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Preface

This book studies cooperative control of multi-agent dynamical systems intercon-
nected by a communication network topology. In cooperative control, each system 
is endowed with its own state variable and dynamics. A fundamental problem in 
multi-agent dynamical systems on networks is the design of distributed protocols 
that guarantee consensus or synchronization in the sense that the states of all the 
systems reach the same value. The states could represent vehicle headings or posi-
tions, estimates of sensor readings in a sensor network, oscillation frequencies, trust 
opinions of each agent, and so on. In multi-agent systems, all systems should agree 
on the values of these quantities to achieve synchronized behavior.

Of fundamental concern for networked cooperative dynamical systems is the 
study of their interactions and collective behaviors under the influence of the infor-
mation flow allowed in the communication network. This communication network 
can be modeled as a graph with directed edges or links corresponding to the allowed 
flow of information between the systems. The systems are modeled as the nodes in 
the graph and are sometimes called agents. Information in communication networks 
only travels directly between immediate neighbors in a graph. Nevertheless, if a 
graph is connected, then this locally transmitted information travels ultimately to 
every agent in the graph.

In cooperative control systems on graphs, there are intriguing interactions be-
tween the individual agent dynamics and the topology of the communication graph. 
The graph topology may severely limit the possible performance of any control 
laws used by the agents. Specifically, in cooperative control on graphs, all the con-
trol protocols must be distributed in the sense that the control law of each agent is 
only allowed to depend on information from its immediate neighbors in the graph 
topology. If enough care is not taken while designing the local agent control laws, 
the individual agent dynamics may be stable, but the networked systems on the 
graph may exhibit undesirable behaviors. Since the communication restrictions im-
posed by graph topologies can severely complicate the design of synchronization 
controllers, complex and intriguing behaviors are observed in multi-agent systems 
on graphs that do not occur in single-agent, centralized, or decentralized feedback 
control systems.
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The study of networks of coupled dynamical systems arises in many fields of 
research. Charles Darwin showed that the interactions between coupled biological 
species over long time scales are responsible for natural selection. Adam Smith 
showed that the dynamical relationships between geopolitical entities are respon-
sible for the balances in international finance and the wealth of nations. Distrib-
uted networks of coupled dynamical systems have received much attention over the 
years because they occur in many different fields including biological and social 
systems, physics and chemistry, and computer science. Various terms are used in 
literature for phenomena related to the collective behavior on networks of systems, 
such as flocking, consensus, synchronization, frequency matching, formation, ren-
dezvous, and so on. Collective synchronization phenomena occur in biology, soci-
ology, physics, chemistry, and human engineered systems. The nature of synchro-
nization in different groups depends on the manner in which information is allowed 
to flow between the individuals of the group.

The collective motions of animal social groups are among the most beautiful 
sights in nature. Each individual has its own inclinations and motions, yet the ag-
gregate motion makes the group appear to be a single entity with its own laws 
of motion, psychology, and responses to external events. Flocks of birds, herds of 
animals, and schools of fish are aggregate entities that take on an existence of their 
own due to the collective motion instincts of their individual members. Collective 
motions allow the group to achieve what the individual cannot. Collective synchro-
nized motion is a product not of planned scripts, but of instantaneous decisions and 
responses by individual members.

Analysis of groups based on social behaviors is complex, yet the individuals 
in collectives appear to follow simple rules. In many biological and sociological 
groups such as schools of fish, bird flocks, mammal herds on the move, and hu-
man panic behavior in emergency building evacuation, evidence supports the idea 
that the decisions made by all the individuals follow simple local protocols based 
on their nearest neighbors. The collective motion of large groups can be captured 
by using a few simple rules governing the behavior of the individuals. These rules 
depend on the awareness of each individual of its neighbors.

Mechanisms of information transfer in groups involve questions such as how in-
formation about required motion directions, originally held by only a few informed 
individuals, can propagate through an entire group by simple mechanisms that are 
the same for every individual. The information flow between members of a social 
group is instrumental in determining the characteristics of the combined motion of 
the overall group.

The engineering study of multi-agent cooperative control systems uses princi-
ples observed in sociology, chemistry, and physics to obtain synchronized behavior 
of all systems by using simple local distributed control protocols that are the same 
for each agent and only depend on that agent’s neighbors in the group. Applications 
have been to oscillator synchronization, aircraft formations, mobile sensor area cov-
erage, spacecraft attitude alignment, vehicle routing in traffic systems, containment 
control of moving bodies, and biological cell sorting.



ixPreface�

Optimal feedback control design has been responsible for much of the success-
ful performance of engineered systems in aerospace, manufacturing, industrial pro-
cesses, vehicles, ships, robotics, and elsewhere since the 1960s. Optimal control 
designs generally require complete information of the system dynamics and rely 
on off-line solutions of matrix design equations. Adaptive control is a powerful 
method for the design of dynamic controllers that are tuned online in real time to 
learn stabilizing feedback controllers for systems with unknown dynamics. Many 
successful applications have been made in manufacturing and aerospace systems, 
and elsewhere.

In this book, we use distributed cooperative control principles to design optimal 
control systems and adaptive control systems for multi-agent dynamics on graphs. 
These designs are complicated by the fact that all control protocols and parameter-
tuning protocols must be distributed in the sense that they depend only on immedi-
ate neighbors in the graph. Optimal control for cooperative multi-agent systems is 
discussed in Part I of the book. Cooperative adaptive control is discussed in Part II.

Chapter 1 of this book presents an overview of synchronization behavior in na-
ture and social systems. It is seen that distributed decisions made by each agent in 
a group based only on the information locally available to it can result in collective 
synchronized motion of the overall group. The idea of a communication graph that 
models the information flows in a multi-agent group is introduced. Synchronization 
and collective behavior phenomena are discussed in biological systems, physics and 
chemistry, and engineered systems. Various different graph topologies are presented 
including random graphs, small world networks, scale-free networks, and distance 
formation graphs. The early work in cooperative control systems on graphs is out-
lined.

Chapter 2 introduces cooperative synchronization control of multi-agent dynam-
ical systems interconnected by a fixed communication graph topology. Each agent 
or node is mathematically modeled by a dynamical linear time-invariant system. A 
review is given of graph basics and algebraic graph theory, which studies certain 
matrices associated with the graph. Dynamical systems on graphs are introduced. 
The idea of distributed control and the consensus problem are introduced. We be-
gin our study with first-order integrator dynamics for continuous-time systems and 
discrete-time systems. Then, results are given for second-order position-velocity 
systems which include motion control in formations. We present some key matrix 
analysis methods for systems on graphs that are important for the analysis and de-
sign of cooperative controllers.

In Part I of the book, which contains Chaps.  3–6, we study local and global 
optimal control for cooperative multi-agent systems linked to each other by a com-
munication graph. In cooperative control systems on graphs it turns out that local 
optimality for each agent and global optimality for all the agents are not the same. 
The relations between stability and optimality are well understood for single-agent 
systems. However, there are more intriguing relations between stability and op-
timality in cooperative control than which appear in the single-agent case, since 
local stability and global team stability are not the same, and local agent optimality 
and global team optimality are not the same. New phenomena appear that are not  
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present for single-agent systems. Moreover, throughout everything the synchroniza-
tion of the states of all agents must be guaranteed.

In Chap. 3, we study optimal control for continuous-time systems, and we shall 
see that local optimal design at each agent guarantees global synchronization of all 
agents to the same state values on any suitably connected digraph. Chapter 4 consid-
ers discrete-time systems and shows that an extra condition relating the local agent 
dynamics and the graph topology must be satisfied to guarantee global synchroniza-
tion using local optimal design. Global optimization of collective group motions is 
more difficult than local optimization of the motion of each agent. A common prob-
lem in optimal decentralized control is that global optimization problems generally 
require global information from all the agents, which is not available to distributed 
controllers which can only use information from nearest neighbors. In Chap. 5, we 
shall see that globally optimal controls of distributed form may not exist on a given 
graph. To obtain globally optimal performance using distributed protocols that only 
depend on local agent information in the graph, the global performance index must 
be selected to depend on the graph properties in a certain way, specifically, through 
the graph Laplacian matrix. In Chap. 6, we define a different sort of global optimali-
ty for which distributed control solutions always exist on suitably connected graphs. 
There, we study multi-agent graphical games and show that if each agent optimizes 
its own local performance index, a Nash equilibrium is obtained.

In Part II of the book, which contains Chaps. 7–10, we show how to design co-
operative adaptive controllers for multi-agent systems on graphs. These controllers 
allow synchronization of nonlinear systems where the agents have different dynam-
ics. The dynamics do not need to be known and may have unknown disturbances. 
In adaptive controllers that are admissible for a prescribed communication graph 
topology, only distributed control protocols and distributed adaptive tuning laws are 
permitted. It is not straightforward to develop distributed adaptive tuning laws for 
cooperative agents on graphs that only require information from each agent and its 
neighbors. We show that the key to this is selecting special Lyapunov functions for 
adaptive control design that depend in specific ways on the graph topology. Such 
Lyapunov functions can be constructed using the concept of graph Laplacian poten-
tial, which depends on the communication graph topology.

In Chap. 7, we show that for networked multi-agent systems, there is an energy-
like function, called the graph Laplacian potential, that depends on the commu-
nication graph topology. The Laplacian potential captures the notion of a virtual 
potential energy stored in the graph. The Laplacian potential is further used to con-
struct Lyapunov functions that are suitable for the stability analysis of cooperative 
control systems on graphs. These Lyapunov functions depend on the graph topol-
ogy, and based on them a Lyapunov analysis technique is introduced for coopera-
tive multi-agent systems on graphs. Control protocols coming from such Lyapunov 
functions are distributed in form, depending only on information about the agent 
and its neighbors.

Chapter 8 covers cooperative adaptive control for systems with first-order non-
linear dynamics. The dynamics of the agents can be different, and they may be af-
fected by disturbances. The dynamics may be unknown. A special Lyapunov func-
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tion that depends on the graph topology is used to construct cooperative adaptive 
controllers wherein both the control protocols and the parameter tuning laws are 
distributed in the sense that they depend only on information available locally from 
the neighbors of each agent. Chapter 9 shows how to design adaptive controllers 
for nonlinear second-order multi-agent systems with position-velocity dynamics. 
Chapter  10 designs cooperative adaptive controllers for higher-order nonlinear 
systems with unknown dynamics and disturbances. The challenge of ensuring that 
both the control protocols and parameter tuning laws are distributed on the graph is 
confronted by using a Lyapunov function that involves two terms, one depending 
on the system dynamics and one depending on the communication graph topology.
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