Chapter 2
Discretized Feedback Systems

2.1 Introduction

As we described in the previous chapter, since discretized/quantized feedback sys-
tems become nonlinear, the analysis and design of those types of systems has not
been elucidated. The first attempt to clarify these problems was described in a paper
of Kalman [3]. However, few results have been obtained for the stability analysis of
nonlinear discrete-time feedback systems [2, 9]. In this chapter, the analysis in an
£> space for such a discrete-time and discrete-value system is discussed.

2.2 Discretized Control Systems

A discretized nonlinear control system can be represented by a sampled-data control
system with two samplers, S1, S, and a continuous nonlinear characteristic, N (-),
as shown in Fig. 2.1. Here, D1, D;, and ‘H denote the discretization and zero-order
hold elements, which are usually performed in A/D (D/A) conversion, and G(s) is
the transfer function (the Laplace-transformed one) of a linear (continuous-time)
controlled system. It is assumed that the two samplers with sampling period & op-
erate synchronously. The feedback structure corresponds to the sampling/holding
system shown in Fig. 1.16, when G (s) is considered to be a static nonlinear char-
acteristic. The sampled-data control system can be equivalently transformed into a
discretized control system, as shown in Fig. 2.2. Here, G(z) is the z-transform of
G (s) together with a zero-order hold, and D and D, are the discretizing units (static
quantizers) on the input and output sides of the nonlinear element, respectively.

In Fig. 2.2, each symbol e, u, v, ... indicates the sequence e(k), u(k), v(k), ...,
(k=0,1,2,---)in discrete time, but in continuous values. On the other hand, each
symbol ef, u®, v¥, ... indicates a discrete value that can be assigned to an integer
number, e.g.,
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where y; and y; are the resolution values of each variable. In the above expressions,
it is assumed that the input and output signals of the nonlinearity have the same
resolution in the discretization (i.e., y = y; = y2» > 0) [1, 5, 6]. Here, et ut, and vf
also represent the time sequences et (k), ut(k), and v7 (k).

The relationship between e and v’ = N, (e) in the figure becomes a stepwise
nonlinear characteristic on integer grid coordinates, as shown in Fig. 2.3(a). In this
chapter, a round-down discretization, which is usually executed on a computer, is
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Fig. 2.3 Discretization for nonlinear and linear characteristics
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Fig. 2.5 Logarithmic quantizers

applied. Therefore, the relationship between e and v' is indicated by small circles
(i.e., a point-to-point transition) on the stepwise nonlinear characteristic. Even if the
continuous characteristic N(-) is linear, the discretized characteristic v¥ becomes
nonlinear on integer grid coordinates, as shown in Fig. 2.3(b). In order to compare
the discretization, Figs. 2.4(a) and (b) show the effect of resolution values. In these
figures, two cases are depicted: (a) input resolution y = 2 and output resolution
y =1, (b) input and output resolutions y = 2.

Some authors have investigated a logarithmic quantizer in relation to the robust
stability. Figs. 2.5(a) and (b) show two cases of the logarithmic quantizer. However,
the applications of these discretizations are scarcely known in practice.



48 2 Discretized Feedback Systems

Ndie) / Ndl(e) } RdT 4
Fim4 VA mYs
5 wi 5 R
& ol
- r4
s 3 5 e b P 5 e
aivid /4
1l -5 IS4 0% <o i 5 I S -
el Lt AL
I ) B
- - //
bt TV
(a) ©)

Fig. 2.6 Nonlinear characteristics and output-side discretizations

Hereafter, without loss of generality, it will be assumed that y = 1. That is, the
variables e, u¥, - .. are defined by integers as follows:

utez, Z:={--—3,-2,-1,0,1,2,3,---}. 2.1)

On the other hand, the time variable ¢ is given as ¢ € {0, k, 2h, 3h, - - - } for the sam-
pling period 4. When assuming /# = 1.0, the following expression can be defined:

teZ,, Zi:=1{0,1,2,3,---}. 2.2)

Therefore, each signal e’ (r), u'(t), - -- traces on a grid pattern that is composed of
integers in the time and (controller variables) space.

2.3 Discretization and Nonlinear Sector

2.3.1 Three Types of Discretization

Output-Side Discretization When a signal is discretized only on the output side
of the nonlinear characteristic, the relationship between ¢ and v’ becomes a step-
wise nonlinear characteristic with step height 1, as shown in Figs. 2.6(a) and (b).
Figure 2.6(a) is the output-side discretization for a saturation-type nonlinear charac-
teristic (arctangent sigmoid function). On the other hand, Fig. 2.6(b) is the output-
side discretization for a sinusoidal nonlinear characteristic. Without loss of general-
ity, it is assumed that the nonlinear characteristics have origin symmetry and exist
in the first and third quadrants.

Input-Side Discretization When a signal is discretized only on the input side of
the nonlinear characteristic, the relationship between e and v’ becomes a stepwise
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Fig. 2.7 Nonlinear characteristics and input-side discretizations

nonlinear characteristic with step width 1, as shown in Figs. 2.7(a) and (b). Fig-
ure 2.7(a) is the input-side discretization for a saturation-type nonlinear characteris-
tic (arctangent sigmoid function), whereas Fig. 2.7(b) is the input-side discretization
for a sinusoidal nonlinear characteristic.

Input and Output Sides Discretization When a signal is discretized on the input
and output sides of the nonlinear characteristic, the relationship between e and vf
becomes a stepwise nonlinear characteristic with step hight and width 1 (i.e., broken
line on integer coordinates) as shown in Figs. 2.8(a) and (b). Figure 2.8(a) is the
input and output side discretization for a saturation-type nonlinear characteristic
(arctangent sigmoid function). On the other hand, Fig. 2.8(b) is the input and output
side discretization for a sinusoidal nonlinear characteristic.

2.3.2 Nominal Gains and Sector Parameters

In general, the discretized nonlinear characteristic
v =Nge)=Ke+ge), 0<K <oo, (2.3)

can be partitioned into the following two sections:
lg(e)| <g < o0, (24)

for |e| < &, and

lge)] < Blel, 0=<p=K, 2.5
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Fig. 2.8 Nonlinear characteristics and input and output side discretizations

for |e| > . When considering relative nonlinear characteristics, the partitioned ex-
pression is given as follows:

v = Ny(e) = K(e +n(e)),
In(e)| < alel. (2.6)

Clearly, the sector parameter is considered to be g = K«.

Equation (2.4) represents a bounded nonlinear characteristic that exists in a finite
region. On the other hand, Eq. (2.5) represents a sectorial nonlinearity for which the
equivalent linear gain exists in a limited range. It can also be expressed as follows:

0 < g(e)e < pe. (2.7)

When dealing with the robust stability in a global sense, it is sufficient to consider
the nonlinear term (2.5) for |e| > ¢ because the nonlinear term (2.4) can be treated
as a disturbance signal. (In the stability problem, a fluctuation or an offset of error is
assumed to be allowable in |e| < ¢.) Figures 2.9(a) and (b) show the discretization
characteristics and the nonlinear parts g(e) of two examples. In these examples, the
thresholds are chosen as ¢ = 2.

In partitioning (2.3), nominal gain K and sectorial nonlinearity g(e) can be cho-
sen appropriately. For example, if K is chosen in integer numbers, w' = g(e) also
becomes an integer number. Figures 2.10(a) and (b) show examples of the partition-
ing of nonlinear characteristics when K = 1 (i.e., an integer number). In these cases,
sector parameter B8 should be given by the larger value of Kiax — K and K — Kpin-
In general, the nominal gain and the sector parameter should be determined as fol-
lows:

K max T Kiin

K=—7F— 2.8)
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Fig. 2.10 Nonlinear characteristics and discretized outputs

_ Kmax — Kmin

P 2

= Kmax — K. (2.9)
By partitioning nonlinear characteristic Ny (), a single-loop control system can be
drawn as shown in Fig. 2.11. It can also be drawn in regard to the discretized input
as shown in Fig. 2.12. In the figure, discretized input e’ is assumed to be determined
as follows:

e:eT, when eT§e<eT+y.

In this case, the nominal gain and the sector parameter will be given as follows:
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Fig. 2.11 Discretized
nonlinear control system

Fig. 2.12 Discrete-input et
nonlinear control system g(*)
r t e > +y of dt
-1 +T T+
Kt
1
d G(2)
. Kma KD
K= 5 , (2.10)
kb gt
ﬁT =% min (2.11)
2
where the following relations hold:!
K=K K < Kmi
max — fmax, min — S 'min-

Figure 2.13(a) shows the difference between K, and K ;in for the sinusoidal non-
linearity shown in Figs. 2.9(b) and 2.10(b). In this figure, nominal gains K and K"
are also drawn in chain lines. The control system shown in Fig. 2.12 can also be
drawn as shown in Fig. 2.14. From Fig. 2.14, the relationship between e(k) and
e’ (k) and the equivalent exogenous input € (k) are drawn in Fig. 2.13(b). As is clear
from the figure, € (k) = et (k) — e(k) may be considered a bounded disturbance sig-
nal.

I8 will be used instead of 87 in the following discussion.
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Fig. 2.13 Different sectors and equivalent input

Fig. 2.14 Equivalent
discrete-input control system

2.4 Equivalent Transformation

Based on the above considerations, the following new sequences ¢* (k) and w* (k)
are defined:

% o Ae(k)
e’ (k)y=ek)+q- PR (2.12)
w* (k) =w(k) — Bq - Ae(k) (2.13)

h

where ¢ is a non-negative number, e(k) and w(k) are neutral points of sequences
e(k) and w(k),

ek +etk—1)
5
wk)+wk—1)

w(k) = B — (2.15)

e(k) = (2.14)
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Fig. 2.15 Transformation of
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and Ae(k) is the backward difference of sequence e(k), that is,
Ae(k) :=e(k) —e(k —1). (2.16)

When using delay operator z~!, Egs. (2.14), (2.15), and (2.16) may be given as
follows:

-1
e(k) = %e(k), 2.17)
-1
w(k) = L;)w(k), (2.18)
and then
Ae(k) = (1—z"") e(k). (2.19)
By using z-transform expressions, Egs. (2.12) and (2.13) can be written as follows:
~1 -1 _ 1
%é*(z) - %é(z) +q- ﬂh—Z)é(z), (2.20)
—1 —1 _ -1
Utz +2Z L= L) +2Z Live) - pg - L2 = Yo @an)

The relationship between Egs. (2.20) and (2.21) is shown by the block diagram in
Fig. 2.15, and by the equivalent subsystem in Fig. 2.16. In these figures, operator §
is defined by a bilinear transformation as follows:

(2.22)

Therefore, if the subsystem shown in Fig. 2.16 is used instead of g(e), the whole
control system is drawn as shown in Fig. 2.17. The control system represented by
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Fig. 2.17 Discrete nonlinear
control system

Fig. 2.18 Discrete nonlinear
control system 2

Ot

Fig. 2.17 is equivalently transformed into Fig. 2.18. In this figure, since

el =e)+€@2)

the equivalent exogenous input €’ can be given by
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€'(2) = (1+q8(2)é(2). (2.23)

From these figures,

é(z) =F(2) — GRW* (2) + (K + Bgd(2))é(z) +d'(2)].

Furthermore,

[14 (K 4 Bg8(2)1G(2)é(z) = G(2)*(2) + F(2) + G(2)d' ().

Thus,

e(z) =

_ G@W*(R) +7(2) + G(2)d'(2)

1+ (K + Bg8(2)G(2)
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Consequently, we have the block diagram of the discretized control system
shown in Fig. 2.19, where

G(2)

HB.q. 0= (K 4+ Bq8(2))G(2)’

(2.26)

Thus, the loop transfer function from w* to e* can be given by

1+ 56
W49 = T K+ Bgs)G @) 227

as shown in Fig. 2.20. Here, r’ is given by

F(z)=

1+ (K +ﬁq8(z))G(Z)r(Z)'
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Furthermore, the reference input r” in Fig. 2.20 is equivalently expressed as

#'(2) = (14 q8(@)F' () +€(2).

2.5 Norm Inequalities
‘We now provide an assumption with respect to the behavior of control systems.

Assumption The absolute value of the backward difference of sequence e (k) does
not exceed vy, i.e.,

|[Ae(k)| = e(k) —e(k — )| <y. (2.28)

If condition (2.28) is satisfied, Ae(k) becomes exactly £y or O because of the dis-
cretization D. That is, the absolute value of the backward difference can be given
as

|Ae(k)| = |e(k) —e(k — 1)| =y or O.

The assumption stated above will be satisfied in some examples given in the
following chapters. These examples will include figures illustrating the phase trace
of the backward difference Ae.

In this subsection, some lemmas with respect to an £, norm of the sequences are
presented. Here, we define a new nonlinear function

fle):=g(e)+Be. (2.29)

When considering the discretized output of the nonlinear characteristic, w’™ = v’ —
Ke', the following expression can be given:

e (k) =w' (k) + Be' (k). (2.30)

In expression (2.30), we note that w' ¢ Z in general. From inequality (2.5), it can be
seen that the function (2.30) belongs to the first and third quadrants. Figures 2.21(a)
and (b) show the discretized outputs vi = Ny(e) and f(e) for the examples given in
Fig. 2.9(a) and (b) when the discretized error € was not considered and the point-to-
point transition was executed.

Considering the equivalent linear characteristic, the following inequality can be
defined:

fle(®)
e(k)

When this type of nonlinearity v (k) is used, inequality (2.5) can be written as

0=<y(k):=

<28. 2.31)

w' (k) = g(e(k)) = (Y (k) — B)e(k). (2.32)
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Fig. 2.21 Nonlinear characteristics and discretized outputs

For the neutral points of e(k) and w?(k), the following expression is given
from (2.30):

1
5 (Flele) + fletk— 1)) = w' (k) + ge' (k). (2.33)

Moreover, Eq. (2.32) is rewritten as w' (k) = (¥ (k) — B)e' (k). Since [e' (k)| <
le(k)]|, the following inequality is satisfied when a round-down discretization is ex-
ecuted:

[w' (k)| < Ble’ (k)| < Ble(k)l. (2.34)

Based on this premise, the following norm conditions are examined.

Lemma 2.1 The following inequality holds for a positive integer p:

1@ ©ll2.v < BlIE" ®)ll2.n < BlIe®) 2, (2.35)
Here, | - ||2,§ denotes an £2 norm, which can be defined by
N 172
Ix ()2, = (Z |x(k>|2)
k=1
Proof The proof is clear from inequality (2.34). O

Lemma 2.2 [fthe following inequality is satisfied with respect to the inner product
of the neutral points of (2.30) and the backward difference:

(W' (k) + e’ (k). Ae(k)), > 0. (2.36)
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we can obtain the inequality

1w* &) ll2.v < Blle* ®)lla,n (2.37)
for any g > 0. Here, (-, -) Ny denotes the inner product, which is defined as

(x1 (), x2(0)) le (k)x2 (k).

k=1

Proof The following equation is obtained from (2.12) and (2.13):
Ble W15y — I ®)1I3 v
_ 2B8q |+ i
=B’ W13y — 1w Ry + —" (W' (k) + g2’ k), Aek)) - (2.38)
Thus, inequality (2.37) is satisfied by using the left-side inequality of (2.35). More-
over, as for the input of g*(-), the following inequality can be obtained from (2.38)
and the right-side inequality of (2.35):

" ) l2.n < Blle* @) ll2.n- (2.39)

O

2.6 Sum of Trapezoidal Areas
The left side of inequality (2.36) can be expressed by a sum of trapezoidal areas.

Lemma 2.3 For any step N, the following equation is satisfied:

o (N) = (T (k) + e’ (), Aeh))y Z(f(e(k)) + fle(k = 1)) Ae (k).
(2.40)
Proof The proof is clear from (2.33). O
In general, the sum of trapezoidal areas has the following property.
Lemma 2.4 [finequality (2.28) is satisfied with respect to the discretization of the

control system, the sum of trapezoidal areas becomes non-negative for any N, that
is,

o(N)>0. (2.41)
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Fig. 2.22 Non-negative characteristics of trapezoidal summation

Proof Since f(e(k)) belongs to the first and third quadrants, the area of each trape-
zoid

1
(k) := 5 (f(e() + fletk — 1)) Ae(k) (2.42)

is non-negative when e(k) increases (decreases) in the first (third) quadrant. On the
other hand, the trapezoidal area 7 (k) is non-positive when e(k) decreases (increases)
in the first (third) quadrant.

Strictly speaking, when (e(k) > 0 and Ae(k) > 0) or (e(k) <0 and Ae(k) < 0),
7 (k) is non-negative for any k. On the other hand, when (e(k) > 0 and Ae(k) <
0) or (e(k) <0 and Ae(k) > 0), t(k) is non-positive for any k. Here, Ae(k) > 0
corresponds to Ae(k) =y or 0 (and Ae(k) < 0 corresponds to Ae(k) = —y or 0)
for the discretized signal, when inequality (2.28) is satisfied. The sum of trapezoidal
areas is given from (2.40) as:

N

o(N)=Y (k). (2.43)

k=1

We thus derive the following result. The sum of trapezoidal areas becomes non-
negative, o (N) > 0, regardless of whether e(k) (and e(k)) increases or decreases.
Since the discretized output traces the same points on the stepwise nonlinear char-
acteristic, the sum of trapezoidal areas is canceled when e(k) (and e(k) decreases
(increases) from a certain point (e(k), f(e(k))) in the first (third) quadrant. (Here,
without loss of generality, the response of discretized point (e(k), f(e(k))) is as-
sumed to commence at the origin.) Thus, the proof is concluded. g

Figures 2.22(a) and (b) show the sum of trapezoidal areas for f(e) given in
Fig. 2.21(a), when e is a sinusoidal input with amplitude 8.0, i.e., e(k) = 8.0 sinwk
(w: an arbitrary number).
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Fig. 2.23 Non-negative characteristics of integrals

(a) The sinusoid starts from O to 8.0. Then, ¢ decreases to e < 5.0.
(b) The sinusoid starts from 0, passes 8.0, 0.0, —8.0, and increases to ¢ > —5.0.

In any case, the sum of trapezoids will be canceled.

On the other hand, Figs. 2.23(a) and (b) show the sum of trapezoidal areas for
f(e) when the sampling period % is very small (i.e., Ae(k) — 0), in other words,
the integration of f(e),

e(N)
o(N):/ f(e)de.
e(0)

The latter case corresponds to the Popov stability problem for continuous control
systems.2

For an easier understanding, examples of the sequences of continuous/discretized
signals and the sum of trapezoidal areas are depicted in Figs. 2.24(a), (b) and
2.25(a), (b).

Example 2.1 The input/output characteristic shown in Fig. 2.24(a) is written as:

e’ =y % (double)(int)(e/y)
v=03%e’ +2.7xatan(0.7x¢") (2.44)
v' =y % (double)(int)(v/y)

by using a C-language expression. Here, (int) and (double) denote the conversion
into an integral number (a round-down discretization) and the reconversion into a

2The relation to the Popov criterion will be described in Chap. 3, Sect. 3.6.
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Fig. 2.24 Discretized input/output signals of a nonlinear element

double-precision real number, respectively. The second equation of (2.44) corre-
sponds to a sigmoid (saturated) function (needless to say, atan(-) = tan—1(-)).

In Fig. 2.24(b), the curve e and the sequence of circles e’ show the input of the
nonlinear element and its discretized signal. The curve v and the sequence of circles
v’ show the corresponding output of the nonlinear characteristic and its discretized
signal, respectively. As shown in the figure, the sequences of circles ¢ and v trace
a grid pattern that is composed of integers. The sequence of circles w’ shows the
discretized output of the nonlinear characteristic g(-). The curve of shifted non-
linear characteristic f(e) and the sequence of circles f (e) are also shown in the
figures.
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Fig. 2.25 Discretized input/output signals of a nonlinear element for Example 2.2

Example 2.2 For the example of Figs. 2.25(a) and (b), the following nonlinear char-
acteristic is considered:

e’ =y % (double)(int)(e/y)
v=10xe" +15%sin(0.7*e") (2.45)
v' =y % (double)(int)(v/y).

The second equation of (2.45) is an inclined sinusoidal function. In either of the
examples, (2.41) in Lemma 2.4 is satisfied, i.e., 0(k) >0 (k=1,2,---).

Figures 2.26(a), (b) and 2.27(a), (b) show the two cases in Examples 2.1 and 2.2
with a nearly continuous characteristic, where y = 0.1 and & = 0.1, that is, 1/10
high resolution. As is obvious from the figures, o () > 0 (r =0.1,0.2, - - -). Thus,
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Fig. 2.26 Input/output signals of a nearly continuous characteristic for Example 2.1

the calculated results show that the input/output characteristics of nonlinear ele-
ments become similar to continuous problems, that is, Popov’s criterion and other
conditions in continuous time.

Example 2.3 Figures 2.28(a) and (b) illustrate the case where the following nearly
nonlinear characteristic is considered:
el = y * (double)(int)(e/y)
v=10%e" +0.15%sin(0.7x¢") (2.46)
v =y % (double)(int)(v/y).
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Fig. 2.27 Input/output signals of a nearly continuous characteristic for Example 2.2

In this example, the amplitude of sinusoidal function is chosen as 1/10 for Exam-
ple 2.2 (i.e., 1.5 — 0.15). Figures 2.29(a) and (b) illustrate the case where 1/10 high
resolution is applied (i.e., y = 0.1 and 7 = 0.1). As is obvious from these examples,
the theory of discretized static and/or dynamic nonlinear systems (in other words,
discrete-time and discrete-value nonlinear systems) considered in this chapter ap-
proaches that of continuous-time and continuous-value nonlinear systems asymp-
totically for y — 0 and & — 0. Of course, it includes that of continuous linear
systems for 8 — 0 naturally, as shown in Figs. 2.29(a) and (b).
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Fig. 2.28 Discretized input/output signals of a nearly continuous characteristic for Example 2.3

2.7 Exercises

(1) Prove that the sector condition in (2.5),

lg(e)] < Blel,

is equivalently written as (2.7).

(2) Confirm that block diagram Fig. 2.16 is equivalent to Fig. 2.15.
(3) From Fig. 2.18, determine the loop transfer function H (8, g, z) in Fig. 2.19.
(4) From (2.5) and (2.29), prove the sector inequality in (2.31), that is,

<

flek) _
e(k)

<28.
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Fig. 2.29 Discretized input/output signals of a nearly continuous characteristic for Example 2.3

(5) Prove Lemma 2.1, that is,

Iw" (k) llo, v < Blle" &) llo,n < Bllet) 2, n,

using inequality (2.34).

(6) For N =2, prove Schwarz’s inequality (2.60).
(7) Using the result of (6), prove Minkowski’s inequality (2.68) when N = 2.
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Appendix A: Norms and Inner Products of L, and £, Spaces

In this appendix, inner products and norms in an £, space are explained for discrete-
time systems. In general, norms of L, and £, spaces are defined as follows. For a

continuous-time signal x: Ry — R,

S 1/p
Ix®llp = (/ IX(I)Ipdt> , l=p<oo, (2.47)
0
[X(D)lloo :=ess sup [x(r)], (2.48)
t€[0,00)
and for a discrete-time signal x: Z4 — R (or Z),
o0 1/p
()l o= (Z |x<k>|f’> , 1<p<oo, (2.49)
k=1
llx (k) lloo := sup |x (k). (2.50)
k>1
In the £ space, the norm is defined as
) 1/2
lx)ll2 = (Z |x(k>|2> , (2.51)
k=1
and the inner product is given by
o
(x(k), y()) == " x(k)y (k). (2.52)

k=1

The preceding definitions for finite time series x (k)(k =0, 1, 2,
as follows:

172

N
lx (k) ll2.n = (Z |x(k)|2) :

k=1

N
(xk), y(h))y =Y x(k)y (k).

k=1
When N — o0, these definitions are written as:
lx(K)ll2:== lim |lx(E)2,~,
N—>o0

(r). y (o) = Tim_(x(k). y(0),-

.-+, N) are written

(2.53)

(2.54)

(2.55)

(2.56)
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Appendix B: Holder and Schwarz Inequalities
(1) In an L, space, the following inequality holds:

i oo 1/p 00 1/q 1 1
/ [x(@)y()|dt < </ Ix(t)l”dt) </ |y(t)|th> . —+—=1.
0 0 0 p q

As for discrete signals, the following inequality holds in an £, space:

00 00 1/p / 0 1/q

1 1
D lxky k)| < (Z |x<k>|1’> (Z MW) L o—+-=1 (259)
k=1 k=1 k=1 p q

These are called Holder’s inequalities [4, 8, 10]. The proof is given for 1 < p < oo
(e, 1 <g <o0)in,e.g., [8].
(2) An important special case of (2.58) for p = g =2 is given as

00 00 1/2 / o 1/2
Y Ixy k)| < (Z |x<k>|2) (Z |y(k>|2) : (2.59)
k=1 k=1 k=1

Equation (2.59) is called Schwarz’s inequality. The easier proof of (2.59) is as fol-
lows. For finite sums of N steps, Schwarz’s inequality (2.59) is rewritten as

2

N N N
(Dx(k)y(kn) s(Zu(k)F) (Dy(k)ﬁ) (2.60)
k=1 k=1 k=1
N N
Doy +2 Y xR)y®]- xOy D)
k=1 k,1=1,k#l
N N
<Y x@Py®OP+ Y xGPyOP 2.61)
k=1 k, =1kl

In (2.61), the following sum must be non-negative:

N N N 2
Yo x®PIyOP-2 > k®y®lxOyOl=[ Y Ix®yOI] .

k,l=1,k#l k,=1,k#l k,l=1,k#l
(2.62)

and it must hold for N — oo. Thus, inequality (2.60) has been proved.
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Appendix C: Minkowski Inequalities

(1) Inan L, space, the following inequality holds:

00 1/p ) 1/p ) 1/p
(f |x(r>+y<r)|"dr> 5(/ |x<z)|f’dr) +</ |y<r>|f’dr> .
0 0 0

(2.63)
The norm expression based on (2.47) is given by

x(@) +y®Ollp < lx@Olp + 1y Ollp- (2.64)

As for discrete signals, the following inequality holds in an £, space:

(Z Jx (k) +y(k>|”) < (Z |x(k>|”) + (Z |y(k>|”) . (265)
k=1 k=1

k=1

The norm expression based on (2.49) is given by

X&) + y®R)lp < llx)llp + Iyl p- (2.66)

These are called Minkowski’s inequalities [7, 8].
(2) A special case of (2.65) for p =2 and finite sums of N steps is written as

N 1/2 N N 1/2
(Z lx (k) + y(k)|2> < (Z |x(k)|2) + <Z |y<k>|2> (2.67)
k=1 k=1

k=1
x(k) + y(®)ll2,n = lx(®)l2,n + Iy &) lI2,N- (2.68)

1/2

In order to prove (2.65), consider the following equality:

(0] + [y®)D? =[x @1 (x®)| + [y TN~ + [y®I(x k) + |y R)DP .

Holder’s inequality gives

N
D lx@®Ix ]+ 1y thP !

k=1

N I/p , N 1/q
< (Z |x<k>|") (Z(|x(k>| + |y<k>|)<"—”q) (2.69)

k=1 k=1

N
S Iy ®1x )] + [y P!

k=1

N I/p s N 1/q
§<Z|y(k)|”) <Z<|x(k>|+|y<k>|)<'f—“4) . (270

k=1 k=1
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Since (p —1)g = p and 1/qg =1 — 1/ p, the addition of (2.70) and (2.69) gives

N N (1-1/p)
D Ux®I+IyER)D? < (Zux(kn + |y<k>|>f’)

k=1 k=1
1/p

N 1/p N
: (Z|x(k>|f’) +(Z|y<k>|f’) : @.71)
k=1 k=1

Moreover, |x (k) + y(k)| < |x (k)| + |y(k)|. Thus, Minkowski’s inequality (2.65)
is obtained for N — oo.

To provide a clear understanding, the following simple equality is considered
here:

(x| + 1y ®)D?* = [x(B) (X (k)| + [y(K)]) + [y R) [ (|x (k)| + [y (K)]).
Schwarz’s inequality gives
I (DI(x W]+ [y(D) + 1x @)1 (x2)] + [y2)])
< (Ix(P + 1x@QPDY2x D]+ 1yMD? + (x@)] + [y(2))?1/?
Iy(DI(x W]+ [y(D) + y@)I(x )] + [y2)])
<y + Iy x4+ 1yMD* + (x@)] + [y )12
By adding these inequalities, we have
(x| + ly(WD* + (x| + [y2))?
<[Ux(MP + 1x@)HY2 + Iy + Iy@) )]
XD+ D>+ (x@)] + [y@) )12,

Thus,

JED 4 YR+ 1x@) +y@P = I (DP + 1x @R + /IO + [y@)2,

and the equality problem is proved.
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