus, there exists a positive constant C, independent of /4, such that
lpi| < Ch?.
Consequently,

N-1 1/2
ol 2n = (Z h|¢i|2> <Ch%. (2.42)

i=1

Combining (2.41) and (2.42), it follows that
C
e = Ullyy gy < ghz. (2.43)

In fact, a more careful treatment of the remainder term in the Taylor series expansion
of u reveals that, fori =1,..., N — 1,

B 1
gi =u"(x;) — Dy Du(x;) = —Ehzu””(a), £ € (Xi_1, Xit1):

Thus

"

(2.44)

<—h ma
lpil = 750" max,

and hence

1
C=— max |u""(x)]
12 x€[0,1]
in (2.42). As c¢p = 1/c, and ¢, = 9/8, we deduce that ¢y = 8/9. Substituting the
values of the constants C and ¢ into (2.43), it follows that

h2||u////

”u - U”Wzl(ﬂh ||C([O,l])'

)= 32

Thus we have proved the following result.

Theorem 2.16 Let f € C([0, 1]), c € C([0, 1]), with c(x) > 0 for all x € [0, 1],
and suppose that the corresponding solution of the boundary-value problem (2.30),
(2.31) belongs to C*([0, 11); then,

3
llu — U”Wzl It lD) = 3_2]72””//// (2.45)

“ c(0,1])"
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We note that by the argument following Theorem 2.14 the hypotheses f €
C([0, 1]), c € C ([0, 1]), ¢ = 0 imply that the unique weak solution of the boundary-
value problem (2.30), (2.31) belongs to C 2([0, 17), and it is therefore a classical
solution. Thus, the word solution in this theorem means classical solution.

It follows from (2.37) with V = e, (2.40), the Cauchy—Schwarz inequality, the
last inequality in (2.24), (2.27) and (2.44) that

h2”u////

lu = Ulloo,n = (2.46)

”C([O,l])'

1
48V/2
We thus deduce the following result.

Theorem 2.17 Suppose that the assumptions of Theorem 2.16 are satisfied; then,
the error bound (2.46) holds.

This simple stability and error analysis of the finite difference scheme (2.35),
(2.36) already contains the key ingredients of a general error analysis of finite dif-
ference approximations, and it is instructive to highlight them here.

(1) The first step is to prove the stability of the scheme in an appropriate mesh-
dependent norm (cf. (2.39), for example). A typical stability result for the ab-
stract finite difference scheme (2.11), (2.12) considered at the beginning of the
section is of the form

colllUllgn < Il fullgn + llgnll o (2.47)

where |||-|[lon, || - | on and || - || ;4 are mesh-dependent norms involving mesh-
. —h . . - .
points of £2”* (or 2) and I'", respectively, and ¢y is a positive constant, inde-
pendent of A.
(2) The second step is to estimate the size of the truncation error,
@on i=Lyu— f, in",

orn:=Ilpu—gp on rk.

In the case of the finite difference scheme (2.11), (2.12), ¢+ = 0, and therefore
@i did not appear explicitly in our error analysis. If

leonllor + llerallpn — 0 ash — 0,

for a sufficiently smooth solution u of (2.9), (2.10), we say that the scheme
(2.11), (2.12) is consistent. If p is the largest positive real number such that

||(p_Qh ”_Qh + ”wrh ||1"h < Ch? ash— 0,

(where C is a positive constant independent of #) for all sufficiently smooth u,
then the scheme is said to have order of accuracy p.
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The finite difference scheme (2.11), (2.12) is said to converge to (2.9), (2.10)
(and U is said to converge to u) in the norm |||-||| o, if

llu—Ul|gn — 0 ash— 0.
If g is the largest positive real number such that, for all u sufficiently smooth,
lu—Ul|gn <Ch? ash—0

(where C is a positive constant independent of %), then the scheme is said to have
order of convergence q.
From these definitions we deduce the following fundamental theorem.

Theorem 2.18 Suppose that the finite difference scheme (2.11), (2.12) for problem
(2.9), (2.10) is stable (i.e. (2.47) holds for all fi, and gy, and corresponding solution
U, with cq independent of h) and that the scheme is consistent; then (2.11), (2.12) is
a convergent approximation of (2.9), (2.10) and the order of convergence is not less
than the order of accuracy.

Proof We define the global error e :=u — U ; then,
Lpe=Ly(u—U)=Lpu—L,U=Lpu— fp.
Thus,
Lpe=qgon
and similarly
lhe=q@rn.
By stability,
collu = Ulllgn = colllellon < logrllign + llepnllra,

and hence we arrive at the stated result. O

Paraphrasing Theorem 2.18, stability and consistency of the scheme imply its
convergence. This abstract result is at the heart of the error analysis of finite differ-
ence approximations of differential equations.

2.2.4 The Multi-dimensional Case

Since the two-dimensional case is sufficiently representative, for the sake of nota-
tional simplicity we shall confine our attention to elliptic boundary-value problems
in the plane.



2.2 Approximation of Elliptic Problems 123

Meshes and Divided Difference Operators Assuming that N is an integer,
N > 2, we shall use a uniform square mesh £2” with mesh-size & := 1/N over the
unit square 2 := (0, 1)2, defined by

Q" i={x =1, x) = (h, jh) i, j=1,...,N -1},

and the square mesh
2" = {Gih, jh) i, j=0,....N}.
Let I" := 052 be the boundary of §2 and define
r=nz2nr=a"\ 2"
Analogously, let
Iip=xel:xi=k, 0<x3_; <1}, i=1,2, k=0,1,
and define
h=rypnhz?,  Th:=TunhZ?,  TM=T"\ (Ul

Let us also introduce

et=chur}  el,=e"'urk i=1.2,

QY =2"urluriulkn), ki=o0,1.

Let S” be the set of all real-valued functions defined on the mesh ﬁh. ‘We shall
use the notation V;; := V(ih, jh). By Sg we denote the set of all real-valued func-

tions defined on the mesh o that vanish at all points of I"”*. The set Sg is equipped
with the inner product

N-—1
(VW= (V. W), on =h> D" V@WE)=h* Y VW, (248)
xenh i,j=1

and the norm

1/2
IVIE =V I,@m =V, V),

The norms || - ||L2((z.") and || - ”Lz(ﬂfz) are defined analogously to || - [, oh)-

The forward, backward and central divided difference operators on the mesh £2,
are defined analogously as in the one-dimensional case:

DHY vyt _vy va__V—V*i

1
0y . -
M - LV — Dy Vi=5(DgV+DLV),
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where
VE = VH @) =V the), e :=(@1.82). i=12,
and §; is the Kronecker delta.

Discrete Sobolev Norms  Analogously as in the one-dimensional case, we define
the following discrete Sobolev seminorms on S":

12
WVl an = (| o3, VHLz(Q” + | D, V||L2(9h))/

= (” Dy, V”Lz((zh + H Dx_zv||L2(Qh )1/2’

(2.49)
— + p+
|V|W22(Qh) = (”D X1 V||L2(.Q’l) + ”D D; V||L2(900)
1/2
+ 10505V [ am)
and the corresponding discrete Sobolev norms
1/2
IV llwten = (Vs iy + VIgon) ™ k=12, @50)
with the notational convention Wg(.Qh) = Ly(2M).
Let us also introduce the following inner products
5 h? h?
V. Wh=h 3 VW@ += 3 VOW@ -+ Y VoW,
xenh xermn\rj xelt

h2
V. Whpi=h* 3 VW@ +— ) VW, i=12,
XEQ[-h xeF”\(F’lUI‘,l)

and the associated norms
2
V4 = V1L,@m =V, V1,
V1 = [Vl =1V, V12

In analogy with the one-dimensional case, we define the following discrete
Sobolev seminorms and norms on S”:

2 2\1/2
[V]W‘(m) = (|[Dx+1 V]|1 + |[DX+ZV]|2) / )
Vzan = (VI gy + [DEDEVIE on ) + [A2VIE i)',

1/2
Vawscon = (Vo g + Vg on) ' k=12,
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where
~2ptv if x e Ty,
(A V)(x):=1 DD V(x) ifxe"ury, urf,,,
2pov if x e T,

The Discrete Laplace Operator on S(’)’ ‘We consider the discrete analogue of the
Laplace operator in two space dimensions, defined on hZ? by

AV :=D{ DV +D;D_V.
The mapping A : S(’)’ — S{)’ defined, for V € Sé’, by

—(ARV)(x) ifx e 2",

(AV)&) = {o ifxerh

positive definite operator with respect to the inner product (-, -);. In particular, for
Ve Sg we have that

(AV. V)= (= A5V. V=1V g g 2.51)

Furthermore,

1AV} = | D D,

2
x1v||L2(.Qh)+2||D+D+V”L2(.Qh +||D D, V”L(m

and therefore,
1ARVIG = 1V 2 gy
Similarly,
IARV I = 16(=2,V, V)i = 167V} = 16°I1V I} o)

and

Viwzan = 2f2|V|W21(9,1) > 8V2(| Vil on. V€S (2.52)

Consequently, on the linear space §; the seminorms | - |W21(.Qh) and | - |W22(.Qh) are
ivalen he norms || - nd || - I ively.
equivalent to the norms || ”Wzl(_Qh) and || IIsz(_Qh), espectively

Lemma 2.19 (Discrete Friedrichs Inequality) There exists a positive real number
Cy, independent of h, such that

VB = e (ID5V iy + 1PV o) @59

. oh
Jorall'Vin Sj.
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Proof Inequality (2.53) with ¢, = 17/16 follows directly from the definition (2.49)
of the seminorm | - |W21 2h and the second inequality in (2.52). O

Fractional-Order Discrete Sobolev Norms We define the fractional-order dis-
crete Sobolev seminorm | - |W2’ (@h) by

Nh (N—=1h

[V(x) — V(tie; + x3-ie3-)]°
3
|V|W’ @h = Zh Z Z lx; — ;|1+2r

;=0 x3_; =h
xl ;/:tl

if 0 <r < 1, and by

2 WNDRNZDR Dty (x) — DEV (i + x3-ie3-1)]2

r(,Qh Zh3 Z Z = |x; _XItl.|1+2(r—1)

X ;=0 x3_;=0

X #ti

V2

N (D D*V(x)—D*V(xlelm ie3 )]

DD DTt

3js13—;=0 Xj=
X3 A3

if 1 <r < 2. We also introduce the associated fractional-order discrete Sobolev
norm by

1/2
1Vilwgi@n = (VI g + 1V g on) s 0<r <2 r#1.

Teh
Similarly as in one dimension, we have the interpolation inequalities

||V||r O<r<l,

Villwg @ = COIVI, 12y

L (_Qh)
(2.54)
Villwg @ = COIVIE,

VI 1<r<2,

W (Qh) WZ(Qh)

which follow directly from their one-dimensional counterparts.

2.2.5 Approximation of a Generalized Poisson Problem

In Sect. 2.2.3 we presented a detailed error analysis for a finite difference approx-
imation of a simple two-point boundary-value problem. Here we shall undertake a
similar study for the generalized Poisson equation in two space dimensions subject
to a homogeneous Dirichlet boundary condition:

—Au+c(x,y)u= f(x,y) in$2, (2.55)
u=0 onl =05, (2.56)
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where 2 := (0, 1) x (0, 1), c is a continuous function on §2 and c(x, y) > 0. For the
sake of notational simplicity we have denoted the two independent variables by x
and y, instead of x| and x,. As far as the smoothness of the function f is concerned,
we shall consider two distinct cases:

(a) First we shall assume that f is continuous on £2. In this case, the error analysis
proceeds along the same lines as in Sect. 2.2.3.

(b) We shall then consider the case when f is in L>(£2) only; then the boundary-
value problem (2.55), (2.56) does not necessarily have a classical solution; nev-
ertheless, a weak solution still exists. This lack of smoothness gives rise to some
technical difficulties both in the formulation of an adequate finite difference
scheme and its error analysis. Since the point values of f need not be mean-
ingful at the mesh-points (after all, f can be changed on a subset of §2 of zero
Lebesgue measure without altering it as an element of L,(£2)), instead of sam-
pling the function f at the mesh-points we shall sample a mollified right-hand
side T}, f. Also, since the analytical solution may not have a Taylor expansion
with the required number of terms, we shall apply a different technique, based
on integral representation theorems, to estimate the size of the truncation error.

We begin by considering the first of these two cases.

(a) (f € C(£2)) The first step in the construction of the finite difference approx-
imation to (2.55), (2.56) is to define the mesh. Let N be an integer, N > 2, and let
h :=1/N; the mesh-points are (x;, y;), i, j =0,..., N, where x; :=ih, y; := jh.
These mesh-points form the mesh

ﬁh ::{(xi,yj) i, =0,...,N}.
Similarly as in Sect. 2.2.2, we consider the set of interior mesh-points
Q" ={i,y) i j=1,...,N—1}
and the set of boundary mesh-points
r=a"\ o"

In analogy with (2.35), (2.36), the finite difference approximation of (2.55), (2.56)
is:

— (DI Dy Uij + D} Dy Uij) + c(xin yp)Uij = f(xinyj).  (xi,yj) € 2", (2.57)
U=0 onI™" (2.58)

In expanded form, this can be written as follows:

h? h?
= f(xi,y;) if (xi,y)) € 2", (2.59)

_(Ui+1,j —2Uij + Ui n Ui j+1 —2Uij + Ui,j—l) Gy Us
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®
(1,3+1)

® ®
(=15 Gd) | G+1.9)

(,5—1)

Fig. 2.1 The set of interior mesh-points £2”, denoted by e, the set of boundary mesh-points I'",
denoted by x, and a typical five-point difference stencil

Uij=0 if (x;,y;)el™, (2.60)

where the divided difference operators D = fol and D;C = foz have been defined
in Sect. 2.2.2.

Foreachi and j, 1 <i, j < N — 1, the finite difference equation (2.59) involves
five values of the approximate solution U: U; j, U;_1 j, Uiy1,j, Ui j—1, Ui j+1, as
indicated in Fig. 2.1; hence its name: five-point difference scheme. It is possible to
write (2.59), (2.60) as a system of linear equations

AU =F, (2.61)
where
U:=WUi,U1,...,U1Nn=1,U21,Un2,...,Us N—1, ...,
o U Uiny oo Uin—ts oo Uy, Un—12, -, Un— v
F:=Fn Fo,....Fin-1. 21, Fn,....Fon—1, ...,

T
P Fo, o FiNot, o Evo i, Py, o Fyoiv—1)
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Fig. 2.2 The sparsity

structure of the banded matrix K J O O 0O O
A:Kisan(N—1)x (N —1) J K J o0 0O 0
symmetric tzridiagonal matrix, o J K J 0O 0O
J=(=1/h")I, I is the

(N — 1) x (N — 1) identity A=l0 o0 J K 0o o
matrix, and O is the o AR
(N —1) x (N — 1) zero o O 0 O K J
matrix O O 0O O J K

and Aisan (N — )2 x (N — 1)2 sparse, banded matrix.

A typical row of the matrix contains five nonzero entries, corresponding to the
five values of U in the finite difference stencil shown in Fig. 2.1, while the sparsity
structure of .4 is indicated in Fig. 2.2.

Next we show that (2.57), (2.58) has a unique solution. We proceed in the same
way as in the previous section for the finite difference approximation of the two-
point boundary-value problem. For two functions, V and W, defined on 2", we
introduce the discrete L;-inner product (2.48):

N—-1N-1
(VW=D D RV Wij.

i=1 j=1

Again, let S{)‘ denote the set of functions V defined on £2" such that V = 0 on I"".
We define the linear operator

A:Sh— st
at mesh-points of £2” and I'"*, respectively, as follows:

(AV)ij:=—=(Dy Dy Vij+ Dy Dy Vij) +c(xi)Vi, i, j=1,...,N—1,
(AV)io=(AV)in =(AV)o; =(AV)N; =0, i,j=0,...,N.

Returning to the analygs of the finite difference scheme (2.57), (2.58), we note
that, since c(x, y) > 0 on £2, by (2.51) and (2.49) we have that

- - +p-
(AV.V)y = (=Di Dy V =Dy DyV +cV, V),

(=DID;V, V), +(=DI DV, V), +(V, V),

N N-1 N

~1
W05 VP + > 3 h| Dy Vi
i=1 j=1 i=1 j=1

2 (2.62)

v

for any V in S{)’. This implies, just as in the one-dimensional analysis presented in
the previous section, that A is a nonsingular matrix. Indeed if AV = 0, then (2.62)
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yields:
ViV =1,
DyVij=—— =0, . _ N
_ Vij = Vij-1 i=1,...,N—1,
DyV,j—T—O’ j=1,...,N.

Since V =0 on I'", these imply that V =0 on ﬁh. Thus AV = 0 if, and only if,
V =0. Hence A is nonsingular, and U = A~!F is the unique solution of (2.57),
(2.59); the solution may be found by solving the system of linear equations (2.61).

In order to prove the stability of the finite difference scheme (2.57), (2.58), we
consider, similarly as in the one-dimensional case, the discrete L, norm

1/2
IV Iy em = (V, V)2,

and the discrete W21 norm (see (2.50))

)1/2

’

— 2 — 12
||V||W1(9h) = (”V”L 2(27) + ” D, V”Lz(gg) + ”Dy V||L2(Q§z)

where

Q=08 ={(xi,y):i=1,...,N, j=1,...,N—1},

X

Qb= ={(.yp:i=1...N-1,j=1,... N}

The norm || - || wi(@h) is the discrete analogue of the Sobolev norm || - || wi@) defined

by
>1/2
Ly (82)

In terms of this notation the inequality (2.62) has the following form:

[Juell lellZ () + i
u = u
wi2) "= L@ 7|55

L2(2) H dy

(AV, V) = || DY V” Ly T I Dy VHLZ(Q”) (2.63)

The discrete Friedrichs inequality (2.53) and inequality (2.63) imply that

(AV. V)i Z ollV Iy g (2.64)
where co =1/c, =16/17.
Theorem 2.20 The scheme (2.57), (2.58) is stable in the sense that
1
1Ty @ny = %”f”Lz(Qh), (2.65)

where co = 16/17.
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Proof The proof of this stability result is completely analogous to that of its one-
dimensional counterpart (2.39), now using (2.64) and the Cauchy—Schwarz inequal-
ity. g

Having established the stability of the difference scheme (2.57), (2.58), we turn
to the question of its accuracy. We define the global error e by

ejji=u(xj,y;)—Uyj, i,j=0,...,N,
and the truncation error ¢ by
gij = Au(xi, y)) = f(xi,y), i j=1...N-L
Then,
Aeij=g¢ij, i, j=1,...,N—1,
e=0 onI™"

By noting (2.65) we have

flu — U”Wzl(gh) = ||e||W21(_Qh)

IA

1
5||§0||L2(9h). (2.66)

Thus, in order to obtain a bound on the global error, it suffices to estimate the size of
the truncation error in the || - ||L2(Qh) norm. To do so, let us assume that u € C4(.Q);
then, by expanding each term in ¢ in a Taylor series about the point (x;, y;), we
obtain

gij = Au(xi, y;) — (DI Dy u(xi, yj) + D;”D;u(xz‘, yi))
9%u _ 9%u _
= [@(xi, yj) — Df D; u(xi,yj)} + [W(xi, yj) — Dy D; u(xi,yj)}
h? ([ 8%u d%u .
:_E<a?(5lay])+a_y4(xlvn])>s lsjzlv“'vN_lv

where & € (x;—1,Xi11), nj € (¥j—1,Yj+1)-

Thus,
h2
lpij| < —(‘ )
12 c@

and we deduce that the truncation error ¢ satisfies the bound

B ) (2.67)
C(£2)

9%u
ay+

9%u
x4

c(2) ‘

%u
ay4

9%u
x4

h2
lollz,n S—(
202" =19 c@
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Finally (2.66) and (2.67) yield the following error bound.

Theorem 2.21 Let f € C(2), c € C(2), with c¢(x,y) > 0, (x,y) € £2, and sup-
pose that the corresponding weak solution of the boundary-value problem (2.55),
(2.56) belongs to C*(2); then

e U] - 17h2< d%u ‘ d*u ) 2.68)
u— Lon < —| ll— — . .
Proof Recall that 1/co = c, = 17/16, and combine (2.66) and (2.67). Il

According to this result, the five-point difference scheme (2.57), (2.58) for the
boundary-value problem (2.55), (2.56) is second-order convergent, provided that u
is sufficiently smooth; i.e. u € C ().

Elliptic regularity theory tells us (see, for example, Ladyzhenskaya and Ural’tseva
[118], Gilbarg and Trudinger [53] or Renardy and Rogers [155]) that if the right-
hand side and the coefficients are “sufficiently smooth”, then the associated classical
solution of the elliptic problem is “as smooth as one would expect” in the interior of
the domain on which the problem is posed; e.g. in the case of a second-order elliptic
boundary-value problem, if f € Ck""(s?), k>0,0<a<1,thenu e Ck+2’°‘(.{2).
Unfortunately, in general, the solution will not be smooth up to the boundary if the
boundary is not of class C¥*2% as is the case when 2 is a square. For a simple il-
lustration, we refer to Example 9.52 on p. 325 of Renardy and Rogers [155]; a more
detailed account of regularity theory for elliptic equations in domains with nons-
mooth boundaries is given in Grisvard [62, 63] and Dauge [28]. Thus, in general,
the solution of our simple model problem (2.55), (2.56), will not belong to C 4(2)
even if f and c¢ are smooth functions, because the boundary I" = 92 is only of
class C%!. Consequently, the hypothesis u € C*(£2) that was made in the statement
of Theorem 2.21 is unrealistic (unless f satisfies suitable compatibility conditions
at the four corners of £2 (cf. (2.8))).

Our analysis has another limitation: it was performed under the assumption that
f € C(£2), which was necessary in order to ensure that the values of f are mean-
ingfully defined at the mesh-points. However, in applications one often encounters
differential equations where f is a lot less smooth (e.g. f is piecewise continu-
ous, or f € Ly(£2), or f is a Borel measure). When f € L,(£2), for example, we
know that the homogeneous Dirichlet boundary-value problem for the partial differ-
ential equation —Au + cu = f, with ¢ bounded and nonnegative, still has a unique
weak solution in Hé (£2), so it is natural to ask whether one can construct a second-
order accurate finite difference approximation of the weak solution. This brings us
to case (b), formulated at the beginning of the section.

(b) (f € L2(82)). We shall use the same finite difference mesh as in case (a), but
we shall modify the difference scheme (2.57), (2.58) to cater for the fact that f is
not continuous on £2. The idea is to replace f(x;,y j) in (2.57) by a cell-average
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Fig. 2.3 The cell X;; (i, yj41)

(zi,v5)

(i—1,95) (®iv1,v5)

(i, y5-1)

of f:
1
(1 1)yi= s [ S sy

where the ‘cell’ K;; is defined by

h h h h
Kij = xi—z,xi‘l'z X yj_zd’j‘i‘i ;

withi, j=1,...,N — 1.

This seemingly ad hoc approach has the following justification. Integrating the
partial differential equation —Au + cu = f over the cell K;; and using the diver-
gence theorem we have that

d
—/ —uds+/
aK;; OV K

where 0Kj;; is the boundary of K;;, and v is the unit outward normal to dK;;.

The normal vectors to 0K;; point in the co-ordinate directions, so the normal
derivative du/dv can be approximated by divided differences using the values of
u at the five mesh-points marked by e in Fig. 2.3, in conjunction with a midpoint
quadrature rule along each edge of K;; to approximate the contour integral featuring
in the first term of (2.69) (cf. Examples 2.6 and 2.7).

Approximating the second integral on the left by a midpoint quadrature rule, now
in two dimensions, on K;;, and dividing both sides by meas(K;;) = h2, we obtain

cudxdy =/ fdxdy, (2.69)

ij

—(Dy Dy u(xi, yj) + Dy Dyu(xi, y;)) + c(xi, y)u(xi, ;)

1
zﬁ//(,-j f(x,y)dxdy.
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We note here that (Th11 f)ij is correctly defined for f € L(£2); indeed,

(T 1)y

/ fx. y)dxdy‘

1 1/2 ) 1/2
_hz(/ 1 dxdy) (/K”|f(x,y)| dxdy)

=h™ " fll Lk, (< 00). (2.70)

Thus we define our finite difference scheme for (2.55), (2.56) by
—(DID; + DY DY) Uij + c(xi, y)Uij = (Ty ' )50 (xivyp) € 2", (2.71)
U=0 onI". (2.72)

Remark 2.10 Finite difference schemes that arise from integral formulations of a
differential equation, such as (2.69), are called finite volume methods.

Since we have not changed the difference operator on the left-hand side, the
argument presented in (a) concerning the existence and uniqueness of a solution to
the difference scheme (2.57), (2.58) still applies to (2.71), (2.72); therefore, (2.71),
(2.72) has a unique solution U in Sg. Moreover, we have the following stability
result.

Theorem 2.22 The scheme (2.71), (2.72) is stable in the sense that

1
10y = o1 ey 2.73)
where co = 16/17.

Proof From (2.64) and (2.70) we have

Uy gy < (AU, U= (T, 1,U),
<|7' 7| U, e0m < [T £ U Iy
= h Ly(2M) La(2%) = 11 7h Ly(22M) W, (£27)
= 1l 10wy an)s
and hence (2.73). O

Having established the stability of the scheme (2.71), (2.72) we consider the
question of its accuracy. Let us define the global error, e, as before:

e,-jzzu(xi,yj)—Uij, i,j:O,...,N.
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Clearly, fori, j=1,..., N — 1 we have
Aeij = Au(x;, y;) — AUjj
= Auxi,y) = (Ty ' £),;
=—(DfD;u(xi, yj)+ D;D;u(x,', yi)) 4 c(xi, ypulxi, yj)

8214 821/!
+[Th“ <@)(xi, i)+ 1! (8—)}2)()@’ i) =T (ew) (i y/)]~

(2.74)

By noting that

9%u 1t 88 (i + h/2,y) — 340 — h/2, y)
Thll<m)(xia)’j)= E/y dx dx dy

X

1 [Yith/2 gy
:Dj|: / —(x,-—h/2,y)dy:|,
yj—h/2 0%

1 [yith/2 9
_ / D 2 i — hy2, y)dy
y 0x

and that, similarly,

" 3214 N 1 xi+h/2 ou
T, 8—))2 (xi»}’j)ZDy E )2 @(x,yj—h/Z)dx ,

equality (2.74) can be rewritten as

Ae=Dfoi+Dfpr+,

where
1 [Yith/2 gy _
1(xi, yj) = Z/ 8—(xi —h/2,y)dy — Dy u(xi, yj),
yj—h/2 0X
L [uth/2 gy
e2(xi,yj) = o /X__h/z 5()6, yj —h/2)dx — Dyu(xi, y;),
Y (xi, y;) = (cu)(xi, yj) — Ty eu) (xi, y)).
Thus,

Ae=Dfp +Dfgy+y in2" (2.75)
e=0 onrl™" (2.76)
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As the stability result (2.73) implies only the crude bound

1
lellwien = o | DY o1 + DY w2 + ||, ons
which does not exploit the special form of the truncation error,
¢:=D}lpi+ Dl + .
we shall proceed in a different way. The idea is to sharpen (2.73) by proving a

discrete analogue of the well-posedness result from Theorem 2.7; we recall that this
states that the following bound holds for the boundary-value problem (2.55), (2.56):

1
. < _ .
||u||W21(Q) = %o ”f”Wz L)

In order to obtain a discrete counterpart of this inequality, we consider the discrete
negative Sobolev norm || - ||W_|(9h), defined by
2

|(V, Wil

VIt on = —_——
2 @D vesiho) Wl (2m)

Theorem 2.23 The scheme (2.71), (2.72) is stable in the sense that

1 11
”U”W21 £h =< 5” Th f” Wz_l(.Qh)’ (277)
where co = 16/17.

Proof From (2.64), by noting the definition of the || - norm, we have that

”Wz_l(.Qh)
<7 e om 1U
=1 Jliw;ten Y lw) @

and hence (2.77). [l

Now we apply Theorem 2.23 to (2.75), (2.76) to deduce that

1
+ +
lellwyan = o IPFo1+ D02 49 1y (2.78)
In order to bound the right-hand side of (2.78) let us consider the expression

(Df o1+ D2+ v, W),



2.2 Approximation of Elliptic Problems 137

for W e Sg \ {0}. Using summation by parts, we shall pass the difference operators

D} and D;“ from ¢; and ¢,, respectively, onto W. As W = 0 on the set I'", we
have that

-1 /N-1
(Do W), =3 h(Z L9 <xl+1,y,>h— ¢1(xi. y)) WU)

1 i=1

=

~.
> I

—1

||
T

N
h(zhwl(xl,y, — h’ ’)
i=1

=

-1 N
= h(zh(pl(xlvy/)D Wz/)

1 i=1

.
I

N-1
R @1 (xi, ;) Dy Wi

||
Mz

i=1 j=I
N N-1 172 / N N—1 1/2
2 _ 2
< (Z h2 g1 (xi, v))| ) (Z h*| Dy Wij| ) :
i=1 j=1 i=1 j=I1
‘We thus deduce that
[(DF o1, W), | < (2.79)
Similarly,
+ -
By the Cauchy—Schwarz inequality we also have that
| Wn| < 1y W Ly 2m)- (2.81)

Now, by combining (2.79)—(2.81) and noting the elementary inequality

la1by + azbs + azbs| < (a1 +a;+a )l/z(b% +b3 "‘b%)l/z’

we arrive at the bound

(D} o1+ Do+ v, W), |

1/2
=< (1117, + 1213, + V17, o)

12 — 12 1/2
x (” D, W”Lz(.(z}g) + “Dy W”LZ(Q’!) + ”W”iz(gh)) /

)1/2

(||€01||L2(Qh + ||‘P2||L2(_Qh) + ||1/f||L2(_Qh ”W”W (_Q/l
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Dividing both sides by ||W || wi2h and taking the supremum over all W € Sg \ {0}
yields the following inequality:

[DF o1+ D o2+ [y 1 gny =< (10117, g, + N2l gy + 117 )
(2.82)
Inserting (2.82) into (2.78) we obtain the following bound on the global error in
terms of the truncation error of the scheme.

Lemma 2.24 The global error, e :== u — U, of the finite difference scheme (2.71),
(2.72) satisfies the bound

1 1/2
lellwyin = o (10117, 0n) + 19217, + W1 0m) 2 sy

where co = 16/17, and @1, 92 and  are defined by

1 [Yith/2 gy 3
o1(xi,yj) = — —(x;i —h/2,y)dy — D u(x;, yj), (2.84)
h 0x
yj—h/2

1 xi+h/2 ou
matiyi=g [ TSy b Diuty). (289
h Je—np 0y
xi+h/2 pyjth)2

1
V(xi, yj) = (cu)(xi, yj) — ﬁ/ (cu)(x,y)dxdy, (2.86)
Xi—=h/2 Jyj—h/2

withi=1,...,.Nand j=1,....N—1in 284);i=1,....N—1and j =
I,...,Nin(285);andi, j=1,...N —1in (2.86).

To complete the error analysis, it remains to bound ¢;, ¢» and . Using Taylor
series expansions it is easily seen that

o1 ( )|<h2(‘ Ou ‘83” ) 2.87)
O1(Xi, Yj = S5 Y 5 .
e 24\ [ 0x0y? e 11023 e

h? 3u 33u
P2(xi, y)) s—(‘ +H— ) (2.88)
02t 37) 24 \[ax2oyleq 19 le@)

h2 (| 82(cu) 3% (cu)
ol <5 el ) e
Vi = 352 c@ I 5 le@

which yield the required bounds on ”(m”Lz(-Qi‘)’ ||<p2||L2(Q¢,) and ||¢||L2(m). We
thus arrive at the following theorem. ’

Theorem 2.25 Let f € L1(£2), c € C2($2) with c(x, y) >0, (x,y) € 2, and sup-
pose that the corresponding weak solution of the boundary-value problem (2.55),
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(2.56) belongs to C3(2). Then,
17 5 )
flu — U“wzl(gh) = ﬁh Ms, (2.90)
where
= { ([l *[5])
3= Y
u u 2
+ 2 9v3
Xy lle@) W le@
9% (cu) 9% (cu) N
+ P + 7 .
GRS Felte) v le@)

Proof As 1/co = 17/16, by substituting (2.87)—(2.89) into the right-hand side of

(2.83) the estimate (2.90) immediately follows.

O

By comparing (2.90) with (2.68) we see that while the smoothness requirement
on the solution has been relaxed from u € C*(2) to u € C3(£2), second-order con-

vergence has been retained.

The hypothesis u € C3($2) can be further relaxed by using integral representa-

tions of @1, ¢» and ¥ instead of Taylor series expansions. We show how this is done
for ¢ and ¥; ¢, is handled analogously to ¢;. The argument is based on repeated
use the Newton—Leibniz formula

b
w(b) — w(a) =/ w’(x)dx.

In order to simplify the notation, let us write x;+1/2 :=x; £ h/2 and yj+1/2 :=
v;j £ h/2; we then have that

1 Xi Yji+1/2 au al/t
o1(x;,yj) = ﬁ/xq /y._1 g(xi—l/L)’) - g(xvyj) dxdy
j=1/2

/ /yj+1/2
Yj-1/2

|:—(xz 1/2, y)——(x y)}dxdy

1 Yj+1/2
sl e
Yj-1/2

1 y/+1/2
= _2

Vi-1/2

N
i) |

xl 12 92y

/ +1/2(
Yj-1/2

8u

o 2(§ y) dS) dX} dy

(x, 1) dn) dX} dy.
xdy

y32




140 2 Elliptic Boundary-Value Problems

We thus deduce by partial integration that

1 [Yi+12 Xi-1/2 92y
o1(xi, yj) = ﬁ/ |:x/x E(%‘ay)dg

X=X;

Yji-1/2 X=Xj_1
+/Xi 82“( ydx | d
x—(x, x
- 92 y y
1 Xi y aZu Y=Yj+1/2
+ —/ [y/ (x,m)dn
h* J yj 0xdy Y=Vj-172
yi+l2 92y,
—f i (x,y)dy]dx
Yi—1/2 xoy
1 /}'j+1/2|:/xi—l/2 0%u
= (x —xi—1) 7= (x, y)dx
h? Yj-1/2 Xi—1 dx?
Xi 8214
—|—/ (x —x,-)—z(x,y)dx] dy
Xi—1/2 ox
1/ [/yj ( )2 ey
-5 Yy —=Yj—12) —— X, y)dy
h? Xi—1 LJyj—172 = dxdy

Vj+1/2 9%u
+ -y ,y)dy |dx.
fy, O y]+1/z)3xay(x ) y} X

We define the piecewise quadratic functions

1 2 .

7 —xi—1)” ifx € [xi—1, xi—172],
1 2 .

5 (x —x;) if x € [xi—1/2, xi],

Ai(X)Z{

%(y —yjo1)? ifyelyj—i2, vl

Bj(y) = .
/ Ty —yjr12)? iy ey vl

and note that A; and B; are continuous functions of their respective arguments;
furthermore,

Ai(xi—1)=Ai(x;) =0 and B;(yj-12) = Bj(yj+12) =0.

Integration by parts then yields

1 Yj+1/2 N 92u
‘Pl(xiayj):ﬁ/ [/ A,-(X)—z(x,y)dx}dy
y Xi—1 x

j=1/2 9

1 X ij+1/2 B/( ) azu ( )d q
R . X, X
h? J L)y i xdy e

j=1/2
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1 Yi+1/2 33u
=—ﬁ/ |:/ A(x) 3(x y)dx]dy
Yi-1/2 Xi—1

1 Xi Yj+1/2 33
+h—2/x”[/_ Biy 52 3y 5 (%, y)dy:|dx. (2.91)

Yj-1/2

Now
15 15
|Ai ()] < gh , x€lxi-1,x] and |Bj(y)|=< §h , YELj—172,Yj+172],

and therefore,

Yji+1/2 33
o1, y7)] < / / i1 y)‘dxdy
Xi—1YYj—1/2
1 i yi+12] 83y
+—/ / ——(x,y)|dxdy.
8 Xi—1Jyj-1/2 8x3y2
Consequently,
AN ER Pu |?
I o < ( ‘— ) (2.92)
LZ(Q) 32 Bx L2(2) 8x3y2 Ly(2)
Analogously,
33u Pu ||?
Il o < (‘ ‘— ) (2.93)
La@h =3 L@ 19320y 1,0

In order to estimate i, we note that

Xi+1/2 [Yj+1/2
Ip(xlay])_ h2/ / </ —(S )’)ds
Xi—172 YYyj-12 X
yj YiorYi 92w
+/ (x t)dt+/ / (s,t)dsdt) dxdy
x Jy 0xdy

1 Xit1/2  fYj+1/2 92w
2 ,'(x)ﬁ(x,y)dxdy
Xi—1/2 YYyj-172 X

1 [Xi+12 [Yi+1/2
h2/ / B 2<x ¥ dv dy
Xi—1/2 Yji—-1/2

1 /‘x1+1/2 Yj+1/2 (/ /yj
+3
h Xi—172 YYj-1/2 X

82
(s,t)ds dt) dxdy,
dxdy
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where w(x, y) = c(x, y)u(x, y) and

i) = 3 —xic)?ifx € xioig, xil,
Yoo —xip1p)? ifx e [xp, xiq 0l

1 Xig12 [Yj+1)2
W] = 5 / /
Xi—12 YYyj-12
/X1+1/2 /‘Y/+1/2
Xi—12 YYj-12
Xiv1/2 [Yj+1)2
+2 / /
Xi—12 JYyj-1)2

so that, with w := cu, we have

Hence,

92w
9x2

(x,y)|dxdy

82
—— &)

82
Y ldxdy),
dx0dy

3w
dxady

dxdy

32w |?
ay2

3h4 2
W2 < (H ‘ ) (2.94)
Lah) = 6 Lz(-Q) Ly(@) Ly(@)

By substituting (2.92)—(2.94) into the right-hand side of (2.83) and noting that
1/co = 16/17, we obtain the following result.

Theorem 2.26 Let f € Ly(82), c € M(WZZ(Q)), with c¢(x,y) > 0 for all (x,y) in
2, and suppose that the corresponding weak solution of the boundary-value prob-
lem (2.55), (2.56) belongs to W23 )N W21 (£2). Then,

= Ullys oy < CHlullya o, (2.95)

where C is a positive constant (computable from (2.83) and (2.92)-(2.94)), inde-
pendent of h and u.

We note that, by the analogue of Lemma 1.46 on a Lipschitz domain, M (W22 (£2))
C WZZ(SZ), and therefore, by Sobolev embedding c € M (W%(.Q)) is a continuous
function with well-defined values at the mesh-points.

It can be verified by numerical experiments that the error bound (2.95) is best
possible in the sense that further weakening of the regularity hypothesis on « leads
to a loss of second-order convergence. Error bounds of the type (2.95), where the
highest possible order of convergence is attained under the weakest hypothesis on
the smoothness of the solution, are called optimal or compatible with the smoothness
of the solution. Thus, for example, (2.95) is an optimal error bound for the difference
scheme (2.71), (2.72), but (2.90) is not. At this point it does not concern us whether
the smoothness requirements on the coefficients in the equation are the weakest
possible: that issue will be addressed later, in our discussion of optimal error bounds
under minimal smoothness hypotheses on the coefficients and the source term f.
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We shall now explore the convergence rate of the finite difference scheme in the
norm || - || W) (@h) under even weaker regularity hypotheses on the solution, resulting

in a loss of second-order convergence established above for u € W23 )N ch/Zl (£2).
Suppose, for example, that u € W22(.Q) N W21 (£2). From (2.91), by noting that

1 1
|A§(x)|§§h, x €[xi—1,x;] and |B§-(y)|§§h, yelyj-1/2. yj+1/2].

we have that

Lo fr [y 9%
|<P1(Xi,yj)| =< ﬂ/ﬂ_] /y,,-_l/z @(x,y) dx dy
1[5 yivin] 52y
+E - /;jl/z 8xay(x,y) dxdy.
Consequently,
2 W2 (] 02%u|? 3%u |?
Worlion = 7(‘ 92| 1,0 ‘ dxdy L2<9>>' (296
Analogously,
h2 (| 8%u |? 3%u |?
loet i = 5 (| 55 o | Lm)’ 2.97)

From (2.83), (2.96), (2.97) and (2.94), under the assumptions that c € M(WZZ(Q)),
¢>0on 2 and u € W2(£2) N W) (£2), we deduce that:

llw — U”Wzl(.Qh) = Ch”u”sz(.Q)’ (2.98)
where C is a positive constant, independent of 4 and u.

Application of Function Space Interpolation When u € W5(£2),2 <s <3, an
error bound can be obtained from (2.95) and (2.98) by function space interpolation.
For the sake of simplicity we shall confine ourselves to Poisson’s equation (i.e.
c(x,y) =0). In that case the constant C featuring in (2.95) and (2.98) represents
an absolute constant (i.e. it is independent of c(x, y)). Let us consider the mapping
L :u+> u— U, with U understood as a linear function of f = —Au. Evidently, L
is a linear operator. It follows from (2.95) that the operator L, considered as a linear
mapping L : W5 (2) — W} (22"), is bounded and

2
”L”WS(Q)%WZI(Q/’) <Ch".

In the same way, it follows from (2.98) that the operator L, considered as a linear
mapping L : WZZ(Q) — W21 (£2"), is bounded and

”L”WZZ(Q)HWZI @n = Ch.
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By the results of Sect. 1.1.5, the operator L, considered as a linear mapping
L: (W;(2), W3(2))a,q — (W, (£2M), W) (£2"))g,4, is also bounded and, thanks
to (1.8),

2\1-0 0 2-0
L1 (w3 (), w2 (290, W (@) Wi (205, = (CH7) 7 (Ch)’ = Ch™™".

Furthermore,
1(oh 1ol 1ol
(W (27), W2 (2"))g,, = W2 (27),
(W3(2), W3 (), , = W, % (2).
Thus we obtain the following error bound:
2-6
”M_U”Wzl(gh)fch ||M||W23—6(_Q), 0<6<1.

By writing 3 — 6 = s here and supplementing the resulting bounds with the ones
corresponding to the limiting cases s =2 and s = 3, we deduce that

e = Ullyyom < CH " ullws @), 2<s <3,

where C is a positive real number, independent of 4 and u.

In the next section we shall show how the tedious use of integral representa-
tion theorems can be avoided in the error analysis of finite difference methods by
appealing to the Bramble—Hilbert lemma and its variants.

2.3 Convergence Analysis on Uniform Meshes

In the previous section we derived an optimal bound on the global error between the
unique weak solution u# to a homogeneous Dirichlet boundary-value problem for the
generalized Poisson equation and its finite difference approximation U, under the
hypothesis that u € W5 (£2) N Wzl (£2), s € [2,3]. We used integral representations
for s = 2, 3 in conjunction with function space interpolation for s € (2, 3). Here we
shall consider the same problem by using a different technique; our main tool will
be the Bramble—Hilbert lemma.

2.3.1 The Bramble—Hilbert Lemma

We begin by stating the Bramble—Hilbert lemma in its simplest form, in the case
of integer-order Sobolev spaces (cf. [20]). We shall then illustrate its use in the
error analysis of simple discretization methods and describe its generalizations to
fractional-order and anisotropic Sobolev spaces. We shall also formulate a multilin-
ear version of the Bramble—Hilbert lemma.
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Theorem 2.27 (Bramble-Hilbert Lemma) Let 2 C R” be a Lipschitz domain and,
for a positive integer m and a real number p € [1, o], let n be a bounded linear
functional on the Sobolev space Wl’," (82) such that

Pm—1 C Ker(n),

where Py,—1 denotes the set of all polynomials of degree m — 1 in n variables. Then,
there exists a positive real number C = C(m, p, n, §2) such that

[n)| < Clinlllvlwn@) Yve W, (£2).

The proof of this result will be presented below in a more general context. First,
however, we consider a series of examples that illustrate the application of Theo-
rem 2.27.

Example 2.6 In this example we apply the Bramble—Hilbert lemma to provide a
bound on the error in the numerical quadrature rule

1
/ v(t)dr ~ 2v(0),
-1

called the midpoint rule. We shall assume that v € W[%(—l, 1), 1 < p <oo. In order
to estimate the error committed, let us consider the linear functional

1
n(v) ::/ v(t)dr — 2v(0)
-1

defined on WI%(—I, 1). Clearly, P; C Ker(n) and
1
In()| 5/1|v(t)|dt+2|v(0)|
1 1 0 1
=/ |v(z)|dt+’/ / u’(s)dsdt+/ v(r)dt
-1 —1Jt -1

1 1
52f |v(t)’dt+2/ |v ()| dt
-1 —1

1—1
<2277 (Ivllz, 1.+ IVllL,1.1)

1—1 -1
<2-4 p||U||W11,(_1,1)52'4 "||U||W;(_1,1)~

From the Bramble—Hilbert lemma we deduce that there exists a positive constant
C = C(p) such that

In()| = CPlwz-1-
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In the next example we consider a similar analysis on the interval [—#, h]. Using
a scaling argument we shall reduce the problem to the one considered in Exam-
ple 2.6.

Example 2.7 Let us suppose that we are required to estimate the size of the error in
the midpoint rule on the interval [—#A, k], for h > O:

h
f u(x) dx ~ 2hu(0).
—h

To do so, we consider the linear functional

h
np(u) == / u(x)dx — 2hu(0),
—h

and introduce the following change of variable, in order to map [—h, k] on the
‘canonical interval’ [—1, 1]:

x=nht, tel[-1,1], v(t) :=u(x).
Then, with 7 as in the previous example,

nn () = hni(v) = hn(v).

Therefore, according to the final inequality in Example 2.6, and returning from the
interval [—1, 1] to [—h, k],

21
|nn(w)| < Chlvlwa1,1y = Ch-h™ P lulyz_p -
In particular, for p =2 we have that
| = ChPlulyz .

Using the error bound for the midpoint rule on the interval [—h, k] established
in this last example by means of the Bramble—Hilbert lemma it is possible to obtain
an optimal-order bound on the global error in a finite difference approximation of a
two-point boundary-value problem. We shall explain how this is done. In the next
section we shall then extend the technique to multiple space dimensions.

Let us consider the two-point boundary-value problem

—u’" = f(x), xe€(0,1),
u(0) =0, u(l) =0.

Given the nonuniform finite difference mesh 0 = xg < x; < --- < xy = 1 with spac-
ing hj :==x; —xj_1,i=1,...,N,wedefine h; := (hj41+h;)/2,i=1,...,N —1,
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and introduce the backward and forward divided difference operators

_ Vi—Vig Vier = V;
D V;:= T D;“Vi:T,

and the following inner products and norms:

N—-1
1/2
VW= > hiViWi, VIipyan = (V. V),
i=1
N
1/2
VoWl =Y hiViWi, IV on = (V. V1,

i=1

where 2" := {x1,...,xy—1}and S?_',’r :={x1,...,xy}. Let us consider the following
finite difference approximation of the two-point boundary-value problem:

-DiD U =T)f;, i=1,....,N—1,
Uy =0, Uy =0,
where Thl f denotes the mollification of f defined by

1 [ri+12
T,}fi:=—/ feode, i=1,...,N—1.
X,

hi i-1/2

In order to derive a bound on the global error e := u — U at the mesh-points, we
note that

—DiDiej=-D}ni, i=1,...,N—1,
eg=0, ey =0,
where

ni = Dyux;) —u'(xi—12)

1 hi 1

= 2_h,-|:/_hi u/<x,~_1/2 + EX) dx —2hiu/(x,'_1/2)j|
! ' +1 =1 N

= —ny. Xi_ —1), i=1,...,N,
2h,-nh’ u i—1/2 >

where 7y, is as in Example 2.7. We thus deduce that
3/2
il < Ch; |y

(xi—1,%;)°

where C is a positive constant, independent of /;. Consequently,

N N
2 B 12 2 131,712
||77||L2(91i)—21:hz|m| =C ;hlhim |W22(Xi—1,Xi)
= 1=
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N
2 4 12 2,4, 12
= A <
¢ th |u|W23(x,'_|,x,-) =C%h |”|W23(o,1)’
i=1

where & = max; h;. We complete the error analysis by showing that the quantity
||Dx_e||L2(Qi) can be bounded in terms of ”'7”Lz(ﬂf’r)' Indeed, by summation by
parts and using the Cauchy—Schwarz inequality we obtain

” Dx_e”iz(gfr) = (—D;‘D;e, e)h = (_D;’?» e)h

= (1. D], < Inll ot Dx_e”Lz(.oﬁ)'

Hence,

I Dx_e”Lz(.Qb =l @h),

and therefore
— - 2
|u — U|W21(Q”) =Dy (- Ly@hy = Ch |“|W23(0,1)7

where C is a positive constant, independent of # and u. We note that we did not have
to impose any regularity requirements on the nonuniform mesh to prove this error
bound; in the next section, we shall develop a similar analysis in two dimensions.

First, however, we formulate a generalization of the Bramble—Hilbert lemma to
Sobolev spaces of any positive (not necessarily integer) order.

Theorem 2.28 Let 2 C R” be a Lipschitz domain and, for real numbers s > 0 and
p € [1, 00l, let n be a bounded linear functional on the Sobolev space W; (£2) such
that, by writing s = m + o with m a nonnegative integer and 0 <o <1,

P C Ker(n).
Then, there exists a positive real number C = C (s, p, n, §2) such that
[n)| < Clnlllvlws ) Vv e Wh(2).

Proof This result is a simple consequence of Theorem 1.13 with Uy = L ,(£2),
Ur =Wy (82), So(u) = llullL, @), S1(u) = llullws ). S) = [n(u)], by noting that,
according to the Theorem 1.36, W[S,(.Q) is compactly embedded in L ,(§2) for any
s >0. d

One can apply this result to the midpoint rule to deduce, in the same manner as

in the integer-order case considered earlier, that the linear functional 5 defined on
Wi (=1,1),1/p <5 <2,1 < p<oo,by

1
n() = / v(t)dr — 2v(0)
-1



2.3 Convergence Analysis on Uniform Meshes 149

satisfies the bound

[n()] = Clvlwy-1.1),

for any v in W,S,(.Q), 1/p <s <2,1 < p <oo. Thus in particular, with p =2, we
obtain the following bound on the global error in the finite difference approximation
of the two-point boundary-value problem considered:

/
|l/l — U|W21(.Qh) < Ch&"’l |W2S(0,1)1

where h = max; h;, provided that u € WZSH(O, 1) (whereby u’ € W5(0, 1)), 1/2 <
s < 2. In the next section we extend this result to Poisson’s equation on the unit
square. First we shall however formulate a generalization of the Bramble—Hilbert
lemma to anisotropic Sobolev spaces of the type W[‘;‘ (£2).

Let A C R’} be a regular set of nonnegative real multi-indices (cf. Sect. 1.5). We
denote the convex hull in R” of the set A by «(A). Let dgx (A) be the part of the
boundary of k (A) that has empty intersection with the co-ordinate hyperplanes, and
let Ay = AN dgk(A). Let B be a nonempty subset of Ay such that B U {0} is a
regular set of multi-indices, and define

v(B):={peN} :9xf =0 Va e B}.

Let Pp denote the set of all polynomials in n variables of the form

P(x) = Z pax’.

aev(B)

Theorem 2.29 Suppose that §2 is a Lipschitz domain in R" and let the sets A and
B of real nonnegative multi-indices satisfy the conditions formulated in the previous
paragraph. Then, there exists a positive real number C = C(A, B, p,n, §2) such
that

inf |lv—P <C v Yo e WA(0).
Anf v =Pl = D lap A(2)

aeB

Moreover, if n1 is a bounded linear functional on W[‘;\ (82), with norm ||n||, such that
Pp C Ker(n),

then

In@)| <Clnll Y lap Yve WHS2).

aeB

Proof This result is a simple consequence of Theorem 1.13 with Uy = L ,(£2),U; =
W($2), So(w) = lullz, (@),

S1w) = lullL,2) + D Wap:

aeB
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and S(u) = |n(u)|, and noting that W[‘;‘ (£2), equipped with the norm §7(-) is com-
pactly embedded in L, (£2). O

As a further generalization, we state the following multilinear version of the
Bramble-Hilbert lemma: this will be used extensively in the bilinear case through-
out the book.

Lemma 2.30 Suppose that Ay, By and $2; satisfy the same conditions in R,
k=1,...,m,as A, B and 2 did in the previous theorem. Let (vy,..., V) >
n(vi, ..., vy) be a bounded multilinear functional on the function space

Wl (1) X - X WHm(2y),

which vanishes whenever one of its entries has the form vy = x%, x € §2x, a € v(By).
Then, there exists a real number

CZC(AlvBls pls Qlanla-"aAm»Bma pmvgmsnm)

such that

m
1o <Cll ] D2 ke

k=1waeBy

for every (vi,...,vy) in W;]l (£2)) x---x W;,;"(Qm).

When m = 2, this result will be referred to as the bilinear version of the Bramble—
Hilbert lemma. In the case of standard, integer-order isotropic Sobolev spaces, the
bilinear version of the Bramble—Hilbert lemma can be found in Ciarlet [26], The-
orem 4.2.5. In the general case the proof is analogous, and is once again a simple
consequence of Theorem 2.29.

2.3.2 Optimal Error Bounds on Uniform Meshes

In this section we shall use the Bramble—Hilbert lemma to derive an optimal bound
on the global error of the finite difference (or, more precisely, finite volume) ap-
proximation (2.71), (2.72) of the homogeneous Dirichlet boundary-value problem
(2.55), (2.56) on a uniform mesh of size %; in the next section we shall extend this
analysis to nonuniform meshes. Thus, we consider the following finite difference
scheme:

(i, yj) e 2", (2.99)

—(Di Dy + DY DY) Uij +c(xi y)Uij = (Thllf)ij’

U=0 onl™h. (2.100)
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Let e := u — U denote the global error of the scheme; then, according to
Lemma 2.24,

1/2
||e||W2] (_Qh) — (||§01||L2(9h) + ||¢2||L2(.Qh + ”wan(Qh ) / ’ (2101)

where @1, ¢, and ¢ are defined by

1 [Yit12 9y B
e1(x;, y)) = ;A /y,_l/z a(xi—lﬂ, v dy — Dyu(x;, yj),

1 [Xi+1/2 9y B
watiyi=g [ Se sy = DU ).
xi—ip 9V

Xi41/2 [Yj+1/2
Y (xi, yj) = (cu)(xi, yj) — hz,/ / (cu)(x, y)dxdy,
Xi—172 YYyj-12
with x;t10 =x; £ h/2and yj110 =y; £ h/2.

We shall use the Bramble—Hilbert lemma to estimate ¢, ¢ and v in terms of
appropriate powers of the discretization parameter 4 and suitable Sobolev semi-
norms of the analytical solution u. We begin by considering ¢;. Let us introduce the
change of variables

. .1 - -
X =Xxi—1/2 +Xh, SXSE y=y;+yh, <y=

l\)l'—‘

and define 9(%, §) := h 2% (x, y). Then,

L. .
where
172 1/2
@1 (D) := / / [9(0, 7) — ¥(%, 0)] d¥ d5.
—12J-1)2
Thanks to the trace theorem (Theorem 1.42),

|51@)] < Collbllyy gy 5> 1/2,

~ 11 11
K={—==z)x{—x%2)
(33)(=53)

and Cy; = C(s) is a positive constant. Thus ¢; is a bounded linear functional (of the
argument v) on W;(IZ) fors > 1/2.

Moreover, ¢; = 0 when v(X,y) = )?kal, k,l € {0,1}. According to Theo-
rem 2.28, there exists a positive constant C = C(s) such that

where

|61@D)| < Clolyyz). 1/2<s52.
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Hence, by defining
Kij = (xi—1/2, Xi+172) X (Vj—1/2, ¥j+1/2)

and returning from X and y to the original variables x and y, we deduce that

3
|61(0)| < ct |2 . 12<s<2,
dx W3 (Kij)
so that
8
o1 (i, yj)| < ch 1|22 L 12<s<2.
3% lws (ki)

By noting that the Sobolev seminorm on the unit square is superadditive on the
family {K;;} of mutually disjoint Lebesgue-measurable subsets K;; of £2, i.e. for
w € W3 (£2) one has

N—1N-1 1/2
2
(Z > |w|W§'(K,«j)> = whys N1 k)

im1 j:] i,j=1
it follows with w = du/dx that

u

, 1/2<s<2, (2.102)
0x

leillz,@m < Ch’*
! Wi

where C is a positive constant, dependent only on s. Analogously,

ou

. 12<s<2. (2.103)
dy

Wy (82)

lp2llz,@n) < CR

To complete the error analysis it remains to estimate v (x;, y;). For this purpose
we shall write w := cu and note that

1 Xi+1/2  [Yj+1/2
w(xi,yj):w(xi,yj)—ﬁ/ w(x,y)dxdy.
X,

i-172 Jyj-12

Let us also consider the following change of variables:
x=x; +xh, -—
and define w(x, y) := w(x, y). Then,

Y (xi,yj) = V@),

where

~ 1/2 1/2
I/f(zb):zw(o,O)—/ / w(x, y)dxdy.

12J-1)2
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By Sobolev’s embedding theorem 1} is a bounded linear functional (of w) on W2s (IZ )
fors > 1, where, as before, K := (—1/2,1/2) x (—1/2, 1/2). Furthermore, ¥ () =
0 whenever & = &% ﬁl with k, [ € {0, 1}. Thus, by the Bramble-Hilbert lemma,

¥ (@) < Cldlyyz), 1<s5=2,

and consequently, after returning from the (x, ¥) co-ordinate system to the original
variables x and y, we obtain the bound

[ iy < CR  Hwlwg k), 1<s<2,
and finally, after squaring and summing overi, j=1,...,N — 1,

¥, @m < Ch lculwy @), 1<s=2. (2.104)

Thus, by assuming that the weak solution u € W5 (£2) N Wzl (£2) and that ¢ €
M(WE(Q)), for 1 < s < 2, after substituting (2.102), (2.103) and (2.104) into
(2.101), we arrive at the following bound on the global error:

ou

0x

u
wi) 19y

= Ullya SChS<

+ llellmows @) ||M||Wg(9)),
W5(2)

where C is a positive constant depending on s, but independent of 4; or, more

crudely, after bounding |8u/8x|W2s(_Q) + |8u/8y|W2s(_Q) by ||u||W§+|(_Q), and writing

s — 1 instead s, we obtain
-1
||M—U||W21(Qh)§ChS “’/‘HWE(Q)v 2<s<3.

This should be compared with the error bound derived in the previous section using
integral representations based on the Newton—Leibniz formula for s =2 and s =3
and by function space interpolation for 2 < s < 3.

2.4 Convergence Analysis on Nonuniform Meshes

Our objective in this section is to develop the error analysis of finite difference (or,
more precisely, finite volume) approximations on nonuniform meshes for the model
Poisson equation with homogeneous Dirichlet boundary condition:

—Au=f 1in$2, (2.105)

u=0 onl =0d%2, (2.106)

where £ :=(0,1) x (0, 1). When f € W, ! (£2), this boundary-value problem has
a unique weak solution u in Wzl (£2); furthermore, if f € W5 (£2) then u belongs to
WZH'Z(.Q), —1<s<1,s#+£1/2 (see, Theorem 2.8).
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As has already been indicated earlier, the key idea behind the construction of a
finite volume method for (2.105), (2.106) is to make use of the divergence form of
the differential operator A = V - V appearing in the equation —Au = f by inte-
grating both sides over mutually disjoint ‘cells’ K;; C £2, and use the divergence
theorem to convert integrals over the cells K;; into contour integrals along their
boundaries, which are then discretized by means of numerical quadrature rules. This
construction gives rise to a finite difference scheme whose right-hand side involves
the integral average of f over individual cells, the particular form of the difference
scheme being dependent on the shapes of the cells and the numerical quadrature
formula used. For example, if £2 has been partitioned by a uniform square mesh of
mesh-size &, then the resulting scheme coincides with (2.71), (2.72) (with ¢ = 0).

2.4.1 Cartesian-Product Nonuniform Meshes

We begin by considering Cartesian-product nonuniform meshes. For the purposes
of the error analysis it is helpful to reformulate the finite volume scheme as a
Petrov—Galerkin finite element method based on bilinear or piecewise linear trial
functions on the underlying mesh and piecewise constant test functions on the dual
‘box mesh’. We shall prove that, as in the case of uniform meshes considered in the
previous section, the scheme is stable in the discrete W21 norm. This stability result
will then, similarly to the arguments in the previous section, lead to an optimal-order
error bound in the discrete W21 norm under minimal smoothness requirements on the
exact solution and without any additional assumptions on the spacing of the mesh.
In particular, the mesh is not required to be quasi-uniform (in a sense that will be
made precise). If quasi-uniformity is assumed, then an additional error bound holds,
in the discrete maximum norm. In the next section similar results will be derived for
a general one-parameter family of schemes.

The problem (2.105), (2.106) is approximated on the nonuniform mesh ﬁh,
which is the Cartesian product of the one-dimensional meshes

{xi, i=0,....M:x0=0, x; —xj—1 =hj, xp =1},
{vj, J=0,...,N:y0=0, yj —yj—1 =kj, yn = 1}.
We then define
@"=en2", rt=rna,
Qh :zﬁhm((o, 11x (0, 1)), ol :zﬁhm((o, 1) x (0, 11),
rl=2"n({0.yx o), rr=2"n(O1x{01).
To each mesh-point (x;, y;) in 2" we assign a cell

Kij = (xi—12, Xi+1/2) X (¥j—1/2, Yj+1/2),
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Fig. 2.4 Section of the
Cartesian-product

(@i, Yj+1)

nonuniform mesh ﬁh s

showing nine mesh-points
and the cell K;; associated
with the mesh-point (x;, ;) (@i_1,9;) (®i,5) (ir1,9;)

(zi,y5-1)
as shown in Fig. 2.4, where

1
Xi—1/2 = X; — Ehi, Xit1/2 =X + Ehi+1,

1 1
Yim12:=yj = ki V=it Sk

and we denote the edge-lengths of the cell K;; by

1 1
hy; ::E(hi+hi+l) and ijZE(kj‘f'kj—H)-

A simple calculation based on the definition of the fractional-order Sobolev
norm shows that yx;;, the characteristic function of the set (—h;y1/2,h;/2) X
(—kj+1/2,k;/2), belongs to W7 (R?) for all T < 1/2. Assuming that f belongs
to W5 (£2) for some s > —1/2, and extending f from £2 onto R? by preserving its
Sobolev class, we deduce from Theorem 1.69 that the convolution x;; * f is a con-
tinuous function on R? (whose values on £2" are independent of the particular form
of the extension). Convolution of (2.105) with x;; then yields

1 ou 1
- . —ds = ———(Xij LY 2.107
meas Kj; /BK” o, 5= ——d K, (Xij * f)(xi, yj) ( )

where v denotes the unit outward normal vector to dK;.
We remark that if f is a locally integrable function on 2 then, similarly as in the
case of uniform meshes considered earlier, the right-hand side of (2.107) is simply

1 Xi+1/2 fYj+1/2

hik; Jx

f(x,y)dxdy.

i-1/2 ji—1/2

(Th“f)ij =

Let S” signify the set of all real-valued continuous piecewise bilinear functions
defined on the rectangular partition of £2 induced by §h, and let S(')l be the subset of
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S" consisting of those functions that vanish on I". Motivated by the form of (2.107),
we define the finite volume approximation of u as U € Sé’ satisfying

1 U 1
— —d = — .. i s . f B . Qh. 2.108
h,k, ‘/Q;Kij v S h,k, (le * f)(xl yj) or (x, yj) € ( )

First, we shall prove that this method is stable by proceeding in the same way as in
the case of uniform meshes considered in the previous section. To this end, we shall

rewrite (2.108) as a finite difference scheme on ﬁh by using the averaging operator
WUy defined by

1
wyVij = ﬁ(hivi—l,j +6h; Vij +hiv1Vit1,)) (2.109)
1

and the divided differences

Vij = Vi1,j
hi

Vig1,j — Vij

Dx_vl] = hi ’

and DjV,-j =

with analogous definitions for wy, Dy_ and D;r. With these notational conventions,

U _ _
—/ o ds= —hi%; (DY Dy juy + DY Dy i) Ui (2.110)
3K,‘j

By inserting (2.110) into (2.108), the finite volume method (2.108) can be restated
as the finite difference scheme

—(DF Dy + DY Dy )U =T, f in 2", (2.111)

U=0 onl™", (2.112)

where

1
(T, f); = = O x PGy y))-
i

We begin the analysis of the scheme (2.111), (2.112) by investigating its stability
in the discrete Wz1 norm, || - ||W21(Qh)» defined by

)1/2

’

- 2 2
IV llwsan = (V13 on + Vg

where || - [, (o) s the discrete Ly norm on the linear space of real-valued mesh-
functions defined on £2":

M—-1N-1

1/2
IVilyn = (V20 (VoWoe= D03 ik Vi Wiy,
i=1 j=1
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and | - |W21 @h is the discrete W21 seminorm defined by

— 2 2 1/2
|V|W2‘(Qh) = (HDx V”Lz(gg) + ” Dy VHLz(Qj?)) ! ’

with

=

M N-1
VI, n =V VI (VW=D % hik; Vi Wi,
i=1j

M—1

Mz

V17, = (V. VI, (V. W]y hik Vi; Wij.

._
I
=

i=

J

The associated discrete W, ! norm is then defined by

Vo gni= sup o
RPN — 7
W@ e S0} ”W”W Ll

Lemma 2.31 Suppose that V is a mesh-function defined on $2},.

@ IfV=0onT", then

1
(Vs V1y 2 SIVIZ g (2.113)

(b) If V=0o0n I}, then

1
sV, Ve 2 SIVIE, - (2.114)

Proof We shall only prove inequality (2.113), the proof of (2.114) being analogous.
Let us assume for a moment that j is fixed, 1 < j < N. Then,

M—1 =

D hi(uaVipVig = Y (hiVie1,jVij + 60 Vi3 + hit1 Vig1,;Vij)

i=1 i=1

0

1 M—1 1 M 1M—2
z g(Z ShiVij =32 hiVii =5 2. hi+1V5)
i=1 i=2 i=0
1M—l
> E Z hle%
i=1

We then multiply this by k; and sum through the index j € {1, ..., N} to deduce the
desired inequality. g
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We shall also require the following discrete analogue of the Friedrichs inequality
on Cartesian-product nonuniform meshes.

Lemma 2.32 Suppose that V is a mesh-function defined on 2, such that V.= 0 on
Iy,. Then,

3
V|2 (2.115)

”V”W/(Qh)_'z WG(th

Proof Let V be a mesh-function defined on 2, such that V =0 on I7},. Then, the
expression

M—-1N-1

VI om =D D hik; V]

i=1 j=1
can be bounded as follows:

M IN-1 M IN—-1

VI, @n = Z > hik; ,,+ hik; V2

i=1 j=1 i=1 j=1

I
N1 —
D
b
=t
2
]
31
)
N—
]
:‘
2
>
=
=~
~.
)
N—

IA

+
N =
/—\

E
=

e

F
\P

AN

:

(o

j=1 n=1

IA

Lo 2 o2 1
5(” D V”Lz(gg) +D; V||L2(:2§z)) - §|V|€Vz' @h:

Adding |V |? to both sides completes the proof of the lemma. O

W(Qh

By using this discrete Friedrichs inequality we shall now prove that the finite
difference scheme is stable; the key to the proof is the following result.
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Theorem 2.33 Let L"V := —(D;f Dy puy + Dy Dy (1,)V. Then,
h
IVl @ <3||L v||W2_1(Qh) (2.116)

for any mesh-function V defined on ﬁh and such that V. =0 on I'".

Proof By taking the (-, -), inner product of L"V with V we obtain
(~(D DLV, V), + (<D Dy ) V. V), = (L4V. V),
By performing summations by parts in the two terms on the left-hand side we get
- - - - h
(DyuyV. DV +(Dy V. Dy V] = (L"V, V),

Since D;” commutes with py and D} commutes with ji, we can apply (2.113) and
(2.114) to obtain

1 2 o
E(”Dx VHLZ(Q)’}) + ”Dy V”Lz(-Q;')) = (LhV, V)h'

By recalling (2.115) and the definition of | - we get (2.116). Il

” W;l (oM
Theorem 2.33 now implies the stability of the scheme.

Theorem 2.34 For any f € W5(£2), s > —1/2, the scheme (2.108) (or, equiva-
lently, (2.111), (2.112)) has a unique solution U. Moreover,

1T Ny @ny = 3|7, 7| wyl(@h:

Having proved stability, we are now ready to embark on the error analysis of
the scheme. We shall derive an optimal-order error bound for the finite difference
method (2.111), (2.112), which can also be seen as a superconvergence result for
the finite volume method (2.108) considered as a Petrov—Galerkin finite element
method, on a family of Cartesian-product nonuniform meshes. By superconvergence
we mean that O(h?) convergence of the error between u and its continuous piece-
wise bilinear approximation U is observed in the discrete W21 norm while only O(h)
convergence will be seen if u — U is measured in the norm of the Sobolev space
WZl (£2). The result will be shown to hold without any additional assumptions on the
spacing of the mesh: in particular the mesh is not required to be quasi-uniform (the
definition of quasi-uniform mesh will be given in the statement of Theorem 2.38).

Theorem 2.35 Suppose that u € W' (2) N W) (), 1/2 < s <2. Then,
= Ul ny < CH*lulysei g (2.117)

where h =max; j(h;, k), and C = C(s) is a positive constant independent of u and
the discretization parameters.
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In the proof of Theorem 2.35 we shall make use of anisotropic Sobolev spaces on
rectangular subdomains of R2. For @ = (a, b) x (c,d) and a pair (r, s) of nonneg-
ative real numbers, we denote by W2r’s (w) the anisotropic Sobolev space consisting
of all functions u € L (w) such that

12
|“|W’°(w) (/ lu., y)|Wf<ab)dy) <00,

b ) 1/2
|”|W§*“(a}) = ([a \u(x, ')|W§(c,d) dx) < 00.

The linear space Wzr’s (w) is a Banach space equipped with the norm

)1/2

2
||u||er(w) —(||M||L2(w)+|“| Zr() )+| ul é)v()

For s > 0, Wé” (w) coincides with the standard (isotropic) Sobolev space Wg (w),
and the norm | - ||W§'-5(w) is equivalent to the Sobolev norm || - ||W§(w) (cf. Sect. 18
of Besov, II’in and Nikol’skif [13]).

Proof of Theorem 2.35 Let us define the global error as e := u — U. Then, by apply-
ing the difference operator L" defined in Theorem 2.33 to e and noting the definition
of the finite difference scheme, we deduce that

h 11 0%u I | 9%u
L% T, 8__DxDxMy” + Th 8——DD/1,,C
However,
13 u Yj+1/2
' — —(x:+1/2 y) — —(x, 12, y) |d
dx? ki Jyiip
:D;r<T_1a_u> ,
ox ij
where
1 Yi+1/2
(T_Olw)ij = F/. w(x;_1/2,y)dy.
J JYi-1/2
Consequently,
L"e=D}n +Dfn inQ",
(2.118)
e=0 on Fh,
where

u -~ ou
= Tf”—x—Dx pytt, M —Tloa—D [l
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and T is defined analogously to T°! above. By applying Theorem 2.33 to the finite
difference equations (2.118) we have that

It remains to bound the right-hand side of this inequality. We observe to this end
that, for any mesh-function V defined on ﬁh and vanishing on rt,

—(DFm + Dfna, V), = (m, Dy V], + (m2, Dy V] .

By noting the definition of the norm | - we thus deduce that

” szl Ie0)
[ D+ DIy ny < Imillycem + Imall e
Hence,

= Ullya oy < 3(ImllLyepy + 120l Lyl (2.119)

It remains to bound the right-hand side of (2.119). We only consider the term in-
volving n1; the norm of 1, is bounded analogously.
To this end, we first define

(yu)(x, y;) = [kjux,yj—1) 4+ 6kjux,y;) +kjrux, yir)].

1
8k
and for fixed x, 0 <x <1, we let I,w(x, -) denote the univariate continuous piece-

L . —h
wise linear interpolant of w(x, -) on the mesh £2. Then,

1 Yj+1/2
wme»:—/ (Lw)(x, y)dy,
y

JJyji-12

and therefore,

Xi a
(uyu»j-—<uyu»444==‘/j ()3, ) dx
xi— 9X

X801 Yj+1/2
=/ o1 (Lyu)(x, y) dx dy
X,

i1 3xk' Yj-1/2
Yi+12 9
=—[ [ e ey
Yji—1/2

)J+1/2
:—/ / < >(x y)dxdy.
Yj—1/2

Thus we find that (n1);; can be expressed as

Yj+1/2 Ju
Mij = hk/ / [—(Xz 172, ) — ( x>(x,y)}dxd%
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By splitting 1 as the sum of 111 and 112, where

Yj+1/2 ou
(muvij == hk / / |:—(xz 1/2:Y) — (Iya)(x,y)}dxdy,
Y
12); ( ) — <1 a”)( ) ldxd
n2)ij hk / /, 1/2[— Xi—1/2,Y Yox x,y} xdy,

the task of estimating 7 is reduced to bounding 711 and n13.
Let us first consider 711. By introducing the change of variables

X=xi_12+Xh;, — y=yj+ykjy1, 0=<y<I,

and defining v(x, y) := h; g—ﬁ(x, y), we can write

nn(v)

kit
(7)11)1] hk

where
12 12
1 (5) :=f1/2f0 [350, ) — 5. 0)(1 — 5) — 35, 1)F] d dj.

Now 7711 can be regarded as a linear functional (with the argument v) defined on
W3 (K*), where s > 1/2 and

Thanks to the trace theorem (Theorem 1.42),

@] = Clollyg sy s> 1/2,
and therefore |71 (-)| is a bounded sublinear functional on W; (K~ *). Moreover, if
3(%, ) = k5, k, 1 € {0, 1}, then 711 (¥) = 0. By applying Theorem 1.9 with

Uy =Wy (K*), U= Lr(K*),

5 2 2 1/2
S=Inul, Si=(-1 WO (K +1-1, (K*)) , So= -1l gx:
and noting that for s > 0 the Sobolev space WS(K *) is compactly embedded in

Lz(lf*), we deduce that

- 1/2
[ @) = C01500 g0y + D002,
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for 1/2 < s <2. By defining Kl.; = (X1, %) X (¥j—1,Y), Ki’_j+1 = (xi_1, x;) X
(yj,¥j+1) and returning from the (X, y)—variables to the original (x,y) co-
ordinates, we thus have that

21,28 2 2(s+1) 2
i@ < c( Mk o i |du
2 i,j+1 2 l/+l
and therefore
2 +1 _
’(7111)"‘2<C< K |ou [ +7h’2s e 9 )
L] — . s _ 2 .
h’kj ax W;" (K i) 7‘éj dx Wy (Klj+])
Analogously,
2;+1 2 2s—17, . 2
}(mz),-,-|2sC( >y 2—” | nl g—” )
bt 19 twsy - Ky 10X Twy 0k

By noting the superadditivity of the Sobolev seminorm on a family of mutually
disjoint Lebesgue-measurable subsets of £2, we thus have that

du |? au|?
Imll% o _Ch2s< — ) (2.120)
La(sze) ax |y 0x |ys0(@)
where h = max; ;(h;, k). Analogously,
au|? au|?
In21, (@i = Chz*( = ) (2.121)
W lwpr@ 19y lwso)

By substituting (2.120) and (2.121) into (2.119) we thus obtain the desired error
bound

lu — U”Wzl(_Qh) < Chs|u|W§“(Q)’ 1/2<s<2.

That completes the proof of the theorem. g

On a quasi-uniform mesh, the finite volume method (2.108) can be shown to be
(almost) optimally accurate in the discrete maximum norm || - || ,;, defined by

IVlloon =" max_[V(x,)].
(x,y)e

We shall say that {ﬁh} is a family of quasi-uniform Cartesian-product meshes
on £2 = [0, 1] x [0, 1] if there exists a positive constant C, such that

h:=max(h;, k;) < C.min(h;, k).
L] L]
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Some auxiliary results are required to prove an error bound in the discrete maxi-
mum norm; these are formulated in the next two lemmas, the first of which states a
version of the inverse inequality (see, for example, Ciarlet [26], Theorem 3.2.6).

Lemma 2.36 Suppose that {§h} is a family of quasi-uniform Cartesian-product
meshes on 2 = [0, 1] x [0, 1], and let S" be the linear space of continuous piece-

wise bilinear polynomials defined on the partition of §2 induced by " Suppose
that 1 < q,r < oo. Then, there exists a positive constant C = C(Cy, q, 1), indepen-
dent of the discretization parameter h, such that

IV, < CAMMOCD=CII v o) VYV es

Proof Consider the rectangle Kl.; =L x) X (¥j-1,y), 1 <i <M, 1<j<
N, and the mapping (X, y) — (x, y) defined by
X =Xxi_1+Xh;, y=yj-1+Ykj, (2.122)

which maps the unit square K+ := (0, 1) onto K i Let us define

V(E§) = V(x, ),
where (x, y) is the image of (X, y) under the transformation (2.122). Now
IV, sy = ik~ IV L k)
and
IV, = kD YIIV L o)

Let 1?(12 T) denote the linear space of all bilinear polynomials defined on the
square K T:

P(K*):={(a+b¥)(c+dF):a,b,c,deR, 0<% <1}

Since P (IZ 1) is finite-dimensional (in fact, the dimension of P(I? T) is 4), the

. = . - i ¢+ i -
norms || ||Lq(K+) and || ||L"(K+) are equivalent on P(K ™). Hence, there is a con
stant Co = Cyp(q, r) such that

IV, &+ = Coll Vil g+,
forall V in P(K). Combining this with the two previous equalities yields
”V”Lq(Ki;) < C()(h,'kj)(l/q)—(l/r) ”V”Lr(K,»;)’

_ COCmaX(O, 2/r)—2/q))

and thus, by defining C , we get

IVl ;) = CR O~ v, (2.123)

(K"
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Let us suppose that g = oo; then, there exist ig and jo, 1 <ip <M, 1 < jo <N,
such that

—2/r|

IVl Loo(@) = IV Las(&ij) < CtE IV ki) < C1E 2V L),

which is the required result in the case of ¢ = oo.
Let us suppose now that g < oco. It follows from (2.123) that

1/q
(Z VI, )> < C 0= W”(Z IVIL - )> : (2.124)

where the sums are taken over alli and j, 1 <i <M,1<j <N.

We shall consider three cases. When r < g, by noting that s (Zi’j aisj)l/ $
is monotonic decreasing on [1,00) when 0 < a;; < 1, we have, with a;; =
”V”Lr(K,.;)/”V”Lr(-Q)’ that

1/q 1/r
r
(vaum )= (X))
L]

When g < r < oo, Holder’s inequality for finite sums gives

1/q
(Z ||V||(I{ K- )) < (MN)(I/q) (1/r) (Z ”V”L - )>
i,j

L]

C.\ @D/ i
ol r
(%) (i)

L]

1/r

Finally, when r = oo, we have that

1/q C, 2/q
(Ea) =(8) mpics,

It remains to combine (2.124) with one of the three inequalities corresponding to
r<gq,q <r < oo and r = oo respectively to complete the proof. O

Lemma 2.37 Suppose that {§h} is a family of quasi-uniform Cartesian-product
meshes, and let Sg be the linear space of continuous piecewise bilinear polynomials

L. R —h . .
defined on the partition of 2 induced by §2° that vanish on I'". Then, there exists a
positive constant C, independent of the discretization parameter h, such that,

IVIlLo@) < Clloghl?IVV L2 VYV eSE.
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Proof By Sobolev’s embedding theorem on a Lipschitz domain D C R",

—1 _ o
oy " VPVl ) Vv e WD),

1/n+1/p—1
vz, o) < q(?)

where ¢ =np/(n + p), and w, :=27"/%/I"(n/2) is the surface area of the unit ball
in R" (see inequality (2.3.21) in Maz’ya [136]). Specifically, by taking n = 2 and
D =$2,

2 1/2+1/p—1 3
) 27Vl 2) Yve W) (),

q
vz, @) < CQ<?

with g =2p/(2+ p). Also, by the previous lemma,
IViiLai2) < CR™ PV @)
and, by an analogous argument to that in the proof of the previous lemma,

IVViiL, @) < CR™MM 24Dy V|, q).

for all V in Sg. Setting p = |logh|(> 1), for sufficiently small %, and combining
the last three inequalities, we obtain the required result. 0

—h, . . . . .
Theorem 2.38 Suppose that {2} is a family of quasi-uniform Cartesian-product
meshes, i.e. there exists a positive constant C,, such that

h =max(h;, k;) < C,min(h;, k;),
i,] LJ

and letu € Wy (2) N W) (£2), 1/2 <5 < 2. Then,
lu = Ulloo.n < Ch*[oghllul i1 g,

where C = C(s) is a positive constant depending on C,, but independent of u and
the discretization parameter h.

Proof Let I" Wzl(.Q) NC(R) — Sg denote the interpolation projector onto 86’
defined by (I"u)(x;, y;) = u(x;, y;) for all (x;, y;) € $2". Then,
e = Ulloon = |1"u = Ul = 1" = U] o

Thanks to Lemma 2.37,

IVilLw@) < Cloghl 2|V ey VYV €S5.
Also, the equivalence of the norms | - ||W21 @) and || - ||W21 (2 ON S,y implies that

IVIiwi@) = ClVIwi@n YV esh.
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Hence,
lu = Ulloon < Clloghl'2(lu = Ullyy g
and therefore Theorem 2.35 yields

lu = Ulloo,n < Ch* [oghl'Jutl i1 - 0

In the next section we extend the error analysis developed here to a more general
class of schemes.

2.4.2 An Alternative Scheme

Hitherto it was assumed that the trial space S” in the finite volume method (which
was subsequently rewritten as a finite difference scheme) consisted of continu-
ous piecewise bilinear functions on the rectangular partition of §2 induced by the

Cartesian-product mesh " One can construct an alternative method, based on
continuous piecewise linear trial functions on triangles; to this end, we consider a
triangulation of £2 obtained from the original rectangular partition by subdividing
each rectangle into two triangles by the diagonal of positive slope. Let S” denote
the set of all continuous piecewise linear functions on this triangulation, and let Sé’
be the subset of S” consisting of all those functions that vanish on I".

Similarly to (2.108), we define the finite volume approximation of u as U € Sg
satisfying

1 oU 1
- o = wx, K L yj) for (x oy e’ (2125
ﬁikj /3[(1.1, ov s hik./’ (le * f)(xz y,) or (x; yj) e ( )

This scheme resembles the finite volume method (2.108). Indeed, a simple calcula-
tion reveals that (2.125) can be rewritten as the finite difference scheme

—(DyD; +DfD;)U=T,'f ing" (2.126)
U=0 onl™ (2.127)

In fact, both (2.111), (2.112) and (2.126), (2.127) can be embedded in the following
one-parameter family of finite difference schemes:

—(DF Dy + DDy ) U =T f in 2", (2.128)
U=0 onl™, (2.129)
where 6 € [0, 1], and

1

" [0hiUi—1,j + (1 = 20)A;Uij + 0hiv1 Uiy ).
1

1lU;; =
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with /,Li defined analogously. The scheme (2.111), (2.112) (resp. (2.126), (2.127))
is obtained from (2.128), (2.129) with 6 = 1/8 (resp. 8 = 0). The rest of this section
is devoted to the analysis of the one-parameter family of schemes (2.126), (2.127).

By proceeding similarly as in the proofs of Lemmas 2.31, 2.32 and Theo-
rems 2.33 and 2.34 we arrive at the following set of results, whose proofs have
been omitted for the sake of brevity.

Lemma 2.39 Suppose that V is a mesh-function defined on ﬁh, and let 6 €
[0, 1/4).

(@) IfV=0on Fxh, then
(V. V], = A =40V, g
®) IfV=0on F;‘, then

LSV V], = A =40V, o

Theorem 2.40 Let L"V = —(D;FD;/L(; + D;LD; ,uf)C)V, and suppose that 6 €
[0, 1/4). Then,

3 h
||V||W21(.Qh) = 2(1 — 46) ”L V” Wz_'(.Qh)’
for any mesh-function V defined on Eh and such that V. =0 on I'".

Theorem 2.41 Suppose that 6 € [0, 1/4). For any f € W;(£2),s > —1/2, (2.128),
(2.129) has a unique solution U. Moreover,

3
1wy @ny = m” T, [ wy(2hy

The central result of this section is the following error bound for the finite differ-
ence scheme (2.128), (2.129).

Theorem 2.42 Suppose that u € W23(.Q) N Wzl (82), and let 6 € [0, 1/4). Then,
2
Il — U||W21(Qh) <Ch |M|W23(_Q)7

where h =max; j(h;, k;) and C = C(0) is a positive constant independent of u and
the discretization parameters.

Proof Let us define the global error as e := u — U. We then have that
— (D Dy 1 + DY Dy uf)e = D + D nf  in 2", (2.130)
e=0 onrIh, (2.131)
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where
and

as in the proof of Theorem 2.35, and
(€ij :=h; Dy DY Dy uij,  (Q2)ij :=k; Dy D Dy uj.

By applying Theorem 2.40 to (2.130), (2.131) we then deduce that

3
lellwym = m”DH?ﬁLDW w1 o

Consequently,

3
nw4wwmthTjﬁgmmhm@+Mﬁ@@w

3|1 —86]

Eﬁj@mmm@ﬁwmmmg (2.132)

The first two terms on the right-hand side have already been bounded in the proof
of Theorem 2.35; we showed there that

T <w<” u ) (2.133)
milg oh — .
o 0xlwee) 19X w3
and
ou ou
Im2ll,n <Ch? . P (2.134)
’ Yiwy? @) Ylw}o @)

It therefore remains to bound the norms of {1 and ¢,. We observe in passing that
for 6 = 1/8 the terms involving ¢; and ¢ are absent from (2.132).
To this end, let ¢; (x) (resp. ¥;(y)) denote the standard continuous piecewise

linear finite element basis function on §ﬁ (resp. 5?) such that ¢; (xx) = §;x (resp.
¥ (k) =8k); (£1)ij and (&2);; can then be rewritten as

Yji+1
CDij = ’hk f f wj(y)a oy 2(x y)dxdy,
Yj

1 Xi+1 ’3
(02)ij = ]hk f - ¢z( ) (x7y)dXdy-
Xi—1 Vj



170 2 Elliptic Boundary-Value Problems

Clearly,
110 Ly cop < CHY| 22 2.135)
LI, = o .
2( x) ax WSZ(Q)
and
5| 0u
1621l L,y = Ch™| == . (2.136)
: 90y lw2oq)
Inserting (2.133)—(2.136) in (2.132) we obtain the desired error bound. O

On a quasi-uniform mesh the scheme (2.128), (2.129) can be shown to be (al-
most) optimally accurate in the discrete maximum norm | - ||, for any 6 €
[0, 1/4), by proceeding analogously as in the case of 6 = 1/8.

Theorem 2.43 Suppose that {ﬁh} is a family of quasi-uniform meshes, 0 €
[0, 1/4), and let u € W3 (2) N W, (£2). Then,

= Ulloo < C@)R*1ogh|'2July3 ).

The proof of this result is analogous to that of Theorem 2.38.

2.4.3 The Rotated Discrete Laplacian

In the previous section we considered the analysis of a one-parameter family of
finite difference schemes, parametrized by 8. For 8 € [0, 1/4) we showed there that
the scheme is stable and we proved optimal-order error bounds in various norms.
A natural question is: what happens when 0 = 1/4? This section is devoted to the
analysis of the resulting discretization.

Let us consider the finite difference scheme (2.128), (2.129), with § = 1/4. For
the sake of notational simplicity we define

R 1
fxVij = 4_h(hi Vie1,j +2hi Vij + hit1Vigr ),
1
and fi, is defined analogously. In fact, by introducing
1
Ve Vij = E(Vij +Vio1,))
we can write

R 1
MxVij = ﬁ(hivxvij +hi+1VxVi+1,j)~
i
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Analogously, by letting
vy Vij = %(Vij +Viji-1)
we have that
ayVij = %j(kjvyvij +kjrvy Vi ).

In terms of this new notation, for 6§ = 1/4 the finite difference scheme (2.128),
(2.129) can be rewritten as follows:

—(DFD; iy + DY Dy ) U =T, f in 2", (2.137)
U=0 onl™. (2.138)

In particular, on a uniform mesh of size #, the resulting five-point finite difference
operator is given by

1
_W(Ui—l,j—l +Ui-1,j+1 + Uit1,j-1 + Uit1,j+1 — 4Uij)

and is usually referred to as the rotated discrete Laplace operator.

We begin by showing that the scheme (2.137), (2.138) is stable. A preliminary
result in this direction stated in the next lemma concerns the averaging operators
/l.)C7 Vx, lly and Vy~
Lemma 2.44 Suppose that V is a function defined on the mesh 2.

(@ IfVoj =Vmj=0for j=1,..., N, then

M N
(V. VI =Y hikjlve Vil
i=1 j=1

®) If Vio=Viy=0fori=1,..., M, then

M N
(AyV. V1= D hikjlvy Vil

i=1 j=1
Proof We shall prove (a); the proof of (b) is completely analogous. By noting the
definition of [, we have that

M-1 N
R 1
(1 V, V], = 1 Z ij[hi+1Vi+1,j + Vij(hig1 + hi) + ki Vie1,j] Vi

LN M-l M
ZZij|: (hi+l+hi)vi§+zzhivijvi—l,ji|

i=1 i=1
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(M~
=1 DN hikj(Vij + Vicr )
i=1j=1
and that completes the proof of (a). g
Lemma 2.45 Let L'V := —(D}f Dy i, + D} D} i)V . Then,
M N

(L"V. V), =33 hikj(|vy D5 Vi[> + [ D5 Vi )
i=1 j=1

for any mesh-function V defined on o such that V.=0on I'".

Proof This identity is a straightforward consequence of Lemma 2.44 by observing
that

(L"V.V), = (D5 ayV. Dy V] + (D V. Dy V]

y
= (AyDy V. D V], + (xDyV, Dy V],

where the first equality follows by summation by parts and the second by noting that
Dy commutes with fty and D7 commutes with [y . O

We deduce from Lemma 2.45 that

M N
> 2 hiki([oy D Vi |+ [ue D5 Vi [) = (LY. V),
i=1 j=1

for any function V defined on 2" such that V =0 on I'". Therefore, by applying
the Cauchy—Schwarz inequality on the right-hand side, noting that

1
Vij = veVij + Shi D Vij., (2.139)
and letting
Wij :==hiD Vij,
we deduce that, for any such mesh-function V,

M N ) 2
DD hikj(Jvy D Vi |+ v D5 Vi)
i=1 j=1

1
S HLhVHLz(Qh)(”va”LZ(Qh) + §||W||L2(Qh)) (2140)
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Now to complete the stability analysis of the finite difference scheme (2.137),
(2.138) it remains to relate the two norms in the brackets on the right-hand side
of (2.140) to the expression on the left. To do so, we state and prove two lemmas.

—h, . . . . .
Lemma 2.46 Suppose that {$2'} is a family of quasi-uniform meshes, i.e. there ex-
ists a positive constant C, such that

h =max(h;, k;) < C,min(h;, k;).
ij ij
Let V be a function defined on o such that V=0 on I'"; then,
M N 1/2
— 12
v VllLyan < 5 (1 +C )‘”(ZZhikj!vny Vij] ) :
i=1 j=1

Proof Let Z;; = v, V;j; then, because Z;o =0fori =1, ..., M, we have that

|Zij|* = (Z;knpyzm)z
<Xj: )(Zk D} Zin | )<Zk D} Zin|

fori=1,...,M—1and j=1,..., N. Hence,

1j
1Z113,ony < D D hikn| Dy Zin
1 n=1

S

. 1=j=N.

i
Similarly, since Z;y =0fori =1,..., M, we also have that

5 M—-1 N . I,
1ZIIZ om < D Y hikn| Dy Zin

i=1 n=j+1

) OSjSN_l'

By adding the last two inequalities we deduce that



174 2 Elliptic Boundary-Value Problems

Since h; < %hi(l + C,) it follows that

2

s

M-1 N
Zhikj|VxD;Vij
i=1 j=1

1
2
”‘)XV”Lz(Qh) S Z(l + C*)

and hence, by increasing the right-hand side of this inequality further by extending
the upper limit of the sum over i from M — 1 to M, we obtain the desired inequal-
ity. U

Our next result is concerned with bounding W;; :=h; D" V;;.

—h, . . . . .
Lemma 2.47 Suppose that {2} is a family of quasi-uniform meshes, i.e. there ex-
ists a positive constant C,. such that

h =max(h;, k;) < C,min(h;, k;).
i,j L]

Let V be a function defined on ﬁh such that V. =0 on I'" and let Wij =hiD_ Vij;
then,

M N ) 1/2
Wl < 2C*<Zzhikj|vny_Vij| ) :
i=1 j=1

Proof By noting that W;o =0 fori =1,..., M, we have that

J
Wij =Y (=T Wiy + Wino1)

n=1
fori=1,...,Mand j=1,..., N. Therefore,

J N
. . _ 2
(Wijl> <4 ) vy Winl> <4 ) vy Dy Via|™.
n=1 n=1
As h? < hh; and h; < Cyuky, for all i € {1,...,M} and all n € {1,..., N}, and
hZ;V:] j%kj < Nh < C,, we deduce that

2

’

M N
IWIL,qny S4CED 0D hikn|vy D Vi

i=1n=1

and hence the desired inequality upon renaming the index n into j. g
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By combining (2.139), (2.140) and Lemmas 2.46 and 2.47, we deduce that

M N ) 5
DD hikj(|vy Dy Vi |" o+ [ve D5 Vi)
i=1 j=1

M N 5 ) 1/2
sc||than(m)(Zzhik,»qunxvi,»r e >) .
i=1 j=1

This yields the inequality

M N 172
(Zzhikj(|vyD;Wj|2 + IVny‘Vijlz)> =CILV ]y 2141)
i=1 j=I

and thereby the difference scheme is stable in the discrete W21 norm defined by the
left-hand side of this inequality.

Remark 2.11 We note that stability has been proved in a weaker sense here, for
6 = 1/4, than in the previous section for 8 € [0, 1/4). Indeed, for 6 € [0, 1/4) we
deduce from Theorem 2.40 the stronger bound

M N 172
[Zzhikj(“)x_ Vi/’|2 + |Dv_ Vi./‘|2)i| = C(9)|| LhV” wyle2hy (2.142)
i=1 j=I

whose left-hand side is an upper bound on the left-hand side of (2.141).

Worse still, the stability of the scheme (2.137), (2.138) is not robust, in the
sense that when the homogeneous Dirichlet boundary condition is replaced by 1-
periodic boundary conditions in the two co-ordinate directions, on a uniform mesh
with spacing h = 1/(2M), M > 1, the resulting difference scheme is ill-posed for
any l-periodic f. To see this, first take f = 0 and note that, in addition to the
trivial constant solution (which is, incidentally, also a solution to the boundary-
value problem), the difference scheme has the oscillatory chequer-board-like solu-
tion Ui*j = (—=1)'*/. Thus if U is a solution of the difference scheme with f # 0
subject to 1-periodic boundary conditions in the two co-ordinate directions, then
U + aU* is also a solution, for any real number «. In other words, the solution is
not unique. In fact, the finite difference scheme (2.137), corresponding to the choice
of 0 = 1/4 in (2.128), with 1-periodic boundary condition, has infinitely many so-
lutions for any f. This is consistent with the fact that, with a 1-periodic boundary
condition, the expression appearing on the left-hand side of (2.142) has a nontriv-
ial kernel in the set of mesh-functions defined on a uniform mesh with spacing
h=1/(2M), M > 1, and is therefore only a seminorm in that case rather than a
norm; and it is also consistent with the fact that, with 6 € [0, 1/4), the stability con-
stant C(0) of the scheme (2.128), (2.129) in the discrete W21 (£2") norm, appearing
in (2.142), tends to +o0 as § — 1/4 — 0.
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2.5 Convergence Analysis in L, Norms

Hitherto, with the exception of various error bounds in the discrete maximum norm,
we have been concerned with the error analysis of finite difference schemes in mesh-
dependent analogues of Hilbertian Sobolev norms, i.e. discrete Sobolev norms that
are induced by inner products.

In this section we develop a framework for the error analysis of finite difference
schemes in mesh-dependent versions of the Sobolev and Bessel-potential norms W,
and H, respectively. For the sake of simplicity, we shall confine ourselves to finite
difference approximations of the homogeneous Dirichlet boundary-value problem
for Poisson’s equation on an open square §2, assuming that the weak solution of
the boundary-value problem belongs to Wg(.Q), 0<s<4,1< p < oo. We shall
make extensive use of the theory of discrete Fourier multipliers to investigate the
stability of the difference schemes considered, in conjunction with the Bramble—
Hilbert lemma in fractional-order Sobolev spaces to derive error bounds of optimal
order. The presentation in this section is based on the following sources: the journal
papers by Mokin [140] and Siili, Jovanovié¢, Ivanovi¢ [173] and the monograph of
Samarskii, Lazarov and Makarov [160].

2.5.1 Discrete Fourier Multipliers

In previous sections we relied on the use of energy estimates based on Hilbert space
techniques to show the stability of the finite difference schemes considered. In order
to extend these stability results to L, norms, p # 2, we require a new tool — discrete
Fourier multipliers. To this end, we shall state and prove below a discrete counter-
part of the Marcinkiewicz multiplier theorem. First, however, we shall introduce the
notion of discrete Fourier transform.

Suppose that N is a positive integer and # = 7/ N. We consider the mesh

R, =hZ" = {xeR" :x =hk, keZ”}
and the set of all 277 -periodic mesh-functions defined on Rj. We let
I'={-N+1,...,-1,0,..., N}

Then, any 27 -periodic function V defined on R} is completely determined by its
values on the ‘basic cell’

o =hI":= |hk ke I"}.

h

With each mesh-function V defined on " we associate its discrete Fourier trans-

form FV given by

(FV)(k) :=h" Z V(x)e ™k kel (2.143)

xewh



2.5 Convergence Analysis in L, Norms 177

In order to distinguish the discrete Fourier transform from its integral counterpart
F defined in Chap. 1 we have used the calligraphic letter F here instead of F.
Clearly, FV is a 2N-periodic function of its variables ki, ..., k;,, and 2N is the
minimum period; thus it suffices to consider FV on the basic cell I”. Hence our
choice of k € I"* in (2.143).

For x € " the following discrete Fourier inversion formula holds:

Z(}'V)(k)e”‘ k (2.144)

kel

Indeed, substituting (2.143) into the right-hand side of (2.144), we have that

Z 1x-k Z th(y)efzvk (21),, Z th(y) Zel(xf}')k.

kel yewh vea)h kel

(271 )"

However, for any x, y € »” we have that

otherwise,

Zel(x y)>k _ {(ZN) ifx:y,

kel

and hence (2.144), by noting that /" 2N)" = (27 )".
We can write (2.144) as V = F~! FV where, for a sequence a = {a(k)}rer, the
inverse discrete Fourier transform F~'a of a is defined by

Z (ke *,  x el

kel?

_1 .
(]: a)(x). (2 T

Assuming that V is a function defined on the mesh w”, we consider the trigono-
metric polynomial Ty given by

Ty(x) = Z(]—"V)(k)e”"k, x € (—m,m]". (2.145)

kel

1
2m)"
According to the discrete Fourier inversion formula,
Ty(x)=V(x) Vxeol;

in other words, Ty interpolates V over the mesh o”.

Next we introduce the space L p(a)h), 1 < p < 00, consisting all mesh-functions
V defined on w” such that, for some constant M, independent of the discretization
parameter 4,

1/p
Wl = (1 L lveol”) < u

xewh
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The following lemma establishes a useful relationship between the L, norm of
a mesh-function V defined on " and the L p norm of the associated trigonometric
interpolant 7y on w =T" := (—m, )".

Lemma 2.48 Suppose that V € Lp(a)h), 1 <p<oo,andlet w= (—m,n)". Then,
IVIIL, @ < A+ 1 TvIIL,@)-

Proof Let us suppose for simplicity that n = 1; for n > 1 the proof follows from the
case of n = 1 by induction over n. We shall first show that there exists a real number
&p in the interval (—#, 0) such that

1/p
1TV, = (h Z |Ty (x + §O)|p) , (2.1406)
xeowh

where now @ = (-, 7) and " = hl.
Indeed,

Xk

- N
||Tv||§p(w)=/ Ty )[Pde=) | Ty (x0)]” dx
- k=—N+1" k=1

N h
= Z /(;|Tv(y+xk—1)|pdy

k=—N+1
h
:/ Z|Ty(xk+y—h)|pdy.
0 er

Now the integrand is a continuous function of y on [0, 2]; therefore, by the integral
mean-value theorem, there exists a & in (0, &) such that

h
[ Ity =l dy = |ttt € -]

kel kel

Letting & := £ — h and noting that k € I if, and only if, x = x; € " = hl, we
deduce (2.146).
Now consider

1/p

1/p
D::‘(hZ|V(x)|p) —<hZ|Tv(x+Eo)|p> ‘

xeoh xeawh
We shall prove that

D <h||Ty, (2.147)

”Lp(w)'
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This follows by noting that V (x) = Ty (x) for x in o", and observing that by the

reverse triangle inequality, the Newton—Leibniz formula and Holder’s inequality we
have that

xewh

1/p
D< (Z h| Ty (x) = Ty (x + &)|” )
PN\ 1/p
( Ty (1) dr )
xewh x+$0
p\ 1/p
< < \T(,(z)\dt) )
xe wh

1 x / p e /
<(Zwr [ nora) " =unl,, .,

xewh

IA

Now using (2.146) and (2.147) we deduce that

1/p
VL, @ = 1VIlL,wh = (h Do lrvix +so)|1’) + 1Tl @)

xewh

<D+ IITvL,w)

<h|Ty ”Lp(w) +1Tv L, (-

We bound the first term on the right-hand side further by applying Bernstein’s in-
equality to the trigonometric polynomial Ty of degree N (see, Nikol’skii [144],
p. 115):

17010 < NITVIL @)

and noting that AN = 7. Hence the required result for n = 1. 0

After this brief preparation, we are now ready to discuss a discrete counterpart of
the Marcinkiewicz multiplier theorem, Theorem 1.75, due to Mokin [140] (see also
Samarskii, Lazarov, Makarov [160]), which will be our main tool in the stability
analysis of finite difference schemes in discrete L, norms. In order to state it, we
require the notion of fotal variation. For a 2N -periodic function a defined on Z",
the total variation of a over 1" is defined by

o

var(a) ;= sup Z|A°‘a(u)|.

ke 0;&016{0 1y
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Here A% := A'fl .-+ Ay", as in Theorem 1.75, and, for « € {0, 1}, we have used the
multi-index notation

o o a,
v v Vn

where now, in contrast with the notational convention in Theorem 1.75,

aj 1 P —
Z ) max, kit oM such thatvyer 1% =0,
vj vy=£2%7171 225511 such that vl ifa;=1.

In order to distinguish the total variation of a 2/N-periodic function over I" de-
fined here from total variation of a function on Z”" (as in the statement of the
Marcinkiewicz multiplier theorem, Theorem 1.75, stated in the previous chapter),
we have used the symbol ‘var’ here instead of our earlier notation ‘Var’. The set of
k € Z" for which the index set of ) 5 is nonempty is finite. Therefore, ‘sup’ in the
definition of var(a) can be replaced with ‘max’.

Theorem 2.49 (Discrete Marcinkiewicz Multiplier Theorem) Let a be a 2N-
periodic function defined on 7", and suppose that one of the following two con-
ditions holds:

(a) a is a bounded function on I with bounded variation; i.e. there exists a constant
My such that

?%X|a(k)| <My, var(a) =< Mo;
e n

(b) a can be extended to a function, still denoted by a, which is defined and contin-
uous on [—N + 1, NI*, with 0%a € C([—N + 1, N]*\ 1") for every multi-index
a € {0, 1}, and such that £%0%a (&) is bounded for every o € {0, 1}*; i.e. there
exists a constant My such that

max sup ‘E“8“a(§')| < M.
ae{0,1}" E€[—N+1,N]\I"

Then, a is a discrete Fourier multiplier on Lp(a)h), 1 < p < o0; that is,

|77 @FV) oy < CIV I oy

forall Vin L p(wh), where C = C, My and C, is a positive constant, independent
ofa,hand V.

A simple sufficient condition for var(a) < My in part (a) of this theorem is that
vary(a) < My, where var,(a) is defined analogously to var(a), except that Z?f,j is
defined as max,;er when «; =0 and as Zvjeﬂ when oj = 1. As there is then no

dependence on the diadic sets {(£QKT—1),..., £kl — 1)}, the symbol sup; cz»
can be omitted from the definition of var,(a).
The proof of the theorem relies on the following result.
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Lemma 2.50 Let w =T" := (—m, 7)".

1. Suppose that a(k) satisfies the hypotheses in part (a) of Theorem 2.49. Then, the
sequence {a(k)}rezn defined by

~ .\ Jak) forkel,
ak) = { 0 otherwise,

is a Fourier multiplier on L ,(w), 1 < p < o0.
2. Consider the sequence {15(k)}kezn defined by E(k) =bky)---b(ky), with

1 ifm=0,
bm) = { oS ifm €T\ {0},
/2 otherwise.

Then, {b(k)}rez» is a Fourier multiplier on L ,(w), 1 < p < 00.
3. The sequence {Zt(k)l;(k)}kezn is a Fourier multiplier on L ,(w), 1 < p < o0.

Proof The proof of this lemma is straightforward and proceeds as follows.
1. The stated result is obtained by noting that

sup |a (k)| = max|a(k)| < Mo,
keZn kel

and

Var(a) < max{%le]llnﬂa(k) ,var(a)} < My=: My(a),

and by applying Theorem 1.75 to the sequence a = {a (k) }xez -
2. The result is proved by noting that

~ T n
sup |b(k)| < <—) :
kezr 2
and
2

Var(b) < (%) =: Mo(D),

and applying Theorem 1.75 to the sequence b = {(b(k) kezn .
3. The stated result follows by observing that

sup (k)b (k)| < (%) max|a(k)| < Mo(@) Mo(b),
kezn kel”

and
Var(ab) < 2" My(a) Mo (b) = 2" My(a) =: Mo(ab),
and applying Theorem 1.75 to the sequence ab = {a(k)b(k)Yrezn. O
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We are now ready to prove Theorem 2.49.

Proof of Theorem 2.49 (a) Let us suppose that u is defined on ", and consider its
piecewise constant extension w to R”, defined as follows:

w(x) . u(y)’ for ||x_y||00<h/27 ye]Ins
" | 2z -periodically extended to R”,
where || - [l denotes the norm on R" defined by || x| := max|<;<, |x;|. Clearly,
Wiz, @ = luly, @, ©=T":= (= m)"

Furthermore, with the same notational conventions as in Sect. 1.9.5.1, w has the
Fourier series expansion

w(x)

ijMEWK x€w,

(271’)" keZl

with Fourier coefficients

oo :/ wx)e ™ dy = (kA" Y u(x)e™,
¢ xeawh
where ¢(k) = c(ky) - - - c(k,) and

o 1 ifm =0,
clm) = i .
2%%2 it meZ\{0}.

By noting from Lemma 2.50, part (2), that ¢(k) = 1/b(k) for k € I and therefore
c(k) = 1/b(k) for k € 1", we have that

1
w(k) =ck)(Fu) (k) = — (Fu)(k) forkel".
b(k)
Now, the trigonometric polynomial of degree N defined by

Ty : x ew—>

1 1x-k n
G Y al)(Fuwyke™*,  xe(—m x]",
kel
is the trigonometric interpolant of the mesh-function V := F~!(aFu) defined
on w". Therefore, by Lemma 2.48, we have that

||]:_l(“]:”)”Lp(wh) = +n)

Ly(w)

=1+

1 ~
Q) Z a(k)b(k)w (k)e**

kel

Lp(a))
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=+ > atk)bky (ke *

kezZ

@m)" Ly@)

~ T ANV
= (14 n)"| @bw) ”Lp(w)'
Here ~ and -¥ denote the Fourier transform of a periodic distribution and its inverse
transform, defined in Sect. 1.9.5. Finally, by recalling from Lemma 2.50, part (3),
that the sequence {a(k)b(k)}xez» is a Fourier multiplier on L ,(w) it follows that
|7 @Fw] ) = (1 +1)"CpMo@b) [wllL, )
= (14+m)"C,Mo(ab) ||Lt||Lp(wh),

where C), is as in Theorem 1.75 and My(ab) = 7% My(a), as in the proof of
Lemma 2.50. Thus we have shown that

|77 @l = €Ml

where C; = (1 + )"z %" C, is a positive constant and Mo = Mo(a) is the constant
from the statement of the theorem.

(b) This is a direct consequence of part (a), using the mean-value theorem in
those variables x; for which «; = 1 for a certain « € {0, 1}". O

We shall now prove the converse of the inequality stated in Lemma 2.48, which
will be required in our subsequent considerations.

Lemma 2.51 Suppose that V is a mesh-function defined on ", and let Ty be its
trigonometric interpolant defined by (2.145). Then, for 1 < p < 0o, there exists a
positive constant C, independent of h and V , such that

ITvIIL,@) < CpllVIIL, @h-
Proof We shall prove this result in one dimension (n = 1); the case of n > 1 is

dealt with by induction over n, starting from n = 1. In the proof of Lemma 2.48 we
showed that there exists a & in the interval (—hg, 0) such that

1/p
”TV”L,,(a)) = <h Z |Tv(x + %—0)|p> - ” Ty (- + &) “Lp(wh)

xeowh

Z(Iv)(k)elkaZSOk

kel

. (2.148)
Lp(wh)
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Next we shall prove that the sequence {A(k)}xer, with A(k) := e'50k s a discrete
Fourier multiplier on L p(a)h). First, note that |e'50X| = 1; furthermore,

N N
Z |elfok _ eléo(k*1)| — Z |1 . efzéo|
k=—N-+1 k=—N-+1

<2N|&| <2Nh =2m.

Hence, var(A) < 2m and, by Theorem 2.49, {1 (k)}kr is a discrete Fourier multiplier
on L ,(w"). Thanks to (2.148) we then have that

—1
1TVl = | F T CFVI iy = 27ClIV Il oy

where C), is a positive constant, and hence the required result (with the constant
27 C), relabelled as C),). U

After this interlude on discrete Fourier multipliers, we are ready to embark on
the error analysis of finite difference approximations to our elliptic model problem
in discrete L, spaces.

2.5.2 The Model Problem and Its Approximation

Suppose that £2 = (0, 7)2. For few, ! (£2), we consider the homogeneous Dirich-
let boundary-value problem

—Au=f in$2, (2.149)

u=0 onl =0%2. (2.150)

Throughout the section we shall suppose that the unique weak solution u € Wzl (£2)
of (2.149), (2.150) belongs to W;(.Q) for some s > 0 and p € (1, oo) (other than
s =1and p =2, of course).

For a nonnegative integer N > 2 let h := /N, and define the meshes:

= {(i yj):xi=ih, yj=jh, 1 <i, j <N -1},
o= {Gi,yj)ixi=ih, yj=jh, 0<i, j <N},
r=ao"\ "
In addition to these, we shall also require the following meshes:
r=rrn({o,z} x 0, 7)),
r=r"n(©.m7) x {0, }),
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r'=rhn(in) x 0,7)U(0,7) x {7}),
Qh.=e"urp,

e.=ehu(rlnrp,
Ql="u(rinrp).

As before, we approximate the Laplace operator A = 8‘1—22 + % by

DY Dy + DY Dy.

Since f has not been assumed to be a continuous function on £2, we shall mollify
it before sampling it at the mesh-points. To do so, we shall use the mollifier T¥ =
Th” with v = (v, v2) and h = /N, defined in (1.35); for the sake of notational
simplicity, we shall write ThU] "2, or simply T2, instead of the more cumbersome
(vi,12)

symbol T},
First we shall suppose that the weak solution of the boundary-value problem
(2.149), (2.150) belongs to W[S,(.Q), s >2/p, 1 < p < oo; then, by Sobolev’s em-

bedding theorem, u is almost everywhere on £2 equal to a continuous function on
2, and

0’u -
<Thzoﬁ)(x, V) =D{Dulx,y), (x,y)ea"

3%u _
(Thozg>()€,)’)ZD;_Dy“(xv)’), (-xvy)egh'

Therefore,
— 702 — 720 22

—(DIDI T+ DDy T )u =T on 2", (2.151)
u=0 onl™" (2.152)

This identity motivates us to consider the difference scheme

- - 22

—(D¥D; + Dy D) U =T f on Q" (2.153)
U=0 onl™. (2.154)

The rest of this section is devoted to the error analysis of the finite difference scheme
(2.153), (2.154). First we introduce the natural discrete analogues of the L, spaces
on 2"

A function V defined on £2” (or on 2" and equal to zero on I'"") is said to belong
to L, (.Qh), 1 < p < 00, if there exists a positive constant M, independent of &, such
that

1/p
||V||Lp(9h);=<h2 > |V(x,y)|”) <M.

(x,y)efh
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If V is defined on .Q_’f_ (or on §h and equal to zero on "\ Ff_‘), the norm || - ||Lp(9h)
is replaced by

1/p
||V||L],(Q¢):=<h2 > |V(x,y)|">

h
(@.y)e2h

. h h
For mesh-functions defined on £2;! and Qy the norms || - ”LP(QQ) and || - ||Lp(9§,) are

defined analogously.
The discrete analogues of the Sobolev norms Wlﬁ (£2) and WI%(.Q) are defined,
respectively, by

IVilwcn = (VI H(2h) +|V|W'(9"))l/p’
where
Viwyen = (|27 V] (m)+HD V”Lp(szh))l/p;
and
IVilwzcen = (”V”w'(m) |V|W2(9"))l/p’
where

Viwaen = (1D DI VI @iy + IDX DV on)

+ 1/p

+[ D7DV o)
Let us recall the notion of discrete Fourier transform from the previous section.
However, as we are now working on (0, 7)? rather than (—, )2 and the functions
we shall be dealing with will satisfy a homogeneous Dirichlet boundary condition

rather then a periodic boundary condition, some adjustments have to be made before
the techniques developed in the previous section can be applied.

Suppose that V' is defined on 2" (or on 2" and equal to zero on I'"). We shall
consider the odd extension V of the mesh-function V' to the mesh

" =h? ={(x;, ;) :xi =ih,y; = jh, i, j==N+1,...,N}
contained in (—, 7]%. Thus
V(—x,y):—f/(x,y) and V(x,—y):—f/(x,y) for all (x, y) in £2".

After such an extension, V is further extended 27 -periodically in each co-ordinate
direction to the whole of 2Z2. Let us note that

VL, @y =421V L, (2.155)
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Lemma 2.52 Let us suppose that V is defined on 2" (or on o" and equal to zero
on Fh), and consider its odd extension V. The discrete Fourier transform FV has
the following properties:

1. Forany k = (k1, ko) € I,

N—-1N-1

FV (ki ko) = —4h> Y >~ V(xi, yj) sin(kixi) sin(kay,);
i=1 j=1

2. FVisan odd function on 12; that is,
FV(—ki, ko) =—FV(ki, ko) and FV(ki,—kz) =—FV(ki, ko)

forall k = (ky, ko) € I2. Also, FV(0, ky) = FV (k,0) = FV(0,0) =0;
3. For1 <i,j<N -1,

N=1N-1
1 -~ . .
V(xi,Yj)Z—;E E FV (ki, ko) sin(kix;) sin(kay;).
ki=1ky=1

The proof of this result is elementary and is left to the reader.

Lemma 2.52 implies that the values of FV on I2? are completely determined
by the values of V on £2”; conversely, V can be completely characterized on £2”
(and V on a)h) by the values .7-"\7(k1, k2), ki, ko =1,..., N — 1. Consequently, it is
meaningful to consider the discrete Fourier sine-transform F5V of a mesh-function
V defined on £2" (or on §h and equal to zero on I'"). Indeed, we let

1 ~
ngZ:—Z.FV,

a~nd, for a function W defined on the set {(i, j) : 1 <i, j < N — 1} with odd extension
W to 12, we put

Fo W= —4Fw.

(e

Thus,
N—1N-1
FoViki ko) =h> Y "> " V(xi, yj)sin(kix;) sin(kay,))
i=1 j=1
and
) 2 N—1 N-1
FoWx,y) = <;> kzlkzl W (k1, ka) sin(k; x) sin(k2y).
1=lky=

In order to derive error bounds for the finite difference scheme under considera-
tion we shall need the following stability result.
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Lemma 2.53 Suppose that n1 and 1y are two functions defined on " that vanish
on I'". Further, let e be the solution to the problem

—(DiD; +DyDy)e=DIDym + DDy in 2", (2.156)
e=0 onl™". (2.157)
Then, for any p € (1, 00),
lellz,@m =< Cp(lm Iz, c2m + ||T)2||Lp(gh)), (2.158)
|@|WP1(:2") = Cp(” Dy m ”Lp(.og) + H D;’UHLP(Q;?))v (2.159)

|e|W,2,(!2h) = CP(” DY Dy H L2 + ” D;Dy_”z ”Lp(m))’ (2.160)
where C), is a positive constant, independent of h, e, n1 and 1.

Proof (1) Let us first prove (2.158). As
Fo (D;D;e) = —)\%]—"ae and F, (D;D;e) — —X%}}e,

where

2 . kih 2 . koh
)»1=)»1(k1)1=z51117 and )»2=)»1(k2)2=ESIHT,

with k := (k1, kp), 1 <ky, ko <N — 1, it follows that
e=F, N a1Fom) + F, aaFom),

where

A2 (kp)

-, 1<ki,kh<N-1,1=12
A2(k1) + A3 (k2)

aj(ky, ko) ==

We note that a;(k1, kp) and a(k1, ko) can be defined for all k € 12 \ {0} by letting
ai(—ki, k2) :=a;(k1, k2),
aj(ky, —kz) := ay(ky, k),
aj(—ki, —k2) = a;(ky, k),

forall k = (k1,kp), | <k, kp <N —-1,1=1,2.
Let e, 71 and 72 denote the odd extensions of the mesh-functions e, 51 and 12,
respectively, from 2, to »”. Then,

¢=F @ Fin) + F @Fip).
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The fact that a; and a, are not defined at (0, 0) is of no significance, since

N N
Fin©.00=h> > > dilxi.y) =0 =12,
i=—N+1 j=—N+1

which follows from our assumption that 1;, [ = 1, 2, vanish on I" h, by noting that
7; is the odd extension of ;.
Hence, by the triangle inequality,

~ _1 ~ _1 ~
”e”LP(wh) = ||~F ((11.;7’]1) ||Lp((/_)h) + ”JT'. (aZ-Fr/Z) ||Lp((/_)h)'
Next we show that a; and a; are discrete Fourier multipliers on L p(a)h).
Clearly 0 <a; <1on 2. Further, as ar+a=1,

daj Qa1 )xh txh
— = —ap)— cot —.
oy T TAU e

Thus, noting that |7 cot?| < 1 for |t| < /2, we have that

1
(x, y)’ =5 for(r,ye I2.

8a1

x—t
0x

Similarly, noting again that a; +a; =1,

0 h h
v a1 —ap Lt cot 22
ay 2 2
Therefore,
0 1
oL, y)| <= for (x,y) €,
ay 2
Finally,
9%a; daj \ xh xh
Xy =4(y— )—cot—,
0xdy ay ) 2 2
and so,
82
Xy a (x,y)| <2 for(x,y)e 2.
0xdy

Hence, by Theorem 2.49, a; is a discrete Fourier multiplier on L (w"). By symme-
try, the same is true of a;.
Therefore,

lellz, @wh < Cp (7 Iz, @ + ||ﬁ2||Lp(wh)),
from which (2.158) immediately follows by noting (2.155).
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(2) As we have seen in part (1),
Fe=aiFm +axFn.
Multiplying this identity by (1 — exp(—tk1h))/h we deduce that
D;é=F a1 F(D; i)+ F ' (b2 F (D5 iia)).
where

1 _ e—lk]h

by(ki, kp) :=az(ky, kz)m'

We have already shown in part (1) that a; and ay are discrete Fourier multipliers
on L E(a)h). Similarly, using Theorem 2.49 we deduce that the same is true of (1 —
e~tkihy /(1 — e~*k2!) and therefore of b>. Hence,

I D;e“Lp(wh) =Cp(| D5 ”Lp(a)") + Dy 2 HLp(wh))’
which yields
I D;eHL,,mg) < Cp(| Dy m ”Lp(.Q)’(') +| Dy ||L,,(.rz;3))~

An identical bound holds for ||Dy_ e|l Ly@h) which, when added to the last inequal-
ity, yields (2.159). “

(3) To prove (2.160), we note, by recalling the definitions of a; and a> from
part (1) of the proof, that

2 2

e = G () + ()
Thus,
+ -z M +p—7 M D7
F(DfDre) = /\%H%F(Dx D i) + /\%H%f(Dy Dy ip2)-
Equivalently,
D+Dé:]-"1</\7%]-"(D+Dﬁ1)> +f1( N f(D*Dﬁz))-
x P Ma3T Mty

As Alz / (A% + A%), I =1, 2, are discrete Fourier multipliers on L (a)h), it follows that
” DrD)c_e||Lp(wh) = Cl’(” D;_Dx_f“ ”Lp(a)h) + ” D;_Dy_f]z ”Lp(a)h))’
which gives

“D;—Dx_e”Lp(Qh) < Cp(| D D m ”L,,(.rzh) +[ D Dy “Lp(m))-
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Identical bounds hold for ||D;_D;€||Lp<gh) and ||D;Dy_e||Lp(_Qi), which, when
added to the last inequality, yield (2.160). g

It is possible to derive bounds analogous to (2.159) and (2.160), but with e mea-
sured in a norm rather than a seminorm. To see this, we need the following prelim-
inary result that relates discrete Sobolev seminorms to the corresponding discrete
Sobolev norms.

Lemma 2.54 Suppose that V is a function defined on the mesh ﬁh such that V =0
on I'". Then, the following bounds hold:

(a) Assuming that 1 < p < o0,
-1 .
IVl @n <27 P71V Iy ony:
(b) There exists a constant C,, independent of V and h, such that

(c) Assuming that 1 < p < o0,

1 1/p

(d) With C,, denoting the constant from part (b),

1 1/p

Proof Part (c) is a direct consequence of (a), while (d) follows by combining (c)
and (b). We note that (c) is a discrete Friedrichs inequality, which generalizes
Lemma 2.19. It remains to prove (a) and (b).

(@) As V. =0on I'", we can write

i
Vij =Y hD; V.
k=1
By Holder’s inequality for finite sums,

i
11
Vij|? < ih)P4> "h|Dy Vij|P.  where > + e 1.
k=1

Multiplying by 42, increasing the upper limit in the sum on the right to N, and
summing through i, j =1,..., N — 1, we get that

N—-1

VI o <hp(zzm)n0 VI

i=1
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Now
N-1 N—-1 _Np/p+l _
Zip/q<1+/ Wl gy =1 4 NV L N+t 2y,
= 1 (r/o)+1  —
and therefore, since Nh = r, we deduce that
p —P
”VHLp(Qh) =< 7Tp|| Dx V”LP(Q;!)‘
Analogously,
p —lP
VI ny 71D VL, iy

By adding the last two inequalities we deduce (a).
(b) Let W := —(D; Dy 4+ D} D;)V. Using the same technique and the same
notation as in the proof of Lemma 2.53, and observing that

(=) )
h A (ki ko) + A3 (k1. ka)

(=) )
h A (ki ko) + A3 (k1. ka)

are discrete Fourier multipliers on L, (@"), we deduce from Theorem 2.49 that

and

”D;V“L,,(.Q;') = CplWliL,an)
and

I D;VHLP(Q?) < CplWliL,2n)-
Hence

Viwien = Zl/pcp”W”Lp(.Qh)’
and therefore, by the triangle inequality,

1 +- +p-

|V|W,}(Q") <2 /pCP(”Dx D, V”L,,(Qh) + ”Dy Dy V”LP(Q"))'

Thus, by noting the inequality a + b < 21_(1/1’)(611’ + bl’)l/l’ fora,b >0,
Viwien =2CpIVIwz@n-

Renaming the constant 2C), into C, then yields the stated inequality. 0

Combining the last two lemmas, we arrive at the following result.
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Lemma 2.55 Suppose that n1 and 1y are two functions defined on " that vanish
on I'". Let further e denote the solution of the problem

—(D}D; + DI D))e=DD;m+D Dy inR2",  (2.161)
e=0 onl™". (2.162)
Then, there exists a positive constant C,, independent of h, such that
lellz,2m < Cp(lnillL,@m +lIm2llL,@n) (2.163)
lellw@n = Cp(|DTm ||Lp(.(2§?) + ||Dy_’72 ”Lp(.(z;?))’ (2.164)

+p- +p-
”e”W,%(!?h) < Cp(|DFDym ”Lp(.Qh) +| DyDym ”LP(Qh))' (2.165)
Now we are ready to state the main result of this section.

Theorem 2.56 Let u be the weak solution of the boundary-value problem (2.149),
(2.150), let U be the solution of the finite difference scheme (2.153), (2.154) and
suppose that m € {0, 1, 2}. Assuming that u belongs to W,(£2), withm <s,2/p <
s<m+2,1< p < oo, the following error bound holds:

_ s—m ;
lu = Ullwm(@ny = Ch* " lulwy @),
with a positive constant C = C(p,m, s), independent of h.

Proof (a) Let us first suppose that m =2 and s > 2. We define the global error e
on ﬁh by e;j :=u(x;,y;) — Ujj. It follows from (2.151)=(2.154) that e satisfies
(2.161), (2.162) with

771=u—Th02u and nzzu—Thmu.

Now 7 (resp. 1) is defined on the mesh 2" U Fxh (resp. 2" U Fyh) and equal to
Zero on Fxh (resp. Fyh). According to (2.165), in order to obtain the desired error
bound for m = 2, it suffices to estimate || D} D n I, (en and ||D;FD;172||LP(Q;,).
To do so, we define the squares

K?j = (X1, Xi+1) X (}’jfl’yj“)’

K':=(-1,1) x (=1,1),
and consider the affine mapping (x, y) € Kl.oj — (X,Yy) € KO, where
x =x(X):= (i +X)h, y=y@) =0 +Mh.

Let i(x, y) = u(x(X), y(3)). We then have the following equalities:
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(Dij_m)ij
w1, ) = 2ulxi, yj) +ulxi-1, y;)
- e

b u(Xip1,yj +5h) = 2u(xi, y; + $h) + u(xi—1,yj + yh)
- 92(}’) /’l2
-1

dy
= %{ﬁ(l,O) —2i1(0,0) +i(—1,0)

1
—/192@[&(1,9)—2&(0,9>+a<—1,9>]d9},

where 6,(y) =1—[y|, y € (=1, 1). }
Now (Dij_m)ij is a bounded linear functional on W;(KO), s > 2/p, whose

kernel contains P3(K?). According to the Bramble—Hilbert lemma,
‘(D;Dx_nl)ij‘ = Ch_2|ﬁ|wl§(1€0)

for2/p < s < 4. Thus, by changing from the (x, y) to the (x, y) co-ordinate system,
we have that

+ - 2,52
|(Dx Dy 771),-]-| =Ch"h’ /p|M|Wf,(KI-Oj)
for2/p < s <4. Hence,
| DY DT m ||Lp(gh) <CIPlulwy@), 2/p<s<4
Likewise,
I D;Dy_nz ||Lp(9h) < Chs_zlulwg(g), 2/p<s =4,

which, after insertion into (2.165), completes the proof for the case m = 2.
(b) Let m =1 and s > 1. By (2.164) it suffices to bound || D n; ”Lp(f?i’) and

| Dy_ n2|| Ly(s2h)- We proceed in the same way as in part (a) to deduce that

1 1
(D;m)ij = Z{ﬁ(l’ 0) —u(0,0) — / 1 62(M[ua(1, 3) — (0, y)] dy}

is a bounded linear functional on W; (K9, s>2 / p, whose kernel contains P2 (K9).
Therefore,
| DT, on = CP° ulwy), 2/p <s <3,

and, similarly,

I Dy ||Lp(_q¢) < Chs_llulw;(sz), 2/p<s<3.
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Inserting these into (2.164) we obtain the desired error bound for m = 1.
(c) Letm =0and s > 0. We need to estimate |11l (o) and [[n2ll ,(on)- Since

1
()i =ﬁ<o,0>—f]ez<&)ﬁ<o, %) d5

is a bounded linear functional on W;, (k O), s > 2/ p, whose kernel contains P (I% 0),
it follows that

Iz, @m < Ch lulws2), 2/p<s=<2,

and, likewise,

Im2llL,@n < Ch lulwy@), 2/p<s=<2.

Substituting these into (2.163) we obtain the desired error bound for m = 0. That
completes the proof of the theorem. g

In the remainder of this section we shall discuss the rate of convergence of the
finite difference scheme (2.153), (2.154) in the case when 0 <s < 1+ 1/p, which
also covers the case 0 < s < 2/p. Let us define the function space W;(.Q), l<p<
00, by

r CHwiweW,(2),w=00onT}, 1/p<s<l1+1/p.

We observe that if u, the weak solution of the boundary-value problem (2.149),
(2.150) belongs W;,(.Q) then u € W;,(.Q). Let 2* := (—m,2mw) x (—m,27); the
extension of u# by O is a continuous linear operator from W; (£2) into WIS, (£2%),
O0<s<14+1/p,s#1/p, 1 < p < oo (cf. Triebel [182], Sect. 2.10.2, Lemma and
Remark 1 on p. 227 and Theorem 1 on p. 228). Hence

u — u* = odd extension of u

is a continuous mapping from W;(Q) into W;(SZ*), O<s<1+1/p,s#1/p,
1 < p < 00. Moreover, (Th“u*)(x, y) =0 for (x, y) e I'".

Theorem 2.57 Let u be the weak solution of the boundary-value problem (2.149),
(2.150), let U be the solution of the finite difference scheme (2.153), (2.154) and
suppose that m € {0, 1}. Assuming that u belongs to W; 2) withm <s,0<s <
14+1/p,s#1/pand 1 < p < o0, the following error bound holds:

” ThH” - U” W (2h) = Chs_m|”|W;(9)v

with a positive constant C = C(p,m, s), independent of h.
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Proof The proof is completely analogous to that of Theorem 2.56, except that we
now define the global error e on 2" by

eij = (T, 7! u®)(xi, yj) — Uij.

Clearly ¢;; =0 for (x;,y;) € I'*, and e;; = (T,''u)(x;, y;) — Uij when (x;, ;) €
2" In addition, it follows from (2.151)—(2.154) that ¢ satisfies (2.156), (2.157) with

Again, 71 (resp. 12) is defined on the mesh £2” U Fxh (resp. 2" U Fyh) and is equal

to zero on I xh (resp. F;‘). The rest of the proof is the same as in the case of Theo-
rem 2.56, except thatnow s € [0, 1/p) U (1/p, 1 + 1/p). 0

2.5.3 Convergence in Discrete Bessel-Potential Norms

This section is devoted to error estimation in discrete Bessel-potential norms.
A function v defined on 2" c (0, 7)? (or on 2" c [0, 7r]? and equal to zero on I"")
is said to belong to the discrete Bessel-potential space H [5, (22", with —oo < s < o0,
1 < p < o0, if there exists a function V € L,,(.Qh) such that

v= LoV = F (1 KR) P F V) = F (1 + )~

FV),

where V is the odd extension of V from 2" to o = K12, defined to be zero on I'”,
and further extended 27 -periodically to the whole of #Z?. We then define (compare
with the definition in Sect. 1.9.5.3)

. -1 7
10l 2y = 1V I, 2m = 472UV L )

where the last equality is a consequence of (2.155).

First we shall prove equivalence of the discrete Sobolev norm || - || Wi (2h) and the
norm || - || Hyp (2 for integer m; then, the error bounds in discrete Bessel-potential
norms of integer order will follow from the error bounds derived in Theorems 2.56
and 2.57. Error bounds in fractional-order discrete Bessel-potential norms will be
derived from these by function space interpolation. We need the following prelimi-
nary result in the univariate case.

Lemma 2.58 Let W be a mesh-function defined on " = hl, where 1 = {—N +
1,..., N}, and let Ty be the trigonometric interpolant of W on (—m, ] given by
(2.145), with n = 1. Then, there exists a constant C p» independent of h and W, such
that the following inequalities hold, with w = (—m, 7):

@ 1Dy WliL, @ = 1Twlz,w = CpllDy Wiz, why;
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() 1D Dy Wilp, oy < 1Tl @) < CpllDF Dy Wil (-

Proof (a) Since W and Tw coincide at the mesh-points,
1 [~
D W(x;)=D_Tw(x;) = E/ Ty (x) dx.
Xi—1
Thus,
Xi
h| Dy W (x;)|” 5/

Xi—

| Ty, (0)]” dx.
1
Summing over all x; in o', we deduce that

125 Wi wm =< 1T, -

To deduce the second inequality, let us note that

1
Ty (x) = o > ) FW ke,

kel
and
1— e—zkh
F(Dy W) (k) = T]-"W(k).
Therefore,
1 1kh _ .
Ty () = — > T T (Dx W)™,

kel

Since Ty, is a trigonometric polynomial of degree N, it follows from (2.146) that
there is a & in (—h, 0) such that

1T, 0 = 1T C 801 o

Letting

tkh

and
(k) := A(kh)e' o,

the last equality can be rewritten as follows:
“ Ty “Lp(w) = ”}-_l(“}—(Dx_W))”Lp(wh)'

A simple calculation shows that both A and var()) are bounded by a constant, in-
dependent of 4. It remains to apply part (a) of Theorem 2.49 to deduce that A is a
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discrete Fourier multiplier on L p(a)h), and therefore the same is true of . Hence
the upper bound in part (a).
(b) Let us define Z = D W. Then, D} D; W = D; Z and by part (a) of this
lemma we have that
+ —_ _ —
”Dx D, W”Lp(wh) - “Dx Z”Lp(wh) = ” Té ”Lp(w)'
Since
elkh

FZ(k)y=F(DfW)k) = FW(k),

it follows that

1
Tz(0) = o > Fzke*
kel

1 etkh _

2 kel h

FW(k) = D] Tw(x).

By noting that Ty (x) is a 2 -periodic function of x we deduce that

I721%

T
LN@=HDIWWL@fﬂfﬂ[JﬂMx+m—J@@ﬂﬁn

b4 x+h p 1 T x+h
=h_1’/ / T‘ﬁl’,(S)dé‘ dxf—f / | Ty (0)|” dt dx
—7JT X h —TT JX

Y Mipor( a)a= [ mpora= )
_h -7 v t—h B - v - v Lyt

Hence we obtain the first inequality in (b). The second inequality is proved in the
same way as in part (a), by observing that

g (1tkh)?
Ty (x) = 2T kZ: (etkh — 1)(1 — e—tkh)

el

F(Df Dy W) (k)e'*.

Thus, by noting that with &y € (—h, 0] as in part (a) the function @ defined on I by

kb N\ 2
(1kh)? elkgoz( 2 )ezkgo

k) =
M= @i e sin &

is bounded by 7/2 and var(u;) is bounded by a constant, independent of #, it
follows from part (a) of Theorem 2.49 that p; is a discrete Fourier multiplier on
L p(a)h), and hence the upper bound stated in part (b). O

Lemma 2.58 has the following extension to two space dimensions.
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Lemma 2.59 Let W be a mesh-function defined on o" = h1?, where I = {—N +
1,..., N}, and let Ty be the trigonometric interpolant of W on (—m, 1% given by
(2.145), with n = 2. There is a constant C), > 0, independent of h and W, such that
the following inequalities hold, with w = (—, n)2:

(a)
1 _ 0 _
l—l——n”Dx W“Lp(wh) = aTW L@ =Gy D; W“Lp(wh)
and
1 _ 3 _ .
T 12 Whiyon = 5] S ColID Wl
(b)
1 o 32 o
H——n”Dx D, W”Lp(wh) = QTW Ly@) =Cp ”Dx D, W“Ll,(wh)’
L e L L s
and
1 o 92 e
1+—n” DIDIW |, iy < a2 W L = Cp| DY Dy W L -

Proof The proof of this result is a straightforward consequence of Lemma 2.58,
and Lemmas 2.48 and 2.51 with n = 1; Lemma 2.58 is applied in the co-ordinate
direction in which differentiation has taken place, and Lemmas 2.48 and 2.51 in the
other direction. O

Lemma 2.60 The norms || - ||W;;r(gh) and || - ||H]r;r(gh) are equivalent, uniformly in
h,form=0,1,2 and 1 < p < o0; i.e. there exist two constants C1 and C3, inde-

pendent of h, such that for all functions V defined on 2" (or on 2" and equal to
zero of '),

CillVilwm@n = IVl @n = C2AIV lwn -

Proof The statement is obviously true for m = 0 with C; = C, = 1. Now for m =
1, 2 we shall proceed as follows. Let V denote the odd extension of V to " = hl?,
where [ = {—N +1, ..., N}. Further, let Tj; denote the trigonometric interpolant of
V defined by (2.145) with n = 2. By applying Lemma 2.59 with W = V, we deduce
the existence of two positive constants C; and C,, independent of V and k, (with
C> = C2(p) and C independent of p), such that

CillVIiwien = 1Tplwi < C2llVilwien
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and
Ci ||V||W§(Qh) = ||T\7||W’§(w) = C2||V||W;(Qh)-
For p € (1,00) and a nonnegative integer m the Sobolev norm || - llwn () on
w="T2, is equivalent to the periodic Bessel-potential norm || - || HI (o) defined by

Pl = [ ((1+KR)"28) "],

(see, Schmeiser and Triebel [162]), where ~ and -V denote the Fourier transform of
a periodic distribution and its inverse, defined in Sect. 1.9.5; therefore,

CulVilwgn = [((1+KP)"2T5) 0 = CollVIlwpean, m=1.2.

Finally, since (1 + |kI*)"/?Ty)Y = T 1 pp2ym2ri) ON @, we have by Lem-
mas 2.48 and 2.51 that

m/2

CillVlwpan < [F A+ KE)" “FV) oy < CollVIwpan. m=1.2,

from which the result follows by noting that
— 2 5 — 2
[F7H O+ P) PF O oy = 477 NF (162 Fa V) oy

=4Vl on, m=1.2. 0

We shall now use function space interpolation to obtain scales of error bounds in
fractional-order discrete Bessel-potential norms. We start with a generalization of
an interpolation inequality of Mokin (cf. Theorem 5 in [141]).

Lemma 2.61 Ler o and B be two nonnegative real numbers such that o < B and
suppose that 1 < p < 0o. There exists a positive constant C, independent of h, such
that for any real numberr,a <r <,

B(oh
IVllgcan < CIV i IV o YV € HE(21),

where u = (r —a)/(B — ).
Proof Let us first prove the result for « = 0. We define W :=1_,.;, V; then
IVl 2m = IWIL,@n =4_1/p||W||Lp(wh)
<4 PA+ N Ly =47 A+ 021 T5 )
Also,

) =C/BY /B
”Tqu;(w) < C”TV”Lp(w) ”TV“Hg(w)’
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(see, Nikol’skii [144], p. 310) where C = C(p, r, s) is a positive constant, and by
Lemma 2.51 we have that

afrev|

1Ty, @ <4YPCIVIL, @ and 1Tyl <4 HE @by

Combining the last four inequalities, we deduce the statement of the lemma in the
case of « =0.
For o > 0, let us define W := I_, 5, V. Then,

IWll e iny = 1V g gn, and IWllgregn = IV Lz on:

moreover, as 0 <r — o < 8 — «, it follows from the case of « = 0 above that

Wl ig-eny < CUW I iy IV

and hence the desired inequality. U

Lemma 2.61 will play a key role in the proof of the next theorem, concerned with
optimal error bounds in fractional-order discrete Bessel-potential norms.

Theorem 2.62 Let u be the weak solution of the boundary-value problem (2.149),
(2.150), let U be the solution of the finite difference scheme (2.153), (2.154). If u
belongs to W;(.Q),Z/p <s<2and0<r<2,0r2/p<s<3andl <r <2, with
1 < p <ooandr <s, then we have that

S—r
flu — U||H;(Qh) = Ch " ulws().
with a positive constant C, dependent on p, r and s, but independent of h.

Proof Let us suppose that u belongs to W,(£2), 2/p <s <2, 1 < p < o0 and
0 <r <2. We apply Lemma 2.61 with « =0, 8 =2 and Theorem 2.56 to obtain
the error bound.

Similarly, if u belongs to W;(.Q), 2/p<s<3,l<p<ooandl <r <2, then
we take @ = 1 and 8 = 2 in Lemma 2.61 in combination with Theorem 2.56 to
deduce the error bound. O

By invoking Lemma 2.61 with « = 0 and 8 = 1, we obtain from Theorem 2.57,
using function space interpolation, the following scale of error bounds in fractional-
order discrete Bessel-potential norms.

Theorem 2.63 Let u be the weak solution of the boundary-value problem (2.149),
(2.150), let U be the solution of the finite difference scheme (2.151), (2.152). If u
belongs to W]S,(.Q),Ogs<1+l/p,s¢1/p, l<p<oo,0<r<landr<s,
then

|7 U] Hy(2h) = Ch* ™ ulws (2,

with a positive constant C, dependent on p, r and s, but independent of h.
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The error bounds stated in Theorems 2.56, 2.57, 2.62, and 2.63 cover the range
of possible Sobolev indices, s € [0, 4], for which the solution U of the difference
scheme (2.151), (2.152) converges to the weak solution u (or its mollification Th1 L)
of the boundary-value problem (2.149), (2.150), provided that u € W[S, (£2). To con-
clude, we note that to derive these results it is not essential that u is weak solution:
indeed, if we assume that u € W;(.Q) with s > 1/p is a solution of the boundary-
value problem in the sense of distributions and that it satisfies a homogeneous
Dirichlet boundary condition in the sense of the trace theorem, the error bounds
obtained above still hold.

2.6 Approximation of Second-Order Elliptic Equations with
Variable Coefficients

Hitherto we have been concerned with the construction and error analysis of fi-
nite difference schemes for second-order linear elliptic equations of the form
—Au+c(x, y)u = f(x,y). Inparticular, we derived optimal-order error bounds un-
der minimal smoothness requirements on the solution. Here we shall extend these
results to elliptic equations with variable coefficients in the principal part of the
differential operator, under minimal regularity hypotheses on the solution and the
coefficients.

In Sect. 2.6.1 we consider the Dirichlet problem for a second-order elliptic equa-
tion with variable coefficients in the principal part of the operator. The finite differ-
ence approximation of this problem is shown to be convergent, with optimal order,
in the discrete W2] norm. In Sects. 2.6.2 and 2.6.3 similar results are proved in the
discrete sz norm and in the discrete L, norm; then, using function space inter-
polation, these bounds are extended to fractional-order discrete WZ’ norms, with
r € [0, 2], in Sect. 2.6.4. In Sect. 2.6.5 we focus on elliptic equations with separated
variables and derive optimal bounds in the discrete L, norm, which are compatible
with our hypotheses on the smoothness of the data.

2.6.1 Convergence in the Discrete Wzl Norm

As a model problem, we shall consider the following homogeneous Dirichlet
boundary-value problem for a second-order linear elliptic equation with variable
coefficients on the open unit square £2 = (0, 1)%:

2
Lu:=— Z 0i(ajjoju) +au= f in$2,
i j=1

u=0 onl =0952.

(2.166)
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For the sake of notational simplicity, we have denoted the two independent variables
here by x| and x; instead of x and y.

We shall suppose that (2.166) has a solution in W3 (§2), which satisfies the par-
tial differential equation in the sense of distributions and the boundary condition
in the sense of the trace theorem, with the right-hand side f being an element of
W;fz(.Q). In order for the solution of this problem to have a well-defined trace
on 0§2 it is necessary to assume that s > 1/2. It is then natural to require that the
coefficients a;; and a belong to appropriate spaces of multipliers; that is,

aij e M(W~H(2)), aeM(W5(2)— W5 2(2)).

According to the results in Sect. 1.8 the following conditions are sufficient in order
to ensure that this is the case:

(a) if [s — 1] > 1, then
ls—1] ls—1]—1 .
ajj €W, (£2), ace ) (£2);

(b) if0<|s — 1| <1, then

2
aij € W}f‘”“(ﬂl a=ap+ Z d;a;,
i=1

ao € Ly (2), a e Wi (02),

where ¢ > 0;and 6 >0, p>2/[s— 1| forO<|s—1| < 1;6 =0, p > 2 for
§s=0;6=0, p=oowhens=1.

In addition to these assumptions on the smoothness of the data, we shall adopt the
following structural hypotheses on the coefficients g;; and a:

e there exists a ¢cg > 0 such that

2

2
Y a(0EE =0y & VxeR2, VE= (£, &) eRY

i,j=l1 i=1
o the matrix (a;;) € R2%2 js symmetric, i.e.
aij=aj, I,j=12;
e the coefficient a is nonnegative in the sense of distributions; i.e.
(ap,9)pxp =0 Vo e D(2).

We shall construct a finite difference approximation of this boundary-value prob-

lem on the uniform mesh ﬁh = 2" U ' of mesh-size h := 1/N, with N > 2,
defined in Sect. 2.2.4.
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When s < 3, our hypotheses on the smoothness of the data do not guarantee that
the forcing function f and the coefficient a are continuous on £2: it is therefore
necessary to mollify them so as to ensure that they have well-defined values at the
mesh-points.

These observations lead us to consider the following finite difference approxima-
tion of the boundary-value problem:

LyU=THPf on2"
(2.167)
U=0 on Fh,
with
1 2
LyU == > [Di (@D, U) + D5, (i DY U)] + (1;7a)U,
i,j=I

where Dxil_V, i = 1,2, are the divided difference operators in the x; co-ordinate

direction defined in Sect. 2.2.4, and Th22 is the mollifier with mesh-size 4 defined in
Sect. 1.9.2.

It is helpful to note that the two-dimensional mollifier Th22 can be expressed in
terms of the one-dimensional mollifiers 77 = T, and 7> = T» j, acting in the x|
and x; co-ordinate direction, respectively, as

T2 = T272.

For a locally integrable function w defined on £2,

1 [xi+h/2
Tiw(xy, x2) ::E/ \ w(&, xp) déq,
x1—h/2

) 1 x1+h
Tiw(xy, x2) = —/ (1 —
h x1—h

T>w and T22w can be represented analogously. When w is a distribution, 7; and Ti2

x1— &
h

)w(él,m)dél;

are defined as convolutions of w with the scaled univariate B-splines 6‘}: and 9}%,
respectively, as explained in Sect. 1.9.

We note that (2.167) is the standard symmetric seven-point difference scheme
with mollified right-hand side and mollified coefficient a.

With the notations from Sect. 2.2.4, we consider the discrete L, inner product
(V, W), (see (2.48)) in the linear space Sg of real-valued mesh-functions defined on
§h that vanish on I"”, the associated discrete L> norm || V|| L,(s2h)> and the discrete
Sobolev norms ||V||W21 2h) and ||V||W22(Qh).

The error bounds stated in the next theorem are compatible with the smoothness
hypotheses (a) and (b) formulated above, for the coefficients appearing in the partial
differential equation.
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Theorem 2.64 The difference scheme (2.167) satisfies the following error bounds
in the W21 (£2") norm:
lu — U||W2| D) =< Chs_l <Il;1’2}X “aij ”W;*] (2) + lla ||W£72(Q)) ”u”WZS(Q)v
for2 <s <3, (2.168)

and

s—1 . .
llu — U||W21 (£2h <Ch (Hll’E;X ”al] ”W;,_H'S(Q) + miax lla; ”W;—H"S(Q)

+ ||610||L2+£(9)>||M||W2S(.Q), forl <s <2, (2.169)

where p, § and ¢ are as in condition (b) above, and C is a positive constant, inde-
pendent of h.

Before embarking on the proofs of these error bounds we shall make some pre-
liminary observations. Let u# denote the solution of the boundary-value problem
(2.166) and let U be the solution of the finite difference scheme (2.167). When
s > 1, as in Theorem 2.64, the function u is continuous on §2 and therefore the

global error e := u — U 1is correctly defined on the uniform mesh ﬁh. In addition,
it is easily seen that

2
Lye= Y Dymij+n ong",
e (2.170)
e=0 oth,

where

1 . ;
. 2 - .
nij = T,'+T3_i(aij3j”) — E(aijD;u +alT;’DX./_u+’), i=1,2,
and
n:= (Tt T5a)u — TETS (au).

Here, for a locally integrable function w defined on §2, we have used the asym-
metric mollifiers Tl.iw, defined at x = (x1, x3) by

1
(TFw)(x) :=(Tiw)<x + Ehei>, with e; := (i1, 8;2), i = 1,2.

By taking the (-, -); inner product of Lye with e and performing summations
by parts in the leading terms on the left- and right-hand sides, in exactly the same
manner as in the argument that led to the estimate (2.83) stated in Lemma 2.24, we
arrive at the following result.
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Lemma 2.65 The difference scheme (2.170) is stable, in the sense that
2
el n < C< D il qn + ||n||L2<m)), 2.171)
i,j=1
where C is a positive constant, independent of h.
The error analysis of the finite difference scheme (2.167) is thereby reduced to
estimating the right-hand side in the inequality (2.171). To this end, we decompose

nij as follows:

Nij =Nij1 + Nij2 +Nij3 + Nija,

where
mij1 =T T3 i) — (T T3 ai) (T T3 9ju),
1 ‘
) 72 + 2
Nij2 = |:Ti I3_;aij — 5(“!’/’ +aijt)i|(Ti i ;0ju),
. 1 +i +72 1 + — i
Nij3 1= 5(a,-j +a )| T T3 8u — E(iju +Dgu')
and
1 " L
Nij4 = _Z(aij - al./.’)(D;rju — iju+’).

We shall also perform a decomposition of 7, but the form of this decomposition will
depend on whether 1 <s <2or2 <s <3.
When 1 < s <2, we shall write

n=mno+m-+mn,
where
no := (T12T22a0)u — T12T22(a0u)
and
ni = (TETsdai)u — TETE (udiap), i=1,2.
Whereas if 2 < s < 3, we shall use the decomposition
n=mn3+n4,
where

n3 = (7 T3 a)(u — T{ T3 u)
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and
N4 = (T12T22a) (T12T22u) — T2 T} (au).
Proof of Theorem 2.64 We introduce the ‘elementary rectangles’
K'=K'() :={y= 1y lyj—xjl <h,j=1,2}
and
K= Ki(x) = {y X <yi <xi+h,|y3—i —x3-i] <h}, i=1,2.

The linear transformation y = x + hx defines a bijective mapping of the ‘canonical
rectangles’

KO:={i=F.5):1%<1,j=12]
and
Ki={F:0<% <153 <1}, i=1,2,

onto K9 and K, respectively. Further, we define
ajj (%) :=a;j(x + hX), (%) = u(x + h¥),

and so on. The value of ;1 at a mesh-point x € .th can be expressed as

1 - . 0 -
ni () = z[/@(l — i) () dF

J

2
—/~,(1 — | %3-i])a;j (%) dx x /(1 - |i3—i|)a—~udf]-
Ki )Cj

i

Hence we deduce that ;;1(x) is a bounded bilinear functional of the argument
~ o~ A pi w i
(aij, u) e W, (K’) X qu/(q—z)(Kl)v

where A > 0, u > 1 and ¢ > 2. Furthermore, 7;;1 = 0 whenever g;; is a constant
function or u is a polynomial of degree 1. By applying the bilinear version of the
Bramble-Hilbert lemma (cf. Lemma 2.30 with m = 2), we deduce that

C . -
‘nijl(x)| = ﬁlaij|W;‘(1€i)|u|wgl/(q,2)(1€i)’ O0<Ai=l,1=pu=2
Returning from the canonical variables (X1, X2) to the original variables (x1, x2) we
obtain

hA—Z

|al]|W‘?([€1)= /q|aij|W(;“(K")
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and

— hu—(q—Z)/Q|u|Wﬂ

u .
il 20/q-» K"

20/ K"

Therefore,

[miji0)] < Ch’\+“—2|“i-/|W3(K'>|”|Wﬁf,/(q,2)(1<i)’ O<i=<ll=zsp=2

By summing through the mesh-points in th and applying Holder’s inequality
we then deduce, for 0 <A <1and 1 < u <2, the bound

) < Ch)\-Hl.—

1
il 2 laijlwpulwse ) @) (2.172)

Let us choose A =s — 1, w =1 and g = p. Thanks to the Sobolev embedding
theorem (cf. Theorem 1.34),

Wy (@) > WiTl (@) and W3(2) > Wy, 0, ) (R2), 1<s<2.
Thus, (2.172) yields
Inijillyny < C " Hlaijllys-1es g lullws @), 1<s<2. (2.173)

Analogous bounds hold for 1;;2, 1;j4, 71 and 2. Now suppose that ¢ > 2; then, the
following Sobolev embeddings hold:

W, N @) > WHR) forpu>2-2/q
and

A
W, (2) Wi 10—2)(2) fori>2/q.

Setting A + p = s in (2.172) yields
i1l < CH ™ laijllysm1 gy lullws @), 2<s <3 (2174)

The functional 7;;4 is bounded in a similar fashion.
For s > 2, n;;2 is a bilinear functional of the argument

(@ij,u) e W3 (K') x Wh(K)

and n;j2 = 0 whenever a;; is a polynomial of degree 1 or if u is a constant func-
tion. By applying Lemma 2.65 and the embedding W (£2) — WL (£2) we obtain a
bound on 7; 2, which is of the form (2.174).

By a similar argument, 7;;3(x) is a bounded bilinear functional of the argument

(ajj,u) € C(fl) X Wf(Ki)
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for s > 1 and it vanishes whenever u is a polynomial of degree 2. By noting the
embeddings
Wi (@2) > C(R2) forl<s<2
and
Wy (2) > C(2) fors>2,

we obtain bounds of the form (2.173) and (2.174) for n;;3.
Let2<qg <2/(3—s). When 2 <s <3, n3(x) is a bounded bilinear functional
of the argument

(a,u) € Ly(K°) x Wi 1.5 (KP).

Moreover, n3 = 0 when u is a polynomial of degree 1. By noting the Bramble—
Hilbert lemma and the Sobolev embeddings

Wy2(Q) = Lg(R) and W5 (2) = W31 5 (82)

we obtain
ImslLyn < Ch* " lallyy 2 g lullwgi@y 2<s<3. (2175
When 2 < s < 3, 54 is a bounded bilinear functional of
(a,u) e szfz(l(o) X Wolo(KO)

and n4 = 0 whenever a or u is a constant function. Using the same technique as
before, together with the embedding

W3 (2) = WL (%),

we obtain a bound of the form (2.175) for 74.
Finally, let 2 < g < min{2 + ¢€,2/(2 — 5)}. Then, for 1 <s <2, no(x) is a
bounded bilinear functional of the argument

(o, u) € Lg(K®) x W3t (K°)

and it vanishes when u is a constant function. By noting the embeddings

Lae(2) > Ly(R) and  W3(2) = W3, [ (82)

we obtain
In0ll,cony < Ch*~! laollLoye ) Nullws 2y, 1 <s=<2. (2.176)

Finally, by combining (2.171) with (2.172)-(2.176) we deduce the desired bounds
on the global error. g
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2.6.2 Convergence in the Discrete Wz2 Norm

In this section we consider the error analysis of the scheme (2.167) in the discrete
W3 norm (2.50).

From the error bound (2.168) in the W2l (£2") norm derived in the previous sec-
tion for the difference scheme (2.167) and the inverse inequality

V6 )
|V|sz(9h) < 7|V|W21(m) YV esy,, (2.177)
we immediately deduce, with V = e, the following error bound in the W22(Q ) norm

I = Ulyzgny = CH > (max laij -1 g, +allyg-2g ) s
for2 <s <3. (2.178)

In order to derive an analogous error bound when 3 < s <4 it is necessary to
establish the discrete counterpart of the elliptic regularity result

I0llw2e) < CllLollLy@) Yo e W3 (2) N Wy (),

called the second fundamental inequality, following the terminology of Lady-
zhenskaya and Ural’tseva [118]. A result of this kind was proved for the finite dif-
ference operator £, by D’yakonov [39]; it states that

Viwaom < CILaVIlLy@n YV €Sg, (2.179)
where

-2
C:=C(a, an, an.a) = Co(1 + |TPa HLq(m))(l + max llaij ||%V/1(((]Qh;>,
s q

with2 < g < oo; here || - ”Lq(gh) and || - IIWq] (2hy are mesh-dependent norms defined,
for g < o0, by

1/q
VL, @n = <h2 > |V(x>|‘f) :

xeh

2 1/q
IV lhwjan = (”V”Zm +21D V”Zm) ’
i=1

where || - ”Lq(:zﬁ) is defined in the same way as || - ”Lq(gh), except that the sum is

taken over mesh-points in .th instead of 22", When ¢ = oo,

’

VI, 2my =I1Viloon:= max‘V(x)
xenh
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with an analogous definition of ||V | Wl (2h)-
By applying the Bramble—Hilbert lemma it is easily shown that

272
laijliwyon < Cillaijlwy gy and  [TiT al, o < CallalL, @),
where C1 and C; are independent of 4. Thus we can assume in (2.179) that

C = C(an,ann,axn,a)

q/(q—=2)

=G+ IIOIIIL‘,(Q))(1 +Hi12]l,X ||aij||qu(_Q) ) 2<qg=o0.

Following the terminology of Ladyzhenskaya and Ural’tseva again, we note that
the discrete version of the first fundamental inequality is

colV s gn = LnV, VI YV € Sp. (2.180)
For the difference operator £;, appearing in (2.167) the first fundamental inequality
is easily shown using summation by parts, in the same way as in the case of the
result stated in Lemma 2.65.

Now we are ready to consider the error analysis of the difference scheme (2.167)
in the norm sz(s?h) for u € Wj(£2) when 3 <5 <4.

It follows from (2.170) and (2.177) that

2
”e”sz(.Qh) < C(Z H Dx_,-nij HLz(Q,vn) + ||77||L2(_Qh)>, (2.181)
i,j=1

where C is a positive constant, independent of /. By bounding D, n;; and 1 analo-
gously as in the previous section, we obtain the error bound (2.178) for 3 < s < 4.
Thus we deduce that (2.178) holds for 2 < s < 4 (see also Berikelashvili [10]).

2.6.3 Convergence in the Discrete L, Norm

The derivation of an optimal error bound in the Lz(.Qh) norm is based on a tech-
nique that is usually referred to as a duality argument: it uses the adjoint of the
difference operator £; and the second fundamental inequality for the adjoint of the
difference operator £j,. Since in our case the difference operator £, is symmetric
and, more specifically, selfadjoint on the finite-dimensional space S(})' of real-valued

mesh-functions defined on o that vanish on I'*, equipped with the inner prod-
uct of L,(£2"), the second fundamental inequality for the adjoint of Ly, is, in fact,
identical to the second fundamental inequality for £, stated in (2.179).
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For the sake of simplicity, we shall restrict ourselves to the case when a(x) = 0;
the boundary-value problem (2.166) then becomes

2
— Y diadu)=f ing, u=0 onl =3%, (2.182)
ij=1

and the corresponding finite difference scheme is

2
=2 Y [0 (@D U) + D5 @ DEV) = T2F in 2"
,ChU = ) A [Dxi (al/ ij U) + DXi (a’/ ij U)] - Th f n ,(2183)

U=0 onrl".

The error analysis of this scheme in the L>(£2") norm is based on the observation
that the global error e :=u — U 1is the solution of the difference scheme

2
Lye= Y Dymyj inR2"  e=0 onI™, (2.184)
i,j=1

where the 7;; are the same as in (2.170). The right-hand side can be rewritten as
follows:

2 2 2

> Dx_,-nij=Z<Lii§ii+lciXi+ZDx_iUij>, (2.185)
i,j=1 i=1 j=1

where

LiiV:=—Dg [(TFT{ai;)D} V],  KiV:=Dg[(TTi ;ai3-i)D}, V]

1

and

1
._ - ot + o
&ij i=u~— E(T3—iT3—ju + T3 Ty ju),

1 e
Xi =0i — E(&'J—i +§,-Jf31’,i(3 l)),
(5 - - — \H—(G-D)
o= 4100 T = T )~ (1 1= 1))

. 2 2 2
vij =T, T3 (aijdju) — (T T i) (T T3 9 u)

1 5 L S
+ [T ) (D + Dyu™) = ay Dfu = af Du™].
Here we have assumed that the solution u € Wg )N W21 (£2),0 <s <2, has been
extended, preserving its Sobolev class, to the square (—hg, 1 + ho)? where h is a
fixed positive constant such that & < hy.
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Lemma 2.66 Suppose that a;; € qu (£2), g > 2. The solution of the finite difference
scheme (2.184) then satisfies the bound

2
lellL,@m =€ ;(”éﬁ”Lz(Qh) +1&i3-ill, omy
i=

2
+lleillyn o+ D v ||L2(9,_h)), (2.186)
Jj=1

where C is a positive constant, independent of h.

Proof The proof is based on a duality argument. Let us consider the auxiliary func-
tion W, defined as the solution of the finite difference scheme

L,W=¢ in ", W=0 onl™"

We note in passing that in general one would have written (L)*, the adjoint of Lp,
on the left-hand side instead of £j; however, in our case L, is selfadjoint. Thus,
crucially, (e, L W), = (Lpe, W)y, It then follows from (2.184) and (2.185) that

lell? @y = (e LaW)i = (Lne, Wy,

Il
-M"’

2
|:(/3ii§ii, Wi+ (Kixi. Win+ Y _ (D5 vij. W)h:|

i=1 j=1

Il
-M"’

2
|:("§ii’ LiiWon+ (xi- KW,y 5y = D (vig, D3, W)i,h]

1 j=1

=

.

%
<||§ii L @m I Li Wl Lyon + 1 xi ||L2(Qi1"71.27i) ”’Ci WH L@, )
1

2
+ D Iijlyen [DEW Lzmb)’
j=1

where
KW =Dy, [(T7 T3 ai5-i) DE W]

The second fundamental inequality (2.179) implies that

1L Wi, 2m H’CTW” Ly 5 ) ” D;;WHLZ(Qf’)

are all bounded by
CILIWlLy2m = Clell @),
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and hence, after substitution of the defining expression for y;, we deduce the in-
equality (2.186). O

We observe that for the second fundamental inequality to hold it is necessary that
ajj € qu (£2), g > 2; thus we can only expect a sharp error bound when s = 2. Let
us assume that this is indeed the case, and we proceed to estimate the terms that
appear on the right-hand side of the inequality (2.186).

We begin by noting that &;; and o; are bounded linear functionals on W22 (£2) that
vanish on all polynomials of degree 1. By the Bramble—Hilbert lemma,

ilacenys 83—l leilygr ) < CHlullyzgy:  (2187)

Arguing in the same way as in the previous section, v;; is decomposed into three
terms that are bounded by means of the Bramble—Hilbert lemma to obtain:

2
1031l o) < CH2(laij o Nl wagey + i lwz @ ey ). (2188)

From (2.186)—(2.188) we deduce the following error bound for the difference
scheme (2.183):

I = Ully o = O max laij g o el - (2.189)

While the power of & in the error bound (2.189) is optimal in the sense that it
is compatible with the smoothness of u, the bound is not entirely satisfactory as
the coefficients g;; are required to belong to WOZO(.Q), which, in the light of the hy-
potheses (a) and (b) from the beginning of Sect. 2.6.1, can be seen as an excessively
strong assumption on the regularity of the coefficients a;;. The requirement for the
additional smoothness of the coefficients a;; can be attributed to our crude bound
on D vjj in (2.186).

An improved estimate can be obtained by considering an alternative scheme
where the coefficients a;; have been mollified:

2
LyU:=) LyU=T2f inQ"
et (2.190)

U=0 onl™h,

where

1 -
LijU == DL [(T T3 jaij) DY (U + U ).

l
For this scheme the global error e := u — U satisfies

2 2
Ehe:z<[’ii$l‘i+’CiXi+ZD;’,mj1> in 2", z=0 onT"h,

i=1 j=1
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where &;;, x; and n;;1 are as before. Assuming that g;; € qu (£2), g > 2, and pro-
ceeding in the same manner as in the case of our previous scheme where the coeffi-
cients a;; were not mollified, we obtain the bound

2

lellyam < C Z(usﬁnLZ(m) + 1803l gty Fleillyen
i=1

2
+) ||m~,-1||L2(9;1)).
j=l1

Using the estimates (2.187) and (2.172) derived earlier and slightly strengthening
the smoothness requirements on the g;; by demanding that g;; € Wolo(Q), we arrive
at the error bound

flu — U”LZ(Qh) = Ch? Hilﬁ}x ||aij||wgo(g)||’4||wz2(g)y (2.191)

which is now almost compatible with the smoothness of the data in the sense that
we assumed a;; € WOIO(Q) instead of the minimal smoothness requirement a;; €
W (82),q>2.

Let us now discuss the case when u belongs to the fractional-order Sobolev space
W5(£2), 1 <s <2. Allowing some incompatibility between the smoothness of the
coefficients and the corresponding solution by assuming instead of our initial hy-
pothesis

ueWs(2), a;eWwh @), 1<s<2,
that
ueWs(R), l<s<2  a;eWl(2)
and arguing as above, instead of (2.191) we arrive at the error bound

I = Ul Ly g < O max il el g, 1 <5 <2
This error bound is again incompatible with the smoothness of the data, except in
the case of s = 2 when it coincides with (2.191).
2.6.4 Convergence in Discrete Fractional-Order Norms

By noting our error bounds in integer-order discrete Sobolev norms and the inter-
polation inequalities (2.54) we can obtain new bounds in fractional-order discrete
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Sobolev norms. Thus, for example, for the scheme (2.167) from (2.168) and (2.178),
we have that

S—=r
i = Ul ) < Ch (%X 1451 ) + 1l ys2(o) ) lllws .
forl<r<2<s<3.

From (2.169), (2.177) and (2.54) we deduce that
lu — U||W2r(_(2h <Ch™ (IIIIE}X ||a,-j||W;71+a(_Q) +miax ||a,-||W;;71+a(Q)

ol ) Iullwycy, for1 <7 <s<2

Similarly, from (2.191), (2.54), the inverse inequality

232

Viwsan = 51V ll@n YV €S

with V = e and (2.177) we obtain the following error bound for the difference
scheme (2.190):

2—
lu = Ullwy@nm < Ch™" max laijllwy, ) lullwz@)y,  0<r=2.

In the next section we shall further sharpen these error bounds in the special
case of an equation where the off-diagonal entries in the coefficient matrix (a;;) are
identically zero.

2.6.5 Convergence in the Discrete L, Norm: Separated Variables

In Sect. 2.6.3 we saw that the derivation of optimal error bounds in the L(£2")
norm under minimal smoothness requirements on the coefficients g;; is associated
with technical difficulties. The error bounds that we obtained are satisfactory in this
respect only when s = 2, while for s < 2 they are incompatible with the natural
minimal regularity requirements on the coefficients. These results can be improved
in the case of a differential equation that separates the two variables; that is, when

2
= Oi(aidu)=f ing2,
i=1 (2.192)

u=0 onl =052,
where

ai=a;(x;), i=1,2,
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are such that there exist positive constants cp and ¢ with
O<co<ai(xj) <cy forallx; €(0,1),i=1,2.

In order to ensure that the a; belong to the function space of multipliers
M(W; ~1(£2)), we shall suppose that

a; € Wll,sillﬂs(o’ D),
where the real numbers s, p and § are assumed to satisfy the following conditions:

p=2, =0 when|s—1|>1/2,
p>2, §>0 whens=1/2ors=3/2,
p=1/|s—1|, 6>0 whenO<|s—1]<1/2,

(2.193)

p =00, §=0 whens=1.

Let us introduce the following univariate mollifiers:

1 xi+h
(8i f)(x) := g/ ki (O f (x4 —xp)e;)dr, i=1,2,
xi—h
where

t

ki () _{ ha,(r) ha(r)’ t€(xi —h,xi),

i h o
X+ ald(rr) x+ drr i IE(xi,x,-+h).

These operators satisfy the identity
S; (3,' (aiaiu)) = Dx_,- (&,D;:u),

where a; is the harmonic average of a;, defined by

aj(x;) =\ — , 1=1,2.
o hily @i

In particular when a; (x;) = 1, we have that

S =T2=T,T,.
We approximate the boundary-value problem (2.192) by the following finite dif-
ference scheme:

—Zbg, (a;DFU) =818, f in 2", (2.194)

U=0 onl™", (2.195)
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where b; := S;(1), i = 1, 2. We define the global error by

Th”u, if0<s <1,

e=u—U, whereu::{u, if1<s<2.

Then, e is easily seen to be a solution of the following finite difference scheme on
the mesh 2"

2

2
—Y b3iDy(a;Dfe)=> D (a; D) in 2",
i=1 i=1

e=0 onrl",

where V; = S3—;(u) — b3_;ju,i =1,2. It is easy to show by a duality argument (cf.
the proof of Lemma 2.66) that

lellz,em < CIV1 L @m + 12l L, @n)- (2.196)

The task of deriving an error bound for the difference scheme (2.194) has thus been
reduced to estimating the expression on the right-hand side of (2.196). We shall
discuss the cases 1/2 <s <1 and 1 < s <2 separately.

First suppose that 1/2 < s < 1. Clearly, the value of ¥; at a node x € 2" is a
bounded linear functional of u € Wi‘ (K9, s>1 /2, where

K'=K%x) = {y:(yl,yz) Hyj—xjl<h, j= 1,2}.

Moreover, ¥; = 0 when u is a constant function. By applying the Bramble—Hilbert
lemma we deduce that

|1//i|50h~?—‘|u|wg(,(o), 1/2<s<1.
Summing over the nodes of the mesh 2" we obtain, fori =1, 2, that
Wil y2n < Ch lulwy2), 1/2<s=<1. (2.197)

Now let us consider the case 1 < s < 2. The key difficulty in obtaining an error
bound is that v3_; represents a nonlinear functional of a;, i = 1, 2; nevertheless
¥3—_i, i = 1,2, may be conveniently decomposed and, thereby, the nonlinear terms
can be directly estimated. Let us write

Vi = Y31+ 32+ V33,

where

1 x;—ht do
Y3—i1 ::/ [u(x+h1:e,~) —2u(x)+u(x—hrei)](/ )
0 X,

—n ai(0)
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Yoodo \ 7!
X (/ ) dr,
xi—h 4i (o)

1 xi+h do Xi do -1
Y3—i2 :=/0 [u(x+hre,)—u(x)](/ )

a;(o) Xi —n ai(0)

xi+h xi+h _
x (/ ) —‘/ f @) =ailt) 4 g,
xi+ht Gi (o) xi—h Jx; a;(t)a; (t')

1 %ioodo 7!
V3-i3 32/0 [utx + hrep) — u(x)](/x,-—h ai(z))
Xi— —ht xl+h —_ /
< h™ 1(1_1') 1/ f ai(t) — ait )dtdt/df.

i4+ht Qi ®)ai ()

The value of Y3_; j atx € 2" is a bounded linear functional of u € W5 (K 0y, s> 1,
which vanishes whenever u is a polynomial of degree 1. Using the Bramble—Hilbert
lemma we obtain

1¥3—i1llp,0n) < Ch' lulwy @), 1<s<2. (2.198)
For 3/2 <s <2, v3_; 2 is a bounded linear functional of u € WZS(KO):
¥3-i2l < CH* 2 (™l Ly o) + lulys (ko)
+/’ls_l|M|W25(Ko))|ai|W2)L(Io), >0,
where 10 = Io(x,-) = (x; — h, x; + h). Moreover, ¥3_; 2 =0 when u is a constant
function, and therefore the term 21 ||u|| L,(k©) on the right-hand side can be elim-

inated by applying the Bramble—Hilbert lemma. Summing over the nodes in the
mesh 2" yields

W32l Lycom < CHH 2 (max lulyy g, + 1 ulwg )il 0.1y
where
.Qh’,' =.Qh,,‘(x) = {y ERzi xXi—h<yi<xi+h O<ys_; < 1}.

Choosing A = s — 1 and invoking the boundary-layer estimate (see Oganesyan and
Rukhovets [148], Chap. I, §8)

lvllzy0.6) = CF@lvliwg 0,1y, O0<e<l1, 0=s<1, (2.199)
where
& 0<s<1/2,
F(e):={&'"?|loge| s=1/2,

gl/2 1/2<s<1,
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which implies that
lulyi @, < Ch' P lullws @), s >3/2,
we thus obtain the bound
1¥3-i2llL, 00 < Chlaillys—1 g lullwy @), 3/2<s<2. (2.200)
Similarly,
13—i2llz,m < Ch* laillys-reo gy lullwy @), 1<s=3/2, (2.201)

with p as in (2.193). An analogous bound holds for yr3_; 3. Combining (2.196) with
(2.197), (2.198), (2.200) and (2.201) we thus obtain the following result.

Theorem 2.67 Suppose that u € W3 (2) and a; € WS ™'\(2),i = 1,2, with 1/2 <
s <2 and p as in (2.193). Then, the finite difference scheme (2.194) satisfies the
error bound

S
lu = Ullp,on < Ch max ||ai||W1\7sf1\+6(0’1)||u||W§(Q)s (2.202)
where C is a positive constant, independent of h.

Unlike our earlier optimal error bounds in the L>(£2") norm, (2.202) is now also
compatible with the smoothness of the coefficients.

We note that for 0 < s < 1/2 the function S5 f, with f € WZS_Z(.Q), is not nec-
essarily continuous on £2; in this case the right-hand side of the difference scheme
(2.194) is not defined at the mesh-points. A more fundamental difficulty is that
ue Wzs (£2) does not have a trace on I" = 952 when s < 1/2, and it makes no sense,
therefore, to demand that it satisfies a homogeneous Dirichlet boundary condition
onl'.

2.7 Fourth-Order Elliptic Equations

This section is devoted to boundary-value problems for fourth-order elliptic equa-
tions with variable coefficients of the form

Lu = 07My () + 2010, M3(u) + 3 Ma(u) = f(x), x€2, (2.203)
where 2 = (0, 1)2 and

Mi(u) :=ay 81214 + aoazzu,

M (u) := a0812u + a2822u,
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M3(u) := azoou.
‘We shall assume that
a;>co>0, i=1,2,3, a1ag—a3261>0, x €S2,
(2.204)
ueWs( ), fewy, H(R), 2<s<4.

In order for (2.204) to hold it is necessary that the coefficients a; belong to the
multiplier space M (WZS 72((2)). According to the results in Sect. 1.8, the following
conditions are sufficient for that to be the case:

aj € W;_2+5(.{2), i=0,1,2,3, (2.205)
where
p =2, =0 when3 <s <4,
p>2, e=0 whens =3,
p=>2/(s—2), e>0 when2<s <3.

We begin by considering the partial differential equation (2.203) subject to the
boundary conditions

u=0 onl =082;
(2.206)
Pu=0 onljpUl,i=1,2,
where

lig:={xel:xi=k,0<x3_; <1}, i,k=0,1.

By adopting the same notation as in Sects. 2.2.4 and 2.7 we approximate the
boundary-value problem (2.203), (2.206) by the finite difference scheme

LyU=TZf ongh (2.207)
U=0, onl™",
(2.208)
DID U=0, onljurlt i=12,
where Flﬁ’( =T N Fh,
LyU := D D m(U) +2D; D m3(U) + D}, D my(U),
and
mi(U) := a1 D, DU +ao Dy, Dy, U,

my(U) 1= aOD;1 DU+ azD;; DU,
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m3(U) == a3 D} DI U,

X1

with
7 (x):= —lh —lh
az(x) :=az| x1 + , X2 + .
3 I\ 2 2 2

Let us note that the difference scheme also involves mesh-points in 2Z> that are
contained in [—A, 1 + h]z. Thus we shall suppose that the solution u and the coeffi-
cients a; have been extended onto the larger square (—hg, 1 + hg)? preserving their
Sobolev class; here A is a positive constant, ig > h.

Next we develop the error analysis of this finite difference scheme. The global
error e ;== u — U 1is easily seen to satisfy the following difference scheme:

Lne=D} Dy 1 +2D; D g3+ Di DL g, xeh, (2209

e=0, xth,
(2.210)
DD e=DiD u, xerjury i=12,

where
gi=mi) = To M), =12 g3=ms@)—T] T, Msu).
Thus (2.206), (2.208) and (2.210) imply that
mi(e)=¢;, xelhurh i=1,2.

By taking the inner product of (2.209) with e, performing summations by parts and
applying the Cauchy—Schwarz inequality we get

2 2 2 2
i3y < CAIOAIT, g + 19213, gy + 9l g ). (221D
Theorem 2.68 Assuming that the data and the corresponding solution of the

boundary-value problem (2.203), (2.206) obey the conditions (2.204) and (2.205),
the difference scheme (2.207), (2.208) satisfies the error bound

le = Ully2gn) < Ch*~? max lai llyys—2+e () lullws (), 5/2<s<4. (2212)

Proof In order to prove the error bound (2.212) it suffices to bound the terms on the
right-hand side of the inequality (2.211). Let us begin by representing ¢; as the sum

8
Y11= Zwl,j,
j=1
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where
Y1k = a2—k(D)_c:Dx_ku — T12T228,3u),
912 = (a2 — TP Taz ) (TE T3 5u),
Prita = (T7 T3 ar—i) (TP T3 0¢u) — TET; (ar-—idu),
Olk+6 1= T12T22(a2,k8,%u) — Tzz(asz(')/?u), k=1,2,
with an analogous representation of ¢,. Further, let
Y3 =31+ @32,
where
@31 := (a3 — ;" T,"a3) D} D} u,
@32 = (T Ty a3) D} D} u — T T, (a30105u).

When s > 2, the value of ¢ 1 at a mesh-point x € 2" is a bounded linear functional
of u € W3 (K9):

9111 < COllarll o lllwg ko)

Moreover, ¢1,1 = 0 when u is a polynomial of degree 3. By the Bramble-Hilbert
lemma,

o1l < CH* P llatll e lulws ko), 2<s <4

By noting the Sobolev embedding W,S,_z“'s (K% — C (F), s > 2, and summing
over the mesh-points in £2” we thus obtain

11 lyen < CH 2 larl g ulws (@), 255 <4 (2213)

The term ¢ > is bounded in the same way. Next ¢ 3(x), x € £2" is a bounded
bilinear functional of (a;, u) € WQ(KO) X qu(KO), with Ap > 2; ¢ = oo when p =
2;and g =2p/(p — 2) when p > 2. Moreover, ¢1 3 = 0 when either a; or u is a
polynomial of degree 1. From the bilinear version of the Bramble—Hilbert lemma
(cf. Lemma 2.30 with m = 2) we deduce that

o131 < CH*Hlarllwy oy lulwz oy 2/p <h <2,
and thereby

o131y < Ch* latllwio) lullwz@)-
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By choosing A = s — 2 + ¢ and noting the Sobolev embeddings
W5(2) = Wi(2), s>3,
and
W5 (R2) > W3,/ 2($2), 2<s<3,
we obtain
l0130Lyem < CH 2 latll oo llwy @y 2<s <4 (2214)

The terms ¢; 4 and @3 1 are bounded in the same way.

For . >0, u > 2 and g > 2 the value of ¢; 5(x) at x € 2" is a bounded bilinear
functional of (a,u) € W,;‘ (KO) X Wz‘;/(q_z)(Ko). Furthermore, ¢; 5 = 0 when a;
is a constant function or when u is a polynomial of degree 2. By the bilinear version
of the Bramble—Hilbert lemma,

n < Ch* T2 ||a A U || e ,
o150, @n < l 1||Wq @l ”qu/(qu)(g)

where 0 <X <1and2 < u <3.Now let A + u =s. When A + u > 3, there exists
ag=gq(A,u)suchthat A >2/g >3 — u; then,

A

Wi (2) = Wy (2) > W)

and
Ws(2) =Wt (@) — Wh (=2 ($2).

Analogously, when 2 < A + u < 3, there exists a real number g such that A > 2/q >
2/p — (i — 2). In this case,

W;;—2+8(Q) _ WI})»+M—2+8(Q) s W;(Q)
and
A
W3(2) =W, (@) > Wh ().
It follows from these embeddings that
l01.50Lym < CH 2 latll g llwy @y 2<s <4 (2215

The terms ¢; ¢ and @3 2 are bounded in the same way.

When A > 1/2, the value of ¢ 7(x) atx € 2" is a bounded linear functional of
aj 812u € WZ}‘(K 0, which vanishes on all polynomials of degree 1. By the Bramble—
Hilbert lemma, we have that

o171l Ly@n) < CHMardfulys o), 1/2 <1 <2.
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By choosing A = s — 2, the inequality
’“1312“|w2*(9) < Cllas ”W},“(Q) ” 312“H W} (2)
implies that
lo17 0Ly < Ch 2 latll s llwg i@y, 5/2<s <4 (2216)

The term ¢ g is bounded in the same way. Finally (2.213)—(2.216) and (2.211) yield
the desired error bound (2.212). O

We note that for 2 < s < 5/2 the function T, hzz f is not necessarily continuous on
£2 and therefore the right-hand side in the difference equation (2.207) is not defined
for this range of values of the Sobolev index s. In fact, for s < 5/2, the second-
normal derivative of u € W3 (£2) does not have a trace on I}o U I} and therefore
the boundary-value problem (2.203)—(2.206) is not meaningful as stated for this
range of s.

Now let us consider the partial differential equation (2.203) subject to the homo-
geneous Dirichlet boundary conditions

u=0 onl,
2.217)
ju=0 onrl;pUIl;,i=1,2.

With the notational conventions from Sects. 2.2.4 and 2.7 equation (2.203) is again
approximated by (2.207), and the boundary conditions (2.217) are discretized as
follows:

U=0 onrl",
(2.218)
DU=0 onlhurf i=1.2.
The error e := u — U satisfies (2.209) and the boundary conditions
e=0 onl",
(2.219)

Dye=Dyu onTHurh i=1.2.
Defining ¢; = ¢;(x) by
g = (Ddu—du)/h, i=1.2,
the derivative boundary condition in (2.219) can be rewritten as

Dgie:hgi, xe]"/(l)UFh

il

i=1,2.

Theorem 2.69 The following bound holds on the global error e :=u — U between
the analytical solution u and its finite difference approximation U :
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”u _ U ” W22(_Qh) S Chmin{s—2,3/2} | logh|1—|sgn(s—7/2)\

X max ||a; ||W;}72+g(9) ||u||W5(9), 5/2 <s <4. (2.220)
1

Proof We begin by noting that
2 2 2 2
< + +
”e”“rZZ(Qh) = C(”‘Pl ”LZ(Q{‘uFl"]) ||¢2||L2(Q£1U1—~2h]) ||(P3||L2(ng)

2
+Y Ry ;,.Z(x)). (2.221)

=l xergur

The first three terms on the right-hand side of (2.221) are bounded in the same
way as in the case of the boundary-value problem (2.203), (2.204) considered ear-
lier. The only new ingredient in the analysis is the estimation of the last term in
(2.221), which we discuss below.

When s > 2, ¢; represents a bounded linear functional of u € WZS (K9), which
vanishes on all polynomials of degree 2. By applying the Bramble—Hilbert lemma
we obtain

172
<h2 > ;}(x)) <CR Plulws(2g, 2<5<3, (2.222)

xerjs
where
i0=82p;0):={x:—-h<x;<h, 0<x3_; <1}

By noting the boundary-layer estimate (2.199), we deduce from (2.222) that

172 .
<l’l2 Z €12> S Chmln{572,3/2}|logh|17‘sgl’l@'77/2)|”u”WZS(Q)’ 2 <s S 4
xer

(2.223)

For x € Fl’{ the terms ¢;, i = 1, 2, are bounded analogously. From (2.221), (2.223)
and our earlier bounds on ¢1, ¢» and ¢3 we obtain the desired error bound (2.220)
for the difference scheme (2.207), (2.218).

For s < 7/2 the solution of (2.203), (2.217) has an even extension (i.e. an exten-
sion as an even function) across I” that preserves the Sobolev class W;. With such
an even extension of u, {; = 0 on Fl}(’) U Fl}i , and (2.220) is then a direct consequence
of (2.207)—(2.216) and (2.221). O
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Finally, we consider the partial differential equation (2.203) subject to the natural
boundary conditions

Mi(w)=0 and 0;M;(u)+233_;M3u)=0 on Ul i=12
(2.224)
M3w)=0 on Iy =1{(0,0),(0,1),(1,0),(1, D}

The solution of problem (2.203), (2.224) is unique, up to the addition of a polyno-
mial of degree 1. In order to ensure that we have a unique solution, we shall assume
that, in addition to (2.224), the values of u at three vertices of §2 have been fixed;
that is,

1 (0, 0) = coo, u(0, 1) = cor, u(1,0) =cyo. (2.225)

With the notational conventions from Sects. 2.2.4 and 2.7, the conditions (2.224),
(2.225) are approximated by

mi(U)=0, DYm;(U)+ Dy, [m3(U)+m3U)"]=0,
onThUT T, i=12; (2.226)

m3(U) +m3U) " +m3U) 2 +m3(U)"""2=0 onl};
U (0, 0) = cqo, U(@,1) =co1, U(1,0) =cio,

(2.227)

where F?k := Tz N I'"". Let us observe that the difference scheme also involves
points exterior to 2 that are at a distance < 24 from I'; therefore (2.203), (2.226),
(2.227) has fewer equations than unknowns. In order to account for the missing
equations, we also discretize the partial differential equation at the boundary mesh-
points. Let us introduce the asymmetric mollifiers

1
Tfif:=2/0 (1—1)f(x £rhep)dr, i=1,2,

and the additional equations

Ti§+ T% f for x € F"%
cu={1 TS forx € I7, (2.228)
T f for x = (0, 0),

and analogously for x = (0, 1), (1,0), (1, 1).

Theorem 2.70 The difference scheme (2.203), (2.226), (2.228) satisfies the error
bound

|[M _ U]| WZ(Qh) S Chmin{s—2,3/2} | logh| l—|sgn(s—7/2)\
2

Xm?lX||ai||W;’—2+s(9)||u||W2S(Q), 3<s<4,
i

where C is a positive constant, independent of h.
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Proof The global error e := u — U satisfies the inequality
2 2 2 2
|[e]|W22(_Qh) S C(":(U] ]|L2(Qh) + |[¢2]|L2(Qh) + ”¢3”L2(.ng)

2 2
+ |[¢1]|L2(Q”) + 2] Lz(.Qh))’ (2.229)
where, fori =1, 2,
—h
TZ M;(u) — T3 M;(u) on Tio:
$i =\ T2 . M;(u) —T{;M;(u) onT,
0 at the remaining mesh-points.
The terms @1, 2 and ¢3 are estimated in the same way as before. Finally, ¢; is a
bounded linear functional of M;(u) € Wz’\(.Q), A > 1/2, which vanishes on all con-
stant functions. Using the Bramble—Hilbert lemma and the boundary-layer estimate
(2.199) we obtain

|[¢i]lL2(Qh) S Chmin{s—2,3/2} | logh|l—|sgn(s—7/2)|

x max lajllys2e g lullwge). 3 <s<4.  (2.230)

The desired error bound follows from (2.229), (2.230) and our earlier bounds on the
terms ¢1, ¢2 and @3. |

2.8 An Elliptic Interface Problem

The technique of convergence analysis introduced in earlier sections of this chapter
can be extended to finite difference schemes for more general boundary-value prob-
lems. As an example, we consider here a model partial differential equation with a
singular coefficient. Problems of the kind discussed here are usually referred to as
interface problems or transmission problems. For further details we refer the reader
to Jovanovi¢ and Vulkov [101].

Let 2 = (0,1)? and I = 8£2. A typical point in £2 will be denoted by x =
(x1, x2). Let further X' be the intersection of the line segment x; =&, 0 <& < 1,
with 2. We consider the Dirichlet boundary-value problem

Lu~+k(x)sz(x)u= f(x) inS2, u=0 onlT, (2.231)

where 8y (x) = §(xp — &) is the Dirac distribution concentrated on X, k(x) = k(x1)
and L is the symmetric elliptic operator introduced in (2.166); i.e.

2
Lu =— Z 0;(a;joju) + au.
i, j=1

The Dirac distribution § 5 belongs to the Sobolev space W, *(£2), with A > 1/2.
Equation (2.231) must be therefore understood in a weak sense: we seek u € W21 (£2)
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such that
(Lu,v) + (k8x)(mv) = (f,v) Yve W (), (2.232)

where (f, v) denotes the duality pairing between the spaces W, ! (£2) and W21 (£2),
and

Az, we W} (),
P

(kéx)(w) ::/ kw

p)

where w|y € L{(X) denotes the trace of w € Wl1 (£2)on X, and k € Lo (X).

Alternatively, problem (2.232) can be restated as follows: find u € W21 (£2) such
that

a(u,v) = (f,v) Vve W} (), (2.233)
where

dx. (2.234)
P

2
a(u,v):/ (Z aijajuaiv—i—auv) dx—}—/ k(uv)
Q z

ij=1

Thus, (2.233) can be seen as the weak formulation of the boundary-value problem
(2.231). A relevant point in this respect is that for the domain £2 = (0, D)2 c R?
the product uv of u, v € W21 (£2) belongs to W; (£2) for all p €[1,2) and thus by
Theorem 1.42 (see also Theorem 1.5.1.3 on p. 38 of Grisvard [62] for p € (1, 2)
and Theorem 2.10 on p. 37 of Giusti [54] for p = 1), the boundary integral term in
(2.234) is meaningful. The following assertion concerning the existence of a unique
weak solution is an immediate consequence of the Lax—Milgram theorem and the
trace theorem for Wz1 (£2).

Lemma 2.71 Suppose that

FeW; (), aj.aeLleo(R), k€Ln(X), aj=aj. a=0, k=0,

2 2
Jeo>O0VE= (£, 6) eR?VxeR: Y ay(0)&EE > co Y &
i=1

i,j=1

Then, there exists a unique weak solution u € W21 (£2) to the boundary-value prob-
lem (2.233), (2.234), and

||u||W21(Q) = C||f||W;1(Q)'

Let us now assume that the coefficients a;;, ii =1, 2, and a of the differen-
tial operator £ belong to the Holder space C**(£2), with A > |0] and 0] < 1/2.
The bilinear functional a(-,-) can then be continuously extended to Wz1 79(9) X
Wzl +0(82). The following assertion can be proved by applying Theorem 3.3 in Necas
[143].
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Lemma 2.72 Suppose that

fewd ' @), 181<1/2, aj,aeC™ (@), r>10], keL(X),

ajj=aji, a>0, k>0,

2 2
Joo>0VE=(E1,6) eR?VxeQ2: Y aj(x)&EE > co ) &
i=1

ij=1

Then, there exists a unique solution u € W21 () 1o the boundary-value problem
(2.233), (2.234).

In the case when f does not contain a concentrated singularity on X, such as
8y, problem (2.233), (2.234) can be shown to be the weak formulation of the fol-
lowing boundary-value problem with transmission (conjugation) conditions on the
interface X':

Lu=f inR2 URT, u=0 onTr,

2
[u]ls =0, [ZHZjaju] =ku|yz,
j=1

X

(2.235)

where 27 :=(0,1) x (0,&), 27 :=(0,1) x (£, 1), and
[u]lg :==ulx1,§ +0) —u(x;,§ —0).

In this sense, the boundary-value problems (2.231) and (2.235) are equivalent.
Higher regularity of the solution can be proved under additional assumptions on
the data. For s > 2 we define the subspace W5 (£2) of W21 (£2), consisting of all

u € W, (£2) such that
duely2), i=0,1,...,s,
N hueLry(2), i=12,..,s,
0 ueLy(27)NLa(2F), i=j 1.5 j=23,..,s,

with the norm | - ||Wé(_(2) defined by

S )
. - 2
||M||2AZS(Q) = E ||8i“||L2(g) +§ :Hai 182”||L2(Q)
i=0 i=1

N s

+ Z Z(” 8i7j3{” ||iz(9,) +| aiijagu “iz(.m))'
j=2i=j

Obviously,

Ws(2) C W5 (2) := W) (@) nws(27)nws (2.
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Lemma 2.73 Suppose that in addition to the assumptions of Lemma 2.71 we have
that

felyR), ajeWh(2), kewl(®);
then, u € WZZ(.Q). If, in addition,
A f € Ly(82), hfel(2F),  ajeWi(),
aeWh), kewi(®)

and
f=ap=01a11=0 forx;=0andx =1,

then u € W5(£2).

Proof For x € 2~ U £27F (2.235) can be written as
2
2 2. .9
a1107u + 2a120102u + apdyu = — Z 0;ja;joju+au — f. (2.236)
ij=1

Multiplying (2.236) by 81214, integrating over £2 and performing partial integration
we obtain

/ [an(afu)z+2a12312u8132u+a22(8182u)2]dx+/ k(du)?| dx
2 z z
=1L+ Db+,
where
2
I = —/ (Z 0;a;j0ju —au +f>812udx,
2\; =1
b= / (32a2282u812M — 81a2282u8182u) dx,
Q
Iz = —/ KududX.
=
Further,

/ [an1 (97u) + 2412071 02u + ar (31 924)*] dx +f k(d1u)*dx
2 )

> co(|[ofu ||iz(.o) + 101 82””%2(9))'
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The integrals I, I and I3 can be bounded by applying the Cauchy—Schwarz in-
equality with ¢ € (0, 1) as follows:

C
il < 8||312”||iz(9) + Z(”“”%V;(Q) T lz)

Similarly,

Il < e(|02ul o) + 19190012, 0) + < lul?

21 = U1 Ly () T 10128 Ly (2)) T 7 192H Ly (2)
and

C
2 2
|I3] < 8||81u||L2(2) + ;”””Lz(z)

2

C
= C18(||312u “iz(KZ) + ”8132"{”%2(9)) + ;”u”WZI(.Q)

Hence, by selecting a sufficiently small ¢ > 0, we obtain the bound
2112 2 2
[07ull; ) + 101026017, 2) = CIFIT 0
From (2.236) we immediately have that
[05ul Ly 0s) < C(187] 1y ) + 191826l a2y + Tty + 1 f 2acs2)
DU L0t = 1%L, 02) 1 La(82) W, (£2) Ly($2))>

which proves the first part of the lemma.
When the assumptions of the second part of the lemma are satisfied, we deduce
from (2.231) that

du=0 onr.
By differentiating (2.231) one obtains
LOTu+k(x)8x(x)dtu= fi(x), xe,
where
2
f1:= 812f + Z 0; (281a1j818ju + 812aij8ju)
ij=1
—231adu — dfau — 2k'8xdu — k'Sxu € Wy ' (£2).

By applying Lemma 2.71 we then deduce the regularity result stated in the second
part of the lemma. g

For further details regarding the analysis of elliptic boundary-value problems in
domains with corners we refer to Grisvard [62] and Dauge [28].
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2.8.1 Finite Difference Approximation

In the sequel we shall assume that the weak solution of the boundary-value problem
(2.231) belongs to W3 (£2), s > 2, and that the coefficients of the equation satisfy
the following regularity hypotheses:

ajews N @)nwy i (@N)ne®@),  aews A (L27)nwyA(e2T)
and
kews (D).
We define
gy = (Il gy + Nulyg ey + Nl )
In particular, for s =0 we set

1/2
Il o) = Nl = (103 i) + Nl )

For the sake of simplicity we shall also assume that £ is a rational number. Let

5’1 be a uniform square mesh on 2 with mesh-size i := 1 /N, where N is an integer
such that £ N is also an integer. We shall use the notations from Sect. 2.2 and define

She=02"nx and X" :=3"U{©,8)).

Let us approximate the boundary-value problem (2.231) on the mesh o by the
following finite difference scheme with mollified right-hand side:

LU +kSsnU =TETEf  in 20, U=0 onrl™", (2.237)
where
1 2
LU =—3 -ZI[D; (aij Dy, U) + Dy, (ai; DL U) | + (TP TS a)U
1,j=
and

0 for x € 2"\ 2",

Sxn(x) =8 (x2 — &) :={1/h for x € X"

is the discrete Dirac delta-function.
Further, we define the asymmetric mollifiers TZZ* and Tz2+ by

2 [* Xy —x
T f(x1,x2) i= —/ 14222 f (1, x5) dx),
n) h

2—h
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2 x3+h x! — X7
T f(xn,x) == 1- =2 £ (x1, x5) das.
h )y h

2

In addition to the discrete inner products and norms defined in Sect. 2.6.1 we intro-
duce

U V)gii=h S U@V, Ul = U, 02,

xexh
U —va\”
5 -
Uy gy - (h > X W)
xexh x'exh x'#x ! 1
The following lemma holds.

Lemma 2.74 Let U € Sg and let V be a mesh-function defined on X" . Then,

[(D5, V. U) s = CliUllwy (Qh)|V| 12 (shy-

Proof Similarly as in the proof of Lemma 2 in Jovanovi¢ and Popovi¢ [92], we
expand U and V in the following Fourier sums:

N—1N-1 N—1
U(xi, x3) = Z Z by sinkmx; sinlmx, = Z Bi(xp) sinkzwx;,  (2.238)
k=1 [=1 k=1
N-—1 h
Vi(x)) = k —). 2.239
(x1) ];ak cos n<x1 + 2) ( )

Hence we have that

— 4
D;l Vx)=— Z VAragsinkmxy, where A := o sin —
k=1

Using the orthogonality of sine functions, we deduce that

N—-1
_ 1
(Dx, Vv, U)Eh =-5 /; vV Arag By (x2)
Nl 1/2 Nl 172
< (E > w/xkag) (E > w/kaf(xz)) . (2.240)
k=1 k=1
Let us consider the following sum (over mesh-points):

1-h 2
N2(V) = Z <V(X1) —Vix; — t1)> ’ (2.241)

t
x1,t1=—1,117#0
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where the mesh-function V has been extended outside X" by (2.239). Using the
periodicity and orthogonality of cosine functions, we then deduce that

1-h 1-h
-V t 2V \%
N2(V) 2 Z Z (x1+1)+2V(x) —Vx — )V(xl)
X|——10;ét]——l tl

N-1
_iY VR
k=1

where
kzh krh = /sin kTN 2
Ik R 2 Jk Jk — § 2
: sin kmh ’ : 2 kit :
2 l‘1=h 2

We note that

krh
2

1<
nknh

b3
< —
si 2

and that Jy is a Riemann sum for [; ko 2(““’) dt, which therefore satisfies the fol-
lowing two-sided bound:

g e

oS
EREN)

1
b4

Hence,

=

—1

ENEN

N-—1
Varap < N*(V) < (72 +4) > Vuag.

1 k=1

>-
Il

From (2.241), using the periodicity of the cosine function, we also have that

1-h I
Vixp) — V)
N (Vy=hr* ) — <4 V2,
V) < x| — X} | | 2 (zhy’
X1 xp=—1x17x]

whereby

Z Vara} < n|V| Py (2.242)

On the other hand, since By (0) = 0, we obtain

Xxo—h xo—h
B(xx)=h Y D} (BE(x3)) =h Y _ (D Bi(x}))(Bi(x5 +h) + Bi(x3))
.Xz—

x2_0
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1-h
<eh Y B(x)) —h Z (DF B(x3))",
xy=h x5=0

withe, >0,k=1,..., N — 1, to be chosen.
Selecting e = /Ay fork=1,..., N — 1, and using the discrete Parseval identi-
ties (2.21) and (2.22), we have that

_Z\/_Bk(x2)<||D U||L2(Qh + | D} U||L2(Qh)_||U||W(m) (2.243)

Finally, the assertion follows from the inequalities (2.240), (2.242) and (2.243)
with C = /mr /2. That completes the proof. g

2.8.2 Convergence in the Discrete W21 Norm

Let u be the solution of the boundary-value problem (2.231) and let U denote the
solution of the finite difference scheme (2.237). The global error e¢ :=u — U then
satisfies the finite difference scheme

Lre+kSgne=¢in 2", e=0onTI", (2.244)
where
2
= Z Dy nij+n+éznu,
i,j=1
1
nij _T T3 ;(ajjoju) — (a,JD u+a+’D Ju )
= (T{Ta)u — T{ T3 (aw),
=ku T1 (ku).
Let us decompose 71 and 7 as follows:
mj =1 +38snin; and n=1n+3xn,

where

h2
ni:= FT1+([6!113132M + 0ha1191ulx),

h? h?
a2 =T " ([a1283u + Branndou] ) — ZT1+([81(‘11232“)]2)’
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2

= (1) (o).

By performing summations by parts and applying Lemma 2.74 we deduce the
following bound:

2
12l (ny < C[Z(unzjnh(gg) s LIV PREIE LIV
j=1
177 Ly gy + 181y ) + ||u||L2@h>}. (2.245)

Hence, in order to estimate the convergence rate of the finite difference scheme
(2.244), it suffices to bound the terms on the right-hand side of (2.245).

The terms 12, j = 1, 2, have been bounded in Sect. 2.6.1. After summation over
the mesh .Qé’ we obtain

211ty < ™ (a2 llyys—1 o Il ws )

102l st o lellwg@n). 2<s 3. (2.246)

The terms 71; for x € .Q]h \ X" can be bounded in the same way. For x € " we
set

3
ni = Z(ﬁﬂ,k + 17 4)-
k=1
4
UIPRES Z(m—z,k +150)-
k=1

where

1 1
+ g2t + 24 + 24
'711,1~—§ ' I (C‘llal”)_E(Tl T, all)(Tl T, 81”)

H_

(T1+82a11) [(T1+ Tzzialu) - (T1+31”)]

H

a +a+l
[M(Tﬁalazu) = Tﬁ(allalazu)}

| ol ol

H_

[(T7"02a11) (T, 81u) — T} (B2a1191u) ] ixZ:SiO’

an+al' n
”ﬁ,z = (T1+T22iall) - % + §(T1+82“11):|(T1+T22i81“)‘xz:sio’

N =
| B
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s = % [(T1+T22i81u) — Uy, F E(T1+8182u)j| "
X2 =
1 1
77?[2,1 = §T1+T22i(01232u) - §(T1+T22ia12)(Tl+T22i82u)
b+ o2k "
+ g(Tl 82"12)[(T1 T; 82”) - (Tl 32”)]
hla +a1+21 +2 n )
= g|: 2 (Tl 82”) - Tl (a12321/l)j|
h
+ g[(T1+32a12)(T1+82“) — T7H (dra1200u) |
h

+ ZT1+(816112(T2i32“ - 32”)) |x2:$i0’

’ﬁz,z = %[(T1+T22i"12) - % + g(T1+32“12)] (T1+T22i82u)|x2=$:t0’
= O (1) - P DT g |
+ ZT1+("12(T2+3132” = 01dau))| g o
M3 = % (T1+T22782”) - w - g(T1+3§“):|
+ %T1+(a12(T2_3182u - 8182u))|x2:§_0,
=g ) (DR =) o
aai=—g el —an) (Dot — )|

The terms nfj « can be bounded analogously to the corresponding terms 7y ,x con-
sidered in Sect. 2.6.1. Thus we obtain:

~ —1
||771] ”Lz(glh) < Ch’ (”alj ||W2r71(9—) ”u”Wé(.Q*)

+ llarjllys—1 onllullws @), 25<s<3. (2247
2 ( ) 2

For x € 2"\ X", the term 7] can be bounded in the same way as the correspond-
ing term 7 in Sect. 2.6.1. For x € X" we use the following decomposition:

n=T"q + Ny + M) + Ny
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where

s

xo=£+0

h
Uﬁ) = (T12T22ia) |:” - (T12T22i”) E g(T1232”)}

N =

TET%a) (TET u) — T2T5 (au)

1
+
o) '—5[
Lk
£5

((770) - (77 Tﬁa»(rfazu)} .
xp=£40
These terms can be bounded analogously to the terms 73 and n4 discussed in

Sect. 2.6.1. Hence we deduce that

- s—1
170l 2ny < CH* (llallwgfz(_qf)||M||W5‘(9*)

Fllallys2 g+ lullwy@+), 2<s<3. (2.248)

The value of u at the node (x1,£) € X" is a bounded linear functional of
ku € W“l(z) 1= (x1 —h,x1 + h) x {£}, s > 3/2, which vanishes on all linear

polynomials. Using the Bramble—Hilbert lemma one then obtains that

-1
”/‘L”Lz()_fh SChS ”ku”WZFI(Z')
1.5<s<3.

< Ch* ™ Kl g1y (el ws - + lullwg o).
(2.249)

The term 7 can be bounded directly:

~ 2
il aceny < CH(lall Ly 1024l g, + @l Lz 1320l o )

= Chz(”a”WZY*z(_QJr)||u||W§(.Q+) + ”a”WZT*z(_Qf)”u”WZS(.Q )) s> 2.5,
(2.250)
where we have used the following notation:
lallz,s+) = (. & £0) ”Lz(O,l)'
Wi (sh) can be

For a function ¢ € W2 (X), 0 < A <1/2, the seminorm |

estimated directly:

T lynsny < 2207 M0l ) < CH 120N i g

We thus deduce that
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A s—1
711 |W21/2(Eh) <Ch (”allalaZMHW;*Z(_Q-%—) + ||(1113132M||W23'72(9_)
+ ||32a1181u||W25—z(9+) + ||3201131MIIW5—2(97))

= Chxil(”a]]||W§—I(Q+)||M||W§(Q+) + ”allnwzs—l(g—)”u”Wg(Q*))»
(2.251)

for 2.5 < s <3, and analogously
2ty 12 oy < CR 7 (lanallygs g lullws @)
+ llai2|l W;fl(.Q*) ||M||W25(Qf)), for 2.5 <s <3. (2.252)
Hence, from (2.245)—(2.252) we obtain the main result of this section.

Theorem 2.75 Suppose that the solution of the boundary-value problem (2.231) be-
longs to the function space W, (£2), and that the coefficients of the equation (2.231)
satisfy the following regularity hypotheses:

aij e Wi (@M nws T (27)nC(R),
aeWs 2 @N)nwyA(27), kewy '(D).
Then, the finite difference scheme (2.244) converges and the following error bound
holds:

lu — U”Wzl(.Qh)

< s—1 .. B L. o
< ! (maxlais g1 g0y + max s lyg-1 g

+ ”a”WZS*Z(Q+) + ”anwé'*z(g—) + ||k||W25*1(2))”u”W2Y(_Q)7 25<s<3,

where C = C(s) is a positive constant, independent of h.

2.9 Bibliographical Notes

The principal purpose of this chapter has been to develop a technique for the deriva-
tion of error bounds, which are compatible with the smoothness of the data, for finite
difference approximations of boundary-value problems for second- and fourth-order
linear elliptic partial differential equations. The technique is based on the Bramble—
Hilbert lemma and its generalizations (see Bramble and Hilbert [20, 21], Dupont
and Scott [37], Drazi¢ [32], Jovanovic [79]).

According to the definition of Lazarov, Makarov and Samarskii [125], an error
bound of the form

e = Ullws on < Ch* " ullws2), s>r (2.253)
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is said to be compatible with the smoothness of the solution to the boundary—value
problem. Similar error bounds, in ‘continuous’ norms, of the form

e —u"llwy @) < CH* " llullws2), 0<r<l<s<p+l,

are typical for finite elements methods (see e.g. Strang and Fix [169], Ciarlet [26],
Brenner and Scott [23]) and are usually referred to as optimal; here u" denotes the
finite element approximation of the analytical solution « using continuous piecewise
polynomials of degree p.

In the case of equations with variable coefficients the constant C in the error
bound (2.253) depends on norms of the coefficients. One of our main objectives in
this chapter has therefore been to understand this dependence in the case of various
second-order and fourth-order linear elliptic model problems with variable coeffi-
cients. Specifically, we proved error bounds that are of the typical form

s—r . s
I = Ulwgiany < O~ (mas iy + Nl ) ellwg o

To the best of our knowledge, error bounds of the form (2.253) were first derived
by Weinelt [195], for r = 1 and s = 2,3, in case of Poisson’s equation. Subse-
quently, bounds of the form (2.253) were obtained by Lazarov, Makarov, Samarskii,
Weinelt, Jovanovi¢, Ivanovi¢, Siili, Gavrilyuk, Voitsekhovskii, Berikelashvili and
others, by systematic use of the Bramble—Hilbert lemma.

For example, families of finite difference schemes for Poisson’s equation and
the generalized Poisson equation with mollified right-hand sides were introduced
by Jovanovi¢ [111] and Ivanovié, Jovanovi¢ and Siili [75, 106], and scales of error
bounds of the form (2.253) were established in the case of both integer and fractional
values of s.

A procedure for determining the constant in the Bramble—Hilbert lemma, using
the mapping of elementary rectangles on a canonical rectangle, was proposed by
Lazarov [119]; see also [37] and [38] for related issues.

In the papers of Lazarov [119], Lazarov and Makarov [123] and Makarov and
Ryzhenko [130, 131], the convergence of various difference schemes was exam-
ined for Poisson’s equation in cylindrical, polar and spherical coordinates, and error
bounds of the form (2.253) were derived under the assumption that the analytical
solutions to these problems belong to appropriate weighted Sobolev spaces. Finite
difference approximations of Poisson’s equation by special classes of finite volume
and finite difference schemes on nonuniform meshes were studied by Siili [171]
and Jovanovi¢ and Matus [73]. In particular, the results in Sects. 2.4 and 2.4.2 are
based on the paper [171]. The analysis presented in Sect. 2.4.3 was stimulated by
discussions with Professor Rupert Klein, Free University Berlin. For related work,
we refer to the paper of Oevermann and Klein [147].

A finite difference scheme with enhanced accuracy for second-order elliptic
equations with constant coefficients was derived by Jovanovié, Siili and Ivanovi¢
[108], and similar results were obtained later by Voitsekhovskii and Novichenko
[188].
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Difference schemes for the biharmonic equation with a nonsmooth source
term were considered by Lazarov [120], Gavrilyuk, Lazarov, Makarov and Pir-
nazarov [50], Ivanovi¢, Jovanovi¢ and Siili [76], and for systems of partial differ-
ential equations in linear elasticity theory by Kalinin and Makarov [114, 129] and
Voitsekhovskii and Kalinin [187].

The convergence of the so-called exact difference schemes was investigated by
Lazarov, Makarov and Samarskii [125].

The error analysis of finite difference schemes for linear partial differential equa-
tions with variable coefficients was developed later. The first attempts in this direc-
tion were focused on finite difference schemes for the generalized Poisson equation
with a variable coefficient in the lowest-order term (Lazarov, Makarov and Weinelt
[126, 196], Voitsekhovskii, Makarov and Shablii [189]); subsequently, problems
with variable coefficients in the principal part of the partial differential operator were
considered (Godev and Lazarov [58], Jovanovi¢, Ivanovié and Siili [110], Jovanovié
[83]). Partial differential equations where the coefficient of the lowest-order term
belongs to a negative Sobolev space were considered by Voitsekhovskii, Makarov
and Rybak [192], and Jovanovi¢ [83]. Zlotnik [203, 205] obtained different error
estimates for discretizations of elliptic problems with variable coefficients.

Fourth-order equations with variable coefficients were studied by Gavrilyuk,
Prikazchikov and Khimich [51], and Jovanovi¢ [84]. Quasilinear equations in ar-
bitrary domains, solved by a combination of finite difference and fictitious do-
main methods, were studied by Voitsekhovskii and Gavrilyuk [186], Voitsekhovskii,
Gavrilyuk and Makarov [191] and Jovanovié [80, 81].

The technique described above was also used for the solution of eigenvalue prob-
lems (Prikazchikov and Khimich [151]), variational inequalities (Voitsekhovskii,
Gavrilyuk and Sazhenyuk [190], Gavrilyuk and Sazhenyuk [49]) and in the analy-
sis of supraconvergence on nonuniform meshes (Marletta [134]). Berikeshvili sys-
tematically used the same technique for the numerical approximation of a general
class of elliptic problems, including equations of higher order, systems of ellip-
tic equations, problems with nonlocal boundary conditions, etc.; for further details,
we refer to the survey paper [11], which also contains an extensive bibliography.
Berikeshvili, Gupta and Mirianashvili [12] investigated the convergence of fourth-
order compact difference schemes for three-dimensional convection-diffusion equa-
tions. Jovanovi¢ and Vulkov [101] studied the finite difference approximation of
elliptic interface problems with variable coefficients.

Recently, a group of mathematicians (Barbeiro, Ferreira, Emmrich, Grigorieff
et al.) exploited the techniques discussed in this chapter for the analysis of super-
and supraconvergence effects in finite-difference and finite-element schemes (see
Barbeiro [5], Barbeiro, Ferreira and Grigorieff [6], Emmrich [44], Emmrich and
Grigorieff [45] and Ferreira and Grigorieff [47]).

There has also been work on the convergence analysis of finite difference
schemes in discrete W}g norms, for p # 2; see, for example, Lazarov and Mokin
[124], Lazarov [121], Godev and Lazarov [57], Drenska [33, 34], Siili, Jovanovié
and Ivanovi¢ [173, 174]. In this case, the derivation of a priori estimates is tech-
nically more complex—the theory of discrete Fourier multipliers, developed by
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Mokin [140], is used instead of standard discrete energy estimates. Error bounds for
the difference schemes under consideration are then obtained by combining these a
priori estimates with the use of the Bramble—Hilbert lemma, as we have described
in this chapter.

An alternative technique for the derivation of error bounds of the form (2.253)
in fractional-order norms is based on function space interpolation, and was used by
Jovanovic [89].

Our goal in the rest of the book is to extend the methodology developed in the
present chapter to time-dependent problems. In Chap. 3 we shall be concerned with
parabolic partial differential equations, while in Chap. 4 we focus on hyperbolic
equations.
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