Chapter 2
Preliminaries

Classical control design and analysis utilizes the frequency domain tools to specify
the system performance. The background of operator theories and single-input
and single-output, linear systems is required. In modern control, the time domain
approach can be used to deal with multi-input and multi-out cases. Moreover,
concepts of linear algebra and matrix-vector operations are used in system analysis
and synthesis. Some useful fundamentals will be therefore reviewed in this chapter.

2.1 Linear Algebra and Matrix Theory

This section presents useful and well-known fundamentals of linear algebra and
matrix theory, which facilitate the understanding of the subsequent control system
concepts and methodology introduced. The stated results can be considered to be
purely preliminary in nature, and hence, their proofs are omitted.

2.1.1 Vectors and Matrices

Control systems are, in general, multivariable. That means one deals with more than
one variable in input, output, and state. Hence, vectors and matrices are frequently
used to represent systems and system interconnections. In engineering and science,
one usually has a situation where more than one quantity is closely linked to another.
For instance, in specifying the location of a robot on a flat floor, one may use the
numbers 2 and 3 to indicate the robot is at 2 units east and 3 units north from
where one stands, and following the same logic, one may use —1 and —2 to indicate
that the robot is at 1 unit west and 2 units south. Here, (2, 3) and (—1, —2) represent
two different locations, and the numbers 2 and 3 are in a fixed order to show that
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particular location, while (3, 2) would represent the position 3 units east and 2 units
north. Such a group of numbers in a certain order forms a vector, and the dimensions
of a vector correspond to how many numbers there are in the vector. Hence, (2, 3)
is a 2-dimensional vector. Conventionally, a vector is defined as a column vector.

In the above example, the position vector is thus written as [i] or |::2 ] For any
positive integer n, an n-dimensional (usually shortened as n-dim or n-D) vector x is
X1
denoted by x =
Xn

The transpose of a vector x is denoted as xT and is defined by xT =
[x1 X2 ot Xp ], a row vector. A group of vectors of the same dimension in a

mjy
certain order forms a matrix. For example, for M; = L 1<i<p, M;is
Min
an n-dim vector and M = [M | My - Mp ] is an n X p matrix. Obviously, a vector
is a special case of matrices. xT = [xl Xp oo x,,] is simply a matrix of 1 xn

dimensions. The elements or entries in a matrix can be real numbers or complex
numbers. One uses M € R"*? to show the matrix M is of n x p dimensions and all
the elements of M are real numbers; M € C"*? shows a n x p dimensional matrix
M with complex numbers. It is clear that R"*?” C C"*P. It is also a convention to
use capital English letters to show a matrix such as M, whereas lower case letters
(sometimes in bold face) are employed to show a vector such as x and lower case
mip - mip
letters to show a scalar number. A matrix M = Do of the nxp
Mt -+ My
dimension can be abbreviated as M = {m;j}, x ,. Similar to vectors, the transpose of
a matrix M is M" = {m;;}, x . When M is in C"*?, the complex conjugate transpose
of M is defined by M* = {ﬁji }an when m;; is the complex conjugate of m;;.
A few manipulations can be defined for vectors and matrices. Two matrices
miyp e my, TR
of the same dimensions, e.g., M = o and N = R
Mpy - Myp Hpl cc* Npp

p” p]p
can be added together, i.e., P=M+N where P = oL =
Pnl = Pup
myp +ny - myy +nyp
. A multiplication is defined for two matrices only

Mup + Nyt = Myp + Ay
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Table 2.1 Classification of normal matrices

Diagonal
Matrix (A) Definition Eigenvalues elements Determinant
Hermitian M*=M AER a; €R det(M) € R
Positive definite X*Mx>0,Vx#0 A1>0 a; >0 det(M)>0
Positive semi-definite x*Mx>0,Vx A>0 a; >0 det(M)>0
Unitary M € C**" M*M =1 Al=1 NA | det(M)| =1
Orthogonal M €R"™*" MM =1 Al=1 NA | det(M)| =1

when their dimensions are compatible. That is, for M = {m;},xp, N = {nu}ix i
only when p =k, one may have the product P =MN, where P = {p;j},x;, with

p(=k)

Dij = Z m;,n;;. The following paragraph summarizes a few more aspects of

r=1

vector/matrix manipulations [4].

1.

A square matrix M is called nonsingular if a matrix B exists, such that
MB = BM =1I. Define B=M"". The inverse matrix M~ exists if det(M) # 0,
where det(M) is the determinant of M. If M~! does not exist, M is said to be
singular. If the inverse of M, B, and MB all exist, then MB)"'=B" "M~

. A complex square matrix is called unitary if its inverse is equal to its complex

conjugate transpose M*M = MM* = I, where I denotes the identity matrix of the
appropriate dimensions. A square matrix M is called orthogonal if it is real and
satisfies MM = MM" = I. For an orthogonal matrix, the inverse is its transpose.

. An n x p matrix M is of rank m if the maximum number of linearly independent

rows (or columns) is m. This equals to the dimension of img(M) := {Mx|x € R}.

. An n x p matrix M is said to have full row rank if n <p and rank(M) = n. It has

a full column rank if n > p and rank(M) = p.

. A symmetric matrix M of n x n dimension is positive definite if xTMx > 0, where

x is any n-dimensional (real) vector, and x"Mx =0, only if x = 0. If for any n-
dimensional vector x, xTMx >0 always holds, then M is positive semi-definite.
A positive (semi-)definite matrix M may be denoted as M > O(M > 0). Similarly,
negative definite and negative semi-definite matrices may be defined.

. For a positive definite matrix M, its inverse M~ ! exists and is also positive

definite.

. All eigenvalues of a positive definite matrix are positive.
. For two positive definite matrices M; and M», one has aM;| + M, > 0 when «, 8

are nonnegative and both not zero.

. A square matrix M is called normal if MM* = M*M. A normal matrix has the

decomposition of M = UAU*, where UU* =1 and A is a diagonal matrix. The
following Table 2.1 summarizes the classification of normal matrices.
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2.1.2 Linear Spaces

Let R and C be real and complex scalar fields, respectively. A linear space V over
a field F consists of a set on which two operations are defined. The first one is
denoted by “addition (+4)”; for each pair of elements x and y in V, there exists a
unique element x + y in V. And the second one is a scalar “multiplication (-)”; for
each element « in F and each element x in V, there is a unique element ox in V. The
following conditions hold with respect to the above two operations.

1. For eachelementxinV, 1-x=x.

2. Forallx,y,zinV,(x+y)+z=x+ (O +2).

3. Forallx,yinV,x+y=y-+x.

4. For each element x in V, there exists an element y in V, such that x + y =0.

5. There exists an element in V denoted by 0, such that x + 0 = x for each x in V.

6. For each element o in F and each pair of elements x and y in V,
a(x+y)=ax+ ay.

7. For each «, B in F and each element x in V, («8)x = a(Bx).

8. For each «, § in F and each element x in V, (a + B)x = ax + Bx.

Note that one uses the same symbol “0” to denote the element zero and scalar
number zero in V and F, respectively. In the following, some basic concepts are
reviewed first. These definitions can be easily found in standard linear algebra
textbooks, for example see [8].

1. As mentioned in the earlier paragraph, the elements x 4 y and «x are called the
sum of x and y and the product of « and x, respectively, where x,y € V,«a € F.

2. A subset W of a vector space V over a field F is called a subspace of V if
W itself is a vector space over F under the operations of addition and scalar
multiplication defined on V.

3. Letxy,xs, ...,x; be vectors in V, then an element of the form a1 x; + apxp + - - -
+ ax; with o; € F is a linear combination over F of xi,x,, ..., xx.

4. The set of all linear combinations of x;, x>, ...,x; € V is a subspace called the
span of x, xp, ..., xx, denoted by

span{xi, Xz, ..., X¢} = {x‘x =X+ Xy + - Fapxp o € F}. 2.1

5. Vectors xi, xp, ..., x; are said to be linearly dependent if there is at least one
x; that can be expressed as a linear combination of {x;,j=1,2, ...,k j#i}
or there exist constants cj,cs, ...,c; which are not all zero, such that
c1x) + cpxp + -+ - + cpxxy = 0. The vectors xj,xp, ...,x; are linearly indepen-
dent if cyx; 4+ cox2 + -+ + cx = 0 indicates that all ¢y, ¢, ..., ¢, are zero.

6. The vectors X1, Xy, . ..,x; are orthonormal if x;*x; = §;; = I when l~_ J

0 otherwise

where §;; is usually called the Kronecker delta.
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7. Let W be a subspace of a vector space V, then a set of vectors {x, xp, ..., X} €
W is said to be a basis of W if x;,x;, ...,x; are linearly independent and
W =span{x;, x2, ..., x¢}. The dimension of a vector subspace W equals to
the number of basis vectors.

8. Let W be a subspace of V. The set of all vectors in V that are orthogonal to
every vector in W is the orthogonal complement of W and is denoted by W+.
Hence,

Wt={yeV:y*x=0,Vx € W}. (2.2)

Each vector x in V can be expressed uniquely in the form x = xy + xp 1

for xy € W and xy, . € Wt
9. A set of vectors {u;, uz, ..., ug} is said to be an orthonormal basis for a
k-dimensional subspace W if the vectors form a basis and are orthonormal.
Suppose that the dimension of V is n, it is then possible to find a set of

orthonormal basis {uy 1, . .. ,i,} such that
wt = span {ug 41, ..., Uy} . (2.3)
10. A collection of subspaces Wi, W,, ..., W, of V is mutually orthogonal if

x*y =0 whenever x € W; and y € W; for i # .
11. The kernel (or null) space of a matrix M € R"*?, which can be viewed as a
linear transformation from R? to R”, is defined as

ker M = N(M) = {x(x €R’: Mx = 0}. 2.4)
12. The image (or range) of M is
img(M):{y‘yeR”:y:Mx,VxeRp}. (2.5)
13. Let M be an n x p real, full rank matrix with n > p, the orthogonal complement
of M is a matrix M* of dimension n x (n —p), such that [ M M+ ] is a square,
nonsingular matrix with the following property: MT M+ = 0.

14. The following properties hold:

(ker M) = [img(M)]" and [img(M)]* = ker M™. (2.6)

2.1.3 Eigenvalues and Eigenvectors

A matrix can be interpreted as a mapping between two linear spaces. For example,

a 2 x2 matrix M = {m;j}sx2, y=Ax, where x = |:x1] and y = |:y1:| are both
’ X2 Y2
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in R2*! (the two spaces in this case are the same). For most x, the image y would
show a rotation of x plus an expansion or reduction in length, which is decided by
the matrix M. However, there are some vectors in the space of which the images
generated by the mapping M will remain at the same direction as the original
vectors. These vectors are the eigenvectors of M, showing somehow the essence
(eigen) of the mapping M. The factors of the length change are the eigenvalues of
M. Rigorous definitions are given below.

For an n x n square matrix M, the determinant det(Al — M) is called the charac-
teristic polynomial of M. The characteristic equation is given by

det(A I — M) = 0. Q2.7)

The n roots of the characteristic equation are the eigenvalues of M. For an eigenvalue
A of matrix M, there is a nonzero vector £ such that

Mg = AE (2.8)
where £ is called the eigenvector of M corresponding to the eigenvalue A.

Definition 2.1 The spectral radius of matrix M is defined as

p(M) = max |4; (M) (2.9)

where {A;} is the eigenvalue set of M and | ¢ | is the modulus of e.

It is easy to show that if M is a Hermitian matrix, i.e., M = M*, then all
eigenvalues of M are real. The spectral radius indicates the size of the set which
contains all the eigenvalues of M.

Definition 2.2 If M is Hermitian, then there exists a unitary matrix U (i.e.,
U*U = UU* =1) and a real diagonal matrix A, such that

M = UAU*. (2.10)

In this case, U is the right eigenvector matrix of M.

2.1.4 Matrix Inversion and Pseudoinverse

Matrix inversion is unavoidable and essential in control system manipulation. In this
section, the useful formulae of the matrix inversion can be found [4].
Let M be a square n X n matrix partitioned as

M = [M“ M‘Z} (2.11)
My My

where M1 :ny Xny, Mz :n1 Xna, May :ny X ny, My :ny X no,and ny + np = n.
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Suppose that M| is nonsingular, then M can be decomposed (block diagonalized)
as

I 01 My 01 My, "My,
M = 2.12
[MZ,M”—'IH 0 SHO I } (2.12)

where S = My, — My M;~ "M, is the Schur complement of My, in M. Then, if M
is nonsingular, it can be derived that

M- — |:M11_1 + My T M ST My My ! —M11_1M1251:|' 2.13)

— S My My ! S-!

Dually, if M, and M are nonsingular, then

M:[l Mlezz—l}[S 0 H I 0} (2.14)

0 1 0 M22 M22_]M21 I
and
-1 _ Q-1 -1
M~ = §1 o-1 —1 > —{‘/[121‘/’1\231 —1 (2.15)
— My My ST MyT + MyT My ST Mia My

where S = M, — MM, "' My, is called the Schur complement of M», in M. The
matrix inversion formulae can be further simplified if M is block triangular as

My 07 My, 0 216
My M L= My "My My T My .
_1 _ _ —
My My, _ | Mn Y My T MMy, 2.17)
0 My 0 My ’ .

If both M/, and M;; are nonsingular, then S~ can be represented by

~

_ _ -1
S™h = (M — MixMyy ™' M)

_ _ _ -1 _
= My~ + My My (Myy — Moy My T M) My My (2.18)

The pseudoinverse (also called Moore-Penrose inverse) of a matrix M is denoted
as M which satisfies the following conditions:

MM™M = M, (2.19)

MYTMMT =MT, (2.20)
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(MM*)" = MM, (2.21)

(MTM)* = M*M. (2.22)

The pseudoinverse is useful especially when matrix M is either non-square or
singular.

2.1.5 Vector Norms and Matrix Norms

Norm is another important concept of vectors and matrices. It can be further
developed for functions and systems as well. In this section, definitions of vector
norm and matrix norm will be introduced [4]. The concept of norm can be loosely
understood as a description of size or volume. A vector norm, denoted by | - ||, of
any vector x over the field C, must have the following properties:

1. ||x|]| > 0, unless x = 0, in which case ||x|| = 0.
2. |lex|| = |c|||x|| where ¢ is any scalar in C.
3o eyl = lxl+ Nyl
X
Definition 2.3 Letx = | : | bea vector in C". The following are norms of C".

Xn

1. Vector co-norm: || x|, = [max |x; .
<i<n

n
2. Vector 1-norm: ||x||; = Z |x:]-
i=1
2

n
3. Vector 2-norm: || x|, = v/x*x = Z |x:] -

i=1

n 1/p
4. Vector p-norm (for 1 <p <o0): | x|, = <Z |x,~|p) .

i=1
In the case of matrices, a matrix norm satisfies

. |A|l > 0 unless A = 0, in which case ||A|| = 0;
. |lcAll = |c|||A]| where c is any scalar in C;

- |A+ Bl < |All + [IB];

- [lAB] < [|All]IB].

AW N =
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mip mip -+ Miy

o, map Mpp =+ Moy o
Definition 2.4 Let M = . L be a matrix in C"*". The

My M2 = My
following gives a list of different matrix norms, which will be useful for the rest
of this book.

m

1. Matrix 1-norm (column sum): |M |, := maxz |mi_/ |

i=1
2. Matrix 2-norm: | M ||, := /Amax (M*M).

3. Matrix oo-norm (row sum): | M ||, := max E |mij |
1

4. Frobenius norm: | M || := y/trace (M*M) =

n

m n
E
ZZ’”U’”U"

i=1j=I

2.1.6 Singular Value Decomposition

The singular values of a matrix M are defined as

0i(M) := /A (M*M). (2.23)
The maximal singular value is denoted as

o(M) = max (0:(M)),

and the minimal singular value is

o(M) := min (0;(M)).

It is straightforward from the above definition that the matrix M and its complex
conjugate transpose M* have the same singular values, i.e., {0;(M)} = {o;(M*)}.
Let M eC"*"; there exist unitary matrices U =[u; up--- u,]€C"*™ and
V=[viva--- v,] € C"™" such that

M=UXV*, (2.24)

where

[=0
Y= [ 0 0] (2.25)
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61 0 - 0
00y--- 0

= ... (2.26)
000

witho| >0,>--- >0, >0 and r =rank(M). Equation (2.24) is called the singular
value decomposition (SVD) of the matrix M. The matrix admits the decomposition

o1 0---0
r 00y 0

M = Zaiu,-vi* = [u] uy - u,] ) _2 L [v1 vy eee v,]*. (2.27)
Py R
00---0,

2.2 Function Spaces and Signals

Controllers or control schemes are as a matter of fact functions in the time domain
or the frequency domain. Hence, the synthesis of the required controller, an optimal
controller in particular, is a procedure in functional analysis. However, considering
that the underlying systems in this book are mainly the linear time-invariant systems
and that this book is primarily for practicing control engineers and engineering
students, many mathematical definitions and deductions will not be included in
order to make it more accessible to the targeted readers. Interested readers are
recommended to consult relevant books, for instance [5, 6, 7, 10], for rigorous and
in-depth treatment of those mathematical concepts.

2.2.1 Function Spaces

Function spaces useful for the themes introduced in this book are L, H;, L, and
Ho, and their orthogonal complement spaces.

The space L, (for 1 <p < oo) consists of all Lebesgue measurable functions w(r)
defined in the interval (—oo, 00) such that

1

[wll, := (/Oo |w(t)|”dt)p < oo. (2.28)

—00

The space L, consists of all Lebesgue measurable functions w(¢) such that

W]l oo := esssup [w(t)| < oco. (2.29)
teER
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Fig. 2.1 Calculation

: Laplace transform
procedures of function spaces >

L[0,®) ~ H,
A Inverse transform A
P, P
" Laplace transform_ *
L, (—oo,oo) P ” L,(JIR)

Inverse transform
P P

¥ Laplace transform V¥
L, (—,0] _Hy

& 2
<

Inverse transform

H, is the subspace of L, in which every function is analytic in Re(s) > 0 (the
real part of s =0 + jw € C), the open right-half plane, and Hy, be a subspace
of Ly in which every function is analytic and bounded in Re(s) > 0. The space
H," is the orthogonal complement of H, in L,. If G(s) is a strictly proper, stable,
real, rational transfer function matrix, then G(s) € H, implies that G~ (s) € Hot,
where G~ (s) := GT(—s). The real rational subspace of Hy, is denoted by RHy,
which consists of all proper and real, rational, stable transfer function matrices. The
relationship between spaces L, and H; is illustrated in Fig. 2.1 [3, 10].

Definition 2.5 Definitions of L,, H,, Lo, and Hs, function spaces.
1. L, -function space: G(s) € L,, if
o0
/ trace [G* (jw) G (jw)] dw < occ. (2.30)
—0o0

The rational subspace of L,, denoted by RL,, consists of all real, rational,
strictly proper transfer function matrices with no poles on the imaginary axis jR.
2. H,-function space: G(s) € H,, if G(s) is stable and

1G($)]l, := \/[i/w trace [G* (jw) G (jo)] dw} < 00. (2.31)

2r ) —x

Hence, the norm for H, can be computed just as it is done for L,. The real
rational subspace of H,, which consists of all strictly proper and real, rational,
stable transfer function matrices, is denoted by RH>.

3. Leo-function space: G(s) € Lo, if

|G (jo)|ls :=esssup 0 [G (jw)] < oo. (2.32)
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Example
O () B )
T(s+1)(s+2) T(s+4)
Stable
Strictly feRCha) p:— =20
(s+5) (s +3)(s+5)
proper
l 5 GG L 6D
(s+6)(s+7) (s+2)(s+4)

Anti-Stable (+20 . (+D(6+2)

:(s +3)(s+5) (s +3)(s+4)(s+5)

C (s+3) (s+4)(s+6)
“(s=D(s+2) “(s=3)(s=5)

Fig. 2.2 Illustration of the relationship among different function spaces

All proper and real, rational, transfer function matrices with no poles on the
imaginary axis form a subspace which is denoted by RL.
4. Hs norm, the co-norm of Hardy space functions: G € Heo, if G(s) is stable and

IGllc = sup &[G(s)] = supa [G (jw)] < oo. (2.33)

Re(s)>0 w

H is a subspace of Ly, with functions that are analytic and bounded in the
open right-half plane. The real, rational subspace of H, is denoted by RH
which consists of all proper and real, rational, stable transfer function matrices.

This book introduces tools and concepts of optimal controller synthesis [3]. Most
of the framework is set in the H, function space. For the linear time-variant and
causal systems, a given system G(s) € RHo, means the following:

(a) G(s) is stable, and tlim ®(¢) which is the impulse response of G(s), is bounded.
—00

(b) All poles of G(s) are located in the open left-half plane.
(c) If G(s) has a “minimal” state-space model (A, B, C, D), then the real part of all
eigenvalues of the state matrix A is negative.

A state matrix is called Hurwitz if the real parts of all its eigenvalues are negative.

The following Fig. 2.2 shows the relationship among different function spaces,
where BHy, := {F € RH : || F||oo < 1} is denoted as the set of all stable contractions
and GHy, is the set of all units of RHy, i.e., if F € GHy, then F € RHy, and
F '€ RH.

Example 2.1 Determine the function spaces for each of the following transfer

functions: (1) Gi(s) = ;373 (2) Ga(s) = %§ and (3) G3(s) = =p73-
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1. It is clear that G,(s) is stable and sup |G| (jo)| = sup

/w+1‘ = S =
1 < oo for w>0. Hence Gi(s) ERH . By decomposmon of Gl(s) one has
(S) m =1- m ThllS,

-1 oo )
o

L —00

[ 1 [ 1 1

— 1— - l—————)do
|27 ) jo +1 —jo +1

(1 [ 1 1 1
— 1 - —— +— - dw
127 ) — Jjo+l —jo+1 (jot+l)(—jo+1)

(2.34)

IGl> =

Il

This implies G (s) &€ RH,, which agrees with the fact that G;(s) is bi-proper.

2. By definition, G,(s) € RLo, because of sup |G, (jw)| = sup gi)"jll = 00
w
G,(s) ¢ RH, because of fi°m|G(ja))|2da) =o00; and G;(s) ¢RH because of
2
sup |35 | = oo.
Re(s)>0

3. Apparently, G3(s) ¢ RHy because G(s) is not analytic at s =1; G3(s) € RL
because G(s) is analytic on jw axis and satisfies sup |G (jw)| < oo; and

G3(s) & RH; because G(s) is not analytic at s = 1.

2.2.2 Norms for Signals and Systems

Norm symbolizes the size of a system or a function. For the control system analysis
and synthesis, norm offers a direct criterion corresponding to design specifications.
The detailed treatment of this topic can be found in books, such as [2, 3]. In this
book, the following definitions are listed for easy reference. Note that the signal
mentioned below is scalar and measurable, and the system is also scalar and linear
time-invariant and causal. The vector (matrix) version of these norms can be found
in, e.g., the books mentioned above.

Definition 2.6 The 1-norm of a signal y(¢) on (—o00,00) is defined as

hi= [ ol (.39)
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Definition 2.7 The 2-norm of a signal y(¢) is defined as

li= [ o (2.36)

Definition 2.8 The co-norm of a signal y(¢) is defined as

[Vl := sup ly(0)]. (2.37)

Definition 2.9 The 1-norm of a stable system G(s) is defined as

1 o0
16l = 5 / G (jo)| do. (2.38)
TJ —o0

Definition 2.10 The 2-norm of a stable system G(s) is defined as

1 [
IGl, == \/2—/ |G (jo)dw. (2.39)
TJ —o0

s|A| B
For a state-space described system G(s)= ClD defined in (2.52) below, the

Hj norm can be determined by

|G, = v/trace (BT P,B) (2.40)

where P, is the observability gramian, which will be discussed in Chap. 7.

Definition 2.11 The co-norm of a stable system G(s) is defined as

[Glleo := sup |G (jw)I. (2.41)

The ||G|| o equals the distance in the complex plane from the origin to the furthest
point on the Nyquist plot of G(s). It also appears as the peak value on the Bode
magnitude plot of G(s). The Hankel norm is also a representation of function size
[3], especially in the design framework of H, loop shaping. The Hankel norm can
be exploited to determine the stability margin. Its definition is given below.
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Definition 2.12 Hankel norm is used for determining the residual energy of a
system before ¢ = 0. For a stable system described as y(f) = Gu(#), the Hankel norm
is defined as

[ v
1Glly = sup —g————. (2.42)

ueka(o00) / W (t)u(r)de
—00
This can be determined by

”G”H =V Amax (PcPO)» (2.43)

where P, and P, are the controllability gramian and observability gramian matrices,
respectively, which will be discussed in Chap. 7.

Example 2.2 Given a linear system G(s) as below, determine its H, norm and

Hankel norm.
. -1 0 1
=0 )+ (i)

y=[-12]x. (2.44)

The observability gramian P, and controllability gramian P, are

1 2

P, = 22 3 and (2.45)
—= 1
3

1 1

_ 2 3
P. = 11 (2.46)

3 4

Hence, one can obtain
IGll, = virace (BTP,B) = —— (2.47)
2 o \/6’ .
1

Gl = VAmax (PePo) = . (2.48)
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2.3 Linear System Theory

The aim of this section is to introduce some basic results in linear system theory
[1] that are particularly applicable to the work in the following chapters of this
book. The descriptions, properties, and algebras of linear systems facilitate the
development of optimal and robust control theory. These concepts preliminarily
offer tools for system analysis and synthesis, and construct the main scope of
modern control theory and control engineering.

2.3.1 Linear Systems

A finite-dimensional LTI dynamic system can be described by the following
equations:

X = Ax + Bu, x(0) = x¢

y=Cx + Du. (2.49)

where V £ > 0, x(¢) € R" is the state vector, u(f) € R™ is the input vector, and y(r) € R?
is the output vector. The transfer function from u to y is defined as

Y(s) = Gs)U(s), (2.50)

where Y(s) and U(s) are the Laplace transform of y(#) and u(t), respectively. It can
be shown that

G(s) =D + C(sI —A)'B. (2.51)
For simplicity, the state-space realization (A,B,C,D) can be written in a compact
form as
s|A| B
G(s)= ) (2.52)
c|D
The state response in the time domain is
t
x(t) = et'xy + / e By (v)dr, (2.53)
0

and the output response is

t
y(t) = Cellxy + / Ce'"" DBy (t)dt + Du(r). (2.54)
0
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Fig. 2.3 Relationship of state-space similarity transformation

2.3.2 State Similarity Transformation

Different states can be defined to a linear time-invariant system given in (2.49) via
n X n nonsingular matrix 7. Let x = Tx, and then the system can be described by

x = TAT'x 4+ TBu, x(0) = xo = Txo
y=CT 'x + Du (2.55)

The transformed system is derived via the state similarity transformation of (7, T~ ).
One has the same transfer function matrix from the input to the output, though with
different state-space model:

s[A|B]s|raT" | TB| |4]| B
G(S):|:C | D} o7 ‘ 517 E | = | (2.56)

where Z = TAT !, E = TB, E = CT7!, and B = D. The relationship of
this transformation is illustrated in Fig. 2.3. The conjugate system G~ (s) of G(s) is

given by
- s|=4" | CT
G (s) =G (-s)= T’F . (2.57)

Finally, if D is invertible, a state-space representation of G(s)~ !, the inverse of G(s),
is given by

s[4-BD'C| BD™
G(S) l= _D_1C % D_1 . (258)
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2.3.3 Stability, Controllability, and Observability

2.3.3.1 Stability

Stability is the most important property of a control system under study. In
this section, the concepts of bounded-input-bounded-output (BIBO) stability and
asymptotic stability will be discussed.

Definition 2.13 A system is BIBO stable if it generates a bounded output when it
is subject to any bounded input.

For a linear system modeled by transfer function G(s), it is called BIBO stable if
and only if all the poles of G(s) are in the open left-half plane, i.e., with negative real
ot
parts. For instance, given a G(s) = |: s+1 (s—1)1(s+2) :|, one can find that the poles of
sH3
G(s) are {—1,1,—2,—3}. Hence, it is not BIBO stable due to that there is a positive

real pole {1}. The following defines the asymptotic stability.

Definition 2.14 A system of (2.49) is called asymptotically stable if, for any given
initial state x, the state || x(¢)|| — 0, as t — co, when u = 0.

A necessary and sufficient condition for the system to be asymptotically stable
is that the real part of all eigenvalues of A should be negative. The asymptotic
stability is also called the internal stability, though the term is more often used in a
closed-loop system setting. Asymptotic stability implies BIBO stability; however,
BIBO stability does not imply the asymptotic stability. That is, asymptotically
stable systems must be BIBO stable, but a BIBO stable control system may not
be asymptotically stable [1]. The possible discrepancy between BIBO stability and
asymptotic stability of a control system arises from whether the underlying system is
completely controllable or completely observable. Controllability and observability
are introduced next.

2.3.3.2 Controllability

Taking the given system in (2.49), e.g., controllability refers to the ability of the
input signal u to transfer the state x from any initial state to any final state in finite
time. A system is called completely controllable if, for any given initial state x and
any final state x;, there exist a finite time Ty and an input u(t), 0 <t < T, which takes
x(0) = xo to x(Ty) = x;. Note that controllability of a system concerns only the matrix
pair (A,B), and the state similarity transformation does not affect the controllability.

To verify the controllability and the following observability, the rank test and
gramian test are the well-known methods [1]. The following summarizes these
schemes.
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An n _th-order system is completely controllable if any one of the following is
true:

1. The controllability matrix [ B AB --- A"~' B ] is of full rank.

2. The matrix [ A — A B | has full row rank at every eigenvalue of A.
3. The controllability gramian matrix

t
m:/&%ﬂﬁwr (2.59)
0

is nonsingular and thus positive definite for every 7 > 0.
4. All the eigenvalues of A+ BF can be assigned arbitrarily, where F is an
appropriately chosen state feedback matrix and always exists.

A system model in (2.49) is said to be stabilizable if there exists a state feedback
matrix F such that A + BF is stable (i.e., the state matrix of the feedback system is
Hurwitz).

2.3.3.3 Observability

The controllability describes the ability that the input drives the states, of which the
dual concept is the observability of a system. Taking the given system in (2.49), e.g.,
the observability means the extent to which the system state variables are “visible” at
the output. A system is called completely observable if, by setting the input identical
to zero, any initial state x(0) can be uniquely decided by the output y(¢), 0 <t <T,
for some finite 7. For example, Fig. 2.4 shows that the initial voltage across the
capacitor, x(0), cannot be determined by the voltage output y. If no input (voltage
source) u is applied to the circuit of Fig. 2.4, the initial state (voltage across the
capacitor) cannot be deduced from the output y. Note that the observability concerns
only the matrix pair (4,C), and the state similarity transformation does not change
the observability.



26 2 Preliminaries

The complete observability of a system can be found by using the rank test or
gramian test, which are summarized as follows:

C

CA
1. The observability matrix . is of full rank.

car!

2. The matrix [Alg 4 ] has full column rank at every eigenvalue of A.

3. The observability gramian matrix
t
W, = / e " CTCeMdr (2.60)
0

is nonsingular and thus positive definite for every ¢ > 0.
4. All eigenvalues of A 4+ HC can be assigned arbitrarily, where H is an appropri-
ately chosen observer gain matrix and always exists.

A system model in (2.49) is said to be detectable if there exists an observer gain
matrix F such that A 4 HC is stable.

2.3.4 Minimal State-Space Realization

For any given LTI system in a state-space model (2.49), an adequately chosen state
similarity transfer matrix 7 can be applied to transform (2.52) into

_ACO 0 Al" 0 BCO

4y A Ay Ay | B
A

TAT™ | TB co co
{CT_I D} o 0 4. 0] 0| 2.61)
0 0 A, 4

A | 0
Co, O C., O |D

co

co

Representation (2.61) is the so-called canonical decomposition form (Kalman
canonical decomposition). It can be easily derived that for zero initial states, the

transfer function of the system is actually
G(s) =D+ C(sI —A)"'B =D + Cco(sI — Aco)” ' Bco, (2.62)

which shows that the transfer function only describes the controllable and observ-
able part of the system. Figure 2.5 shows the relation of (2.61) in a block diagram.
The dynamics of the uncontrollable, unobservable, or both, if they exist in the
system, will not be seen in the input/output relationship (the transfer function). That
explains the possible situation of a system being BIBO stable but not asymptotically
stable.
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Fig. 2.5 Block diagram of canonical decomposition function

There are many state-space realizations corresponding to the same transfer
function. The state-space realization (A,B,C,D) with the least dimensions of the
state is called a minimal realization of the transfer function. Minimal realization
(A,B,C,D) is always completely controllable and completely observable.

2.3.5 State-Space Algebra

Let state-space realizations of the systems G(s) and G»(s) be given respectively by,

).Cl Al Bl X1
= 2.63
[yl] [Cl Dl}[ul} 269

Xz A2 B2 j| |:)Czi|
= . (2.64)
|:J’z ] [ C Dy | Lu
Obviously, the system models formed from G;(s) and G,(s) could involve the
variables from both systems. By augmenting (2.63) and (2.64), one obtains

and

).Cl A] 0 B] X1 X2 I 0 O X2
Xy | = 0710 X2 |=|x|=1]0A4 B X1 (2.65)
n C, 0 D, uj i 0 Cy D, uy
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Fig. 2.6 Block diagram of a parallel system

and
).Cl I 0 0 X] sz Az 0 Bz X2
X | =104, B X | =\ x| = 0710 X1 |- (2.66)
» 0C, Dy up 2 CGO0Dy | L

It can be seen in the following that manipulations between two control system
models can be realized via the algebra of usual constant matrix operations.

2.3.6 State-Space Formula for Parallel Systems

As shown in Fig. 2.6, let u; = u and u; = u. Since

y=yn+n=[C C2]|:§;i|+(D1+D2)u» (2.67)

a state-space realization of the transfer function from u to y =y, + y, can be found
from (2.65) and (2.66) which have the same dimension of the total states as

X1 A O B X1
sz = 0 A2 Bz X2 | (268)
y C,C, D+ D, u
ie.,
4 0] B

GI(S)+G2(s); 0 4, B, |. (2.69)
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Fig. 2.7 Block diagram of a cascaded system

2.3.7 State-Space Formula for Cascaded Systems

As shown in Fig. 2.7, let u; = u, uy =y, and y =y,. Then, one has a state-space
realization of the transfer function from (2.65) and (2.66) by matrix multiplication
as

)'Cl _IO 0 )2?1 I 0 0 A[OB[ X1
).Cz = 0 A2 Bz X2 = 0 A2 Bz 0710 X2
y _0 C2 D2 175%) 0 C2 D2 C1 0 D1 u
B A1 0 Bl X1
= B2C1 A2 Ble X2 |, (270)
L D,Cy Gy D2 D, u

or equivalently

Xz A2 0 Bz I 0 O X2 A2 BZC1 B2D1 X2
).Cl = 070 0141 B] X1 = 0 A| B] X1
y C2 0 Dz 0 C1 D1 u Cz DZCI D2D1 u
2.71)
Hence,
|4 o B 4, B,C, | B,D,
G,(s)G,(s)=| B,C, 4, |B,D,|=| 0 4 | B |. (2.72)
DZCI C2‘D2D] C2 D2C1|D2Dl

2.3.8 State-Space Formula for Similarity Transformation

Define a new state variable vector x = 7'x. Then one has

T
T

= (-
Il

(2.73)

xv
¥ (2.74)

X
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From (2.49), (2.73) and (2.74),

X =T = TAx + TBu = (TAT™") X + (TB)u (2.75)
and
§=y=Cx+Du=«n“U¥+Dw (2.76)
This implies
¥
ST

Consider the specific case that A = |:A“ AIZ:I, B = [BI:I, C = [C1 Cz],
Ay Az

and T = |:é )](i| (i.e., T = |:é _IX j|) which is helpful to characterize the

minimum realization of the state-space solutions later. Then,

T[4 B]= [1 X:| |:A11 Apz Bl] _ |:A11+XA21 A + XAy BI+X321|

01 |[An A By A Ax B,
(2.78)
and
TAT. [ A+ XAy A + XAx I —x
C T = Aj Ay 0 I
L C G
A+ XAy —AnX + XAn X + A + XAp
= Ax —Ay X + Ay . 2.79)
L C —CiX +C
This is equivalent to the matrix manipulations of
(2.80)
—A, X+ XA, X +4,+ XA, | B+ XB, 74T | TB
-4, X+ 4, B, = oD |

-CX +C, |
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2.4 Linear Fractional Transformations and Chain
Scattering-Matrix Description

Consider a general feedback control framework shown in Fig. 2.8, where P denotes
the interconnection system of the controlled plant, namely, the standard control (or
compensation) configuration (SCC) [10]. The closed-loop transfer function from w
to z in Fig. 2.8 is given by

Py Py

LFT, (P, K) = LFT, ([
Py Py

:| ,K) = Py + PuK(I — PuK) ' Py,
(2.81)

where LFT stands for the linear fractional transformation and the subscript “1”
stands for “lower.” Different from the LFT, the chain scattering-matrix description
(CSD) developed in the network circuits provides a straightforward interconnection
in a cascaded way. The CSD transforms a LFT into a two-port network connection.
Thus, many known theories which have been developed for a two-port network can
then be used. The definition of CSD is briefly introduced below, while the details
on background, properties, and use of CSD will be described in Chaps. 3, 4, and 5.
Figure 2.9 shows the right and left CSD representations.

Define right and left CSD transformations with G and K denoted by CSD,(G,K)
and by CSD, (G, K ), respectively [9], as

G G _
CSD; (G, K) = CSD; (|: " 12:|,K) := (G2 + G11K) (G + Gy K) ™
Go1 G
(2.82)
z €— — W
P <
Fig. 2.8 Linear fractional v > K u
transformation
a b
<Z_ iu u > _Z>
W, G BN K K ) G w

Fig. 2.9 Right and left CSD (a) Right CSD (b) Left CSD
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Fig. 2.10 Unity feedback o u Vi

control system K > P, >
B controller plant

and

@11 @12

CSD, (G, K) = CSDy ([ G G

i| ,K) i=—(G1 — KGzl)_l (G2 — KG).
(2.83)

where G,, and Gn are square and invertible. Note that, if P;; is invertible, the SCC
matrix P can be transformed to a right CSD as

G = |:P12—P11P21_1P22 P11P21_1:|. (2.84)

— Py 'Py Pyt

Also, if Py5 is invertible, the SCC matrix P can be transformed to a left CSD as

~ P! PPy :|
G = _ - . (2.85)
[P22P12 L' Py — Py P~ Py

Example 2.3 Consider the unity feedback control system in Fig. 2.10, where P, is
a SISO-controlled plant. Find its corresponding LFT; and CSD representations.

Ve

Letz = ,w=r,and y=y,.

From the unity feedback control system, by definition, as # = 0, one has y,, = 0;

()

hence, r =y, from r —P,u=y, so that P;; = lu=0 = ((1)) and P, =

r

% lu=0 = 1. Similarly, as r = 0, one can also obtain
Ve
u
u

The closed-loop transfer function from r to z = (y e) is presented as below

u
(Fig. 2.11).

—P
Py = lr=0 = ( lp) and Py = % lr=0 = —P).
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Fig. 2.11 LFT of y
closed-loop transfer function [ }— 1
form u 0

|
v
A

=
v
=

Fig. 2.12 Right CSD of y ‘ "
closed-loop transfer function ( ¢ }7 0 3 1

From

2=LFT, (P, K)w = [Pn + Pu(l — Ksz)_lKle] W,

(yu) - (;{) 1+ PpK)"'r.

From the control block diagram, as y, =0, one has, by the definition of the

one has

Ve )
. u
rlght CSD, G;; =

u

yo=0 = ((1)) and Gy; = ~|,,=0 = P,, since

r—P,u=y,=0.As u=0, one then has

()

G, = lu=0 = ((1)) and from r — Pyu = y,.
e
Equivalently, the closed-loop transfer function from r to z = (y e) can be
u

represented by Fig. 2.12.
From z = CSD.(G,K) w = (G, K + G12)(G21 K + G»)~ 'w, one has

(yu) = (11<) (1+ P,K)"'r.
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This concludes that

z=LFT, (P, K)w = CSD; (G, K) w.

Exercises

1. Prove that all the eigenvalues A(H) of a Hamiltonian matrix H are symmetric to
the jw-axis.

12 51
2. Determine the rankof A = | 24 —1 2
12109
U
V2 V2 11 ! .
3. Let 9 = WAL R = |:011|, b = } . Utilize the least square
0 0

approach to solve Ax = b where A = OR.
4. Consider the following system:

)271 _ -1 0 X1 o = X10
)&'2 - 2 —4 X2 ’ 0= X20 '
Find the response of x;(¢) and x,().
5. Sketch the state trajectories of the following system in the (x;, x, x3) plane for

2
Xo = 4 | and input u(t) = 0. Determine the controllability of the above
—4
system
0 1 0 0
X=]10 0 I |x+]|0|u
—6 —11 —6 1
y=[151]x

6. The transfer function of a linear system is given by

Y(s) s+a
U(s) 347524 14s + 8’

(a) Determine the values of @ when the system is not completely controllable or
not completely observable.

(b) Define the state variables and derive the state-space model of which one of
the states is unobservable.

(c) Define the state variables and derive the state-space model of which one of
the states is uncontrollable.
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7.

The state-space model of a third-order system is shown below:

X1 =2x1+3x+3x34+u

Xz —2X1 — 3X2 —2u
X3 = —2x1 —2xp — 5x3 + 2u
y =T7x1 + 6x7 + 4x3.

Use state similarity transformation to decouple the state-space model and
explain the observability and controllability for each of the subsystems.

. Consider the following systems and decide in which function space they

belong to.

(s+1)
s+2)(s+4)
2s — 1
(s+1D(s+3)
1
s—2

(a)

(b)

(©)

. Consider the linear system below. Determine its H, norm, Hs, norm, and Hankel

norm.

i 0 L e 0]

[10]x.

<
Il
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