
Chapter 2
Preliminaries

Classical control design and analysis utilizes the frequency domain tools to specify
the system performance. The background of operator theories and single-input
and single-output, linear systems is required. In modern control, the time domain
approach can be used to deal with multi-input and multi-out cases. Moreover,
concepts of linear algebra and matrix-vector operations are used in system analysis
and synthesis. Some useful fundamentals will be therefore reviewed in this chapter.

2.1 Linear Algebra and Matrix Theory

This section presents useful and well-known fundamentals of linear algebra and
matrix theory, which facilitate the understanding of the subsequent control system
concepts and methodology introduced. The stated results can be considered to be
purely preliminary in nature, and hence, their proofs are omitted.

2.1.1 Vectors and Matrices

Control systems are, in general, multivariable. That means one deals with more than
one variable in input, output, and state. Hence, vectors and matrices are frequently
used to represent systems and system interconnections. In engineering and science,
one usually has a situation where more than one quantity is closely linked to another.
For instance, in specifying the location of a robot on a flat floor, one may use the
numbers 2 and 3 to indicate the robot is at 2 units east and 3 units north from
where one stands, and following the same logic, one may use �1 and �2 to indicate
that the robot is at 1 unit west and 2 units south. Here, (2, 3) and (�1, �2) represent
two different locations, and the numbers 2 and 3 are in a fixed order to show that
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8 2 Preliminaries

particular location, while (3, 2) would represent the position 3 units east and 2 units
north. Such a group of numbers in a certain order forms a vector, and the dimensions
of a vector correspond to how many numbers there are in the vector. Hence, (2, 3)
is a 2-dimensional vector. Conventionally, a vector is defined as a column vector.

In the above example, the position vector is thus written as

�
2

3

�
or

��1

�2

�
. For any

positive integer n, an n-dimensional (usually shortened as n-dim or n-D) vector x is

denoted by x D

2
64

x1

:::

xn

3
75.

The transpose of a vector x is denoted as xT and is defined by xT D�
x1 x2 � � � xn

�
, a row vector. A group of vectors of the same dimension in a

certain order forms a matrix. For example, for Mi D

2
64

mi1

:::

min

3
75, 1 � i � p, Mi is

an n-dim vector and M D �
M1 M2 � � � MP

�
is an n � p matrix. Obviously, a vector

is a special case of matrices. xT D �
x1 x2 � � � xn

�
is simply a matrix of 1 � n

dimensions. The elements or entries in a matrix can be real numbers or complex
numbers. One uses M 2R

n � p to show the matrix M is of n � p dimensions and all
the elements of M are real numbers; M 2C

n � p shows a n � p dimensional matrix
M with complex numbers. It is clear that Rn � p �C

n � p. It is also a convention to
use capital English letters to show a matrix such as M, whereas lower case letters
(sometimes in bold face) are employed to show a vector such as x and lower case

letters to show a scalar number. A matrix M D

2
64

m11 � � � m1p

::: � � � :::

mn1 � � � mnp

3
75 of the n � p

dimension can be abbreviated as M D fmijgn � p. Similar to vectors, the transpose of
a matrix M is MT D fmjigp � n. When M is in C

n � p, the complex conjugate transpose
of M is defined by M � D ˚

mji

�
p�n

when mji is the complex conjugate of mji.
A few manipulations can be defined for vectors and matrices. Two matrices

of the same dimensions, e.g., M D

2
64

m11 � � � m1p

::: � � � :::

mn1 � � � mnp

3
75 and N D

2
64

n11 � � � n1p

::: � � � :::

nn1 � � � nnp

3
75,

can be added together, i.e., P D M C N where P D

2
64

p11 � � � p1p

::: � � � :::

pn1 � � � pnp

3
75 D

2
64

m11 C n11 � � � m1p C n1p

::: � � � :::

mn1 C nn1 � � � mnp C nnp

3
75. A multiplication is defined for two matrices only
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Table 2.1 Classification of normal matrices

Matrix (A) Definition Eigenvalues
Diagonal
elements Determinant

Hermitian M* D M � 2R aii 2R det(M) 2R

Positive definite x*Mx > 0, 8 x ¤ 0 � > 0 aii > 0 det(M) > 0
Positive semi-definite x*Mx � 0, 8 x � � 0 aii � 0 det(M) � 0
Unitary M 2 Cn � n M*M D I j�j D 1 NA j det(M)j D 1
Orthogonal M 2 Rn � n MTM D I j�j D 1 NA j det(M)j D 1

when their dimensions are compatible. That is, for M D fmijgn � p, N D fnklgk � l,
only when p D k, one may have the product P D MN, where P D fpijgn � l, with

pij D
p.Dk/X
rD1

mirnrj . The following paragraph summarizes a few more aspects of

vector/matrix manipulations [4].

1. A square matrix M is called nonsingular if a matrix B exists, such that
MB D BM D I. Define B D M� 1. The inverse matrix M� 1 exists if det(M) ¤ 0,
where det(M) is the determinant of M. If M� 1 does not exist, M is said to be
singular. If the inverse of M, B, and MB all exist, then (MB)� 1 D B� 1M� 1.

2. A complex square matrix is called unitary if its inverse is equal to its complex
conjugate transpose M*M D MM* D I, where I denotes the identity matrix of the
appropriate dimensions. A square matrix M is called orthogonal if it is real and
satisfies MTM D MMT D I. For an orthogonal matrix, the inverse is its transpose.

3. An n � p matrix M is of rank m if the maximum number of linearly independent
rows (or columns) is m. This equals to the dimension of img(M) :D fMxjx 2R

pg.
4. An n � p matrix M is said to have full row rank if n � p and rank(M) D n. It has

a full column rank if n � p and rank(M) D p.
5. A symmetric matrix M of n � n dimension is positive definite if xTMx � 0, where

x is any n-dimensional (real) vector, and xTMx D 0, only if x D 0. If for any n-
dimensional vector x, xTMx � 0 always holds, then M is positive semi-definite.
A positive (semi-)definite matrix M may be denoted as M > 0(M � 0). Similarly,
negative definite and negative semi-definite matrices may be defined.

6. For a positive definite matrix M, its inverse M� 1 exists and is also positive
definite.

7. All eigenvalues of a positive definite matrix are positive.
8. For two positive definite matrices M1 and M2, one has ˛M1 C ˇM2 > 0 when ˛, ˇ

are nonnegative and both not zero.
9. A square matrix M is called normal if MM* D M*M. A normal matrix has the

decomposition of M D UƒU*, where UU* D I and ƒ is a diagonal matrix. The
following Table 2.1 summarizes the classification of normal matrices.
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2.1.2 Linear Spaces

Let R and C be real and complex scalar fields, respectively. A linear space V over
a field F consists of a set on which two operations are defined. The first one is
denoted by “addition (C)”; for each pair of elements x and y in V, there exists a
unique element x C y in V. And the second one is a scalar “multiplication (�)”; for
each element ˛ in F and each element x in V, there is a unique element ˛x in V. The
following conditions hold with respect to the above two operations.

1. For each element x in V, 1 � x D x.
2. For all x, y, z in V, (x C y) C z D x C (y C z).
3. For all x, y in V, x C y D y C x.
4. For each element x in V, there exists an element y in V, such that x C y D 0.
5. There exists an element in V denoted by 0, such that x C 0 D x for each x in V.
6. For each element ˛ in F and each pair of elements x and y in V,

˛(x C y) D ˛x C ˛y.
7. For each ˛, ˇ in F and each element x in V, (˛ˇ)x D ˛(ˇx).
8. For each ˛, ˇ in F and each element x in V, (˛ C ˇ)x D ˛x C ˇx.

Note that one uses the same symbol “0” to denote the element zero and scalar
number zero in V and F, respectively. In the following, some basic concepts are
reviewed first. These definitions can be easily found in standard linear algebra
textbooks, for example see [8].

1. As mentioned in the earlier paragraph, the elements x C y and ˛x are called the
sum of x and y and the product of ˛ and x, respectively, where x, y 2 V, ˛ 2 F.

2. A subset W of a vector space V over a field F is called a subspace of V if
W itself is a vector space over F under the operations of addition and scalar
multiplication defined on V.

3. Let x1, x2, : : : , xk be vectors in V, then an element of the form ˛1x1 C ˛2x2 C � � �
C ˛kxk with ˛i 2 F is a linear combination over F of x1, x2, : : : , xk.

4. The set of all linear combinations of x1, x2, : : : , xk 2 V is a subspace called the
span of x1, x2, : : : , xk, denoted by

span fx1; x2; : : : ; xkg D
n
x
ˇ̌
ˇx D ˛1x1 C ˛2x2 C � � � C ˛kxk I ˛i 2 F

o
: (2.1)

5. Vectors x1, x2, : : : , xk are said to be linearly dependent if there is at least one
xi that can be expressed as a linear combination of fxj, j D 1, 2, : : : , k, j ¤ ig
or there exist constants c1, c2, : : : , ck which are not all zero, such that
c1x1 C c2x2 C � � � C ckxk D 0. The vectors x1, x2, : : : , xk are linearly indepen-
dent if c1x1 C c2x2 C � � � C ckxk D 0 indicates that all c1, c2, : : : , ck are zero.

6. The vectors x1, x2, : : : , xk are orthonormal if xi
�xj D ıij D

�
1 when i D j

0 otherwise
,

where ıij is usually called the Kronecker delta.
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7. Let W be a subspace of a vector space V, then a set of vectors fx1, x2, : : : , xkg 2
W is said to be a basis of W if x1, x2, : : : , xk are linearly independent and
W D spanfx1, x2, : : : , xkg. The dimension of a vector subspace W equals to
the number of basis vectors.

8. Let W be a subspace of V. The set of all vectors in V that are orthogonal to
every vector in W is the orthogonal complement of W and is denoted by W?.
Hence,

W ? D fy 2 V W y�x D 0; 8x 2 W g : (2.2)

Each vector x in V can be expressed uniquely in the form x D xW C xW ?

for xW 2 W and xW ? 2 W ?.
9. A set of vectors fu1, u2, : : : , ukg is said to be an orthonormal basis for a

k-dimensional subspace W if the vectors form a basis and are orthonormal.
Suppose that the dimension of V is n, it is then possible to find a set of
orthonormal basis fuk C 1, : : : ,ung such that

W ? D span fukC1; : : : ; ung : (2.3)

10. A collection of subspaces W1, W2, : : : , Wk of V is mutually orthogonal if
x*y D 0 whenever x 2 Wi and y 2 Wj for i ¤ j.

11. The kernel (or null) space of a matrix M 2R
n � p, which can be viewed as a

linear transformation from R
p to R

n, is defined as

ker M D N.M/ D
n
x
ˇ̌̌
x 2 R

p W Mx D 0
o

: (2.4)

12. The image (or range) of M is

img.M/ D
n
y
ˇ̌̌
y 2 R

n W y D Mx; 8x 2 R
p
o

: (2.5)

13. Let M be an n � p real, full rank matrix with n > p, the orthogonal complement
of M is a matrix M? of dimension n � (n � p), such that

�
M M ? � is a square,

nonsingular matrix with the following property: MT M? D 0.
14. The following properties hold:

.ker M/? D Œimg.M/�T and Œimg.M/�? D ker M T: (2.6)

2.1.3 Eigenvalues and Eigenvectors

A matrix can be interpreted as a mapping between two linear spaces. For example,

a 2 � 2 matrix M D fmijg2 � 2, y D Ax, where x D
�

x1

x2

�
and y D

�
y1

y2

�
are both
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in R
2 � 1 (the two spaces in this case are the same). For most x, the image y would

show a rotation of x plus an expansion or reduction in length, which is decided by
the matrix M. However, there are some vectors in the space of which the images
generated by the mapping M will remain at the same direction as the original
vectors. These vectors are the eigenvectors of M, showing somehow the essence
(eigen) of the mapping M. The factors of the length change are the eigenvalues of
M. Rigorous definitions are given below.

For an n � n square matrix M, the determinant det(�I � M) is called the charac-
teristic polynomial of M. The characteristic equation is given by

det .� I � M/ D 0: (2.7)

The n roots of the characteristic equation are the eigenvalues of M. For an eigenvalue
� of matrix M, there is a nonzero vector � such that

M� D �� (2.8)

where � is called the eigenvector of M corresponding to the eigenvalue �.

Definition 2.1 The spectral radius of matrix M is defined as

�.M/ D max
i

j�i .M/j (2.9)

where f�ig is the eigenvalue set of M and j • j is the modulus of •.
It is easy to show that if M is a Hermitian matrix, i.e., M D M*, then all

eigenvalues of M are real. The spectral radius indicates the size of the set which
contains all the eigenvalues of M.

Definition 2.2 If M is Hermitian, then there exists a unitary matrix U (i.e.,
U*U D UU* D I) and a real diagonal matrix ƒ, such that

M D UƒU �: (2.10)

In this case, U is the right eigenvector matrix of M.

2.1.4 Matrix Inversion and Pseudoinverse

Matrix inversion is unavoidable and essential in control system manipulation. In this
section, the useful formulae of the matrix inversion can be found [4].

Let M be a square n � n matrix partitioned as

M D
�

M11 M12

M21 M22

�
(2.11)

where M11 : n1 � n1, M12 : n1 � n2, M21 : n2 � n1, M22 : n2 � n2, and n1 C n2 D n.
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Suppose that M11 is nonsingular, then M can be decomposed (block diagonalized)
as

M D
�

I 0

M21M11
�1 I

� �
M11 0

0 S

� �
I M11

�1M12

0 I

�
(2.12)

where S D M22 � M21M11
� 1M12 is the Schur complement of M11 in M. Then, if M

is nonsingular, it can be derived that

M �1 D
�

M11
�1 C M11

�1M12S�1M21M11
�1 �M11

�1M12S�1

� S�1M21M11
�1 S�1

�
: (2.13)

Dually, if M22 and M are nonsingular, then

M D
�

I M12M22
�1

0 I

� � bS 0

0 M22

� �
I 0

M22
�1M21 I

�
(2.14)

and

M �1 D
" bS�1 �bS�1M12M22

�1

� M22
�1M21

bS�1 M22
�1 C M22

�1M21
bS�1M12M22

�1

#
(2.15)

where bS D M11 � M12M22
�1M21 is called the Schur complement of M22 in M. The

matrix inversion formulae can be further simplified if M is block triangular as

�
M11 0

M21 M22

��1

D
�

M11
�1 0

� M22
�1M21M11

�1 M22
�1

�
; (2.16)

�
M11 M12

0 M22

��1

D
�

M11
�1 �M11

�1M12M22
�1

0 M22
�1

�
: (2.17)

If both M11 and M22 are nonsingular, then bS�1 can be represented by

bS�1 D �
M11 � M12M22

�1M21

	�1

D M11
�1 C M11

�1M12

�
M22 � M21M11

�1M12

	�1
M21M11

�1: (2.18)

The pseudoinverse (also called Moore-Penrose inverse) of a matrix M is denoted
as MC which satisfies the following conditions:

MM CM D M; (2.19)

M CMM C D M C; (2.20)
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�
MM C	� D MM C; (2.21)

�
M CM

	� D M CM: (2.22)

The pseudoinverse is useful especially when matrix M is either non-square or
singular.

2.1.5 Vector Norms and Matrix Norms

Norm is another important concept of vectors and matrices. It can be further
developed for functions and systems as well. In this section, definitions of vector
norm and matrix norm will be introduced [4]. The concept of norm can be loosely
understood as a description of size or volume. A vector norm, denoted by k � k, of
any vector x over the field C, must have the following properties:

1. kxk > 0, unless x D 0, in which case kxk D 0.
2. kcxk D jcjkxk where c is any scalar in C.
3. kx C yk � kxk C kyk.

Definition 2.3 Let x D

2
64

x1

:::

xn

3
75 be a vector in C

n. The following are norms of Cn.

1. Vector 1-norm: kxk1 D max
1�i�n

jxi j.

2. Vector 1-norm: kxk1 D
nX

iD1

jxi j.

3. Vector 2-norm: kxk2 D p
x�x D

vuut nX
iD1

jxi j
2

.

4. Vector p-norm (for 1 � p < 1): kxkp D
 

nX
iD1

jxi jp
!1=p

.

In the case of matrices, a matrix norm satisfies

1. kAk > 0 unless A D 0, in which case kAk D 0;
2. kcAk D jcjkAk where c is any scalar in C;
3. kA C Bk � kAk C kBk;
4. kABk � kAkkBk.
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Definition 2.4 Let M D

2
6664

m11 m12 � � � m1n

m21 m22 � � � m2n

:::
:::

:::
:::

mm1 mm2 � � � mmn

3
7775 be a matrix in C

m � n. The

following gives a list of different matrix norms, which will be useful for the rest
of this book.

1. Matrix 1-norm (column sum): kMk1 WD max
j

mX
iD1

ˇ̌
mij

ˇ̌
.

2. Matrix 2-norm: kMk2 WD p
�max .M �M/.

3. Matrix 1-norm (row sum): kMk1 WD max
i

nX
j D1

ˇ̌
mij

ˇ̌
.

4. Frobenius norm: kMkF WD p
trace .M �M/ D

vuut mX
iD1

nX
j D1

m�
ij mij .

2.1.6 Singular Value Decomposition

The singular values of a matrix M are defined as

�i .M/ WD
p

�i .M �M/: (2.23)

The maximal singular value is denoted as

�.M/ WD max
i

.�i .M// ;

and the minimal singular value is

�.M/ WD min
i

.�i .M// :

It is straightforward from the above definition that the matrix M and its complex
conjugate transpose M* have the same singular values, i.e., f� i(M)g D f� i(M*)g.
Let M 2C

m � n; there exist unitary matrices U D [u1 u2 � � � um] 2C
m � m and

V D [v1 v2 � � � vn] 2C
n � n such that

M D U †V �; (2.24)

where

† D
�

†1 0

0 0

�
; (2.25)
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†1 D

2
6664

�1 0 � � � 0

0 �2 � � � 0
:::

:::
:::

:::

0 0 � � � �r

3
7775 ; (2.26)

with �1 � �2 � � � � � � r > 0 and r D rank(M). Equation (2.24) is called the singular
value decomposition (SVD) of the matrix M. The matrix admits the decomposition

M D
rX

iD1

�i ui vi
� D �

u1 u2 � � � ur

�
2
6664

�1 0 � � � 0

0 �2 � � � 0
:::

:::
:::

:::

0 0 � � � �r

3
7775
�

v1 v2 � � � vr

��
: (2.27)

2.2 Function Spaces and Signals

Controllers or control schemes are as a matter of fact functions in the time domain
or the frequency domain. Hence, the synthesis of the required controller, an optimal
controller in particular, is a procedure in functional analysis. However, considering
that the underlying systems in this book are mainly the linear time-invariant systems
and that this book is primarily for practicing control engineers and engineering
students, many mathematical definitions and deductions will not be included in
order to make it more accessible to the targeted readers. Interested readers are
recommended to consult relevant books, for instance [5, 6, 7, 10], for rigorous and
in-depth treatment of those mathematical concepts.

2.2.1 Function Spaces

Function spaces useful for the themes introduced in this book are L2, H2, L1, and
H1, and their orthogonal complement spaces.

The space Lp (for 1 � p < 1) consists of all Lebesgue measurable functions w(t)
defined in the interval (�1, 1) such that

kwkp WD

Z 1

�1
jw.t/jpdt

� 1
p

< 1: (2.28)

The space L1 consists of all Lebesgue measurable functions w(t) such that

kwk1 WD esssup
t2R

jw.t/j < 1: (2.29)
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Laplace transform

Inverse transform
2H[ )2 0,L

Laplace transform

Inverse transform

P+
P+

( )2 ,L −

Laplace transform

Inverse transform

P−P−

2H
⊥( ]2 ,0L −

Fig. 2.1 Calculation
procedures of function spaces

H2 is the subspace of L2 in which every function is analytic in Re(s) > 0 (the
real part of s D � C j! 2C), the open right-half plane, and H1 be a subspace
of L1 in which every function is analytic and bounded in Re(s) > 0. The space
H2

? is the orthogonal complement of H2 in L2. If G(s) is a strictly proper, stable,
real, rational transfer function matrix, then G(s) 2 H2 implies that G�(s) 2 H2

?,
where G�(s) :D GT(�s). The real rational subspace of H1 is denoted by RH1,
which consists of all proper and real, rational, stable transfer function matrices. The
relationship between spaces L2 and H2 is illustrated in Fig. 2.1 [3, 10].

Definition 2.5 Definitions of L2, H2, L1, and H1 function spaces.

1. L2 -function space: G(s) 2 L2, if

Z 1

�1
trace

�
G� .j!/ G .j!/

�
d! < 1: (2.30)

The rational subspace of L2, denoted by RL2, consists of all real, rational,
strictly proper transfer function matrices with no poles on the imaginary axis jR.

2. H2-function space: G(s) 2 H2, if G(s) is stable and

kG.s/k2 WD
s�

1

2�

Z 1

�1
trace

�
G� .j!/ G .j!/

�
d!

�
< 1: (2.31)

Hence, the norm for H2 can be computed just as it is done for L2. The real
rational subspace of H2, which consists of all strictly proper and real, rational,
stable transfer function matrices, is denoted by RH2.

3. L1-function space: G(s) 2 L1, if

kG .j!/k1 WD ess sup
!

� ŒG .j!/� < 1: (2.32)
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RL

GHBH

RH Strictly
proper

RH −

2RL

2RH

2RH ⊥

Stable

Anti-Stable

A

B CE

F G
H

I

J

( 3)( 4) ( 1):         :  
( 1)( 2) ( 4)

( 7) ( 20):                  :
( 5) ( 3)( 5)

( 4)( 5) ( 1) :      :
( 6)( 7) ( 2)( 4)

( 20) ( 1)( 2) :      :
( 3)( 5) ( 3)(

s s sA B
s s s

s sC D
s s s

s s sE F
s s s s

s s sG H
s s s s

− − −
+ + +

+ −
+ + +

+ + −
+ + + +

+ + +
+ + + + 4)( 5)

( 3) ( 4)( 6) :       :
( 1)( 2) ( 3)( 5)

s

s s sI J
s s s s

+

+ + +
− + − −

Example

D

Fig. 2.2 Illustration of the relationship among different function spaces

All proper and real, rational, transfer function matrices with no poles on the
imaginary axis form a subspace which is denoted by RL1.

4. H1 norm, the 1-norm of Hardy space functions: G 2 H1, if G(s) is stable and

kGk1 D sup
Re.s/�0

� ŒG.s/� D sup
!

� ŒG .j!/� < 1: (2.33)

H1 is a subspace of L1 with functions that are analytic and bounded in the
open right-half plane. The real, rational subspace of H1 is denoted by RH1
which consists of all proper and real, rational, stable transfer function matrices.

This book introduces tools and concepts of optimal controller synthesis [3]. Most
of the framework is set in the H1 function space. For the linear time-variant and
causal systems, a given system G(s) 2 RH1 means the following:

(a) G(s) is stable, and lim
t!1ˆ.t/ which is the impulse response of G(s), is bounded.

(b) All poles of G(s) are located in the open left-half plane.
(c) If G(s) has a “minimal” state-space model (A, B, C, D), then the real part of all

eigenvalues of the state matrix A is negative.

A state matrix is called Hurwitz if the real parts of all its eigenvalues are negative.
The following Fig. 2.2 shows the relationship among different function spaces,

where BH1 :D fF 2 RH1 : kFk1 < 1g is denoted as the set of all stable contractions
and GH1 is the set of all units of RH1, i.e., if F 2 GH1, then F 2 RH1 and
F� 1 2 RH1.

Example 2.1 Determine the function spaces for each of the following transfer
functions: (1) G1.s/ D s

sC1
; (2) G2.s/ D s2

sC1
; and (3) G3.s/ D s

.s�1/.sC2/
.
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1. It is clear that G1(s) is stable and sup
!

jG1 .j!/j D sup
!

ˇ̌̌
j!

j!C1

ˇ̌̌
D sup

!

!p
1C!2

D
1 < 1 for ! > 0. Hence, G1(s) 2 RH1. By decomposition of G1(s), one has
G1.s/ D s

sC1
D 1 � 1

sC1
. Thus,

kGk2 D
s�

1

2�

Z 1

�1
jG .j!/j2d!

�

D
s�

1

2�

Z 1

�1



1 � 1

j! C 1

�

1 � 1

�j! C 1

�
d!

�

D
s�

1

2�

Z 1

�1



1 � 1

j! C 1
� 1

�j! C 1
C 1

.j!C1/ .�j! C 1/

�
d!

�

D 1: (2.34)

This implies G1(s) 62 RH2, which agrees with the fact that G1(s) is bi-proper.

2. By definition, G2(s) 62 RL1 because of sup
!

jG2 .j!/j D sup
!

ˇ̌̌
.j!/2

j!C1

ˇ̌̌
D 1;

G2(s) 62 RH2 because of
R 1� 1jG(j!)j2d! D 1; and G2(s) 62 RH1 because of

sup
Re.s/�0

ˇ̌
ˇ s2

sC1

ˇ̌
ˇ D 1.

3. Apparently, G3(s) 62 RH1 because G(s) is not analytic at s D 1; G3(s) 2 RL1
because G(s) is analytic on j! axis and satisfies sup

!
jG .j!/j < 1; and

G3(s) 62 RH2 because G(s) is not analytic at s D 1.

2.2.2 Norms for Signals and Systems

Norm symbolizes the size of a system or a function. For the control system analysis
and synthesis, norm offers a direct criterion corresponding to design specifications.
The detailed treatment of this topic can be found in books, such as [2, 3]. In this
book, the following definitions are listed for easy reference. Note that the signal
mentioned below is scalar and measurable, and the system is also scalar and linear
time-invariant and causal. The vector (matrix) version of these norms can be found
in, e.g., the books mentioned above.

Definition 2.6 The 1-norm of a signal y(t) on (�1,1) is defined as

kyk1 WD
Z 1

�1
jy.t/j dt : (2.35)
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Definition 2.7 The 2-norm of a signal y(t) is defined as

kyk2 WD
sZ 1

�1
y2.t/dt : (2.36)

Definition 2.8 The 1-norm of a signal y(t) is defined as

kyk1 WD sup
t

jy.t/j : (2.37)

Definition 2.9 The 1-norm of a stable system G(s) is defined as

kGk1 WD 1

2�

Z 1

�1
jG .j!/j d!: (2.38)

Definition 2.10 The 2-norm of a stable system G(s) is defined as

kGk2 WD
s

1

2�

Z 1

�1
jG .j!/j2d!: (2.39)

For a state-space described system defined in (2.52) below, the

H2 norm can be determined by

kGk2 D
p

trace .BTPoB/ (2.40)

where Po is the observability gramian, which will be discussed in Chap. 7.

Definition 2.11 The 1-norm of a stable system G(s) is defined as

kGk1 WD sup
!

jG .j!/j : (2.41)

The kGk1 equals the distance in the complex plane from the origin to the furthest
point on the Nyquist plot of G(s). It also appears as the peak value on the Bode
magnitude plot of G(s). The Hankel norm is also a representation of function size
[3], especially in the design framework of H1 loop shaping. The Hankel norm can
be exploited to determine the stability margin. Its definition is given below.

http://dx.doi.org/10.1007/978-1-4471-6257-5_7
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Definition 2.12 Hankel norm is used for determining the residual energy of a
system before t D 0. For a stable system described as y(t) D Gu(t), the Hankel norm
is defined as

kGkH D

vuuuuut sup
u2L2.�1;0/

Z 1

0

yT.t/y.t/

Z 0

�1
uT.t/u.t/dt

: (2.42)

This can be determined by

kGkH D
p

�max .PcPo/; (2.43)

where Pc and Po are the controllability gramian and observability gramian matrices,
respectively, which will be discussed in Chap. 7.

Example 2.2 Given a linear system G(s) as below, determine its H2 norm and
Hankel norm.

Px D
��1 0

0 �2

�
x C

�
1

1

�
u

y D ��1 2
�

x: (2.44)

The observability gramian Po and controllability gramian Pc are

Po D

2
64

1

2
�2

3

� 2

3
1

3
75 and (2.45)

Pc D

2
64

1

2

1

3
1

3

1

4

3
75 : (2.46)

Hence, one can obtain

kGk2 D
p

trace .BTPoB/ D 1p
6

; (2.47)

kGkH D
p

�max .PcPo/ D 1

6
: (2.48)

http://dx.doi.org/10.1007/978-1-4471-6257-5_7
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2.3 Linear System Theory

The aim of this section is to introduce some basic results in linear system theory
[1] that are particularly applicable to the work in the following chapters of this
book. The descriptions, properties, and algebras of linear systems facilitate the
development of optimal and robust control theory. These concepts preliminarily
offer tools for system analysis and synthesis, and construct the main scope of
modern control theory and control engineering.

2.3.1 Linear Systems

A finite-dimensional LTI dynamic system can be described by the following
equations:

Px D Ax C Bu; x.0/ D x0

y D Cx C Du; (2.49)

where 8 t � 0, x(t) 2R
n is the state vector, u(t) 2R

m is the input vector, and y(t) 2R
p

is the output vector. The transfer function from u to y is defined as

Y.s/ D G.s/U.s/; (2.50)

where Y(s) and U(s) are the Laplace transform of y(t) and u(t), respectively. It can
be shown that

G.s/ D D C C .sI � A/�1B: (2.51)

For simplicity, the state-space realization (A,B,C,D) can be written in a compact
form as

(2.52)

The state response in the time domain is

x.t/ D eAt x0 C
Z t

0

eA.t��/Bu .�/ d�; (2.53)

and the output response is

y.t/ D C eAt x0 C
Z t

0

C eA.t��/Bu .�/d� C Du.t/: (2.54)
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Fig. 2.3 Relationship of state-space similarity transformation

2.3.2 State Similarity Transformation

Different states can be defined to a linear time-invariant system given in (2.49) via
n � n nonsingular matrix T. Let

^
x D T x, and then the system can be described by

P̂
x D TAT �1^

x C TBu;
^
x.0/ D ^

x0 D T x0

y D C T �1^
x C Du (2.55)

The transformed system is derived via the state similarity transformation of (T, T� 1).
One has the same transfer function matrix from the input to the output, though with
different state-space model:

(2.56)

where
^

A D TAT �1,
^

B D TB ,
^

C D C T �1, and
^

D D D. The relationship of
this transformation is illustrated in Fig. 2.3. The conjugate system G�(s) of G(s) is
given by

(2.57)

Finally, if D is invertible, a state-space representation of G(s)� 1, the inverse of G(s),
is given by

(2.58)
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2.3.3 Stability, Controllability, and Observability

2.3.3.1 Stability

Stability is the most important property of a control system under study. In
this section, the concepts of bounded-input-bounded-output (BIBO) stability and
asymptotic stability will be discussed.

Definition 2.13 A system is BIBO stable if it generates a bounded output when it
is subject to any bounded input.

For a linear system modeled by transfer function G(s), it is called BIBO stable if
and only if all the poles of G(s) are in the open left-half plane, i.e., with negative real

parts. For instance, given a G.s/ D
"

1
sC1

1
.s�1/.sC2/

0 1
sC3

#
, one can find that the poles of

G(s) are f�1, 1, � 2, � 3g. Hence, it is not BIBO stable due to that there is a positive
real pole f1g. The following defines the asymptotic stability.

Definition 2.14 A system of (2.49) is called asymptotically stable if, for any given
initial state x0, the state kx(t)k ! 0, as t ! 1, when u � 0.

A necessary and sufficient condition for the system to be asymptotically stable
is that the real part of all eigenvalues of A should be negative. The asymptotic
stability is also called the internal stability, though the term is more often used in a
closed-loop system setting. Asymptotic stability implies BIBO stability; however,
BIBO stability does not imply the asymptotic stability. That is, asymptotically
stable systems must be BIBO stable, but a BIBO stable control system may not
be asymptotically stable [1]. The possible discrepancy between BIBO stability and
asymptotic stability of a control system arises from whether the underlying system is
completely controllable or completely observable. Controllability and observability
are introduced next.

2.3.3.2 Controllability

Taking the given system in (2.49), e.g., controllability refers to the ability of the
input signal u to transfer the state x from any initial state to any final state in finite
time. A system is called completely controllable if, for any given initial state x0 and
any final state xf , there exist a finite time Tf and an input u(t), 0 � t � Tf , which takes
x(0) D x0 to x(Tf ) D xf . Note that controllability of a system concerns only the matrix
pair (A,B), and the state similarity transformation does not affect the controllability.

To verify the controllability and the following observability, the rank test and
gramian test are the well-known methods [1]. The following summarizes these
schemes.
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Fig. 2.4 Circuit example on
observability

An n _ th-order system is completely controllable if any one of the following is
true:

1. The controllability matrix
�
B AB � � � An�1B

�
is of full rank.

2. The matrix
�
�I � A B

�
has full row rank at every eigenvalue of A.

3. The controllability gramian matrix

Wc D
Z t

0

eA� BBTeAT� d� (2.59)

is nonsingular and thus positive definite for every t > 0.
4. All the eigenvalues of A C BF can be assigned arbitrarily, where F is an

appropriately chosen state feedback matrix and always exists.

A system model in (2.49) is said to be stabilizable if there exists a state feedback
matrix F such that A C BF is stable (i.e., the state matrix of the feedback system is
Hurwitz).

2.3.3.3 Observability

The controllability describes the ability that the input drives the states, of which the
dual concept is the observability of a system. Taking the given system in (2.49), e.g.,
the observability means the extent to which the system state variables are “visible” at
the output. A system is called completely observable if, by setting the input identical
to zero, any initial state x(0) can be uniquely decided by the output y(t), 0 � t � T,
for some finite T. For example, Fig. 2.4 shows that the initial voltage across the
capacitor, x(0), cannot be determined by the voltage output y. If no input (voltage
source) u is applied to the circuit of Fig. 2.4, the initial state (voltage across the
capacitor) cannot be deduced from the output y. Note that the observability concerns
only the matrix pair (A,C), and the state similarity transformation does not change
the observability.
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The complete observability of a system can be found by using the rank test or
gramian test, which are summarized as follows:

1. The observability matrix

2
6664

C

CA
:::

CAn�1

3
7775 is of full rank.

2. The matrix

�
�I � A

C

�
has full column rank at every eigenvalue of A.

3. The observability gramian matrix

Wo D
Z t

0

eAT� C TC eA� d� (2.60)

is nonsingular and thus positive definite for every t > 0.
4. All eigenvalues of A C HC can be assigned arbitrarily, where H is an appropri-

ately chosen observer gain matrix and always exists.

A system model in (2.49) is said to be detectable if there exists an observer gain
matrix F such that A C HC is stable.

2.3.4 Minimal State-Space Realization

For any given LTI system in a state-space model (2.49), an adequately chosen state
similarity transfer matrix T can be applied to transform (2.52) into

(2.61)

Representation (2.61) is the so-called canonical decomposition form (Kalman
canonical decomposition). It can be easily derived that for zero initial states, the
transfer function of the system is actually

G.s/ D D C C .sI � A/�1B D D C CCO.sI � ACO/�1BCO; (2.62)

which shows that the transfer function only describes the controllable and observ-
able part of the system. Figure 2.5 shows the relation of (2.61) in a block diagram.
The dynamics of the uncontrollable, unobservable, or both, if they exist in the
system, will not be seen in the input/output relationship (the transfer function). That
explains the possible situation of a system being BIBO stable but not asymptotically
stable.
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Fig. 2.5 Block diagram of canonical decomposition function

There are many state-space realizations corresponding to the same transfer
function. The state-space realization (A,B,C,D) with the least dimensions of the
state is called a minimal realization of the transfer function. Minimal realization
(A,B,C,D) is always completely controllable and completely observable.

2.3.5 State-Space Algebra

Let state-space realizations of the systems G1(s) and G2(s) be given respectively by,

� Px1

y1

�
D
�

A1 B1

C1 D1

� �
x1

u1

�
(2.63)

and

� Px2

y2

�
D
�

A2 B2

C2 D2

� �
x2

u2

�
: (2.64)

Obviously, the system models formed from G1(s) and G2(s) could involve the
variables from both systems. By augmenting (2.63) and (2.64), one obtains

2
4 Px1

x2

y1

3
5 D

2
4A1 0 B1

0 I 0

C1 0 D1

3
5
2
4x1

x2

u1

3
5 )

2
4x2

Px1

y1

3
5 D

2
4 I 0 0

0 A1 B1

0 C1 D1

3
5
2
4x2

x1

u1

3
5 (2.65)
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Fig. 2.6 Block diagram of a parallel system

and

2
4 Px1

Px2

y2

3
5 D

2
4 I 0 0

0 A2 B2

0 C2 D2

3
5
2
4 Px1

x2

u2

3
5 )

2
4 Px2

Px1

y2

3
5 D

2
4A2 0 B2

0 I 0

C2 0 D2

3
5
2
4x2

Px1

u2

3
5 : (2.66)

It can be seen in the following that manipulations between two control system
models can be realized via the algebra of usual constant matrix operations.

2.3.6 State-Space Formula for Parallel Systems

As shown in Fig. 2.6, let u1 D u and u2 D u. Since

y D y1 C y2 D �
C1 C2

� �x1

x2

�
C .D1 C D2/ u; (2.67)

a state-space realization of the transfer function from u to y D y1 C y2 can be found
from (2.65) and (2.66) which have the same dimension of the total states as

2
4 Px1

Px2

y

3
5 D

2
4A1 0 B1

0 A2 B2

C1 C2 D1 C D2

3
5
2
4x1

x2

u

3
5 ; (2.68)

i.e.,

(2.69)
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Fig. 2.7 Block diagram of a cascaded system

2.3.7 State-Space Formula for Cascaded Systems

As shown in Fig. 2.7, let u1 D u, u2 D y1, and y D y2. Then, one has a state-space
realization of the transfer function from (2.65) and (2.66) by matrix multiplication
as

2
4 Px1

Px2

y

3
5 D

2
4 I 0 0

0 A2 B2

0 C2 D2

3
5
2
4 Px1

x2

u2

3
5 D

2
4 I 0 0

0 A2 B2

0 C2 D2

3
5
2
4A1 0 B1

0 I 0

C1 0 D1

3
5
2
4x1

x2

u

3
5

D
2
4 A1 0 B1

B2C1 A2 B2D1

D2C1 C2 D2D1

3
5
2
4x1

x2

u

3
5 ; (2.70)

or equivalently

2
4 Px2

Px1

y

3
5 D

2
4A2 0 B2

0 I 0

C2 0 D2

3
5
2
4 I 0 0

0 A1 B1

0 C1 D1

3
5
2
4x2

x1

u

3
5 D

2
4A2 B2C1 B2D1

0 A1 B1

C2 D2C1 D2D1

3
5
2
4x2

x1

u

3
5 :

(2.71)

Hence,

(2.72)

2.3.8 State-Space Formula for Similarity Transformation

Define a new state variable vector
^
x D T x. Then one has

P̂
x D T Px; (2.73)

x D T �1^
x (2.74)
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From (2.49), (2.73) and (2.74),

P̂
x D T Px D TAx C TBu D �

TAT �1
	^

x C .TB/u (2.75)

and

P̂
x D y D Cx C Du D �

C T �1
	^

x C Du: (2.76)

This implies

(2.77)

Consider the specific case that A D
�

A11 A12

A21 A22

�
, B D

�
B1

B2

�
, C D �

C1 C2

�
,

and T D
�

I X

0 I

� 

i:e:; T �1 D

�
I �X

0 I

��
which is helpful to characterize the

minimum realization of the state-space solutions later. Then,

T
�
A B

� D
�

I X

0 I

� �
A11 A12 B1

A21 A22 B2

�
D
�

A11 C XA21 A12 C XA22 B1 C XB2

A21 A22 B2

�

(2.78)

and

�
TA

C

�
T �1 D

2
4A11 C XA21 A12 C XA22

A21 A22

C1 C2

3
5� I �X

0 I

�

D
2
4A11 C XA21 �A11X C XA21X C A12 C XA22

A21 �A21X C A22

C1 �C1X C C2

3
5 : (2.79)

This is equivalent to the matrix manipulations of

(2.80)
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2.4 Linear Fractional Transformations and Chain
Scattering-Matrix Description

Consider a general feedback control framework shown in Fig. 2.8, where P denotes
the interconnection system of the controlled plant, namely, the standard control (or
compensation) configuration (SCC) [10]. The closed-loop transfer function from w
to z in Fig. 2.8 is given by

LFTl .P; K/ D LFTl


�
P11 P12

P21 P22

�
; K

�
WD P11 C P12K.I � P22K/�1P21;

(2.81)

where LFT stands for the linear fractional transformation and the subscript “l”
stands for “lower.” Different from the LFT, the chain scattering-matrix description
(CSD) developed in the network circuits provides a straightforward interconnection
in a cascaded way. The CSD transforms a LFT into a two-port network connection.
Thus, many known theories which have been developed for a two-port network can
then be used. The definition of CSD is briefly introduced below, while the details
on background, properties, and use of CSD will be described in Chaps. 3, 4, and 5.
Figure 2.9 shows the right and left CSD representations.

Define right and left CSD transformations with G and K denoted by CSDr(G,K)
and by CSDl

� QG; K
	
, respectively [9], as

CSDr .G; K/ D CSDr


�
G11 G12

G21 G22

�
; K

�
WD .G12 C G11K/ .G22 C G21K/�1

(2.82)

P
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z w

Fig. 2.8 Linear fractional
transformation
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Fig. 2.9 Right and left CSD (a) Right CSD (b) Left CSD

http://dx.doi.org/10.1007/978-1-4471-6257-5_3
http://dx.doi.org/10.1007/978-1-4471-6257-5_4
http://dx.doi.org/10.1007/978-1-4471-6257-5_5
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Fig. 2.10 Unity feedback
control system

and

CSDl
� QG; K

	 D CSDl


� QG11
QG12

QG21
QG22

�
; K

�
WD �� QG11 � K QG21

	�1 � QG12 � K QG22

	
;

(2.83)

where G22 and QG11 are square and invertible. Note that, if P21 is invertible, the SCC
matrix P can be transformed to a right CSD as

G D
�

P12 � P11P21
�1P22 P11P21

�1

� P21
�1P22 P21

�1

�
: (2.84)

Also, if P12 is invertible, the SCC matrix P can be transformed to a left CSD as

QG D
�

P12
�1 P12

�1P11

P22P12
�1 P21 � P22P12

�1P11

�
: (2.85)

Example 2.3 Consider the unity feedback control system in Fig. 2.10, where Pp is
a SISO-controlled plant. Find its corresponding LFTl and CSD representations.

Let z D



ye

u

�
, w D r, and y D ye.

From the unity feedback control system, by definition, as u D 0, one has ym D 0;

hence, r D ye from r � Ppu D ye so that P11 D

0
@ye

u

1
A

r
juD0 D



1

0

�
and P21 D

ye

r
juD0 D 1. Similarly, as r D 0, one can also obtain

P12 D



ye

u

�

u
jrD0 D


�Pp

1

�
and P22 D ye

u
jrD0 D �Pp:

The closed-loop transfer function from r to z D



ye

u

�
is presented as below

(Fig. 2.11).
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From

z D LFTl .P; K/ w D
h
P11 C P12.I � KP22/�1KP21

i
w;

one has



ye

u

�
D



1

K

�
.1 C PP K/�1r:

From the control block diagram, as ye D 0, one has, by the definition of the

right CSD, G11 D

0
@ye

u

1
A

u

ˇ̌
yeD0 D



0

1

�
and G21 D r

u

ˇ̌
yeD0 D Pp , since

r � Ppu D ye D 0. As u D 0, one then has

G12 D



ye

u

�

ye

juD0 D



1

0

�
and from r � Ppu D ye:

Equivalently, the closed-loop transfer function from r to z D



ye

u

�
can be

represented by Fig. 2.12.
From z D CSDr(G,K) w D (G11K C G12)(G21K C G22)� 1w, one has



ye

u

�
D



1

K

� �
1 C PpK

	�1
r:
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This concludes that

z D LFTl .P; K/ w D CSDr .G; K/ w:

Exercises

1. Prove that all the eigenvalues �(H) of a Hamiltonian matrix H are symmetric to
the j!-axis.

2. Determine the rank of A D
2
41 2 5 1

2 4 �1 2

1 2 1 9

3
5.

3. Let Q D

2
64

1p
2

1p
2

1p
2

� 1p
2

0 0

3
75, R D

�
1 1

0 1

�
, b D

2
41

1

1

3
5. Utilize the least square

approach to solve Ax D b where A D QR.
4. Consider the following system:

� Px1

Px2

�
D
��1 0

2 �4

� �
x1

x2

�
; x0 D

�
x10

x20

�
:

Find the response of x1(t) and x2(t).
5. Sketch the state trajectories of the following system in the (x1, x2, x3) plane for

x0 D
2
4 2

4

�4

3
5 and input u(t) D 0. Determine the controllability of the above

system

Px D
2
4 0 1 0

0 0 1

�6 �11 �6

3
5 x C

2
40

0

1

3
5 u

y D �
1 5 1

�
x:

6. The transfer function of a linear system is given by

Y.s/

U.s/
D s C a

s3 C 7s2 C 14s C 8
:

(a) Determine the values of a when the system is not completely controllable or
not completely observable.

(b) Define the state variables and derive the state-space model of which one of
the states is unobservable.

(c) Define the state variables and derive the state-space model of which one of
the states is uncontrollable.
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7. The state-space model of a third-order system is shown below:

Px1 D 2x1 C 3x2 C 3x3 C u

Px2 D �2x1 � 3x2 � 2u

Px3 D �2x1 � 2x2 � 5x3 C 2u

y D 7x1 C 6x2 C 4x3:

Use state similarity transformation to decouple the state-space model and
explain the observability and controllability for each of the subsystems.

8. Consider the following systems and decide in which function space they
belong to.

(a)
.s C 1/

.s C 2/ .s C 4/

(b)
2s � 1

.s C 1/ .s C 3/

(c)
1

s � 2

9. Consider the linear system below. Determine its H2 norm, H1 norm, and Hankel
norm.

Px D
�

0 1

� 1 �2

�
x C

�
0

1

�
u

y D �
1 0

�
x:
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