Preface

This book studies cooperative control of multi-agent dynamical systems intercon-
nected by a communication network topology. In cooperative control, each system
is endowed with its own state variable and dynamics. A fundamental problem in
multi-agent dynamical systems on networks is the design of distributed protocols
that guarantee consensus or synchronization in the sense that the states of all the
systems reach the same value. The states could represent vehicle headings or posi-
tions, estimates of sensor readings in a sensor network, oscillation frequencies, trust
opinions of each agent, and so on. In multi-agent systems, all systems should agree
on the values of these quantities to achieve synchronized behavior.

Of fundamental concern for networked cooperative dynamical systems is the
study of their interactions and collective behaviors under the influence of the infor-
mation flow allowed in the communication network. This communication network
can be modeled as a graph with directed edges or links corresponding to the allowed
flow of information between the systems. The systems are modeled as the nodes in
the graph and are sometimes called agents. Information in communication networks
only travels directly between immediate neighbors in a graph. Nevertheless, if a
graph is connected, then this locally transmitted information travels ultimately to
every agent in the graph.

In cooperative control systems on graphs, there are intriguing interactions be-
tween the individual agent dynamics and the topology of the communication graph.
The graph topology may severely limit the possible performance of any control
laws used by the agents. Specifically, in cooperative control on graphs, all the con-
trol protocols must be distributed in the sense that the control law of each agent is
only allowed to depend on information from its immediate neighbors in the graph
topology. If enough care is not taken while designing the local agent control laws,
the individual agent dynamics may be stable, but the networked systems on the
graph may exhibit undesirable behaviors. Since the communication restrictions im-
posed by graph topologies can severely complicate the design of synchronization
controllers, complex and intriguing behaviors are observed in multi-agent systems
on graphs that do not occur in single-agent, centralized, or decentralized feedback
control systems.
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The study of networks of coupled dynamical systems arises in many fields of
research. Charles Darwin showed that the interactions between coupled biological
species over long time scales are responsible for natural selection. Adam Smith
showed that the dynamical relationships between geopolitical entities are respon-
sible for the balances in international finance and the wealth of nations. Distrib-
uted networks of coupled dynamical systems have received much attention over the
years because they occur in many different fields including biological and social
systems, physics and chemistry, and computer science. Various terms are used in
literature for phenomena related to the collective behavior on networks of systems,
such as flocking, consensus, synchronization, frequency matching, formation, ren-
dezvous, and so on. Collective synchronization phenomena occur in biology, soci-
ology, physics, chemistry, and human engineered systems. The nature of synchro-
nization in different groups depends on the manner in which information is allowed
to flow between the individuals of the group.

The collective motions of animal social groups are among the most beautiful
sights in nature. Each individual has its own inclinations and motions, yet the ag-
gregate motion makes the group appear to be a single entity with its own laws
of motion, psychology, and responses to external events. Flocks of birds, herds of
animals, and schools of fish are aggregate entities that take on an existence of their
own due to the collective motion instincts of their individual members. Collective
motions allow the group to achieve what the individual cannot. Collective synchro-
nized motion is a product not of planned scripts, but of instantaneous decisions and
responses by individual members.

Analysis of groups based on social behaviors is complex, yet the individuals
in collectives appear to follow simple rules. In many biological and sociological
groups such as schools of fish, bird flocks, mammal herds on the move, and hu-
man panic behavior in emergency building evacuation, evidence supports the idea
that the decisions made by all the individuals follow simple local protocols based
on their nearest neighbors. The collective motion of large groups can be captured
by using a few simple rules governing the behavior of the individuals. These rules
depend on the awareness of each individual of its neighbors.

Mechanisms of information transfer in groups involve questions such as how in-
formation about required motion directions, originally held by only a few informed
individuals, can propagate through an entire group by simple mechanisms that are
the same for every individual. The information flow between members of a social
group is instrumental in determining the characteristics of the combined motion of
the overall group.

The engineering study of multi-agent cooperative control systems uses princi-
ples observed in sociology, chemistry, and physics to obtain synchronized behavior
of all systems by using simple local distributed control protocols that are the same
for each agent and only depend on that agent’s neighbors in the group. Applications
have been to oscillator synchronization, aircraft formations, mobile sensor area cov-
erage, spacecraft attitude alignment, vehicle routing in traffic systems, containment
control of moving bodies, and biological cell sorting.
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Optimal feedback control design has been responsible for much of the success-
ful performance of engineered systems in aerospace, manufacturing, industrial pro-
cesses, vehicles, ships, robotics, and elsewhere since the 1960s. Optimal control
designs generally require complete information of the system dynamics and rely
on off-line solutions of matrix design equations. Adaptive control is a powerful
method for the design of dynamic controllers that are tuned online in real time to
learn stabilizing feedback controllers for systems with unknown dynamics. Many
successful applications have been made in manufacturing and aerospace systems,
and elsewhere.

In this book, we use distributed cooperative control principles to design optimal
control systems and adaptive control systems for multi-agent dynamics on graphs.
These designs are complicated by the fact that all control protocols and parameter-
tuning protocols must be distributed in the sense that they depend only on immedi-
ate neighbors in the graph. Optimal control for cooperative multi-agent systems is
discussed in Part I of the book. Cooperative adaptive control is discussed in Part II.

Chapter 1 of this book presents an overview of synchronization behavior in na-
ture and social systems. It is seen that distributed decisions made by each agent in
a group based only on the information locally available to it can result in collective
synchronized motion of the overall group. The idea of a communication graph that
models the information flows in a multi-agent group is introduced. Synchronization
and collective behavior phenomena are discussed in biological systems, physics and
chemistry, and engineered systems. Various different graph topologies are presented
including random graphs, small world networks, scale-free networks, and distance
formation graphs. The early work in cooperative control systems on graphs is out-
lined.

Chapter 2 introduces cooperative synchronization control of multi-agent dynam-
ical systems interconnected by a fixed communication graph topology. Each agent
or node is mathematically modeled by a dynamical linear time-invariant system. A
review is given of graph basics and algebraic graph theory, which studies certain
matrices associated with the graph. Dynamical systems on graphs are introduced.
The idea of distributed control and the consensus problem are introduced. We be-
gin our study with first-order integrator dynamics for continuous-time systems and
discrete-time systems. Then, results are given for second-order position-velocity
systems which include motion control in formations. We present some key matrix
analysis methods for systems on graphs that are important for the analysis and de-
sign of cooperative controllers.

In Part I of the book, which contains Chaps. 3—6, we study local and global
optimal control for cooperative multi-agent systems linked to each other by a com-
munication graph. In cooperative control systems on graphs it turns out that local
optimality for each agent and global optimality for all the agents are not the same.
The relations between stability and optimality are well understood for single-agent
systems. However, there are more intriguing relations between stability and op-
timality in cooperative control than which appear in the single-agent case, since
local stability and global team stability are not the same, and local agent optimality
and global team optimality are not the same. New phenomena appear that are not
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present for single-agent systems. Moreover, throughout everything the synchroniza-
tion of the states of all agents must be guaranteed.

In Chap. 3, we study optimal control for continuous-time systems, and we shall
see that local optimal design at each agent guarantees global synchronization of all
agents to the same state values on any suitably connected digraph. Chapter 4 consid-
ers discrete-time systems and shows that an extra condition relating the local agent
dynamics and the graph topology must be satisfied to guarantee global synchroniza-
tion using local optimal design. Global optimization of collective group motions is
more difficult than local optimization of the motion of each agent. A common prob-
lem in optimal decentralized control is that global optimization problems generally
require global information from all the agents, which is not available to distributed
controllers which can only use information from nearest neighbors. In Chap. 5, we
shall see that globally optimal controls of distributed form may not exist on a given
graph. To obtain globally optimal performance using distributed protocols that only
depend on local agent information in the graph, the global performance index must
be selected to depend on the graph properties in a certain way, specifically, through
the graph Laplacian matrix. In Chap. 6, we define a different sort of global optimali-
ty for which distributed control solutions always exist on suitably connected graphs.
There, we study multi-agent graphical games and show that if each agent optimizes
its own local performance index, a Nash equilibrium is obtained.

In Part II of the book, which contains Chaps. 7-10, we show how to design co-
operative adaptive controllers for multi-agent systems on graphs. These controllers
allow synchronization of nonlinear systems where the agents have different dynam-
ics. The dynamics do not need to be known and may have unknown disturbances.
In adaptive controllers that are admissible for a prescribed communication graph
topology, only distributed control protocols and distributed adaptive tuning laws are
permitted. It is not straightforward to develop distributed adaptive tuning laws for
cooperative agents on graphs that only require information from each agent and its
neighbors. We show that the key to this is selecting special Lyapunov functions for
adaptive control design that depend in specific ways on the graph topology. Such
Lyapunov functions can be constructed using the concept of graph Laplacian poten-
tial, which depends on the communication graph topology.

In Chap. 7, we show that for networked multi-agent systems, there is an energy-
like function, called the graph Laplacian potential, that depends on the commu-
nication graph topology. The Laplacian potential captures the notion of a virtual
potential energy stored in the graph. The Laplacian potential is further used to con-
struct Lyapunov functions that are suitable for the stability analysis of cooperative
control systems on graphs. These Lyapunov functions depend on the graph topol-
ogy, and based on them a Lyapunov analysis technique is introduced for coopera-
tive multi-agent systems on graphs. Control protocols coming from such Lyapunov
functions are distributed in form, depending only on information about the agent
and its neighbors.

Chapter 8 covers cooperative adaptive control for systems with first-order non-
linear dynamics. The dynamics of the agents can be different, and they may be af-
fected by disturbances. The dynamics may be unknown. A special Lyapunov func-
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tion that depends on the graph topology is used to construct cooperative adaptive
controllers wherein both the control protocols and the parameter tuning laws are
distributed in the sense that they depend only on information available locally from
the neighbors of each agent. Chapter 9 shows how to design adaptive controllers
for nonlinear second-order multi-agent systems with position-velocity dynamics.
Chapter 10 designs cooperative adaptive controllers for higher-order nonlinear
systems with unknown dynamics and disturbances. The challenge of ensuring that
both the control protocols and parameter tuning laws are distributed on the graph is
confronted by using a Lyapunov function that involves two terms, one depending
on the system dynamics and one depending on the communication graph topology.
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