
2Image Processing

This chapter introduces basic concepts for mapping an image into an image, typi-
cally used for improving image quality or for purposes defined by a more complex
context of a computer vision process.

2.1 Point, Local, and Global Operators

When recording image data outdoors (a common case for computer vision), there
are often particular challenges compared to indoor recording, such as difficulties
with lighting, motion blur, or sudden changes in scenes. Figure 2.1 shows images
recorded in a car (for vision-based driver-assistance). An unwanted data is called
noise. These are three examples of noise in this sense of “unwanted data”. In the
first case we may aim at transforming the images such that the resulting images
are “as taken at uniform illumination”. In the second case we could try to do some
sharpening for removing the blur. In the third case we may aim at removing the
noise.

This section provides time-efficient methods that you may consider for prepro-
cessing your data prior to subsequent image analysis.

2.1.1 Gradation Functions

We transform an image I into an image Inew of the same size by mapping a grey
level u at pixel location p in I by a gradation function g onto a grey level v = g(u)

at the same pixel location p in Inew. Because the change only depends on value u at
location p, we also speak about a point operator defined by a gradation function g.

If the goal is that Inew satisfies some properties defined in terms of its histogram,
then we speak about a histogram transform.

R. Klette, Concise Computer Vision, Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-4471-6320-6_2, © Springer-Verlag London 2014

43

http://dx.doi.org/10.1007/978-1-4471-6320-6_2

44 2 Image Processing

Fig. 2.1 Top: A pair of images SouthLeft and SouthRight taken time-synchronized but of
different brightness; see the shown grey-level histograms. Bottom left: Blurring caused by rain in
image Wiper. Bottom right: Noise in a scene Uphill recorded at night

Histogram Equalization We transform a scalar image I such that all grey levels
appear equally often in the transformed image Inew. The goal is to achieve that

HInew(u) = const = NcolsNrows

Gmax + 1
(2.1)

for all u ∈ {0,1, . . . ,Gmax}.
Unfortunately, this is not possible in general, due to the constraint that identical

values in I can only map on the same value in Inew. For example, a binary image
I cannot be mapped onto a histogram-equalized grey-level image Inew (even in the
case if we would have a continuous binary image; but having digital images also
contributes to excluding perfect equalization). The following transform is thus just
an approximate solution towards the ideal goal.

Given is an Ncols × Nrows scalar image I with absolute frequencies HI (u) for
0 ≤ u ≤ Gmax. We transform I into an image Inew of the same size by mapping
intensities u in I by the following gradation function g onto new intensities v = g(u)

in Inew:

g(u) = cI (u) · Gmax (2.2)

2.1 Point, Local, and Global Operators 45

Fig. 2.2 Left: Input image RagingBull (in the public domain) with histogram. Right: The same
image after histogram equalization

Fig. 2.3 Graph of the
gradation function for linear
scaling, defined by being
incident with points (umin,0)

and (umax,Gmax)

where cI is the relative cumulative frequency function. Figure 2.2 illustrates such a
histogram equalization.

It is not difficult to show the equalization property for the histogram transform,
defined by (2.2), using the property that the cumulative relative frequency cI is an
increasing function. The relative histogram hI (u) corresponds to an estimate of a
density function, cI (u) to an estimate of a probability distribution function, and
hInew(u) to an estimate of the uniform density function.

Linear Scaling Assume that an image I has positive histogram values in a limited
interval only. The goal is that all values used in I are spread linearly onto the whole
scale from 0 to Gmax. Let umin = min{I (x, y) : (x, y) ∈ Ω}, umax = max{I (x, y) :
(x, y) ∈ Ω}, and

a = −umin and b = Gmax

umax − umin
(2.3)

g(u) = b(u + a) (2.4)

As a result, pixels having the value umin in the image I now have the value 0 in the
resulting image Inew, and pixels having the value umax in the image I now have the
value Gmax in Inew. This is illustrated in Fig. 2.3. This figure can also serve as an

46 2 Image Processing

illustration when discussing the correctness of the histogram transform defined by
(2.4).

Conditional Scaling As another example of a use of a gradation function, we
want to map an image J into an image Jnew, such that it has the same mean and the
same variance as an already given image I . For this conditional scaling, let

a = μJ · σI

σJ

− μI and b = σJ

σI

(2.5)

g(u) = b(u + a) (2.6)

Now we map the grey level u at pixel p in J onto the new value v = g(u) at the
same pixel p in Jnew. It is not difficult to show that μJnew = μI and σJnew = σI .
The performed normalization is the same as in (1.12), where we normalized data
measures.

2.1.2 Local Operators

For a given Ncols × Nrows image I , we consider sliding windows Wp , each of size
(2k + 1) × (2k + 1), where the reference point p is always at the centre of the
window. The reference point moves into all possible pixel locations of I and so
moves the window over the image. At these locations we perform a local operation;
the result of the operation defines the new value at p. Thus, the input image I is
transformed into a new image J .

Two Examples: Local Mean and Maximum For example, the local operation
can be the local mean, J (p) = μWp(I), with

μWp(I) = 1

(2k + 1)2
·

+k∑

i=−k

+k∑

j=−k

I (x + i, y + j) (2.7)

for p = (x, y).
As another example, the local operation can be the calculation of the local maxi-

mum

J (p) = max
{
I (x + i, y + j) : −k ≤ i ≤ k ∧ −k ≤ j ≤ k

}
(2.8)

for p = (x, y). See Fig. 2.4 for an example.
Windows centred at p and not completely contained in I , require a special

“border-pixel strategy”; there is no general proposal for such a strategy. One option
is to consider the same local operation just for a smaller window, which is possible
for the two examples of local operations given above.

2.1 Point, Local, and Global Operators 47

Fig. 2.4 Top, left: Original image Set1Seq1 with Ncols = 640. Top, right: Local maximum for
k = 3. Bottom, left: Local minimum for k = 5. Bottom, right: Local operator using the 3 × 3 filter
kernel shown in the middle of Fig. 2.5

Fig. 2.5 Left: General representation for a 3 × 3 filter kernel. Middle: Filter kernel illustrated in
Fig. 2.4, bottom, right, approximating a derivative in x-direction. Right: The filter kernel of a 3 × 3
box filter

Linear Operators and Convolution A linear local operator is defined by a con-
volution of an image I at p = (x, y) with a filter kernel W ,

J (p) = I ∗ W(p) = 1

S

+k∑

i=−k

+k∑

j=−k

wi,j · I (x + i, y + j) (2.9)

with weights wi,j ∈ R and a scaling factor S > 0. The arguments in (2.9) go out
of Ω if p is close to the border of this image carrier. A theorem says that then you
apply a modulo rule conceptually equivalent to a 2D periodic copying of the image
I on Ω into the grid Z

2.
The array of (2k + 1) × (2k + 1) weights and scaling factor S define the filter

kernel W . It is common to visualize filter kernels W of linear local operators as
shown in Fig. 2.5.

Equation (2.7) is an example of such a linear local operator, known as a box
filter. Here we have all weights equal to 1, and S = (2k + 1)2 is the sum of all those
weights.

48 2 Image Processing

General View on Local Operators We summarize the properties of local opera-
tors:
1. Operations are limited to windows, typically of square and odd size (2k + 1) ×

(2k + 1); of course, with respect to isotropy (i.e. rotation invariance), approxi-
mately circular windows should be preferred instead, but rectangular windows
are easier to use.

2. The window moves through the given image following a selected scan order
(typically aiming at a complete scan, having any pixel at the reference position
of the window at some stage).

3. There is no general rule how to deal with pixels close to the border of the image
(where the window is not completely in the image anymore), but they should be
processed as well.

4. The operation in the window should be the same at all locations, identifying the
purpose of the local operator.

5. The results can either be used to replace values in place at the reference points in
the input image I , defining a sequential local operator where new values prop-
agate like a “wave” over the original values (windows of the local operator then
contain the original data and already-processed pixel values), or resulting values
are written into a second array, leaving the original image unaltered this way,
defining a parallel local operator, so called due to the potential of implementing
this kind of a local operator on specialized parallel hardware.

In case of k = 0 (i.e., the window is just a single pixel), we speak about a point
operator. If k grows so that the whole picture is covered by the window, then it
turns into a global operator. The 2D Fourier transform of an image is an example
for a global transform.

Insert 2.1 (Zamperoni) There is immense diversity of published proposals for
image processing operators due to the diversity of image data and particular
tasks in applications. For example, the book [R. Klette and P. Zamperoni. Handbook

of Image Processing Operators. Wiley, Chichester, 1996] details many of the usual
point, local, and global operators.

The memory of Piero Zamperoni (1939–1998), an outstanding educator in
pattern recognition, is honoured by the IAPR by issuing the Piero Zamperoni
Best Student Paper Award at their biennial ICPR conferences.

2.1.3 Fourier Filtering

The inverse 2D DFT (see (1.23)) transforms a Fourier transform I back from the
frequency domain into the spatial domain. The inverse 2D DFT will lead to a real-
valued function I as long as I satisfies the symmetry property of (1.29). Thus, any
change in the frequency domain is constrained by this.

2.1 Point, Local, and Global Operators 49

Fourier Filtering The inverse 2D DFT can be read as follows: the complex num-
bers I(u, v) are the Fourier coefficients of I , defined for different frequencies u

and v. Each Fourier coefficient is multiplied with a combination of sine and cosine
functions (see the Eulerian formula (1.22)), and the sum of all those combinations
forms the image I . In short, the image I is represented by basis functions being
powers of roots of unity in the complex plane, and the Fourier coefficients specify
this basis function representation.

This means that if we modify one of the Fourier coefficients (and its symmetric
coefficient due to the constraint imposed by the symmetry property) before applying
the inverse 2D DFT, then we obtain a modified function I .

For a linear transform of the image I , there are two options:
1. We modify the image data by a linear convolution

J (x, y) = (I ∗ G)(x, y) =
Ncols−1∑

i=0

Nrows−1∑

j=0

I (i, j) · G(x − i, y − j) (2.10)

in the spatial domain, where G is the filter kernel (also called the convolution
function). Function J is the filtered image.

2. We modify the 2D DFT I of I by multiplying the values in I, position by position,
with the corresponding complex numbers in G [i.e., I(u, v) ·G(u, v)]. We denote
this operation by I ◦ G (not to be confused with matrix multiplication). The re-
sulting complex array is transformed by the inverse 2D DFT into the modified
image J .
Interestingly, both options lead to identical results assuming that G is the 2D

DFT of G, due to the convolution theorem:

I ∗ G equals the inverse 2D DFT of I ◦ G (2.11)

Thus, either a convolution in the spatial domain or a position-by-position multi-
plication in the frequency domain produce identical filtered images. However, in
the convolution case we miss the opportunity to design frequency-dependent filter
functions in the frequency domain.

Steps of Fourier Filtering Given is an image I and a complex-valued filter func-
tion G (which is satisfying the symmetry property of (1.29)) in the frequency do-
main. Apply an FFT program for doing the following; if required for the applied
FFT program, first map the image I into a larger 2n × 2n array:
1. Transform the image I into the frequency domain, into the complex-valued I by

using the FFT program.
2. Multiply the complex-valued I, element by element, with the complex-valued

filter function G.
3. Transform the result back into the spatial domain by using the FFT program for

the inverse DFT.
The filter function G can be obtained as the Fourier transform of a filter kernel G

in the spatial domain. It is common procedure to design filter functions G directly
in the frequency domain.

50 2 Image Processing

Fig. 2.6 1D profiles of rotation-symmetric filter functions. Top: A linear high-pass filter and an
ideal low-pass filter. Bottom: An exponential high-emphasis filter and a linear band-pass filter

Example 2.1 The box filter is a linear convolution in the spatial domain. Its filter
kernel is defined by the weights G(x,y) = 1/a for (x, y) in a (2k + 1) × (2k + 1)

window, centred at the origin (0,0), with a = (2k + 1)2. Outside of this window we
have that G(x,y) = 0.

The 2D DFT of this function G has amplitudes close to 1 for low frequencies,
with a steep decrease in amplitudes towards zero for higher frequencies.

The Fourier transform G of Example 2.1 is a typical low-pass filter: low frequen-
cies are “allowed to pass” (because multiplied with values of amplitudes close to 1),
but higher frequencies are “drastically reduced” (because multiplied with values of
amplitude close to 0).

Design of Filter Functions The frequency domain is well suited for the design
of filter functions. See Fig. 2.6. We may decide for a high-pass filter (e.g., for edge
detection, or for visualizing details and for suppressing low frequencies), a high-
emphasis filter (e.g., for enhancing contrast), a band-pass filter (for allowing only
a certain range of frequencies “to pass”), or a filter that eliminates or enhances se-
lected frequencies (under proper consideration of the symmetry constraint). The
impact of a low-pass filter is a reduction of outliers and of contrast, i.e. a smoothing
effect.

Attributes “linear”, “exponential”, or “ideal” of a filter function specify the way
how the transition is defined from large amplitudes of the filter to low amplitudes.
See Fig. 2.6 for examples of transitions. Low-pass and band-pass filtering of an
image is illustrated in Fig. 2.7.

Besides the flexibility in designing filter functions, the availability of time-
efficient 2D FFT algorithms is also an important argument for using a DFT-based
filter instead of a global convolution. Local convolutions are normally more effi-
ciently performed in the spatial domain by a local operator.

2.2 Three Procedural Components

This section introduces three procedural components that are commonly used in
image processing programs, such as for local operators, but also when implementing
particular image analysis or computer vision procedures.

2.2 Three Procedural Components 51

Fig. 2.7 Upper row, left: Intensity channel of image Emma, shown also in colour in Fig. 2.9.
Upper row, right: Its spectrum, centred and with log-transform. Lower row, left: An ideal low-pass
filtered Emma, showing a typical smoothing effect. Lower row, right: An exponential-band-pass
filtered Emma, already showing more higher frequencies than lower frequencies

2.2.1 Integral Images

The calculation of an integral image Iint for a given image I is a common prepro-
cessing step for speeding up operations on I which involve rectangular windows
(e.g. for feature detection). “Integration” means adding small units together. In this
case, the small units are the pixel values. For a pixel p = (x, y), the integral value

Iint(p) =
∑

1≤i≤x∧1≤j≤y

I (i, j) (2.12)

is the sum of all the values I (i, j) at pixel locations q = (i, j) that are neither below
p nor right of p. See Fig. 2.8, left.

52 2 Image Processing

Fig. 2.8 Left: At Iint(x, y) we have the sum of all the shown pixel values. Right: If an algorithm
requires to use the sum of all pixel values in the shown rectangular window, then we only need
to combine the values of the integral image in the four corners p, q , r , and t ; see the text for the
formula

Insert 2.2 (The Introduction of Integral Images into Computer Vision) In-
tegral images have been introduced in the Computer Graphics literature in
[F.C. Crow. Summed-area tables for texture mapping. Computer Graphics, vol. 18, pp. 207–

212, 1984] and then popularized by [J.P. Lewis. Fast template matching. In Proc. Vision

Interface, pp. 120–123, 1995] and [P. Viola and M. Jones. Robust real-time object detec-

tion. Int. J. Computer Vision, pp. 137–154, 2001] in the Computer Vision literature.

Now consider a rectangular window W in an image defining four pixels p, q , r ,
and s, as illustrated in Fig. 2.8, right, with q , r , and s just one pixel away from W .
The sum SW of all pixel values in W is now simply defined by

SW = Iint(p) − Iint(r) − Iint(s) + Iint(q) (2.13)

We only have to perform one addition and two subtractions, independent upon the
size of the rectangular window W . This will later (in this book) prove to be very
handy for classifying objects shown in images.

Example 2.2 (Number of Operations with or Without Integral Image) Assume that
we calculate the sum in an n×m window by using (2.13). We have three arithmetic
operations, no matter what are the values of m or n.

Without an integral image, just by adding all the m · n numbers in the window,
we have m · n − 1 arithmetic operations.

If we also count the addressing arithmetic operations, for the sequential sliding
window in the integral image, they are reduced to four ++ increments if we keep the
addresses for pixels p, q , r , and s in address registers.

2.2 Three Procedural Components 53

Fig. 2.9 Illustrations of picture pyramids. Left: A regular pyramid is the assumed model behind
subsequent size reductions. Left, top: Sketch of pairwise disjoint arrays. Left, bottom: Example of
layers for image Emma

Observation 2.1 After one preprocessing step for generating the integral image,
any subsequent step, requiring to know the sum of pixel values in a rectangular
window, only needs constant time, no matter what is the size of the window.

2.2.2 Regular Image Pyramids

A pyramid is a common data structure used for representing one input image I at
different sizes. See Fig. 2.9. The original image is the base layer of the pyramid.
Images of reduced sizes are considered to be subsequent layers in the pyramid.

Use of Scaling Factor 2 If scaling down by factor 2, as illustrated in Fig. 2.9,
then all additional levels of the pyramid require less than one third of the space of
the original image, according to the geometric series

1 + 1

2 · 2
+ 1

22 · 22
+ 1

23 · 23
+ · · · < 4

3
(2.14)

When reducing the size from one layer to the next layer of the pyramid, bottom-
up, the mean was calculated for 2 × 2 pixels for generating the corresponding sin-
gle pixel at the next layer. For avoiding spatial aliasing, it is also recommended to
perform some Gauss smoothing (to be explained in the following section) prior to
taking those means.

By creating a new pixel r in Layer n + 1 of the pyramid, defined by (say) four
pixels p1, p2, p3, and p4 at Layer n, we create new adjacencies (p1, r), (p2, r),
(p3, r), and (p4, r), additionally to (say) 4-adjacency in Layer n, as illustrated in

54 2 Image Processing

Fig. 2.9, right. For going via adjacent pixels from pixel location p to pixel location
q in image I , we now also have the option to go first up in the pyramid to some
level, then a few steps sideward in this level, and again down to q . In general, this
supports shorter connecting paths than only using 4-adjacency in the input image I .

Example 2.3 (Longest Path in a Regular Pyramid of Scaling Factor 2) Assume an
image I of size 2n × 2n and a regular pyramid on top of this image created by using
scaling factor 2.

For the longest path between two pixel locations, we consider p and q being
diagonal corners in I . Using 4-adjacency in I , their distance to each other is 2n − 1
steps towards one side, and again 2n − 1 steps towards another side, no matter in
which order we do those steps. Thus, the longest path in I , not using the pyramid,
equals

2n+1 − 2 (2.15)

This reduces to a path of length 2n when also using the adjacencies defined by the
pyramid.

Observation 2.2 Adjacencies in a pyramid reduce distances between pixels in an
image significantly; this can be used when there is a need to send a “message” from
one pixel to others.

Pyramids can also be used for starting a computer vision procedure at first at
one selected level in the data structure, and results are then refined by propagating
them down in the pyramid to layers of higher resolution. We will discuss examples
at some places in the book.

2.2.3 Scan Orders

The basic control structure of an image analysis program (not only for local opera-
tors, also, e.g. for component labelling) typically specifies a scan order for visiting
all or some of the pixels.

Standard Scan Order and Variants Figure 2.10 illustrates not only the standard
scan order, but also others that might be of interest under particular circumstances.
Spiral or meander scans offer the opportunity that prior calculations are used at the
next location of the sliding window, because only 2k + 1 pixels enter the window,
replacing 2k + 1 “leaving” pixels.

Insert 2.3 (Hilbert, Peano, and Euclid) In 1891, D. Hilbert (1862–1943),
the major German mathematician, defined a curve filling completely the unit
square, following Jordan’s initial definition of a curve. A finite number of rep-
etitions of this construction, as illustrated in Fig. 2.11, leads to a Hilbert scan

2.2 Three Procedural Components 55

Fig. 2.10 Scan orders: standard (upper left), inward spiral (upper middle), meander (upper right),
reverse standard (lower left), magic square (lower middle), and selective standard (as used in inter-
laced scanning), e.g. every second row (lower right)

in a grid of size 2n × 2n, not to be confused with the original curve defined by
Hilbert in the Euclidean space. Hilbert’s curve is a variant of a curve defined
in 1890 by the Italian mathematician G. Peano (1858–1932) for the same
purpose.

Euclid of Alexandria (about −300) was a Greek mathematician, known
for his Elements, which was the standard work in Geometry until the 19th
century.

A magic square scan (Fig. 2.10, bottom, middle, shows a simple 4 × 4 example)
generates a pseudo-random access to pixels; in a magic square, numbers add up
to the same sum in each row, in each column, and in forward and backward main
diagonals. A Hilbert scan is another option to go towards pseudo-random access (or
output, e.g. for generating a picture on a screen). See Fig. 2.11.

Hilbert Scan Fig. 2.11 specifies the Hilbert scan in a way that we enter the image
at its north–west corner, and we leave it at its north–east corner. Let us denote the
four corners of a 2n×2n picture by a, b, c, d , starting at the north–west corner and in
clock-wise order. We assume a Hilbert scan Hn(a, d, c, b), where we start at corner
a, continue then with corner d , proceed to corner c, and terminate then at corner b.

H1(a, b, c, d) is a scan of a 2×2 image, where we just visit in the order a, b, c, d

as shown.

56 2 Image Processing

Fig. 2.11 Hilbert scans for 2 × 2, 4 × 4, or 8 × 8 images illustrating the recursive extension to
larger images of size 2n × 2n

Hn+1(a, d, c, b) is a scan where we start at the north–west corner; we perform
Hn(a, b, c, d), followed by one step down, then Hn(a, d, c, b), followed by one
step to the right, then (again) Hn(a, d, c, b), followed by one step up, and finally
Hn(c, d, a, b), which takes us to the north–east corner of the 2n+1 × 2n+1 image.

2.3 Classes of Local Operators

Local intensity patterns in one image can be considered to be “fairly” independent
if they are at some distance to each other within the carrier Ω . Local operators make
good use of this and are time-efficient and easy to implement on usual sequential
and parallel hardware. Thus, not surprisingly, there is a large diversity of proposed
local operators for different purposes. This section illustrates this diversity by only
providing a few “popular” examples for four classes of local operators.

2.3.1 Smoothing

Image smoothing aims at eliminating “outliers” in image values considered to be
noise in a given context.

Box Filter The (2k + 1) × (2k + 1) box filter, performing the local mean calcula-
tion as already defined in (2.7), is a simple option for image smoothing. It removes
outliers, but it also reduces significantly the contrast C(I) of an image I . Often it
is sufficient to use just a 3 × 3 or 5 × 5 filter kernel. The local mean for larger ker-
nel sizes can be conveniently calculated by using the integral image Iint of input
image I .

Median Operator The median of 2n + 1 values is the value that would ap-
pear in sorted order at position n + 1. For example, 4 is the median of the
set {4,7,3,1,8,7,4,5,2,3,8} because 4 is in position 6 in the sorted sequence
1,2,3,3, 4,4,5,7,7,8,8.

2.3 Classes of Local Operators 57

Fig. 2.12 Left: The 2D Gauss function for expected values μx = μy = 0. Right: Four examples
of 1D Gauss functions for different expected values and different variances

The (2k+1)×(2k+1) median operator maps the median of a (2k+1)×(2k+1)

window to the reference pixel p. It achieves the removal of outliers with only an
insignificant change in image contrast C(I).

Insert 2.4 C.F. Gauss (1777–1855), a brilliant German mathematician work-
ing at Göttingen university, very well described in a novel “Measuring the
World” by D. Kehlmann (original publication in German in 2005).

Gauss Filter The Gauss filter is a local convolution with a filter kernel defined by
samples of the 2D Gauss function. This function is the product of two 1D Gauss
functions defined as follows:

Gσ,μx,μy (x, y) = 1

2πσ 2
exp

(
− (x − μx)

2 + (y − μy)
2

2σ 2

)

= 1

2πσ 2
· e− (x−μx)2

2σ 2 · e− (y−μy)2

2σ 2 (2.16)

where (μx,μy) combines the expected values for x- and y-components, σ is the
standard deviation (σ 2 is the variance), which is also called the radius of this func-
tion, and e is the Euler number.

The Gauss function is named after C.F. Gauss (see Insert 2.4). The Euler number
is named after L. Euler; see Insert 1.3 and 1.22 for the Eulerian formula. Figure 2.12
illustrates the Gauss function. The standard deviation σ is also called the scale.

Observation 2.3 The second line in (2.16) shows that a 2D Gauss filter can be
realized by two subsequent 1D Gauss filters, one in horizontal and one in vertical
direction.

58 2 Image Processing

Fig. 2.13 Filter kernel for
Gaussian smoothing defined
by k = 2 and s = 2 (i.e.
σ = 1)

Centred Gauss Function By assuming a centred Gauss function (i.e. with zero
means μx = μy = 0, as in Fig. 2.12, left), (2.16) simplifies to

Gσ (x, y) = 1

2πσ 2
exp

(
−x2 + y2

2σ 2

)
= 1

πs
· e− x2

2σ 2 · e− y2

2σ 2 (2.17)

Such a centred Gauss function is now sampled at (2k + 1) × (2k + 1) locations,
with the window’s reference pixel at the origin (0,0). This defines an important
filter kernel for a local operator, parameterized by σ > 0 and k ≥ 1. We will later
use it for defining differences of Gaussians (DoGs) and the scale space.

Figure 2.13 shows a sampled filter kernel for σ = 1. Following the three-sigma
rule in statistics, Gσ is sampled by a kernel of size 6σ − 1.

For an input image I , let

L(x, y,σ) = [I ∗ Gσ](x, y) (2.18)

be a local convolution with function Gσ with σ > 0. For implementation, we sample
Gσ symmetrically to the origin at w ×w grid positions for defining the filter kernel,
where w is the nearest odd integer to 6σ − 1.

Gaussian Scale Space For a scaling factor a > 1, we can step from the smoothed
image L(x, y,σ) to L(x, y, aσ). By using repeatedly scales an · σ , for an initial
scale σ and n = 0,1, . . . ,m, we create a set of subsequent layers of a Gaussian
scale space. See Fig. 2.14 for an example.

In this book, the layers in a scale space are all of identical size Ncols ×Nrows. For
implementation efficiency, some authors suggested to reduce this size by a factor
of 2 for any doubling of the used scale σ , thus creating octaves of blurred images.
The blurred images in one octave remain at constant size until the next doubling of
σ occurs, and the size is then again reduced by factor of 2. This is an implementation
detail, and we do not use octaves in the discussion of scale spaces in this book.

Sigma Filter This filter is just an example of a simple but often useful local
operator for noise removal. For an example of a result, see Fig. 2.15. Again, we
discuss this local operator for (2k + 1) × (2k + 1) windows Wp(I) with k ≥ 1. We
use a parameter σ > 0, considered to be an approximation of the image acquisition
noise of image I (for example, σ equals about 50 if Gmax = 255). Suggesting a
parallel local operator, resulting values are forming a new picture J as follows:

2.3 Classes of Local Operators 59

Fig. 2.14 Smoothed versions of the image Set1Seq1 (shown in Fig. 2.4, upper left) for σ = 0.5,
σ = 1, σ = 2, σ = 4, σ = 8, and σ = 16, defining six layers of the Gaussian scale space

1. Calculate the histogram of window Wp(I).
2. Calculate the mean μ of all values in the interval [I (p) − σ, I (p) + σ].
3. Let J (p) = μ.

In some cases, camera producers specify parameters for the expected noise of
their CCD or CMOS sensor elements. The parameter σ could then be taken as 1.5
times the noise amplitude. Note that

μ = 1

S
·

I (p)+σ∑

u=I (p)−σ

u · H(u) (2.19)

where H(u) denotes the histogram value of u for window Wp(I) and scaling factor
S = H(I (p) − σ) + · · · + H(I (p) + σ).

Figure 2.15 illustrates the effects of a box filter, the median filter, and the sigma
filter on a small image.

60 2 Image Processing

Fig. 2.15 Illustration of noise removal. Upper left: 128 × 128 input image with added uniform
noise (±15). Upper right: 3 × 3 box filter. Lower left: 3 × 3 sigma-filter with σ = 30. Lower right:
3 × 3 median filter

2.3.2 Sharpening

Sharpening aims at producing an enhanced image J by increasing the contrast of
the given image I along edges, without adding too much noise within homogeneous
regions in the image.

Unsharp Masking This local operator first produces a residual R(p) = I (p) −
S(p) with respect to a smoothed version S(p) of I (p). This residual is then added
to the given image I :

J (p) = I (p) + λ
[
I (p) − S(p)

]

= [1 + λ]I (p) − λS(p) (2.20)

2.3 Classes of Local Operators 61

Fig. 2.16 Illustration of unsharp masking with k = 3 and λ = 1.5 in (2.20). Upper left: 512×512
blurred input image Altar (of the baroque altar in the church at Valenciana, Guanajuato). Upper
right: Use of a median operator. Lower left: Use of a Gauss filter with σ = 1. Lower right: Use of
a sigma filter with σ = 25

where λ > 0 is a scaling factor. Basically, any of the smoothing operators of
Sect. 2.3.1 may be tried to produce the smoothed version S(p). See Fig. 2.16 for
three examples.

The size parameter k (i.e. the “radius”) of those operators controls the spatial
distribution of the smoothing effect, and the parameter λ controls the influence of
the correction signal [I (p) − S(p)] on the final output. Thus, k and λ are the usual
interactive control parameters for unsharp masking.

According to the second equation (2.20), the process is also qualitatively de-
scribed by the equation

J (p) = I (p) − λ′S(p) (2.21)

62 2 Image Processing

(for some λ′ > 0), which saves some computing time. Instead of applying unsharp
masking uniformly in the whole image I , we can also add some kind of local adap-
tivity, for example such that changes in homogeneous regions are suppressed.

2.3.3 Basic Edge Detectors

We describe simple edge detectors that follow the step-edge model, either by ap-
proximating first-order derivatives or by approximating second-order derivatives.

Discrete Derivatives The derivative of a unary function f in the continuous case
is defined by the convergence of difference quotients where a nonzero offset ε ap-
proaches 0:

df

dx
(x) = f ′(x) = lim

ε→0

f (x + ε) − f (x)

ε
(2.22)

The function f is differentiable at x if there is a limit for these difference quotients.
In the case of functions with two arguments, we have partial derivatives, such as

∂f

∂y
(x, y) = fy(x, y) = lim

ε→0

f (x, y + ε) − f (x, y)

ε
(2.23)

with respect to y, and analogously with respect to x.
However, in the discrete grid we are limited by a smallest distance ε = 1 between

pixel locations. Instead of just reducing the derivative in (2.23) to a difference quo-
tient for ε = 1, we can also go for a symmetric representation taking the difference
ε = 1 in both directions. The simplest symmetric difference quotient with respect to
y is then as follows:

Iy(x, y) = I (x, y + ε) − I (x, y − ε)

2ε

= I (x, y + 1) − I (x, y − 1)

2
(2.24)

where we decide for a symmetric difference for better balance. We cannot use any
smaller ε without doing some subpixel-kind of interpolations.

Equation (2.24) defines a very noise-sensitive approximation of the first deriva-
tive. Let Ix(x, y) be the corresponding simple approximation of ∂I

∂x
(x, y). The re-

sulting approximated magnitude of the gradient is then given by

√
Ix(x, y)2 + Iy(x, y)2 ≈ ∥∥grad I (x, y)

∥∥
2 (2.25)

This value combines results of two linear local operators, one with a filter kernel
representing Ix and one for Iy , shown in Fig. 2.17. The scaling factor 2 is in this
case not the sum of the given weights in the kernel; the sum of the weights is zero.
This corresponds to the fact that the derivative of a constant function equals zero.

2.3 Classes of Local Operators 63

Fig. 2.17 Filter kernels for
differences as defined
in (2.24)

Fig. 2.18 Filter kernels for
the Sobel operator

The result of a convolution with one of those kernels can be negative. Thus,
Ix and Iy are not images in the sense that we also have negative values here, and
also rational numbers, not only integer values in {0,1, . . . ,Gmax}. It is common to
visualize discrete derivatives such a Ix and Iy by showing rounded integer values of
|Ix | and |Iy |.

Insert 2.5 (Origin of the Sobel Operator) The Sobel operator was published
in [I.E. Sobel. Camera models and machine perception. Stanford, Stanford Univ. Press,

1970, pp. 277–284].

Sobel Operator The Sobel operator approximates the two partial derivatives of
image I by using the filter kernels shown in Fig. 2.18. The convolution with the filter
kernel approximating a derivative in the x-direction is shown in Fig. 2.4, bottom,
right.

These two masks are discrete versions of simple Gaussian convolutions along
rows or columns followed by derivative estimates described by masks in Fig. 2.17.
For example,

⎡

⎣
−1 0 1
−2 0 2
−1 0 1

⎤

⎦ =
⎡

⎣
1
2
1

⎤

⎦[−1 0 1
]

(2.26)

The two masks in Fig. 2.18 define two local convolutions that calculate approxima-
tions Sx and Sy of the partial derivatives. The value of the Sobel operator at pixel
location (x, y) equals

∣∣Sx(x, y)
∣∣ + ∣∣Sy(x, y)

∣∣ ≈ ∥∥grad I (x, y)
∥∥

1 (2.27)

This value is shown as grey level in the edge map defined by the Sobel operator. Of
course, this can also be followed by a detection of local maximum of the values of
the Sobel operator; this extension explains why the Sobel operator is also called an
edge detector.

64 2 Image Processing

Insert 2.6 (Origin of the Canny Operator) This operator was published in
[J. Canny. A computational approach to edge detection. IEEE Trans. Pattern Analysis Ma-

chine Intelligence, vol. 8, pp. 679–698, 1986].

Canny Operator The Canny operator maps a scalar image into a binary edge
map of “thin” (i.e. having the width of one pixel only) edge segments. The output is
not uniquely defined; it depends on two thresholds Tlow and Thigh with 0 < Tlow <

Thigh < Gmax, not counting a fixed scale used for Gaussian smoothing.
Let I be already the smoothed input image, after applying a convolution with a

Gauss function Gσ of scale σ > 0, for example 1 ≤ σ ≤ 2.
We apply now a basic gradient estimator such as the Sobel operator, which pro-

vides, for any p ∈ Ω , simple estimates for the partial derivatives Ix and Iy , allow-
ing one to have estimates g(p) for the magnitude ‖grad I (p)‖2 of the gradient and
estimates θ(p) for its direction atan2(Iy, Ix). The estimates θ(p) are rounded to
multiples of π/4 by taking (θ(p) + π/8)moduloπ/4.

In a step of non-maxima suppression it is tested whether a value g(p) is maximal
in the (now rounded) direction θ(p). For example, if θ(p) = π/2, i.e. the gradient
direction at p = (x, y) is downward, then g(p) is compared against g(x, y − 1) and
g(x, y + 1), the values above and below of p. If g(p) is not larger than the values
at both of those adjacent pixels, then g(p) becomes 0.

In a final step of edge following, the paths of pixel locations p with g(p) > Tlow
are traced, and pixels on such a path are marked as being edge pixels. Such a trace
is initialized by a location p with g(p) ≥ Thigh.

When scanning Ω , say with a standard scan, left-to-right, top-down, and arriving
at a (not yet marked) pixel p with g(p) ≥ Thigh, then
1. mark p as an edge pixel,
2. while there is a pixel location q in the 8-adjacency set of p with g(q) > Tlow,

mark this as being an edge pixel,
3. call q now p and go back to Step 2,
4. search for the next start pixel p until the end of Ω is reached.

By using two thresholds, this algorithm applies hysteresis: The following pixel q

may not be as good as having a value above Thigh, but it had at least one predecessor
on the same path with a value above Thigh; thus, this “positive” history is used to
support the decision at q , and we also accept g(q) > Tlow for continuation.

Insert 2.7 (Laplace) P.S. Marquis de Laplace (1749–1827) was a French ap-
plied mathematician and theoretical physicist.

Laplacian Following the step-edge model, edges are also identified with zero-
crossings of second-order derivatives. Common (simple) discrete approximations
of the Laplacian of an image I are defined by the filter kernels shown in Fig. 2.19.

2.3 Classes of Local Operators 65

Fig. 2.19 Three masks for
approximate calculations of
the Laplacian

In the following example we derive the filter kernel given on the left as an example
for operator discretization.

Example 2.4 For deriving the first mask in Fig. 2.19, assume that we map I into a
matrix of first-order difference quotients

Iy(x, y) = I (x, y + 0.5) − I (x, y − 0.5)

1
= I (x, y + 0.5) − I (x, y − 0.5)

and then again into a matrix of second-order difference quotients

Iyy(x, y) = Iy(x, y + 0.5) − Iy(x, y − 0.5)

= [
I (x, y + 1) − I (x, y)

] − [
I (x, y) − I (x, y − 1)

]

= I (x, y + 1) + I (x, y − 1) − 2 · I (x, y)

We do the same for approximating Ixx and add both difference quotients. This
defines an approximation of ∇2I =
I , which coincides with the first mask in
Fig. 2.19. Figure 2.20 illustrates a row profile of an image after applying this ap-
proximate Laplacian.

2.3.4 Basic Corner Detectors

A corner in an image I is given at a pixel p where two edges of different directions
intersect; edges can be defined by the step-edge or the phase congruency model.
See Fig. 2.21 for a general meaning of “corners” in images and Fig. 2.22 for an
illustration of three corners when zooming into an image.

Insert 2.8 (Hesse and the Hessian Matrix) The Hessian matrix is named after
L.O. Hesse (1811–1874), a German mathematician.

Corner Detection Using the Hessian Matrix Following the definition of a corner
above, it is characterized by high curvature of intensity values. Accordingly, it can
be identified by the eigenvalues λ1 and λ2 (see Insert 2.9) of the Hessian matrix

H(p) =
[
Ixx(p) Ixy(p)

Ixy(p) Iyy(p)

]
(2.28)

66 2 Image Processing

Fig. 2.20 Value profile of a row (close to the middle) in the resulting array when applying the
Laplacian to a smoothed version of the image Set1Seq1 (see Fig. 2.4, upper left) using scale
s = 2. The steep global minimum appears between branches of a shrub

Fig. 2.21 Detected corners
provide important
information for localizing and
understanding shapes in 3D
scenes

at pixel location p. If the magnitude of both eigenvalues is “large”, then we are at
a corner; one large and one small eigenvalue identifies a step edge, and two small
eigenvalues identify a low-contrast region.

Insert 2.9 (Trace of a Matrix, Determinant, and Eigenvalues) The trace
Tr(A) of an n×n matrix A = (aij) is the sum

∑n
i=1 aii of its (main) diagonal

elements. The determinant of a 2 × 2 matrix A = (aij) is given by

det(A) = a11a22 − a12a21

2.3 Classes of Local Operators 67

Fig. 2.22 Pixels p, q , and r are at intersections of edges; directions of those edges are indicated
by the shown blue lines. The shown discrete circles (of 16 pixels) are used in the discussion of the
FAST corner detector. Small window of image Set1Seq1

The determinant of a 3 × 3 matrix A = (aij) is given by

det(A) = a11a22a33 +a12a23a31 +a13a21a32 −a13a22a31 −a12a21a33 −a11a23a32

The eigenvalues of an n × n matrix A are the n solutions of its characteristic
polynomial det(A − λI) = 0, where I is the n × n identity matrix, and det
denotes the determinant.

Eigenvalues are real numbers for a real-valued matrix A. They can be
used for modelling stability of solutions of a linear equational system defined
by a matrix A.

The determinant of a square matrix is equal to the product of its eigenval-
ues, and the trace is equal to the sum of its eigenvalues.

Corner Detector by Harris and Stephens This corner detection method is
known as the Harris detector. Rather than considering the Hessian of the origi-
nal image I (i.e. second-order derivatives), we use the first-order derivatives of the
smoothed version L(., ., σ), as defined in (2.18), for some σ > 0. Let

G(p,σ) =
[

L2
x(p,σ) Lx(p,σ)Ly(p,σ)

Lx(p,σ)Ly(p,σ) L2
y(p,σ)

]
(2.29)

68 2 Image Processing

at pixel location p. The eigenvalues λ1 and λ2 of the matrix G represent changes in
the intensities in orthogonal directions in the image I . Instead of calculating those
eigenvalues, we consider the cornerness measure

H (p,σ, a) = det(G) − a · Tr(G) (2.30)

for a small parameter a > 0 (e.g. a = 1/25). Due to the general properties of eigen-
values, we have that

H (p,σ,λ) = λ1λ2 − a · (λ1 + λ1) (2.31)

If we have one large and one small eigenvalue (such as on a step edge), then having
also the trace in (2.30) ensures that the resulting value H (p,σ, a) remains reason-
ably small.

The cornerness measure H was proposed in 1988 as a more time-efficient way
in comparison to a calculation and analysis of eigenvalues. For results, see Fig. 2.23,
left.

Insert 2.10 (Origin of the Harris Detector) This method was published in
[C. Harris and M. Stephens. A combined corner and edge detector. In Proc. Alvey Vision

Conference, pp. 147–151, 1988].

FAST Time constraints in today’s embedded vision (i.e. in “small” indepen-
dent systems such as micro-robots or cameras in mini-multi-copters), define time-
efficiency as an ongoing task. Features from an accelerated segment test FAST iden-
tify a corner by considering image values on a digital circle around the given pixel
location p; see Fig. 2.22 for 16 image values on a circle of radius ρ = 3.

Cornerness test: The value at the centre pixel needs to be darker (or brighter)
compared to more than 8 (say, 11 for really identifying a corner and not just an
irregular pixel on an otherwise straight edge) subsequent pixels on this circle and
“similar” to the values of the remaining pixels on the circle.

For results, see Fig. 2.23, right.

Time Efficiency For being time efficient, we first compare the value at the centre
pixel against the values at locations 1, 2, 3, and 4 in this order (see Fig. 2.22); only in
cases where it still appears to be possible that the centre pixel passes the cornerness
test, we continue with testing more pixels on the circle, such as between locations
1, 2, 3, and 4. The original FAST paper proposes to learn a decision tree for time
optimization. The FAST detector in OpenCV (and also the one in libCVD) applies
SIMD instructions for concurrent comparisons, which is faster then the use of the
originally proposed decision tree.

Non-maxima Suppression FAST also applies non-maxima suppression for keep-
ing numbers of detected corners reasonably small. For example, for a detected cor-
ner, we can calculate the maximum difference T between the value at the centre

2.3 Classes of Local Operators 69

Fig. 2.23 Window of image Set1Seq1. Left: Detected corners using the Harris detector. Right:
Corners detected by FAST

pixel and values on the discrete circle being classified as “darker” or “brighter”
such that we still detect this corner. Non-maxima suppression deletes then in the
order of differences T .

Insert 2.11 (Origin of FAST) The paper [E. Rosten and T. Drummond. Machine

learning for high-speed corner detection. In Proc. European Conf. Computer Vision, vol. 1,

pp. 430–443, 2006] defined FAST as a corner detector.

2.3.5 Removal of Illumination Artefacts

Illumination artefacts such as differing exposures, shadows, reflections, or vi-
gnetting pose problems for computer vision algorithms. See Fig. 2.24 for examples.

Failure of Intensity Constancy Assumption Computer vision algorithms of-
ten rely on the intensity constancy assumption (ICA) that there is no change in
the appearance of objects according to illumination between subsequent or time-
synchronized recorded images. This assumption is actually violated when using
real-world images, due to shadows, reflections, differing exposures, sensor noise,
and so forth.

There are at least three different ways to deal with this problem. (1) We can trans-
form input images such that illumination artefacts are reduced (e.g. mapping images
into a uniform illumination model by removing shadows); there are proposals for
this way but the success is still limited. (2) We can also attempt to enhance com-
puter vision algorithms so that they do not rely on ICA, and examples for this option
are discussed later in this book. (3) We can map input images into images containing
still the “relevant” information for subsequent computer vision algorithms, without
aiming at keeping those images visually equivalent to the original data, but at re-
moving the impacts of varying illumination.

70 2 Image Processing

Fig. 2.24 Example images from real-world scenes (black pixels at borders are caused by im-
age rectification, to be discussed later in the book). The pair of images NorthLeft and
NorthRight in the top row show illumination differences between time-synchronized cameras
when the exposures are bad. The bottom-left image LightAndTrees shows an example where
trees can cause bad shadow effects. The bottom-right image MainRoad shows a night scene where
head-lights cause large bright spots on the image

We discuss two methods for the third option. A first approach could be to use ei-
ther histogram equalization or conditional scaling as defined before. Those methods
map the whole image uniformly onto a normalized image, normalized with respect
to a uniform grey-level histogram or constant mean and standard deviation, respec-
tively. But those uniform transforms are not able to deal with the non-global nature
of illumination artefacts.

For example, in vision-based driver assistance systems, there can be the “danc-
ing light” from sunlight through trees, creating local illumination artefacts. See the
bottom-left image in Fig. 2.24.

Using Edge Maps Local derivatives do not change when increasing image val-
ues by an additive constant. Local derivatives, gradients, or edge maps can be
used to derive image representations that are less impacted by lighting varia-
tions.

For example, we may simply use Sobel edge maps as input for subsequent com-
puter vision algorithms rather than the original image data. See Fig. 2.25 on the

2.3 Classes of Local Operators 71

Fig. 2.25 Original image Set2Seq1 (left) has its residual image (middle), computed using TVL2
(not discussed in this textbook) for smoothing, and the Sobel edge map (right) shown

right. The Sobel edge map is not a binary image, and also not modified due to par-
ticular heuristics (as it is the case for many other edge operators), just the “raw edge
data”.

Insert 2.12 (Video Test Data for Computer Vision on the Net) The shown
synthetic image in Fig. 2.25 is taken from Set 2 of EISATS, available online at
www.mi.auckland.ac.nz/EISATS. There are various test data available on the
net for comparing computer vision algorithms on recorded image sequences.
For current challenges, see also www.cvlibs.net/datasets/kitti/, the KITTI Vi-
sion Benchmark Suite, and the Heidelberg Robust Vision Challenge at ECCV
2012, see hci.iwr.uni-heidelberg.de/Static/challenge2012/.

Another Use of Residuals with Respect to Smoothing Let I be an original im-
age, assumed to have an additive decomposition

I (p) = S(p) + R(p) (2.32)

for all pixel positions p, S denotes the smooth component of image I (as above
when specifying sharpening), and R is again the residual image with respect to
the smoothing operation which produced image S. The decomposition expressed in
(2.32) is also referred to as the structure-texture decomposition, where the structure
refers to the smooth component, and the texture to the residual.

The residual image is the difference between an input image and a smoothed
version of itself. Values in the residual image can also be negative, and it might be
useful to rescale it into the common range of {0,1, . . . ,Gmax}, for example when
visualizing a residual image. Figure 2.25 shows an example of a residual image
R with respect to smoothing when using a TV-L2 operator (not explained in this
textbook).

http://www.mi.auckland.ac.nz/EISATS
http://www.cvlibs.net/datasets/kitti/
http://hci.iwr.uni-heidelberg.de/Static/challenge2012/

72 2 Image Processing

A smoothing filter can be processed in multiple iterations, using the following
scheme:

S(0) = I

S(n) = S
(
S(n−1)

)
for n > 0

R(n) = I − S(n)

(2.33)

The iteration number n defines the applied residual filter. When a 3 × 3 box filter is
used iteratively n times, then it is approximately identical to a Gauss filter of radius
n + 1.

The appropriateness of different concepts needs to be tested for given classes of
input images. The iteration scheme (2.33) is useful for such tests.

2.4 Advanced Edge Detectors

This section discusses step-edge detectors that combine multiple approaches into
one algorithm, such as combining edge-detection with pre- or post-processing into
one optimized procedure. We also address the phase-congruency model for defining
edges by discussing the Kovesi operator.

2.4.1 LoG and DoG, and Their Scale Spaces

The Laplacian of Gaussian (LoG) and the difference of Gaussians (DoG) are very
important basic image transforms, as we will see later at several places in the book.

Insert 2.13 (Origin of the LoG Edge Detector) The origin of the Laplacian
of Gaussian (LoG) edge detector is the publication [D. Marr and E. Hildreth. The-

ory of edge detection. Proc. Royal Society London, Series B, Biological Sciences, vol. 207,

pp. 187–217, 1980]. For this reason, it is also known as the Marr–Hildreth algo-
rithm.

LoG Edge Detector Applying the Laplacian for a Gauss-filtered image can be
done in one step of convolution, based on the theorem

∇2(Gσ ∗ I) = I ∗ ∇2Gσ (2.34)

where ∗ denotes the convolution of two functions, and I is assumed (for showing
this theorem) to be twice differentiable. The theorem follows directly when applying
twice the following general rule of convolutions:

D(F ∗ H) = D(F) ∗ H = F ∗ D(H) (2.35)

2.4 Advanced Edge Detectors 73

Fig. 2.26 The 2D Gauss
function is rotationally
symmetric with respect to the
origin (0,0); it suffices that
we show cuts through the
function graph of G and its
subsequent derivatives

where D denotes a derivative, and F and H are differentiable functions. We have:

Observation 2.4 For calculating the Laplacian of a Gauss-filtered image, we only
have to perform one convolution with ∇2Gσ .

The filter kernel for ∇2Gσ is not limited to be a 3 × 3 kernel as shown in
Fig. 2.19. Because the Gauss function is given as a continuous function, we can
actually calculate the exact Laplacian of this function. For the first partial derivative
with respect to x, we obtain that

∂Gσ

∂x
(x, y) = − x

2πσ 4
e−(x2+y2)/2σ 2

(2.36)

and the corresponding result for the first partial derivative with respect to y. We
repeat the derivative for x and y and obtain the LoG as follows:

∇2Gσ (x, y) = 1

2πσ 4

(
x2 + y2 − 2σ 2

σ 2

)
e−(x2+y2)/2σ 2

(2.37)

See Fig. 2.26. The LoG is also known as the Mexican hat function. In fact, it is an
“inverted Mexican hat”. The zero-crossings define the edges.

Advice on Sampling the LoG Kernel Now we sample this Laplacian into a (2k+
1) × (2k + 1) filter kernel for an appropriate value of k. But what is an appropriate
value for k? We start with estimating the standard deviation σ for the given class of
input images, and an appropriate value of k follows from this.

The parameter w is defined by zero-crossings of ∇2Gσ (x, y); see Fig. 2.26. Con-
sider ∇2Gσ (x, y) = 0 and, for example, y = 0. We obtain that we have both zero-
crossings defined by x2 = 2σ 2, namely at x1 = −√

2σ and at x2 = +√
2σ . Thus,

we have that

w = |x1 − x2| = 2
√

2σ (2.38)

74 2 Image Processing

Fig. 2.27 Laplacians of the images shown in Fig. 2.13, representing six layers in the LoG scale
space of the image Set1Seq1

For representing the Mexican hat function properly by samples, it is proposed to use
a window size of 3w × 3w = 6

√
2σ × 6

√
2σ . In conclusion we have that

2k + 1 × 2k + 1 = ceil
(
6
√

2σ
) × ceil

(
6
√

2σ
)

(2.39)

where ceil denotes the ceiling function (i.e. the smallest integer equal to or larger
than the argument).

The value of σ needs to be estimated for the given image data. Smoothing a
digital image with a very “narrow” (i.e. σ < 1) Gauss function does not make
much sense. So, let us consider σ ≥ 1. The smallest kernel (for σ = 1, thus
3w = 8.485 . . .) will be of size 9 × 9 (i.e., k = 4). For given images, it is of interest
to compare results for k = 4,5,6,

LoG Scale Space Figure 2.13 shows six layers of the Gaussian scale space for
the image Set1Seq1. We calculate the Laplacians of those six layers and show the
resulting images (i.e. the absolute values of results) in Fig. 2.27; linear scaling was
applied to all the images for making the intensity patterns visible. This is an example
of a LoG scale space. As in a Gaussian scale space, each layer is defined by the

2.4 Advanced Edge Detectors 75

scale σ , the used standard deviation in the Gauss function, and we can generate
subsequent layers when starting at an initial scale σ and using subsequent scales
an · σ for a > 1 and n = 0,1, . . . ,m.

Difference of Gaussians (DoG) The difference of Gaussians (DoG) operator is a
common approximation of the LoG operator, justified by reduced run time. Equa-
tion (2.17) defined a centred (i.e. zero-mean) Gauss function Gσ .

The DoG is defined by an initial scale σ and a scaling factor a > 1 as follows:

Dσ,a(x, y) = L(x, y,σ) − L(x, y, aσ) (2.40)

It is the difference between a blurred copy of image I and an even more blurred
copy of I . As for LoG, edges (following the step-edge model) are detected at zero-
crossings.

Regarding a relation between LoG and DoG, we have that

∇2Gσ (x, y) ≈ Gaσ (x, y) − Gσ (x, y)

(a − 1)σ 2
(2.41)

with a = 1.6 as a recommended parameter for approximation. Due to this approxi-
mate identity, DoGs are used in general as time-efficient approximations of LoGs.

DoG Scale Space Different scales σ produce layers Dσ,a in the DoG scale space.
See Fig. 2.28 for a comparison of three layers in LoG and DoG scale space, using
scaling factor a = 1.6.

Insert 2.14 (Origins of Scale Space Studies) Multi-scale image representa-
tions are a well-developed theory in computer vision, with manifold appli-
cations. Following the LoG studies by Marr and Hildreth (see Insert 2.13),
P.J. Burt introduced Gaussian pyramids while working in A. Rosenfeld’s
group at College Park; see [P. J. Burt. Fast filter transform for image processing. Com-

puter Graphics Image Processing, vol. 16, pp. 20–51, 1981].
See also [J.L. Crowley. A representation for visual information. Carnegie-Mellon Uni-

versity, Robotics Institute, CMU-RI-TR-82-07, 1981] and [A.P. Witkin. Scale-space fil-

tering. In Proc. Int. Joint Conf. Artificial Intelligence, pp. 1019–1022, 1983] for early
publications on Gaussian pyramids, typically created in increments by factor
a = 2, and resulting blurred images of varying size were called octaves.

Arbitrary scaling factors a > 1 were later introduced into scale-space the-
ory; see, for example, [T. Lindeberg. Scale-Space Theory in Computer Vision. Kluwer

Academic Publishers, 1994] and [J.L. Crowley and A.C. Sanderson. Multiple resolution

representation and probabilistic matching of 2-D grey-scale shape. IEEE Trans. Pattern

Analysis Machine Intelligence, vol. 9, pp. 113–121, 1987].

76 2 Image Processing

Fig. 2.28 LoG (left) and DoG (right) layers of image Set1Seq1 are generated for σ = 0.5 and
an = 1.6n for n = 0, . . . ,5, and the figure shows results for n = 1, n = 3, and n = 5

2.4.2 Embedded Confidence

A confidence measure is quantified information derived from calculated data, to be
used for deciding about the existence of a particular feature; if the calculated data
match the underlying model of the feature detector reasonably well, then this should
correspond to high values of the measure.

Insert 2.15 (Origin of the Meer–Georgescu Algorithm) This algorithm has
been published in [P. Meer and B. Georgescu. Edge detection with embedded confi-

dence. IEEE Trans. Pattern Analysis Machine Intelligence, vol. 23, pp. 1351–1365, 2001].

The Meer–Georgescu Algorithm The Meer–Georgescu algorithm detects edges
while applying a confidence measure based on the assumption of the validity of the
step-edge model.

2.4 Advanced Edge Detectors 77

1: for every pixel p in image I do
2: estimate gradient magnitude g(p) and edge direction θ(p);
3: compute the confidence measure η(p);
4: end for
5: for every pixel p in image I do
6: determine value ρ(p) in the cumulative distribution of gradient magnitudes;
7: end for
8: generate the ρη diagram for image I ;
9: perform non-maxima suppression;

10: perform hysteresis thresholding;

Fig. 2.29 Meer–Georgescu algorithm for edge detection

Four parameters are considered in this method. For an estimated gradient vec-
tor g(p) = ∇I (x, y) at a pixel location p = (x, y), these are the estimated gradient
magnitude g(p) = ‖g(p)‖2, the estimated gradient direction θ(p), an edge confi-
dence value η(p), and the percentile ρk of the cumulative gradient magnitude distri-
bution. We specify those values below, to be used in the Meer–Georgescu algorithm
shown in Fig. 2.29.

Insert 2.16 (Transpose of a Matrix) The transpose W� of a matrix W is
obtained by mirroring elements about the main diagonal, and W� = W if
W is symmetric with respect to the main diagonal.

Let A be a matrix representation of the (2k + 1) × (2k + 1) window centred at
the current pixel location p in input image I . Let

W = sd� (2.42)

be a (2k + 1) × (2k + 1) matrix of weights, obtained as the product of two vectors
d = [d1, . . . , d2k+1] and s = [s1, . . . , s2k+1], where
1. both are unit vectors in the L1-norm, i.e. |d1|+ · · ·+ |d2k+1| = 1 and |s1|+ · · ·+

|s2k+1| = 1,
2. d is an asymmetric vector, i.e. d1 = −d2k+1, d2 = −d2k , . . . , dk+1 = 0, which

represents differentiation of one row of matrix A, and
3. s is a symmetric vector, i.e. s1 = s2k+1 ≤ s2 = s2k ≤ · · · ≤ sk+1, which represents

smoothing in one column of a matrix A.
For example, asymmetric d = [−0.125,−0.25,0,0.25,0.125]� and symmetric s =
[0.0625,0.25,0.375,0.25,0.0625]� define a 5 × 5 matrix W.

Let ai be the ith row of Matrix A. By using

d1 = Tr(WA) = Tr
(
sd�A

)
(2.43)

d2 = Tr
(
W�A

) = s�Ad =
2k+1∑

i=1

si
(
d�ai

)
(2.44)

78 2 Image Processing

Fig. 2.30 Left: Illustration of curves L and H in a ρη diagram; each separates the square into
points with positive L or H , or negative L or H signs. For a (ρ, η) point on a curve, we have
L(ρ,η) = 0 or H(ρ,η) = 0. Right: A 3 × 3 neighbourhood of pixel location p and virtual neigh-
bours q1 and q2 in estimated gradient direction

we obtain the first two parameters used in the algorithm:

g(p) =
√

d2
1 + d2

2 and θ(p) = arctan

(
d1

d2

)
(2.45)

Let Aideal be a (2k + 1) × (2k + 1) matrix representing a template of an ideal step
edge having the gradient direction θ(p). The value η(p) = |Tr(A�

idealA)| specifies
the used confidence measure. The values in A and Aideal are normalized such that
0 ≤ η(p) ≤ 1, with η(p) = 1 in case of a perfect match with the ideal step edge.

Let g[1] < · · · < g[k] < · · · < g[N] be the ordered list of distinct (rounded)
gradient-magnitudes in image I , with cumulative distribution values (i.e. probabili-
ties)

ρk = Prob[g ≤ g[k]] (2.46)

for 1 ≤ k ≤ N . For a given pixel in I , assume that g[k] is the closest real to its edge
magnitude g(p); then we have the percentile ρ(p) = ρk .

Altogether, for each pixel p, we have a percentile ρ(p) and a confidence η(p)

between 0 and 1. These values ρ(p) and η(p) for any pixel in I define a 2D ρη-
diagram for image I . See Fig. 2.30, left.

We consider curves in the ρθ space given in implicit form, such as L(ρ, θ) = 0.
For example, this can be just a vertical line passing the square, or an elliptical arc.
Figure 2.30, left, illustrates two curves L and H . Such a curve separates the square
into points having positive or negative signs with respect to the curve and into the
set of points where the curve equals zero. Now we have all the tools together for
describing the decision process.

Non-maxima Suppression For the current pixel p, determine virtual neighbours
q1 and q2 in estimated gradient direction (see Fig. 2.30, right) and their ρ and η

values by interpolation using values at adjacent pixel locations.
A pixel location p describes with respect to a curve X in ρθ space a maximum

if both virtual neighbours q1 and q2 have a negative sign for X. We suppress non-
maxima in Step 9 of the algorithm by using a selected curve X for this step; the
remaining pixels are the candidates for the edge map.

2.4 Advanced Edge Detectors 79

Fig. 2.31 Resultant images when using the Meer–Georgescu algorithm for a larger (left) or
smaller (right) filter kernel defined by parameter k. Compare with Fig. 2.32, where the same input
image Set1Seq1 has been used (shown in Fig. 2.4, top, left)

Hysteresis Thresholding Hysteresis thresholding is a general technique to de-
cide in a process based on previously obtained results. In this algorithm, hysteresis
thresholding in Step 10 is based on having two curves L and H in the ρθ space,
called the two hysteresis thresholds; see Fig. 2.30, left. Those curves are also al-
lowed to intersect in general.

We pass through all pixels in I in Step 9. At pixel p we have values ρ and θ . It
stays on the edge map if (a) L(ρ,η) > 0 and H(ρ,η) ≥ 0 or (b) it is adjacent to a
pixel in the edge map and satisfies L(ρ,η) · H(ρ,η) < 0. The second condition (b)
describes the hysteresis thresholding process; it is applied recursively.

This edge detection method can be a Canny operator if the two hysteresis thresh-
olds are vertical lines, and a confidence-only detector if the two lines are horizontal.
Figure 2.31 illustrates images resulting from an application of the Meer-Georgescu
algorithm.

2.4.3 The Kovesi Algorithm

Figure 2.32 illustrates results of four different edge detectors on the same night-
vision image, recorded for vision-based driver assistance purposes. The two edge
maps on the top are derived from phase congruency; the two at the bottom by ap-
plying the step-edge model.

Differences between step-edge operators and phase-based operators are even bet-
ter visible for a simple synthetic input image as in Fig. 2.33. Following its under-
lying model, a gradient-based operator such as the Canny operator identifies edge
pixels defined by maxima of gradient magnitudes, resulting in double responses
around the sphere and a confused torus boundary in Fig. 2.34, left. We present the
algorithm used for generating the result in Fig. 2.34, right.

Gabor Wavelets For a local analysis of frequency components, it is convenient
not to use wave patterns that run uniformly through the whole (2k + 1) × (2k + 1)

window (as illustrated in Fig. 1.15) but rather wavelets, such as Gabor wavelets,
which are sine or cosine waves modulated by a Gauss function of some scale σ and

80 2 Image Processing

Fig. 2.32 The phase-congruency model versus the step-edge model on the image Set1Seq1,
shown in Fig. 2.4, top, left. Upper row: Results of the Kovesi operator, which is based on the
phase-congruency model, using program phasecongmono.m (see link in Insert 2.18) on the
left and the next most recent code phasecong3.m on the right, both with default parameters.
Lower left: The Sobel operator follows the step-edge model, using OpenCV’s Sobel() with x

order 1, y order 0, and aperture 3. Lower right: The Canny operator is another implementation for
the step-edge model using Canny() with minimum threshold 150 and maximum threshold 200

Fig. 2.33 Left: Synthetic input image. Right: Intensity profiles along Section A–A (top) and Sec-
tion B–B (bottom)

thus of decreasing amplitudes around a centre point. See Fig. 2.35. The image in the
middle shows stripes that are orthogonal to a defining rotation angle θ .

There are odd and even Gabor wavelets. An odd wavelet is generated from a sine
wave, thus having the value 0 at the origin. An even wavelet is generated from a
cosine wave, thus having its maximum at the origin.

2.4 Advanced Edge Detectors 81

Fig. 2.34 Left: Edges detected by the Canny operator. Right: Edges detected by the Kovesi algo-
rithm

Fig. 2.35 Left: Two 1D cuts through an odd and an even Gabor wavelet. Middle: A grey-level
representation of a square Gabor wavelet in a window of size (2k + 1)× (2k + 1) with direction θ ,
with its 3D surface plot (right)

Insert 2.17 (Gabor) The Hungarian born D. Gabor (1900–1979) was an
electrical engineer and physicist. He worked in Great Britain and received
in 1971 the Nobel Prize in Physics for inventing holography.

For a formal definition of Gabor wavelets, we first recall the definition of the
Gauss function:

Gσ (x, y) = 1

2πσ 2
exp

(
−x2 + y2

2σ 2

)
(2.47)

Furthermore, we map the coordinates x and y in the image into rotated coordinates

u = x cos θ + y sin θ (2.48)

v = −x sin θ + y cos θ (2.49)

82 2 Image Processing

where θ is orthogonal to the stripes in the Gabor wavelets; see Fig. 2.35, middle.
Now consider also a phase-offset ψ ≥ 0, wavelength λ > 0 of the sinusoidal factor,
and a spatial aspect ratio γ > 0. Then, altogether,

geven(x, y) = Gσ (u,γ v) · cos

(
2π

u

λ
+ ψ

)
(2.50)

godd(x, y) = Gσ (u,γ v) · sin

(
2π

u

λ
+ ψ

)
(2.51)

define one Gabor pair where sine and cosine functions are modulated by the same
Gauss function. The pair can also be combined into one complex number using

gpair(x, y) = geven(x, y) + √−1 · godd(x, y)

= Gσ (u,γ v) · exp

(
2π

u

λ
+ ψ

)
(2.52)

Insert 2.18 (Origin of the Kovesi Algorithm) This algorithm has been pub-
lished in [P.D. Kovesi. A dimensionless measure of edge significance from phase congru-

ency calculated via wavelets. In Proc. New Zealand Conf. Image Vision Computing, pp. 87–

94, 1993]. See also sources provided on www.csse.uwa.edu.au/~pk/Research/
MatlabFns/index.html#phasecong. The program is very fast and routinely ap-
plied to images of size 2000 × 2000 or more; it applies actually log-Gabor
wavelets instead of Gabor wavelets for better operator response and for bet-
ter time efficiency.

Preparing for the Algorithm The Kovesi algorithm applies a set of n square
Gabor pairs, centred at the current pixel location p = (x, y). Figure 2.36 illustrates
such a set for n = 40 by illustrating only one function (say, the odd wavelet) for
each pair; the Kovesi algorithm uses 24 pairs as default.

The convolution with each Gabor pair defines one complex number. The obtained
n complex numbers have amplitude rh and phase αh.

Equation (1.33) defines an ideal phase congruency measure. For cases where the
sum

∑n
h=1 rh becomes very small, it is convenient to add a small positive number

ε to the denominator, such as ε = 0.01. There is also noise in the image, typically
uniform. Let T > 0 be the sum of all noise responses over all AC components (which
can be estimated for given images). Assuming constant noise, we simply subtract
the noise component and have

Pphase(p) = pos(‖z‖2 − T)∑n
h=1 rh + ε

(2.53)

http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/index.html#phasecong
http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/index.html#phasecong

2.4 Advanced Edge Detectors 83

Fig. 2.36 Illustration of a set of Gabor functions to be used for detecting phase congruency at a
pixel location

where the function pos returns the argument if positive and 0 otherwise. We have
that

0 ≤ Pphase(p) ≤ 1 (2.54)

Select m1 uniformly distributed directions θ1, . . . , θm1 and m2 scales s1, . . . , sm2

(for example, m1 = 6 and m2 = 4). For specifying the set of m1 ·m2 Gabor wavelets,
select the smallest scale (e.g. equal to 3) and a scaling factor between successive
scales (say, equal to 2.1). The convolution with those Gabor wavelets can be done
more time-efficiently in the frequency domain than in the spatial domain. If in the
spatial domain, then the size (2k + 1) × (2k + 1) of the convolution kernel should
be such that 2k + 1 is about three times the wavelength of the filter.

Processing at One Pixel Now we have all together for analysing phase congru-
ency at the given pixel location p = (x, y):
1. Apply at p the set of convolution masks of n = m1 · m2 Gabor pairs producing n

complex numbers (rh,αh).
2. Calculate the phase congruency measures Pi (p), 1 ≤ i ≤ m1, as defined in

(2.53), but by only using the m2 complex numbers (rh,αh) defined for direc-
tion θi by m2 scales.

3. Calculate the directional components Xi and Yi for 1 ≤ i ≤ m1 by

[Xi,Yi]� = Pi (p) · [sin(θi), cos(θi)
]� (2.55)

4. For the resulting covariance matrix of directional components,

[∑m1
i=1 X2

i

∑m1
i=1 XiYi

∑m1
i=1 XiYi

∑m1
i=1 Y 2

i

]
(2.56)

calculate the eigenvalues λ1 and λ2; let λ1 ≥ λ2. (This matrix corresponds to the
2 × 2 Hessian matrix of second-order derivatives; for L.O. Hesse, see Insert 2.8.)

84 2 Image Processing

Fig. 2.37 Colour-coded
results when classifying
detected feature points in a
scale between “Step” and
“Line”, using the colour key
shown on the right. For the
original image, see Fig. 2.33,
left

The magnitude of λ1 indicates the significance of a local feature (an edge, corner,
or another local feature); if λ2 is also of large magnitude, then we have a corner; the
principle axis corresponds with the direction of the local feature.

Detection of Edge Pixels After applying the procedure above for all p ∈ Ω , we
have an array of λ1 values, called the raw result of the algorithm. All values below
a chosen cut-off threshold (say, 0.5) can be ignored.

We perform non-maxima suppression in this array (possibly combined with hys-
teresis thresholding, similar to the Meer–Georgescu algorithm), i.e. set to zero all
values that do not define a local maximum in their (say) 8-neighbourhood.

All the pixels having non-zero values after the non-maxima suppression are the
identified edge pixels.

Besides technical parameters which can be kept constant for all processed images
(e.g. the chosen Gabor pairs, parameter ε for eliminating instability of the denomi-
nator, or the cut-off threshold), the algorithm only depends on the parameter T used
in (2.53), and even this parameter can be estimated from the expected noise in the
processed images.

Equation (2.53) gives a measure P(p) that is proportional to the cosine of the
phase deviation angles, which gives a “soft” response.

Given that P(p) represents a weighted sum of the cosines of the phase deviation
angles, taking the arc cosine gives us a weighted sum of the phase deviation angles.
A suggested revision of the phase deviation measure is then given by

Prev(p) = pos
(
1 − arccos

(
P(p)

))
(2.57)

with function pos as defined above.

Classification into Edge or Line Pixels Having two eigenvalues as results for
each pixel, these two values can also be used for classifying a detected feature. See
Fig. 2.37 for an example.

2.5 Exercises 85

2.5 Exercises

2.5.1 Programming Exercises

Exercise 2.1 (Variations of Histogram Equalization) The book [R. Klette and P.
Zamperoni: Handbook of Image Processing Operators. Wiley, Chichester, 1996]
discusses variations of histogram transforms, in particular variations of histogram
equalization

g
(r)
equal(u) = Gmax

Q

u∑

w=0

hI (w)r with Q =
Gmax∑

w=0

hI (w)r

Use noisy (scalar) input pictures (of your choice) and apply the sigma filter prior to
histogram equalization. Verify by your own experiments the following statements:

A stronger or weaker equalization can be obtained by adjusting the exponent
r ≥ 0. The resultant histogram is uniformly (as good as possible) distributed for
r = 1. For r > 1, sparse grey values of the original picture will occur more often
than in the equalized picture. For r = 0, we have about (not exactly!) the identical
transform. A weaker equalization in comparison to r = 1 is obtained for r < 1.

Visualize results by using 2D histograms where one axis is defined by r and the
other axis, as usual, by grey levels; show those 2D histograms either by means of a
2D grey-level image or as a 3D surface plot.

Exercise 2.2 (Developing an Edge Detector by Combining Different Strategies)
Within an edge detector we can apply one or several of the following strategies:
1. An edge pixel should define a local maximum when applying an operator (such

as the Sobel operator) that approximates the magnitude of the gradient ∇I .
2. After applying the LoG filter, the resulting arrays of positive and negative values

need to be analysed with respect to zero-crossings (i.e. pixel locations p where
the LoG result is about zero, and there are both positive and negative LoG values
at locations adjacent to p).

3. The discussed operators are modelled with respect to derivatives in x- or y-
directions only. The consideration of directional derivatives is a further option;
for example, derivatives in directions of multiples of 45◦.

4. More heuristics can be applied for edge detection: an edge pixel should be adja-
cent to other edge pixels.

5. Finally, when having a sequences of edge pixels, then we are interested in ex-
tracting “thin arcs” rather than having “thick edges”.
The task in this programming exercise is to design your own edge detector that

combines at least two different strategies as listed above. For example, verify the
presence of edge pixels by tests using both first-order and second-order derivatives.
As a second example, apply a first-order derivative operator together with a test for
adjacent edge pixels. As a third example, extend a first-order derivative operator by
directional derivatives in more than just two directions. Go for one of those three
examples or design your own combination of strategies.

86 2 Image Processing

Exercise 2.3 (Amplitudes and Phases of Local Fourier Transforms) Define two
(2k + 1) × (2k + 1) local operators, one for amplitudes and one for phases, map-
ping an input image I into the amplitude image M and phase image P defined as
follows:

Perform the 2D DFT on the current (2k + 1) × (2k + 1) input window, centred
at pixel location p. For the resulting (2k + 1)2 − 1 complex-valued AC coefficients,
calculate a value M (p) representing the percentage of amplitudes at high-frequency
locations compared to the total sum of all (2k + 1)2 − 1 amplitudes and the phase-
congruency measure P(p) as defined in (2.53).

Visualize M and P(p) as grey-level images and compare with edges in the input
image I . For doing so, select an edge operator, thresholds for edge map, amplitude
image, and phase image and quantify the numbers of pixels being in the thresholded
edge and amplitude image versus numbers of pixels being in the thresholded edge
and phase image.

Exercise 2.4 (Residual Images with Respect to Smoothing) Use a 3 × 3 box fil-
ter recursively (up to 30 iterations) for generating residual images with respect to
smoothing. Compare with residual images when smoothing with a Gauss filter of
size (2k + 1)× (2k + 1) for k = 1, . . . ,15. Discuss the general relationship between
recursively repeated box filters and a Gauss filter of the corresponding radius. Ac-
tually, what is the corresponding radius?

2.5.2 Non-programming Exercises

Exercise 2.5 Linear local operators are those that can be defined by a convolu-
tion. Classify the following whether they are linear operators or not: box, median,
histogram equalization, sigma filter, Gauss filter, and LoG.

Exercise 2.6 Equalization of colour pictures is an interesting area of research. Dis-
cuss why the following approach is expected to be imperfect: do histogram equal-
ization for all three colour (e.g. RGB) channels separately; use the resulting scalar
pictures as colour channels for the resulting image.

Exercise 2.7 Prove that conditional scaling correctly generated an image J that has
the mean and variance identical to those corresponding values of the image I used
for normalization.

Exercise 2.8 Specify exactly how the integral image can be used for minimizing
run time for a box filter of large kernel size.

Exercise 2.9 Following Example 2.4, what could be a filter kernel for the quadratic
variation (instead of the one derived for the Laplace operator)?

2.5 Exercises 87

Exercise 2.10 Prove that Sobel masks are of the form ds� and sd� for 3D vectors
s and d that satisfy the assumptions of the Meer–Georgescu algorithm for edge
detection.

Exercise 2.11 The sigma filter replaces I (p) by J (p) as defined in (2.19). The
procedure uses the histogram H(u) computed for values u in the window Wp(I)

that belong to the interval [I (p) − σ, I (p) + σ]. Alternatively, a direct computation
can be applied:

J (p) =
∑

q∈Zp,σ
I (q)

|Zp,σ | (2.58)

where Zp,σ = {q ∈ Wp(I) : I (p) − σ ≤ I (q) ≤ I (p) + σ }. Analyse possible ad-
vantages of this approach for small windows.

Exercise 2.12 Sketch (as in Fig. 2.6) filter curves in the frequency domain that
might be called an “exponential low-emphasis filter” and “ideal band-pass filter”.

http://www.springer.com/978-1-4471-6319-0

	Chapter 2: Image Processing
	2.1 Point, Local, and Global Operators
	2.1.1 Gradation Functions
	2.1.2 Local Operators
	2.1.3 Fourier Filtering

	2.2 Three Procedural Components
	2.2.1 Integral Images
	2.2.2 Regular Image Pyramids
	2.2.3 Scan Orders

	2.3 Classes of Local Operators
	2.3.1 Smoothing
	2.3.2 Sharpening
	2.3.3 Basic Edge Detectors
	2.3.4 Basic Corner Detectors
	2.3.5 Removal of Illumination Artefacts

	2.4 Advanced Edge Detectors
	2.4.1 LoG and DoG, and Their Scale Spaces
	2.4.2 Embedded Conﬁdence
	2.4.3 The Kovesi Algorithm

	2.5 Exercises
	2.5.1 Programming Exercises
	2.5.2 Non-programming Exercises

