Chapter 2
Algebraic Graph Theory and Cooperative
Control Consensus

Cooperative control studies the dynamics of multi-agent dynamical systems linked
to each other by a communication graph. The graph represents the allowed infor-
mation flow between the agents. The objective of cooperative control is to devise
control protocols for the individual agents that guarantee synchronized behavior of
the states of all the agents in some prescribed sense. In cooperative systems, any
control protocol must be distributed in the sense that it respects the prescribed graph
topology. That is, the control protocol for each agent is allowed to depend only on
information about that agent and its neighbors in the graph. The communication re-
strictions imposed by graph topologies can severely limit what can be accomplished
by local distributed control protocols at each agent. In fact, the graph topological
properties complicate the design of synchronization controllers and result in intrigu-
ing behaviors of multi-agent systems on graphs that do not occur in single-agent,
centralized, or decentralized feedback control systems.

Of fundamental concern for cooperative systems on graphs is the study of their
collective behaviors under the influence of the information flow allowed in the
graph. This chapter introduces cooperative synchronization control of multi-agent
dynamical systems interconnected by a fixed communication graph topology. Each
agent or node is mathematically modeled by a dynamical linear time-invariant (LTT)
system. First, in Sect. 2.1 we give a review of graph basics and algebraic graph the-
ory, which studies certain matrices associated with the graph. The graph Laplacian
matrix is introduced and its eigenstructure is studied, including the first eigenvalue,
the first left eigenvector, and the second eigenvalue or Fiedler eigenvalue.

In Sect. 2.2, dynamical systems on graphs are introduced. The idea of distributed
control and the consensus problem are introduced. Section 2.3 studies consensus
for first-order integrator dynamics for continuous-time systems. The basic results
and key ideas of cooperative control emerge from this study. The importance of the
graph eigenstructure in interconnected agent dynamical behavior is shown. Sec-
tion 2.4 reveals the existence of certain motion invariants for consensus on graphs.
Section 2.5 studies consensus for first-order discrete-time systems.

Section 2.6 introduces consensus for general linear dynamical systems on
graphs. A fundamental result is given that relates the synchronization of multi-agent
systems to the stability of a set of systems that depend on the graph topology prop-
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erties. This reveals the relationships between local agent feedback design and the
global synchronization properties based on the graph communication restrictions.
Section 2.7 studies consensus for second-order position—velocity systems which
include motion control in formations.

In Sect. 2.8, we present some key concepts needed in this book for the design of
optimal and adaptive distributed controllers on graphs. The section introduces sev-
eral important matrix analysis methods for systems in graphs, including irreducible
matrices, Frobenius form, stochastic matrices, and M-matrices. Relationships with
the graph topology and eigenstructure are given.

In Sect. 2.9, we introduce Lyapunov functions for the analysis of the stability
properties of cooperative multi-agent control systems. It is seen that Lyapunov
functions for studying the stability properties of cooperative control protocols de-
pend on the graph topology. Therefore, a given cooperative control protocol may be
stable on one graph topology but not on another. This reveals the close interactions
between the performance of locally designed control protocols and the manner in
which the agents are allowed to communicate.

This chapter follows the development of cooperative control results in the early
literature since the first papers [7, 9, 10, 15, 22]. To understand the relationships be-
tween the communication graph topology and the local design of distributed feed-
back control protocols, it was natural to study first-order systems and then second-
order systems. Early applications were made to formation control [13, 14, 16, 18].
These studies brought an understanding of the limitations and caveats imposed by
the graph communication restrictions and opened the way for many well-known
results from systems theory to be extended to the case of multi-agent systems on
graphs.

The relations discovered between the communication graph topology and the
design of distributed control protocols have resulted in new design techniques for
cooperative feedback control. New intriguing interactions have been discovered be-
tween graph topology and local control protocol design that reveal the richness of
the study of cooperative multi-agent control on graphs, where new phenomena are
seen that do not occur in control of single-agent systems. In the remainder of the
book, we explore these relationships for optimal design and adaptive control on
graphs.

2.1 Algebraic Graph Theory

In this book, we are concerned with the behaviors and interactions of dynamical
systems that are interconnected by the links of a communication network. This
communication network is modeled as a graph with directed edges corresponding
to the allowed flow of information between the systems. The systems are modeled
as the nodes in the graph and are sometimes called agents. We call this the study of
multi-agent dynamical systems on graphs. The fundamental control issues concern
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how the graph topology interacts with the local feedback control protocols of the
agents to produce overall behaviors of the interconnected nodes.

2.1.1 Graph Theory Basics

Here we present some basic graph theory concepts that are essential in the study of
multi-agent dynamical systems. Good references are [3, 5].

Basic Definitions and Connectivity

A graph is a pair G = (V,E) with V' ={y,---,v,} being a set of N nodes or ver-
tices and £ a set of edges or arcs. Elements of £ are denoted as (v;,v;) which is
termed an edge or arc from v, to Vi and represented as an arrow with tail at v, and
head at v, We assume the graph is simple, i.e., (v,,v,) ¢ E,Vi no self-loops, and no
multiple edges between the same pairs of nodes. Edge (v,,v;) is said to be outgo-
ing with respect to node v, and incoming with respect to Vi and node v, is termed
the parent and v, the child. The in-degree of v, is the number of edges having v, as
a head. The out-degree of a node v, is the number of edges having v, as a tail. The
set of (in-) neighbors of a node v, is N, = {v, :(v,,v,) € E}, i.e., the set of nodes
with edges incoming to v,. The number of nelghbors |N | of node v, is equal to its
in-degree.

If the in-degree equals the out-degree for all nodes v, € V' the graph is said to be
balanced. If (v,,v;)€ E = (v;,v,) € E,Vi,j the graph is said to be bidirectional,
otherwise it is termed a directed graph or digraph. Associate with each edge
(v;,v,) € E aweight a;. Note the order of the indices in this definition. We assume
in this chapter that the nonzero weights are strictly positive. A graph is said to be
undirected if a; = a,,Vi, j, that is, if it is bidirectional and the weights of edges
(v,,v;)and (v;,v,) are the same.

A directed path is a sequence of nodes v,,v,---,v, such that (v,,v,,)€E,
i€{0,1,---,r —1}. Node v, is said to be connected to node v, if there is a directed path
from v, to v, The distance from v, to v, is the length of the shortest path from v, to v,.
Graph G is said to be strongly connected if v,,v, are connected for all distinct nodes
v,,v; € V. For bidirectional and undirected graphs, if there is a directed path from v,
tov, then there is a directed path from v, tov, and the qualifier ‘strongly’ is omltted

A (directed) tree is a connected dlgraph where every node except one, called
the root, has in-degree equal to one. A spanning tree of a digraph is a directed tree
formed by graph edges that connects all the nodes of the graph. A graph is said to
have a spanning tree if a subset of the edges forms a directed tree. This is equivalent
to saying that all nodes in the graph are reachable from a single (root) node by fol-
lowing the edge arrows. A graph may have multiple spanning trees. Define the root
set or leader set of a graph as the set of nodes that are the roots of all spanning trees.
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If a graph is strongly connected, it contains at least one spanning tree. In fact, if a
graph is strongly connected, then all nodes are root nodes.

2.1.2 Graph Matrices

Graph structure and properties can be studied by examining the properties of cer-
tain matrices associated with the graph. This is known as algebraic graph theory
[3, 5].

Given the edge weights a;, a graph can be represented by an adjacency or con-
nectivity matrix A = [a;;] with weights a;, >0if (v,,v,)€ E and a, =0 other-
wise. Note that g, = 0. Define the weighted in-degree of node v, as the i-th row sum
of 4

¢=i% 2.1)

d’'=Ya, (2.2)

J=1

The in-degree and out-degree are local properties of the graph. Two important glob-
al graph properties are the diameter Diam G, which is the greatest distance between
two nodes in a graph, and the (in-)volume, which is the sum of the in-degrees

VolG =Y d, (2.3)

The adjacency matrix 4 of an undirected graph is symmetric, 4= A". A graph is
said to be weight balanced if the weighted in-degree equals the weighted out-degree
for all i. If all the nonzero edge weights are equal to 1, this is the same as the defi-
nition of balanced graph. An undirected graph is weight balanced, since if 4= 4"
then the ith row sum equals the ith column sum. We may be loose at times and refer
to node v, simply as node #, and refer simply to in-degree, out-degree, and the bal-
anced property, without the qualifier ‘weight’, even for graphs having non-unity
weights on the edges.

Graph Laplacian Matrix Define the diagonal in-degree matrix D = diag{d,} and
the (weighted) graph Laplacian matrix L =D — A. Note that L has all row sums
equal to zero. Many properties of a graph may be studied in terms of its graph
Laplacian. In fact, we shall see that the Laplacian matrix is of extreme importance
in the study of dynamical multi-agent systems on graphs.



2.1 Algebraic Graph Theory 27

Fig. 2.1 A directed graph 1

Fig. 2.2 A spanning tree for 1
the graph in Fig. 2.1 with root
node 1 2

Example 2.1 Graph Matrices

Consider the digraph shown in Fig. 2.1 with all edge weights equal to 1. The graph
is strongly connected since there is a path between any two pairs of nodes. A span-
ning tree with root node 1 is shown in bold in Fig. 2.2. There are other spanning
trees in this graph. In fact, every node is a root node since the graph is strongly
connected.

The adjacency matrix is given by

S OO~ = O
SO == OO
(= = R =
—_0 O O OO
—_0 O O OO
S oo o~ O

and the diagonal in-degree matrix and Laplacian are
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1 00 00O 1 0 -1 0 00

020000 -1 2 0 0 0-1

002000 -1 -1 0 00
D= L:

000100 -1 I 00

00 0O0T10O0 0 0 -1 0 10

000002 |0 0o 0 -1 -1 2]

Note that the row sums of L are all zero.

2.1.3 Eigenstructure of Graph Laplacian Matrix

We shall see that the eigenstructure of the graph Laplacian matrix L plays a key role
in the analysis of dynamical systems on graphs. Define the Jordan normal form [2]
of the graph Laplacian matrix by

L=MIM" 2.4
with the Jordan form matrix and transformation matrix given as
A4
J= A ,M=[v1 Vy e VN] (2.5)
Ay

where the eigenvalues A, and right eigenvectors v, satisfy

(A1 —=L)v, =0 (2.6)

with 7 being the identity matrix.
In general, the 4, in (2.5) are not scalars but are Jordan blocks of the form

The number of such Jordan blocks associated with the same eigenvalue 4, is known
as the geometric multiplicity of eigenvalue A.. The sum of the sizes of all Jordan
blocks associated with A, is called its algebraic multiplicity. For ease of notation
and discussion, we assume here that the Jordan form is simple, that is, it is diagonal
with all Jordan blocks of size 1. This is guaranteed if all eigenvalues of L are dis-
tinct. A symmetric matrix may not have distinct eigenvalues but has a simple Jordan
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form. All of our discussions generalize without difficulty to the case of nontrivial
Jordan blocks.
The inverse of the transformation matrix M is given as

w
M~ = Wf 2.7)
Wy
where the left eigenvectors w, satisfy
w (LI-L)=0 (2.8)

and are normalized so that w) v, =1.

We assume the eigenvalues are ordered so that |/11| < |/12| << |/1N|. Any un-
directed graph has L = L" so all its eigenvalues are real and one can order them as
<A, << Ay

Since L has all row sums zero, one has

Lle=0 (2.9)

with 1= [1 l]T € RV being the vector of ones and ¢ any constant. Therefore,
A, =0 is an eigenvalue with a right eigenvector of 1c. That is, 1c € N(L) the
null-space of L. If the dimension of the null-space of L is equal to one, i.e., the rank
of Lis N-1,then 4, =0 is nonrepeated and lc is the only vector in N(L). The next
standard result states when this occurs.

Theorem 2.1 L has rank N-1, i.e., A4, =0 is nonrepeated, if and only if graph G
has a spanning tree [13, 16].

If the graph has a spanning tree, then |/12| > 0. If the graph is strongly connected,
then it has a spanning tree and L has rank N-/.

The Laplacian has at least one eigenvalue at 4, = 0. The remaining eigenvalues
can be localized using the following result.

Gersgorin Circle Criterion All eigenvalues of a matrix E = [e;;] € RV*V are
located within the union of N disks [6].

LNJ{Z € C:|z—el.,.| < 2|eﬁ|}

i=1 J#i

The i-th disk in the Gersgorin circle criterion is drawn with a center at the diagonal
element e, and with a radius equal to the i-th absolute row sum with the diagonal

element deleted, Z|e,.j|. Therefore, the GerSgorin disks for the graph Laplacian

matrix L=D— A are centered at the in-degrees d, and have radius equal to d..
Let d,,, be the maximum in-degree of G. Then, the largest Gersgorin disk of the
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Fig. 2.3 Gersgorin disks of L

: Im(s)
in the complex plane A

Laplacian matrix L is given by a circle centered at d,, and having radius of d,,, .
This circle contains all the eigenvalues of L. See Fig. 2.3. The Gersgorin circle cri-
terion ties the eigenvalues of L rather closely to the graph structural properties in
terms of the in-degrees.

We have thus discovered that if the graph has a spanning tree, there is a nonre-
peated eigenvalue at 4, =0 and all other eigenvalues have positive real parts, i.e.,
in the open right-half plane, and are within a circle centered at d,, and having
radius of d,, .

When comparing eigenvalues between two graphs, it is often more useful to use
the normalized Laplacian matrix

L=D"'L=D"'(D-A)=1-D"4 (2.10)

Since the normalized adjacency matrix A=D"4 has row sums equal to one,
d;=1,Vi and L has all GerSgorin disks centered at s=1 with radius of 1.

Example 2.2 Laplacian Matrix Eigenvalues for Various Graph Types

In this example, we will compute the eigenvalues of the graph Laplacian matrix
L = D — A for various types of graphs. The intent is to give a feeling for the depen-
dence of the Laplacian eigenvalues on the graph topology. This example is the work
of David Maxwell in the class EE 5329 Distributed Decision & Control, Spring
2011, Department of Electrical Engineering, The University of Texas at Arlington,
TX, USA. The class link is http://arri.uta.edu/acs

The graphs studied in this example include several commonly occurring topolo-
gies and are depicted in Fig. 2.4. The graph notation is standard and is explained in
[3, 5]. We include it for interest only and do not use this notation further in the book.
All edge weights are taken equal to 1. Note that a complete (or fully connected)
graph is one that has all possible edges between the nodes.

The eigenvalues of these graphs are listed in Table 2.1 and plotted in the complex
s-plane in Fig. 2.5. Several things are worthy of note:



2.1 Algebraic Graph Theory 31

Undirected graph Complete graph K°
b grapl [+ plete grapl

Lead
ler ; 2
3 3
[ 1 6 1
Followers
4 4

. . . 5
leCCT‘ud tree graph (formation graph) Undirected star K Directed star
Undirected 6-cycle. Directed 6-cycle Undirected path Ps
g (2-regular graph) h (6-periodic graph) i

Fig. 2.4 Different graph topologies for Example 2.2. a Directed graph. b Undirected graph. ¢
Complete graph K°. d Directed tree graph (formation graph). e Undirected star K .. f Directed star.
g Undirected 6-cycle (2-regular graph). h Directed 6-cycle (6-periodic graph). 1Und1rected path P3

Table 2.1 Eigenvalues for different graph topologies in Example 2.2

a. b. c. d. e. f. g. h. i

Directed graph ~ Undirec- Com-  Direc- Undi- Direc- Undi- Directed  Undirec-
ted graph plete ted tree rected ted star rected  6-cycle ted path

graph star 6-cycle
0 0 0 0 0 0 0 0.0000 0
0.7793 1.3820 6 1 1 1 1 0.5+0.8661i 0.2679
1.0000 1.6972 6 1 1 1 1 0.5-0.866i1 1
2.2481+1.0340i 3.6180 6 1 1 1 3 1.5+0.866i 2
2.2481—1.0340i 4.0000 6 1 1 1 3 1.5-0.866i 3
2.7245 53028 6 1 6 1 4 2 3.7321
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Fig. 2.5 Complex plane plots of graph eigenvalues for Example 2.2. a Directed graph. b Undi-
rected graph. ¢ Complete graph K°. d Directed tree (formation graph). e Undirected star K, .
f Directed star. g Undirected 6-cycle (2-regular graph). h Directed 6-cycle (6-periodic graph).
i Undirected path P°

1. The Laplacian matrix has row sums equal to zero so that all graphs have the first
eigenvalue at 4, = 0.

2. All undirected graphs have a symmetric Laplacian matrix L and so their graph
eigenvalues are real.



2 Springer
http://www.springer.com/978-1-4471-5573-7

Cooperative Control of Multi-Agent Systems

Optimal and Adaptive Design Approaches

Lewis, F.L.; Zhang, H.; Hengster-Movric, K.; Das, A,
2014, Xx, 307 p. 80 illus., 59 illus. in color., Hardcover
ISEMN: 978-1-4471-5573-7



	Chapter-2
	Algebraic Graph Theory and Cooperative Control Consensus
	2.1 Algebraic Graph Theory
	2.1.1 Graph Theory Basics
	Basic Definitions and Connectivity

	2.1.2 Graph Matrices
	Example 2.1 Graph Matrices

	2.1.3 Eigenstructure of Graph Laplacian Matrix
	Example 2.2 Laplacian Matrix Eigenvalues for Various Graph Types







