
Chapter 2

Pseudo-Gradients

In this chapter, we define, construct and study pseudo-gradient fields, whose

trajectories connect the critical points of a Morse function. These vector

fields allow us to define the stable and unstable manifolds of the critical

points, which will play an important role. We call attention to the “Smale

property” because of which, for example, there are only finitely many trajec-

tories connecting two critical points with consecutive indices and we prove

the existence of pseudo-gradient fields satisfying this property.

2.1 Gradients, Pseudo-Gradients and Morse Charts

2.1.a Gradients and Pseudo-Gradients

If f is a function defined on Rn, then we are familiar with its gradient, the

vector field grad f , whose coordinates in the canonical basis of Rn are

gradx f =
( ∂f

∂x1
, . . . ,

∂f

∂xn

)
.

More succinctly, it is (also) the vector field defined by

〈gradx f, Y 〉 = (df)x(Y )

for every vector Y ∈ Rn (where, of course, the angle brackets 〈 , 〉 denote

the usual Euclidean inner product in Rn). The most important properties

of this vector field are due to the fact that this inner product is a positive

definite symmetric bilinear form:

(1) It vanishes exactly at the critical points of the function f .
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24 2 Pseudo-Gradients

(2) The function f is decreasing along the flow lines of the field −grad f :

d

ds
(f(ϕs(x))) = −‖gradϕs(x)f‖2 < 0.

Remark 2.1.1. More generally, if the manifold V is endowed with a

Riemannian metric (see Section A.5), then a function on V has a gradient

defined by the same formula,

〈gradx f, Y 〉 = (df)x(Y )

for every Y ∈ TxV .

Remark 2.1.2. There is no doubt that the conjunction of the terms “flow”

and “height” is at the source (if we dare say so) of the (recent) tradition to

use the negative gradient: the flow moves downward. We have conformed to

this convention, as do [66] and [49], but not [46].

Let f : V → R be a Morse function on a manifold V . A pseudo-gradient

field or pseudo-gradient adapted to f is a vector field X on V such that:

(1) We have (df)x(Xx) ≤ 0, where equality holds if and only if x is a critical

point.

(2) In a Morse chart in the neighborhood of a critical point, X coincides with

the negative gradient for the canonical metric on Rn.

Remark 2.1.3. A pseudo-gradient is a rather particular vector field. See

Exercise 10 on p. 51 for vector fields that are not pseudo-gradients.

2.1.b Morse Charts

Fig. 2.1 Maximum and minimum

This notion allows us to make the Morse charts more precise by specifying

the trajectories of a pseudo-gradient field X. For example, Figure 2.1 finally
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shows the difference between a maximum (on the left) and a minimum (on

the right).

Figure 2.2 shows a Morse chart for a critical point of index i. The chart

or, strictly speaking, the model in Rn, appears on the left. On the right we

can see its image in the manifold (the function is the height). Let us fix some

notation. In Rn, the quadratic form Q is negative definite on V−, a subspace

of dimension i, and positive definite on V+. We set

U(ε, η) =
{
x ∈ Rn | −ε < Q(x) < ε and ‖x−‖2‖x+‖2 ≤ η(ε+ η)

}
.

Since we are in Rn, the function Q has a gradient, namely

−grad(x−,x+)Q = 2(x−,−x+).

The boundary of U(ε, η) is made up of three parts:

• Two subsets of the sublevel sets of Q:

∂±U =
{
x ∈ U | Q(x) = ±ε and ‖x∓‖2 ≤ η

}

• A set of pieces of trajectories of the gradient gradQ:

∂0U =
{
x ∈ ∂U | ‖x−‖2‖x+‖2 = η(ε+ η)

}
.

See Figure 2.2. The notation we use here is that of [46].

Fig. 2.2 A Morse chart

Remark 2.1.4. By the definition of the gradient in Rn, the trajectories of

the gradient are orthogonal to the level sets of the function (the tangent space
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to a level set is the kernel of the differential of the function). It is therefore

not a coincidence that on the model shown in Figure 2.2, they show up as

equilateral hyperbolas from two orthogonal families.

Taking a closer look at the two parts of the figure proves to be useful.

In both parts, we have indicated the critical level set (let us say that it is

level 0), two positive regular level sets and two negative regular level sets and

trajectories of the gradient that delimit the chart, as well as trajectories of

the negative gradient that end or begin at the critical point.

If a is a critical point of the function f , then a neighborhood of a is

described by the Morse lemma as the image of some U(ε, η) under a dif-

feomorphism h. We will denote such a neighborhood by Ω(a). We will also

write

∂±Ω(a) = h(∂±U), ∂0Ω = h(∂0U),

etc. We will try to use the following notation consistently, as in Figure 2.2:

• Ω for the images of charts (Ω is a subset of the manifold)

• U for the chart domains, the models (U is a subset of Rn).

2.1.c Existence of Pseudo-Gradient Fields

Pseudo-gradient fields exist for all Morse functions on all manifolds. This is,

for example, a consequence of the existence of Riemannian metrics and, more

exactly, of the existence of Riemannian metrics with a prescribed form on a

given subset of the manifold (a neighborhood of the critical points). In any

case, it is a simple consequence of the existence of partitions of unity, as we

will show now.

Proof of the Existence of Pseudo-Gradients. Let c1, . . . , cr be the critical

points of f on the manifold V (there are finitely many because V is

compact and the critical points of a Morse function are isolated) and let

(U1, h1), . . . , (Ur, hr) be Morse charts in the neighborhoods of these points.

The open images Ωj are, of course, assumed to be disjoint. We add more

sets and obtain a finite open cover (Ωj)1≤j≤N of V by images of open sets

of charts (Uj , hj). We may, and do, assume that in this cover, the critical

point ci is contained only in the open set Ωi.

For a function g defined on an open subset of Rn, we let grad g be its

gradient for the standard Euclidean metric on Rn. For every index j, we

define a vector field Xj on the open set Ωj by pulling back the gradient

of f ◦ hj to V , that is, by the formula

Xj(x) = −(Th−1
j (x)hj)(gradh−1

j (x)(f ◦ hj))
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(the formula may seem complicated, but the object itself is very simple: we

have taken the gradient of the function f ◦ hj , a vector field on Uj , and have

transformed it in a natural manner into a vector field on Ωj). By the very

definition, Xj · f ≤ 0 on Ωj (this is one of the properties of the negative

gradient). Moreover, Xj vanishes only at the critical point of f on Uj (for

j ≤ r).

Next, we use a partition of unity (ϕj)j associated with the cover (Ωj)j
to extend the local vector fields Xj to vector fields X̃j defined on all of V ,

setting

X̃j(x) =

{
ϕj(x)Xj(x) if x ∈ Ωj

0 otherwise.

The last step is to set

X =

N∑
j=1

X̃j .

As expected, the resulting vector field X is a pseudo-gradient adapted to f ,

since we indeed have

(df)x(Xx) =
N∑
j=1

(df)x((X̃j)x) ≤ 0.

If this inequality is an equality, then ϕj(x)Xj(x) = 0 for every j, so that

either x is a critical point, or ϕj(x) = 0 for every j (which is absurd).

Let ci be one of the critical points of f . By construction, X coincides with

the image of the Euclidean gradient on the complement in Ui of the union

of the other open sets Uj , a complement that is a neighborhood of ci that

contains a small Morse chart in the neighborhood of ci. 	


2.1.d Stable and Unstable Submanifolds

Let a be a critical point of f . Denote by ϕs the flow of a pseudo-gradient.

We define its stable manifold to be

W s(a) =
{
x ∈ V | lim

s→+∞
ϕs(x) = a

}

and its unstable manifold to be

Wu(a) =
{
x ∈ V | lim

s→−∞
ϕs(x) = a

}
.

In an open subset U = U(ε, η) of Rn as in Section 2.1.b, we have

W s(0) = U ∩ V+ and Wu(0) = U ∩ V−.
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In the notation of Subsection 2.1.b, the stable manifold of a is obtained from

the union of h(U ∩ V+) = h(W s(0)) and

h(∂+U ∩ V+)×R

by identifying (x, s), for x on the boundary and s ≥ 0, with ϕs(x). See

Figure 2.3. If k is the index of the critical point a, then h(∂+U ∩ V+) is a

sphere of dimension n− k− 1; it is the image under the diffeomorphism h of

the sphere ‖x+‖2 = ε in V+ (vector space of dimension n− k).

Hence the stable manifolds and, likewise, the unstable manifolds, are sub-

manifolds: outside of the critical point, the stable manifold is the image of

the embedding (x, s) 
→ ϕs(x) and in the neighborhood of the critical point,

it is the image of V+. This argument also shows that W s(a) is diffeomor-

phic to the disk of dimension n − k (and likewise that Wu(a) is diffeomor-

phic to the disk of dimension k): W s(a) can be obtained by compactifying

Sn−k−1×R by adding the unique “point at infinity” a. It is also the quotient

of Sn−k−1 × ]−∞,+∞] by the equivalence relation that identifies the sphere

Sn−k−1 × {+∞} with a unique point.

We have proved the following result.

Proposition 2.1.5. The stable and unstable manifolds of the critical point a

are submanifolds of V that are diffeomorphic to open disks. Moreover, we

have

dimWu(a) = codimW s(a) = Ind(a). 	


Here, Ind(a) denotes the index of the point a as a critical point of f .

Trajectories of the Pseudo-Gradient Field.

Let ϕs
X or ϕs denote the flow of the pseudo-gradient X. The most important

property of the flow lines or trajectories of the vector field X is that they all

connect critical points of the function f : all trajectories come from a critical

point and go toward another critical point.

Proposition 2.1.6. We suppose that the manifold V is compact. Let

γ : R → V be a trajectory of the pseudo-gradient field X. Then there exist

critical points c and d of f such that

lim
s→−∞

γ(s) = c and lim
s→+∞

γ(s) = d.

Proof. Let us show that γ(t) has a limit when t tends to +∞ (for example)

and that this limit is a critical point. We must prove that γ(t) reaches S+(d) =

∂+Ω(d) ∩W s(d) for some critical point d of f . We suppose that this is not
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Fig. 2.3 Stable manifolds

true. Then every time that the trajectory γ enters a Morse neighborhood, it

must also leave it without ever being able to return to it since f is decreasing

along γ. Let s0 be the time at which γ leaves the (finite) union of the Morse

charts of the critical points, that is,

Ω =
⋃

c∈Crit(f)

Ω(c)

(of course, Crit(f) denotes the set of critical points of the function f) for the

last time. There exists an ε0 > 0 such that

∀x ∈ V −Ω, (df)x(Xx) ≤ −ε0.

Consequently, for every s ≥ s0, we have

f(γ(s))− f(γ(s0)) =

∫ s

s0

d(f ◦ γ)
du

du

=

∫ s

s0

(df)γ(u)(Xγ(u) )du

≤ −ε0(s− s0),

so that

lim
s→+∞

f(γ(s)) = −∞,

which is absurd. 	
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2.1.e Topology of the Sublevel Sets: When We Do Not Cross

a Critical Value

The topology of the level sets does not change as long as we do not cross a

critical value. The same holds for that of the sublevel sets. Let

V a = f−1(]−∞, a])

denote the sublevel set of f for a. In Subsection A.2.c, we said that if a is a

regular value, then V a is a manifold with boundary.

Theorem 2.1.7. Let a and b be two real numbers such that f does not have

any critical value in the interval [a, b]. We suppose that f−1([a, b]) is compact.

Then V b is diffeomorphic to V a.

Proof. We use the flow of a pseudo-gradient X to retract V b onto V a. We fix

a function ρ : V → R with values

⎧
⎨
⎩
− 1

(df)x(X)
on f−1([a, b])

0 outside of a compact neighborhood of this subset.

The vector field Y = ρX is zero outside of a compact set, so that its flow ψs

is defined for every s ∈ R. For a fixed point x ∈ V , we consider the function

s 
→ f ◦ ψs(x) in one real variable. If ψs(x) ∈ f−1([a, b]), then we have

d

ds
f ◦ ψs(x) = (df)ψs(x)

( d

ds
ψs(x)

)

= (df)ψs(x)

(
Yψs(x)

)

= −1.

Hence, for ψs(x) ∈ f−1([a, b]), we have

f ◦ ψs(x) = −s+ f(x).

It follows that the diffeomorphism ψb−a of V sends V b onto V a. 	


Remark 2.1.8. The map

r : V b × [0, 1] −→ V b

(x, s) 
−→
{
x if f(x) ≤ a

ψs(f(x)−a)(x) if a ≤ f(x) ≤ b
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is a deformation retraction of V b onto V a, that is, r0 = Id, rt equals the inclu-

sion on V a for all t and r1 has image V a. Consequently V a is a deformation

retract of V b.

Corollary 2.1.9 (Reeb’s theorem). Let V be a compact manifold. Sup-

pose that there exists a Morse function on V that has only two critical points.

Then V is homeomorphic to a sphere.

Fig. 2.4 Reeb’s theorem

Proof. The two critical points must be the minimum and the maximum. We

may, and do, assume that f(V ) = [0, 1]. Then for ε > 0 sufficiently small,

the Morse lemma asserts that f−1([0, ε]) and f−1([1− ε, 1]) are disks Dn. By

Theorem 2.1.7, the sublevel sets V ε and V 1−ε are diffeomorphic. Hence V 1−ε

is also a disk Dn and V is the union of two disks glued along their boundaries.

It is a classic result that V is then homeomorphic to a sphere: we can construct

an explicit map

h : Dn
1 ∪Id Dn

2 −→ Dn
1 ∪ϕ Dn

2

by setting

h(x) =

⎧
⎪⎪⎨
⎪⎪⎩

x if x ∈ Dn
1

‖x‖ ϕ(x/‖x‖) if x ∈ Dn
2 − {0}

0 if x = 0 ∈ Dn
2 .

This is a homeomorphism from the standard sphere (where the two disks are

glued via the identity map on Sn−1) onto our manifold (where the two disks

are glued via the diffeomorphism ϕ). 	
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Remarks 2.1.10. First, the theorem remains true if the two critical points

are not assumed to be nondegenerate. Second, it is not true that the mani-

fold V is diffeomorphic to a sphere; this is even an important argument in the

construction of manifolds that are homeomorphic to the sphere without being

diffeomorphic to it. For these two results, see the references in the book [54,

p. 25].

2.1.f Topology of the Sublevel Sets: When We Cross a Critical

Value

Both the topology of the level set and that of the sublevel set will change.

The following theorem expresses how.

Theorem 2.1.11. Let f : V → R be a function. Let a be a nondegenerate

critical point of index k of f and let α = f(a). We suppose that for some

sufficiently small ε > 0, the set f−1([α − ε, α + ε]) is compact and does not

contain any critical point of f other than a. Then for every sufficiently small

ε > 0, the homotopy type of the space V α+ε is that of V α−ε with a cell of

dimension k attached (the unstable manifold of a).

Remark 2.1.12. This theorem allows us to justify the appearance, or rather

the parachuting in, of the Morse function on Pn(C) that was discussed in

Exercise 5 on p. 18.

We begin with a very natural description of the (say, complex) projective

space. It is, as all geometers know, the union of an affine space and a hy-

perplane “at infinity”. By considering things the other way around, we can

say that the complex projective space Pn(C) is obtained from Pn−1(C) by

adding a Cn, or disk D2n. Step by step, this defines a “cellular decomposi-

tion” of Pn(C): we begin with a point (this is P0, the point [1, 0, . . . , 0]), we

attach a disk of (real) dimension 2 (we now have P1(C), the cell of points

[a, b, 0, . . . , 0]), and so on.

The Morse function in Exercise 5 enables this reconstruction, as is ex-

plained in Theorem 2.1.11. We begin with the minimum (this is precisely our

point [1, 0, . . . , 0]), where the function has value 0. The first critical value is

then 1. This corresponds to the critical point [0, 1, 0, . . . , 0], which has in-

dex 2. . . and enables us to attach a cell of dimension 2, and so on. In this

sense, this function is “perfect”.1

Proof of Theorem 2.1.11. Let us begin by presenting the ideas of the proof

while contemplating Figure 2.5. The cell Dk is the piece of the unstable

1 There is also a precise mathematical definition of the expression “perfect Morse function”,
of which the one considered here is the prototype.
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manifold of a shown in this figure. We proceed as follows:

(1) By modifying f , we construct a function F that coincides with f outside

of a neighborhood of a where F < f , so that F−1(]−∞, α−ε]) will be the

union of V α−ε and a small neighborhood of a (the part with horizontal

hatching in Figure 2.5).

(2) Now, Theorem 2.1.7 and Remark 2.1.8 applied to the function F give the

hatched part F−1(]−∞, α + ε]) as a retract of V α+ε (which is also the

sublevel set of the modified function F for α+ ε).

(3) We can then position ourselves in a Morse chart to show that the subset

of V consisting of the piece of the unstable manifold together with V α−ε

is a deformation retract of F−1(]−∞, α+ ε]).

Fig. 2.5

Fig. 2.6

Construction of F .

We choose a Morse chart (U, h) in the neighborhood of a and an ε > 0

that is sufficiently small that f−1([α − ε, α + ε]) is compact and that U

contains the ball of radius
√
2ε with center 0. The disk Dk is the subset of

U consisting of the (x−, x+) such that ‖x−‖2 < ε and x+ = 0. In Figure 2.5,

as in Figure 2.6, the sublevel set V α−ε is indicated with oblique hatching

while f−1([α − ε, α + ε]) is dotted. The cell, the disk Dk, is a thick line

segment.

We construct the function F by using a C∞ function μ : [0,+∞[ → [0,+∞[

with the following properties:

• μ(0) > ε

• μ(s) = 0 for s ≥ 2ε

• −1 < μ′(s) ≤ 0 for every s
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Fig. 2.7 The function μ

We define F by setting

F (x) =

{
f(x) if x �∈ Ω(a)

α− ‖x−‖2 + ‖x+‖2μ
(
‖x−‖2 + 2‖x+‖2

)
if x = h(x−, x+).

Note that the sublevel set of F for α+ε is exactly the sublevel set V α+ε of f .

Indeed:

• Outside of ‖x−‖2 + 2‖x+‖2 ≤ 2ε, we have F = f .

• In the interior of the ellipsoid in question, we have

F (x) ≤ f(x) = α− ‖x−‖2 + ‖x+‖2 ≤ α+
1

2
‖x−‖2 + ‖x+‖2 ≤ α+ ε.

Moreover, the critical points of F are the same as those of f , since

dF =
(
−1− μ′(‖x−‖2 + 2‖x+‖2)

)
︸ ︷︷ ︸

<0

2x− · dx−

+
(
1− 2μ′(‖x−‖2 + 2‖x+‖2)

)
︸ ︷︷ ︸

≥1

2x+ · dx+

vanishes only for x− = x+ = 0, that is, at a.

We now know that

F−1([α− ε, α+ ε]) ⊂ f−1([α− ε, α+ ε]);

in particular, this region is compact. Moreover, it does not contain any critical

points of F : the only possible candidate would be a, but

F (a) = α− μ(0) < α− ε.

It follows that F−1(]−∞, α+ ε]) is a deformation retract of V α+ε. Let H be

the horizontally hatched part in Figure 2.5 (it is clear in Figure 2.8), that is,
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the closure of F−1(]−∞, α+ ε])− V α−ε. We have, in particular,

F−1(]−∞, α+ ε]) = V α−ε ∪H.

The Retraction.

We define the retraction by following the arrows indicated in Figure 2.9.

Explicitly, rt is the identity outside of Ω(a) and we define rt on U (rather

Fig. 2.8

Fig. 2.9

than on Ω(a), to simplify the notation) as follows:

• On region 1 (Figure 2.9), that is, on ‖x−‖2 ≤ ε,

rt(x−, x+) = (x−, tx+).

• On region 2, defined by ε ≤ ‖x−‖2 ≤ ε‖x+‖2, we set

rt(x−, x+) = (x−, stx+),

where

st = t+ (1− t)

√
‖x−‖2 − ε

‖x+‖
is the appropriate number to make the formulas continuous.

• On region 3, which corresponds to V α−ε and where ‖x+‖2 + ε ≤ ‖x−‖2,
we simply take rt = Id. 	
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2.2 The Smale Condition

Let us return to the stable and unstable manifolds of the critical points.

2.2.a Examples of Stable and Unstable Manifolds

Here are the stable and unstable manifolds of the critical points of the exam-

ples considered earlier.

The Height on the Round Sphere.

Let a be the minimum and let b be the maximum. We have

W s(a) = S2 − {b} , Wu(a) = {a}

and likewise

W s(b) = {b} , Wu(b) = S2 − {a}

(for every pseudo-gradient field).

The Torus.

We begin with the height function on the inner tube torus. Let a, b, c, d be the

critical points ordered according to the values that the function takes in them

(Figure 2.10). The pseudo-gradient field used here is simply the gradient for

Fig. 2.10 The height on the torus

Fig. 2.11 Another point of view on
the same thing

the metric induced by that on R3. The stable manifold of a consists of all

points that descend to a, that is, the complement of the trajectories in the
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figure that end at b or at c. Hence W s(a) is homeomorphic to an open disk.

The stable manifold of b consists of the two trajectories starting at c and

ending at b. Hence W s(b) is diffeomorphic to an open interval. The same

holds for the stable manifold of c, which consists of the two trajectories

starting at d that we see in the figure. We should note that in this example

(which was chosen for this reason), the unstable manifold of c and the stable

manifold of b have two open intervals in common. Figure 2.11 shows a few

level sets of the same function in a square, which solves an exercise suggested

in the previous chapter. It also shows a few trajectories of the gradient.

Fig. 2.12 The torus, again

The situation is somewhat different in the case of the other Morse function

that we encountered on the torus T 2, namely

f(x, y) = cos(2πx) + cos(2πy).

Let us again denote the extrema by a and d and the critical points of index 1

by b and c. Figure 2.12 shows the gradient lines that connect the two critical

points (here we use the gradient for the “flat” metric on the torus, that is, for

the usual metric on R2; as we can see, the lines in question form true right

angles with the level sets). We can clearly see that W s(a) is the open square

(that is, an open disk), that W s(b) is an open interval (the horizontal side

of the square in the figure), as are Wu(b) (vertical segment), W s(c) (vertical

side) and Wu(c) (horizontal segment), while W s(d) is reduced to d. Note that

Wu(b) and W s(c) do not meet.

The Height on the “Other” Sphere.

From Figure 2.13, the readers will be able to determine the stable and un-

stable manifolds of the four critical points of the height function (for the

gradient of the metric induced by that on R3).
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Fig. 2.13 The other sphere
Fig. 2.14 The projective plane

The Morse Function on P2(R).

Figure 2.14, in turn, shows the stable and unstable manifolds of the three

critical points a (minimum), b (index 1) and c (maximum) for the function

considered before (in Exercise 6 on p. 19) on the real projective plane P2(R).

2.2.b The Smale Condition

We say that a pseudo-gradient field adapted to the Morse function f satisfies

the Smale condition if all stable and unstable manifolds of its critical points

meet transversally, that is, if

for all critical points a, b of f, Wu(a) � W s(b).

Remark 2.2.1. Certain stable and unstable manifolds always meet transver-

sally. For example, we always have:

• Wu(a) � W s(a) (for the same critical point), which is what we see in a

Morse chart around a.

• Wu(a)∩W s(b) = ∅ if a and b are distinct and f(a) ≤ f(b) (in particular,

these stable and unstable manifolds are transversal).

If the vector field satisfies the Smale condition, then for all critical points a

and b, we have

codim(Wu(a) ∩W s(b)) = codimWu(a) + codimW s(b),

that is,

dim(Wu(a) ∩W s(b)) = Ind(a)− Ind(b).
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Under our condition, this intersection is a submanifold of V , which we will

denote by M(a, b). It consists of all points on the trajectories connecting a

to b:

M(a, b) =
{
x ∈ V | lim

s→−∞
ϕs(x) = a and lim

s→+∞
ϕs(x) = b

}
.

Proposition 2.2.2. The group R of translations in time acts on M(a, b) by

s · x = ϕs(x). This action is free if a �= b.

Proof. The fact that this is a group operation is clear. If a �= b, then there is

no critical point in M(a, b). Let x ∈ M(a, b). Since x is not a critical point, we

know that f(ϕs(x)) is a decreasing function of s, so that if ϕs(x) = ϕs′(x),

we necessarily have s = s′. Hence the action is free. 	


The quotient is therefore a manifold, which we will call L(a, b). Its dimen-

sion is

dimL(a, b) = Ind(a)− Ind(b)− 1.

Remark 2.2.3. It is clear that the quotient is a separated space. In fact,

the most convenient way to consider this quotient is the following. If α is

a value of f lying between f(a) and f(b), then M(a, b) is transversal to the

level set f−1(α): this level set has codimension 1 and the vector field X is

transversal to it (by definition, it is not tangent to the level set, or we would

have df(X) = 0 at a noncritical point). All trajectories starting at a meet this

intermediate level set at exactly one point, so that L(a, b) can be identified

with M(a, b) ∩ f−1(α).

Hence, if a and b are two (distinct) critical points and if the gradient that is

used satisfies the Smale condition, then for M(a, b) or L(a, b) to be nonempty,

we must have

Ind(a) > Ind(b).

In other words, the index decreases along the gradient lines.

We will come back to these spaces at length in the next chapter.

Examples 2.2.4. All examples presented above satisfy the Smale condition,2

except for that of the height function on the torus. Indeed, the manifolds

W s(b) and Wu(c) are not transversal, as we have already noted without

knowing the example in Subsection 2.2.a and Figure 2.10. Moreover, we have

trajectories connecting two critical points of index 1, which, as we just saw, is

forbidden. This “bad” vector field is the gradient for the Riemannian metric

on the torus induced by the surrounding Euclidean metric.

2 In the cases of the “other sphere” and of the projective plane, this holds, for example,
by virtue of Exercise 11 (p. 51).
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The Smale condition forbids the existence of flow lines such as those shown

in Figure 2.15. Figure 2.16 shows the trajectories of a neighboring field satis-

fying the Smale condition (obtained by the general method explained in the

following subsection).

Fig. 2.15 Fig. 2.16

2.2.c Existence

Following [72], let us now show the existence and genericness of pseudo-

gradient fields satisfying the Smale condition.

We first note that after replacing f by another function that is arbitrarily

close in the C1 sense, if necessary, we may, and do, assume that f takes on

distinct values at all of its critical points. Indeed, outside of Ω, we have (by

compactness) df(X) < −ε0 for some ε0 > 0. We then choose a function h

that is constant on each Morse chart Ωi, satisfies |dh| < 1
2ε0 and for which

f(ci) + h(ci) �= f(cj) + h(cj) for i �= j.

The function f+h is still a Morse function, with the same critical points as f ,

and the vector field X is still an adapted pseudo-gradient, but the critical

values are now distinct.

Theorem 2.2.5 (Smale Theorem [72]). Let V be a manifold with bound-

ary and let f be a Morse function on V with distinct critical values. We

fix Morse charts in the neighborhood of each critical point of f . Let Ω be

the union of these charts and let X be a pseudo-gradient field on V that is

transversal to the boundary. Then there exists a pseudo-gradient field X ′ that

is close to X (in the C1 sense), equals X on Ω and for which we have

W s
X′(a) � Wu

X′(b)

for all critical points a, b of f .
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Let us clarify the notion of C1 proximity used here: the statement asserts

that for every ε > 0, for every cover of V by charts ϕi(Ui) and for every

compact subset Ki ⊂ Ui, there exists a vector field X ′ such that

‖Tϕ−1
i (X ′)− Tϕ−1

i (X)‖ < ε

for the C1 norm on Ki, as well as the stated properties.

Remark 2.2.6. A vector field X ′ sufficiently close to the pseudo-gradient

field X in the C1 sense and equal to X on Ω is itself a pseudo-gradient field.

For the sake of simplicity, we will call such an X ′ a “good approximation”

of X.

Remark 2.2.7. This theorem is sometimes called the “Kupka–Smale” the-

orem because Kupka also gave a proof. The one we imitate here is Smale’s

proof.

Proof of Theorem 2.2.5. Since the critical values of f are distinct, let us ar-

range them in order:

Crit(f) = {c1, . . . , cq} with f(c1) > f(c2) > · · · > f(cq),

and let αi = f(ci). The proof of the theorem will use an induction based on

the following lemma.

Lemma 2.2.8. Let j ∈ {1, . . . , q} and let ε > 0. There exists a good approx-

imation X ′ (in the C1 sense) of X such that:

(1) The vector field X ′ coincides with X on the complement of

f−1([αj + ε, αj + 2ε]) in V .

(2) The stable manifold of cj (for X
′) is transversal to the unstable manifolds

of all critical points, that is,

W s
X′(cj) � Wu

X′(ci).

Let us (for the time being) admit the lemma and prove the theorem. We

let P(r) denote the following property: there exists a good approximation X ′
r

of X such that for every p ≤ r and every i, we have

W s
X′

r
(cp) � Wu

X′
r
(ci).

Note that:

• Property P(q) is exactly the theorem.



42 2 Pseudo-Gradients

• Property P(1) is true for a trivial reason: the critical point c1 is the max-

imum of f and its stable manifold is reduced to itself, so that it does not

meet any unstable manifold of any critical point lying below c1.

• And Property P(2) follows from the lemma with j = 2.

Let us therefore assume that P(r − 1) is true and show that P(r) is then

also true. We have a vector field X ′
r−1 such that the stable manifold of cr−1 is

transversal to all the unstable manifolds. We apply the lemma to the vector

field X ′
r−1 and j = r. This gives a vector field X ′

r that, in particular (this is

the first property given by the lemma), coincides with X ′
r−1 outside of the

narrow strip where αr+ε ≤ f ≤ αr+2ε. Moreover, since for every p ≤ r−1,

the stable manifold of cp for X ′
r−1 lies above this strip, the stable manifold

is the same for X ′
r−1 as it is for X ′

r (see Figure 2.17). We therefore have

W s
X′

r−1
(cp) ∩Wu

X′
r−1

(ci) = W s
X′

r
(cp) ∩Wu

X′
r
(ci)

for p ≤ r − 1 and for every i, so that

W s
X′

r
(cp) � Wu

X′
r
(ci).

For p = r, the lemma implies (this is the second property) that

W s
X′

r
(cr) � Wu

X′
r
(ci). 	


Fig. 2.17
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Proof of Lemma 2.2.8. It can be useful to consider a Morse chart in the

neighborhood of cj . Figure 2.18 shows one (twice). We choose an ε sufficiently

Fig. 2.18 In a Morse chart

small so that

αj + 2ε < αj−1.

Let k denote the index of cj , and let Q = W s(cj) ∩ f−1(αj + 2ε). Then Q is

a sphere of dimension n− k− 1. We consider a tubular neighborhood of this

sphere Q in f−1(αj +2ε), of the form Q×Dk, which we see in a Morse chart

in Figure 2.18, and in Figure 2.19.

Fig. 2.19 In the manifold

Then there exists an embedding

Ψ : Dk ×Q× [0,m] −→ f−1(]αj + ε, αj + 2ε[)
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such that:

• Ψ restricted to {0} ×Q× {0} is the embedding of Q in f−1(αj + ε).

• Ψ restricted to {0} ×Q× {m} is the embedding of Q in f−1(αj + 2ε).

• If z is the coordinate in [0,m] ⊂ R, then

Ψ�

(
− ∂

∂z

)
= X.

The unstable manifolds are transversal to the level sets. In particular,

they meet Dk ×Q along a manifold P ′ (that is not connected in general). If

W s
X(cj) � P ′, then there is nothing to prove. The proof will therefore consist

in modifying X into X ′ on f−1(]αj + ε, αj + 2ε[) in such a way that

W s
X′(cj) � P ′.

The modification will take place inside the image of Ψ . Let us therefore

position ourselves in Dk × Q × [0,m] with X = −∂/∂z. Figure 2.19 shows

what happens in the manifold, while Figure 2.20 shows the model.

Fig. 2.20 The model

Let P be the submanifold Ψ−1(P ′) ⊂ Dk × Q × [0,m]. As seen in the

model, the desired transversality condition W s
X′(cj) � P ′ can be written as

W s
X′ � P with W s

X′ =
{
φ−s
X′ (0, q, 0) | s > 0, q ∈ Q

}
.

In the initial situation, X ′ = X = −∂/∂z, so that

P ∩W s
X = P ∩ {(0, q, s) | s > 0, q ∈ Q} = P ∩ {(0, q, 0) | q ∈ Q} = g−1(0),

where g : P → Dk is the projection (x, q, z) 
→ x.
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The proof will consist in making 0 a regular value of g. By Sard’s theorem,

there is a vector w in Dk, as close to 0 as we want (say ‖w‖ = δ), such that

w is a regular value of g. We are going to construct a perturbation X ′ of the

vector field X such that

W s
X′ ∩ {z = m} = φ−m

X′ (0, q, 0) = (w, q,m).

We will then have W s
X′ ∩ P = g−1(w), which implies that W s

X′ ∩ P is a

submanifold of codimension k in P . The equality

codimP W s
X′ ∩ P = codimV W s

X′

implies the transversality of the two submanifolds W s
X′ and P .

The lemma “in the manifold” now results from the following lemma “in

the model”.

Lemma 2.2.9. There exists a vector field X ′ close to −∂/∂z (in the C1

sense) such that:

(1) X ′ = −∂/∂z near ∂(Dk ×Q× [0,m]).

(2) ϕ−m
X′ (0, q, 0) = (w, q,m).

Proof. Let (v1, . . . , vk) be the coordinates of w ∈ Dk. We set

X ′ = − ∂

∂z
−

k∑
i=1

βi(z)γ(x)
∂

∂xi
,

where:

• The function βi is zero outside of [0,m] and satisfies |βi(s)| < η, |β′
i(s)| < η

and
∫m

0
βi(t) dt = vi (where η is a small fixed positive number correspond-

ing to the desired precision of the approximation).

• The function γ is, in turn, defined on Dk, has values in [0, 1], is identically

zero near ∂Dk and satisfies γ ≡ 1 on ‖x‖ ≤ 1/3 and |∂γ/∂xi| ≤ 2.

See Figures 2.21 and 2.22.

Fig. 2.21 The function βi Fig. 2.22 The function γ
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It is clear that the vector field X ′ satisfies the first stated property. To

prove that it also satisfies the second one, we first consider the vector field

X ′′ = − ∂

∂z
−

k∑
i=1

βi(z)
∂

∂xi

(we have left out γ(x)). To determine ϕ−m
X′′ (0, q, 0), we must solve the differ-

ential system ⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂xi

∂s
= −βi(z(s)), x(0) = 0

∂q

∂s
= 0, q(0) = q

∂z

∂s
= −1, z(0) = 0

whose solution is

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xi(s) =

∫ s

0

−βi(−t) dt =

∫ −s

0

βi(−t) dt

q(s) = q

z(s) = −s.

We therefore have

ϕ−m
X′′ (0, q, 0) = (w, q,m)

and, since for s ∈ [−m, 0], the norm satisfies ‖x(s)‖ ≤ 1/3 (for sufficiently

small βi, that is, for sufficiently small w), we remain in the part of the disk

where γ ≡ 1, so that the formula indeed gives the flow of X ′. 	


This completes the proof of Lemma 2.2.8. 	


2.2.d An Illustration, the Height Function on the Torus

Let us return to the example of the height function on the torus of dimen-

sion 2, with gradient field X that does not satisfy the Smale property, as

noted in Examples 2.2.4. We first copy Figures 2.10 and 2.11, indicating the

two level sets for α + ε and α + 2ε above the critical point b between which

we need to modify the vector field.

A Morse neighborhood of the critical point b is clearly visible in the middle

of Figure 2.24. We extract it from this figure (Figure 2.25) and modify the

vector field in the useful part of the model (Figure 2.26). This last figure
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shows the same model as Figure 2.20, namely a Q×Dk× [0,m], but Q is now

a sphere of dimension n− k − 1 = 0 and Dk is a disk of dimension k = 1.

Fig. 2.23 Fig. 2.24

Fig. 2.25 Extract of the model
Fig. 2.26 The modification in the
model

Put back into the surface, the modification gives a vector field with the

expected property (Figure 2.27).

Fig. 2.27 The modified field
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2.3 Appendix: Classification of the Compact Manifolds

of Dimension 1

2.3.a Morse Functions and Adapted Vector Fields on a Manifold

with Boundary

Let us now consider a manifold with boundary V . We fix a vector field X

defined in a neighborhood of ∂V in V , which we assume to be incoming, that

is, such that for every chart ϕ : U → V (where U is an open subset of the

half-space xn ≤ 0 in Rn) and every x ∈ ∂V ∩ ϕ(U), we have

Tϕ−1(x)ϕ
−1(Xx) =

n∑
i=1

ai
∂

∂xi
with an(ϕ

−1(x)) < 0.

Fig. 2.28 Incoming vector field

Constructing such a vector field is easy, for example by starting out with

the vector field −∂/∂xn on Rn and using a partition of unity.

We can also construct a Morse function f on V such that

df(X) < 0 in the neighborhood of ∂V

by first defining it in the neighborhood of the boundary, setting

f(ϕ−s
X (x)) = s for s ∈ [0, δ[ if x ∈ ∂V ,

then extending it arbitrarily to V and finally taking a perturbation, if neces-

sary, in order to have a Morse function.
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Next, we extend X, which up to now has only been defined in the neigh-

borhood of the boundary, to a pseudo-gradient field adapted to f that we

will still call X.

Remark 2.3.1. It is not true that every Morse function on a manifold with

boundary admits a pseudo-gradient field transversal to the boundary (think

of the projection of the unit disk onto a straight line). That is why in this

construction we have chosen to start out with the vector field.

2.3.b The Classification Theorem

Theorem 2.3.2. Let V be a compact connected manifold of dimension 1.

Then V is diffeomorphic to S1 if ∂V = ∅ and diffeomorphic to [0, 1] other-

wise.

Proof. Let X be a vector field that is incoming along the boundary, let f be

a Morse function for which X is an adapted pseudo-gradient field (we can

construct such a vector field and such a function as indicated above). The

critical points of f are local minima and maxima. The proof is based on the

fact that all trajectories that are not stationary at a maximum end up at a

minimum. Let c1, . . . , ck be the minima of f . The stable manifold W s(ci) is

diffeomorphic to an (open) interval; it consists of the two trajectories ending

at ci and the point ci itself. In the closure Ai of this stable manifold there

are (moreover) the starting points of these two trajectories. These starting

points:

• either are both maxima (in which case they can either coincide or not)

• or at least one of them is a boundary point of V (in which case they are

distinct).

Fig. 2.29
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It is also clear that, as the closure of a connected space, Ai is connected.

Clearly, if Ai consists of W s(ci) and a unique point, then the latter is a

maximum and Ai is diffeomorphic to a circle. Likewise, if Ai consists of the

stable manifold and two added points, then Ai is diffeomorphic to a closed

interval.

Note that the union of the Ai is all of V : if x ∈ V , then its trajectory tends

to a minimum and lies in one of the stable manifolds, unless x is a maximum,

but then it lies in the closure of a stable manifold.

If k = 1, then the theorem has now been proved. Otherwise, since V is

connected, there exists an i ≥ 2 such that A1 ∩ Ai �= ∅. This intersection

contains only local maxima, since these are the only points from which we

can descend to two different minima. In particular, ∂V ∩ (A1 ∩ Ai) = ∅. In

A1 ∩Ai, there are at most two points. We have two possibilities:

• If this intersection contains two points, then the two are maxima, A1 ∪Ai

is diffeomorphic to S1 and we are done.

• If, on the contrary, it contains only one point, then A1∪Ai is diffeomorphic

to [0, 1]. If A1 ∪Ai = V , then we are done.

And if this is not the case, then we continue adding Ai’s until they run

out. 	


There exist other ways to prove this theorem, which may be simpler

(see [55]). This proof using Morse theory has the advantage of preparing

other, analogous, proofs, such as that of Proposition 4.5.1.

2.3.c An Application, the Brouwer Fixed Point Theorem

We will now use Sard’s theorem and our knowledge of manifolds of dimen-

sion 1 to prove Brouwer’s famous theorem (this proof comes from Milnor’s

book [55]).

Theorem 2.3.3. Let ϕ : Dn → Dn be a continuous map; then it has a fixed

point.

Proof. The first part of the proof consists in reducing to the case where ϕ

is a C∞ map. We will not give the details here (see [45]). Next, starting

from ϕ, which is assumed to be C∞ and without fixed points, we construct a

retraction

r : Dn −→ Sn−1

by sending x ∈ Dn to the intersection point of the sphere Sn−1 and the ray

starting at ϕ(x) and going through x. This way, if x is a point of the sphere,

it stays in place. We thus have a C∞ map r that restricts to the identity on

the boundary. Sard’s theorem asserts that this map has regular values. Let
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a ∈ Sn−1 be one of them; then r−1(a) is a submanifold of dimension 1 of Dn,

with boundary

∂r−1(a) = r−1(a) ∩ ∂Dn = {a} .

But a manifold of dimension 1 with boundary is diffeomorphic to a union of

circles and closed intervals, so that its boundary consists of an even number

of points. This gives a contradiction, and therefore the existence of a fixed

point. 	


Exercises

Exercise 10. Show that the vector fields whose flows are drawn in Fig-

ure 2.30 are not pseudo-gradient fields.

Fig. 2.30

Exercise 11. Let V be a manifold of dimension 2 endowed with a Morse

function with a unique critical point of index 1. Show that every pseudo-

gradient field adapted to this function satisfies the Smale condition.

Exercise 12. We fix an integer m ≥ 2. Find all critical points of the function

f : P1(C) → R defined by

f([z0, z1]) =
|zm0 + zm1 |2

(|z0|2 + |z1|2)m
=

|zm + 1|2

(|z|2 + 1)m

(in homogeneous coordinates or in the affine chart z1 �= 0). Verify that for

m = 2, the function f is not a Morse function.3

We suppose that m ≥ 3. Show that f is a Morse function and has two

local maxima: the points 0 and ∞; m local minima: the m-th roots of −1;

and m critical points of index 1: the m-th roots of 1.

3 It is a Mores–Bott function (see [14]): its critical points form submanifolds (here P1(R)
for the maximum) and the second-order derivative is transversally nondegenerate.
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Fig. 2.31

Hint: We can determine the critical points using the derivatives with re-

spect to z and z, and then use a second-order Taylor expansion of f(u) with

respect to u in the neighborhood of 0 (to study the critical points at 0 and ∞)

or the analogous expansion of f(ζ(1 + u)) (to study the critical points at ζ

with ζm = ±1).

Show that there exists a pseudo-gradient field such as that shown (in an

affine chart) in Figure 2.31 (for m = 3). More generally, see the article [9] in

which an analogous function (defined on Pn(C)) plays an important role.
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