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Cooperative control studies the dynamics of multi-agent dynamical systems linked 
to each other by a communication graph. The graph represents the allowed infor-
mation flow between the agents. The objective of cooperative control is to devise 
control protocols for the individual agents that guarantee synchronized behavior of 
the states of all the agents in some prescribed sense. In cooperative systems, any 
control protocol must be distributed in the sense that it respects the prescribed graph 
topology. That is, the control protocol for each agent is allowed to depend only on 
information about that agent and its neighbors in the graph. The communication re-
strictions imposed by graph topologies can severely limit what can be accomplished 
by local distributed control protocols at each agent. In fact, the graph topological 
properties complicate the design of synchronization controllers and result in intrigu-
ing behaviors of multi-agent systems on graphs that do not occur in single-agent, 
centralized, or decentralized feedback control systems.

Of fundamental concern for cooperative systems on graphs is the study of their 
collective behaviors under the influence of the information flow allowed in the 
graph. This chapter introduces cooperative synchronization control of multi-agent 
dynamical systems interconnected by a fixed communication graph topology. Each 
agent or node is mathematically modeled by a dynamical linear time-invariant (LTI) 
system. First, in Sect. 2.1 we give a review of graph basics and algebraic graph the-
ory, which studies certain matrices associated with the graph. The graph Laplacian 
matrix is introduced and its eigenstructure is studied, including the first eigenvalue, 
the first left eigenvector, and the second eigenvalue or Fiedler eigenvalue.

In Sect. 2.2, dynamical systems on graphs are introduced. The idea of distributed 
control and the consensus problem are introduced. Section 2.3 studies consensus 
for first-order integrator dynamics for continuous-time systems. The basic results 
and key ideas of cooperative control emerge from this study. The importance of the 
graph eigenstructure in interconnected agent dynamical behavior is shown. Sec-
tion 2.4 reveals the existence of certain motion invariants for consensus on graphs. 
Section 2.5 studies consensus for first-order discrete-time systems.

Section  2.6 introduces consensus for general linear dynamical systems on 
graphs. A fundamental result is given that relates the synchronization of multi-agent 
systems to the stability of a set of systems that depend on the graph topology prop-
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erties. This reveals the relationships between local agent feedback design and the 
global synchronization properties based on the graph communication restrictions. 
Section  2.7 studies consensus for second-order position–velocity systems which 
include motion control in formations.

In Sect. 2.8, we present some key concepts needed in this book for the design of 
optimal and adaptive distributed controllers on graphs. The section introduces sev-
eral important matrix analysis methods for systems in graphs, including irreducible 
matrices, Frobenius form, stochastic matrices, and M-matrices. Relationships with 
the graph topology and eigenstructure are given.

In Sect. 2.9, we introduce Lyapunov functions for the analysis of the stability 
properties of cooperative multi-agent control systems. It is seen that Lyapunov 
functions for studying the stability properties of cooperative control protocols de-
pend on the graph topology. Therefore, a given cooperative control protocol may be 
stable on one graph topology but not on another. This reveals the close interactions 
between the performance of locally designed control protocols and the manner in 
which the agents are allowed to communicate.

This chapter follows the development of cooperative control results in the early 
literature since the first papers [7, 9, 10, 15, 22]. To understand the relationships be-
tween the communication graph topology and the local design of distributed feed-
back control protocols, it was natural to study first-order systems and then second-
order systems. Early applications were made to formation control [13, 14, 16, 18]. 
These studies brought an understanding of the limitations and caveats imposed by 
the graph communication restrictions and opened the way for many well-known 
results from systems theory to be extended to the case of multi-agent systems on 
graphs.

The relations discovered between the communication graph topology and the 
design of distributed control protocols have resulted in new design techniques for 
cooperative feedback control. New intriguing interactions have been discovered be-
tween graph topology and local control protocol design that reveal the richness of 
the study of cooperative multi-agent control on graphs, where new phenomena are 
seen that do not occur in control of single-agent systems. In the remainder of the 
book, we explore these relationships for optimal design and adaptive control on 
graphs.

2.1 � Algebraic Graph Theory

In this book, we are concerned with the behaviors and interactions of dynamical 
systems that are interconnected by the links of a communication network. This 
communication network is modeled as a graph with directed edges corresponding 
to the allowed flow of information between the systems. The systems are modeled 
as the nodes in the graph and are sometimes called agents. We call this the study of 
multi-agent dynamical systems on graphs. The fundamental control issues concern 
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how the graph topology interacts with the local feedback control protocols of the 
agents to produce overall behaviors of the interconnected nodes.

2.1.1 � Graph Theory Basics

Here we present some basic graph theory concepts that are essential in the study of 
multi-agent dynamical systems. Good references are [3, 5].

�Basic Definitions and Connectivity

A graph is a pair G V E= ( , )  with V v vN= { , , }1   being a set of N nodes or ver-
tices and E a set of edges or arcs. Elements of E are denoted as ( , )v vi j  which is 
termed an edge or arc from vi to vj, and represented as an arrow with tail at vi and 
head at vj. We assume the graph is simple, i.e., ( , ) ,v v E ii i ∉ ∀  no self-loops, and no 
multiple edges between the same pairs of nodes. Edge ( , )v vi j  is said to be outgo-
ing with respect to node vi and incoming with respect to vj; and node vi is termed 
the parent and vj the child. The in-degree of vi is the number of edges having vi as 
a head. The out-degree of a node vi is the number of edges having vi as a tail. The 
set of (in-) neighbors of a node vi is N v v v Ei j j i= ∈{ : ( , ) }, i.e., the set of nodes 
with edges incoming to vi. The number of neighbors Ni  of node vi is equal to its 
in-degree.

If the in-degree equals the out-degree for all nodes v Vi ∈  the graph is said to be 
balanced. If ( , ) ( , ) , ,v v E v v E i ji j j i∈ ⇒ ∈ ∀  the graph is said to be bidirectional, 
otherwise it is termed a directed graph or digraph. Associate with each edge 
( , )v v Ej i ∈  a weight aij . Note the order of the indices in this definition. We assume 
in this chapter that the nonzero weights are strictly positive. A graph is said to be 
undirected if a a i jij ji= ∀, , , that is, if it is bidirectional and the weights of edges 
( , )v vi j  and ( , )v vj i  are the same.

A directed path is a sequence of nodes v v vr0 1, , ,  such that ( , ) ,v v Ei i+ ∈1
i r∈ −{ , , , }0 1 1 . Node vi is said to be connected to node vj if there is a directed path 
from vi to vj. The distance from vi to vj is the length of the shortest path from vi to vj. 
Graph G is said to be strongly connected if v vi j,  are connected for all distinct nodes 
v v Vi j, ∈ . For bidirectional and undirected graphs, if there is a directed path from vi 
to vj, then there is a directed path from vj to vi, and the qualifier ‘strongly’ is omitted.

A (directed) tree is a connected digraph where every node except one, called 
the root, has in-degree equal to one. A spanning tree of a digraph is a directed tree 
formed by graph edges that connects all the nodes of the graph. A graph is said to 
have a spanning tree if a subset of the edges forms a directed tree. This is equivalent 
to saying that all nodes in the graph are reachable from a single (root) node by fol-
lowing the edge arrows. A graph may have multiple spanning trees. Define the root 
set or leader set of a graph as the set of nodes that are the roots of all spanning trees. 
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If a graph is strongly connected, it contains at least one spanning tree. In fact, if a 
graph is strongly connected, then all nodes are root nodes.

2.1.2 � Graph Matrices

Graph structure and properties can be studied by examining the properties of cer-
tain matrices associated with the graph. This is known as algebraic graph theory 
[3, 5].

Given the edge weights aij, a graph can be represented by an adjacency or con-
nectivity matrix A = [aij ] with weights a if v v Eij j i> ∈0 ( , )  and aij = 0  other-
wise. Note that aii = 0. Define the weighted in-degree of node vi as the i-th row sum 
of A

d ai ij
j

N

=
=

∑
1

� (2.1)

and the weighted out-degree of node vi as the i-th column sum of A

d ai
o

ji
j

N

=
=

∑
1

� (2.2)

The in-degree and out-degree are local properties of the graph. Two important glob-
al graph properties are the diameter Diam G, which is the greatest distance between 
two nodes in a graph, and the (in-)volume, which is the sum of the in-degrees

VolG di
i

= ∑� (2.3)

The adjacency matrix A of an undirected graph is symmetric, A AT= . A graph is 
said to be weight balanced if the weighted in-degree equals the weighted out-degree 
for all i. If all the nonzero edge weights are equal to 1, this is the same as the defi-
nition of balanced graph. An undirected graph is weight balanced, since if A AT=  
then the ith row sum equals the ith column sum. We may be loose at times and refer 
to node vi simply as node i, and refer simply to in-degree, out-degree, and the bal-
anced property, without the qualifier ‘weight’, even for graphs having non-unity 
weights on the edges.

Graph Laplacian Matrix  Define the diagonal in-degree matrix D diag di= { }  and 
the (weighted) graph Laplacian matrix L D A= − . Note that L has all row sums 
equal to zero. Many properties of a graph may be studied in terms of its graph 
Laplacian. In fact, we shall see that the Laplacian matrix is of extreme importance 
in the study of dynamical multi-agent systems on graphs.
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�Example 2.1 Graph Matrices

Consider the digraph shown in Fig. 2.1 with all edge weights equal to 1. The graph 
is strongly connected since there is a path between any two pairs of nodes. A span-
ning tree with root node 1 is shown in bold in Fig. 2.2. There are other spanning 
trees in this graph. In fact, every node is a root node since the graph is strongly 
connected.

The adjacency matrix is given by

A =





0 0 1 0 0 0
1 0 0 0 0 1
1 1 0 0 0 0
0
0
0

1
0
0

0
1
0

0
0
1

0
0
1

0
0
0





and the diagonal in-degree matrix and Laplacian are

Fig. 2.2   A spanning tree for 
the graph in Fig. 2.1 with root 
node 1

 

Fig. 2.1   A directed graph 
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0 2 0 0 0 0
0 0 2 0 0 0
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0
0

1
0
0

0
1
0

1
0
1

0
1
1

0
0
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
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




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Note that the row sums of L are all zero.�

2.1.3 � Eigenstructure of Graph Laplacian Matrix

We shall see that the eigenstructure of the graph Laplacian matrix L plays a key role 
in the analysis of dynamical systems on graphs. Define the Jordan normal form [2] 
of the graph Laplacian matrix by

L MJM= −1
� (2.4)

with the Jordan form matrix and transformation matrix given as

1

2
1 2, N

N

J M v v v

λ
λ

λ

 
 
 = =    
 
 

�
�� (2.5)

where the eigenvalues iλ  and right eigenvectors vi  satisfy

( ) 0i iI L vλ − =� (2.6)

with I being the identity matrix.
In general, the iλ  in (2.5) are not scalars but are Jordan blocks of the form

1

1

i

i

i

λ
λ

λ

 
 
 
 
 
 

�
�

The number of such Jordan blocks associated with the same eigenvalue iλ  is known 
as the geometric multiplicity of eigenvalue iλ . The sum of the sizes of all Jordan 
blocks associated with iλ  is called its algebraic multiplicity. For ease of notation 
and discussion, we assume here that the Jordan form is simple, that is, it is diagonal 
with all Jordan blocks of size 1. This is guaranteed if all eigenvalues of L are dis-
tinct. A symmetric matrix may not have distinct eigenvalues but has a simple Jordan 
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form. All of our discussions generalize without difficulty to the case of nontrivial 
Jordan blocks.

The inverse of the transformation matrix M is given as

1

1 2

T

T

T
N

w

wM

w

-

 
 
 =  
 
  

�� (2.7)

where the left eigenvectors wi  satisfy

( ) 0T
i iw I Lλ - =� (2.8)

and are normalized so that w vi
T
i = 1.

We assume the eigenvalues are ordered so that 1 2 .Nλ λ λ≤ ≤ ≤�  Any un-
directed graph has L LT=  so all its eigenvalues are real and one can order them as 

1 2 .Nλ λ λ≤ ≤ ≤�
Since L has all row sums zero, one has

L c1 0=� (2.9)

with 1 1 1= [ ] ∈� T NR  being the vector of ones and c any constant. Therefore, 
1 0λ =  is an eigenvalue with a right eigenvector of 1c. That is, 1c N L∈ ( ) the 

null-space of L. If the dimension of the null-space of L is equal to one, i.e., the rank 
of L is N-1, then 1 0λ =  is nonrepeated and 1c  is the only vector in N(L). The next 
standard result states when this occurs.

Theorem 2.1  L has rank N-1, i.e., 1 0λ =  is nonrepeated, if and only if graph G 
has a spanning tree [13, 16].

If the graph has a spanning tree, then 2 0.λ >  If the graph is strongly connected, 
then it has a spanning tree and L has rank N-1.

The Laplacian has at least one eigenvalue at 1 0λ = . The remaining eigenvalues 
can be localized using the following result.

Geršgorin Circle Criterion  All eigenvalues of a matrix E = [eij ] ∈ RN×N  are 
located within the union of N disks [6].

z C z e eii ij
j ii

N

∈ − ≤










≠=
∑:

1


�

The i-th disk in the Geršgorin circle criterion is drawn with a center at the diagonal 
element eii  and with a radius equal to the i-th absolute row sum with the diagonal 
element deleted, eij

j i≠
∑ . Therefore, the Geršgorin disks for the graph Laplacian 

matrix L D A= −  are centered at the in-degrees di  and have radius equal to di .  
Let dMax  be the maximum in-degree of G. Then, the largest Geršgorin disk of the 
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Laplacian matrix L is given by a circle centered at dMax  and having radius of dMax. 
This circle contains all the eigenvalues of L. See Fig. 2.3. The Geršgorin circle cri-
terion ties the eigenvalues of L rather closely to the graph structural properties in 
terms of the in-degrees.

We have thus discovered that if the graph has a spanning tree, there is a nonre-
peated eigenvalue at 1 0λ =  and all other eigenvalues have positive real parts, i.e., 
in the open right-half plane, and are within a circle centered at dMax  and having 
radius of dMax .

When comparing eigenvalues between two graphs, it is often more useful to use 
the normalized Laplacian matrix

L D L D D A I D A= = − = −− − −1 1 1( )� (2.10)

Since the normalized adjacency matrix A D A= −1  has row sums equal to one, 
d ii = ∀1,  and L  has all Geršgorin disks centered at s = 1 with radius of 1.

�Example 2.2 Laplacian Matrix Eigenvalues for Various Graph Types

In this example, we will compute the eigenvalues of the graph Laplacian matrix 
L D A= −  for various types of graphs. The intent is to give a feeling for the depen-
dence of the Laplacian eigenvalues on the graph topology. This example is the work 
of David Maxwell in the class EE 5329 Distributed Decision & Control, Spring 
2011, Department of Electrical Engineering, The University of Texas at Arlington, 
TX, USA. The class link is http://arri.uta.edu/acs

The graphs studied in this example include several commonly occurring topolo-
gies and are depicted in Fig. 2.4. The graph notation is standard and is explained in 
[3, 5]. We include it for interest only and do not use this notation further in the book. 
All edge weights are taken equal to 1. Note that a complete (or fully connected) 
graph is one that has all possible edges between the nodes.

The eigenvalues of these graphs are listed in Table 2.1 and plotted in the complex 
s-plane in Fig. 2.5. Several things are worthy of note:

Fig. 2.3   Geršgorin disks of L 
in the complex plane
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Fig. 2.4   Different graph topologies for Example 2.2. a Directed graph. b Undirected graph. c 
Complete graph K6. d Directed tree graph (formation graph). e Undirected star K1,5. f Directed star. 
g Undirected 6-cycle (2-regular graph). h Directed 6-cycle (6-periodic graph). i Undirected path P5

 

Table 2.1   Eigenvalues for different graph topologies in Example 2.2
a.  
Directed graph

b.  
Undirec-
ted graph

c.  
Com-
plete 
graph

d.  
Direc-
ted tree

e.  
Undi-
rected 
star

f.  
Direc-
ted star

g.  
Undi-
rected 
6-cycle

h.  
Directed 
6-cycle

i.  
Undirec-
ted path

0 0 0 0 0 0 0 0.0000 0
0.7793 1.3820 6 1 1 1 1 0.5 + 0.866i 0.2679
1.0000 1.6972 6 1 1 1 1 0.5 − 0.866i 1
2.2481 + 1.0340i 3.6180 6 1 1 1 3 1.5 + 0.866i 2
2.2481 − 1.0340i 4.0000 6 1 1 1 3 1.5 − 0.866i 3
2.7245 5.3028 6 1 6 1 4 2. 3.7321
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1.	 The Laplacian matrix has row sums equal to zero so that all graphs have the first 
eigenvalue at 1 0λ = .

2.	 All undirected graphs have a symmetric Laplacian matrix L and so their graph 
eigenvalues are real.

2  Algebraic Graph Theory and Cooperative Control Consensus

Fig. 2.5   Complex plane plots of graph eigenvalues for Example 2.2. a Directed graph. b Undi-
rected graph. c Complete graph K6. d Directed tree (formation graph). e Undirected star K1,5. 
f Directed star. g Undirected 6-cycle (2-regular graph). h Directed 6-cycle (6-periodic graph). 
i Undirected path P5
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