Chapter 2
PDF Method: A Stochastic Framework

To model the desired macroscopic quantities, the easiest way is to write closed PDEs
for specific quantities. In this process, additional unknowns are added to the system
and the success of this method depends on the accuracy with which the unclosed
terms explicitly can be based on macroscopic laws or using a model which does not
depart dramatically from reality. As discussed in Chap. 1, the applicability of this
method to complicated multiphase flows is limited because the average of a compli-
cated function of a variable such as ( f(¢)) must be defined based on the available
information, which is typically limited to the first- and second-order moments of
the variable ¢, i.e. (¢) and (p?). For complicated reactive or poly-dispersed flows,
this information is typically insufficient to accurately define such functions. A full or
direct numerical simulation is also not feasible for complicated flows and geometries,
and the only reasonable solution would be what is usually referred to as a mesoscopic
approach.

In this monograph, we mainly focus on the mesoscopic approach based on PDFs,
and hence, a brief introduction to the existing stochastic and statistical methods in
a form suitable for modelling poly-dispersed turbulent particulate flows is required
and is provided in this chapter. The material in this chapter is presented without
formal proof, and the interested reader can consult [1-4] for further information.
Several examples are, however, provided to demonstrate the significance of different
stochastic processes.

2.1 Definition of a Stochastic Process

A stochastic variable, X, in applied sciences is usually defined directly from its
probability density function (PDF). For now, assume that this random (stochastic)
variable, X, is a scalar, e.g. one-dimensional velocity in Brownian motion or tem-
perature of a particle. This stochastic variable, X, can take a range of possible values
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x € S where S can be a discrete or continuous set such as R or R? and the probability
that X takes the values between x and x + dx is

Pr(x < X < x +dx) = &£ (x)dx. 2.1

In the same fashion, we can define a multivariate distribution, also called joint
probability distribution of r variables X1, ..., X,. Taking a subset s of r, (s < r),
marginal distribution of s variables is the probability that X1, ..., X take the values
X1, ..., Xs, regardless of values of Xsy1,..., X,, i.e.

,@(xl,...,xx)z/ﬁ(x],...,xs,xs+1,...,xr)dxH],...,dxr 2.2)

It is also possible for one to assign fixed values to X;41, ..., X, and ask for the
joint probability of the remaining variables which is called conditional probability
of Xi,..., Xy and defined by L (xy, ..., Xs|Xs+1, ..., Xr). The joint probability

of Xi,..., X, is equal to the marginal probability of X;;1,..., X, to have the
values X441, ..., X, multiplied by the conditional probability of X1, ..., X;, given
the values of X 41, ..., X,:

P(X1y ooy Xp) = P Kgaly oo Xp) P(XY, ovvy Xg| X1y o v vy Xp) (2.3)

Once the stochastic variable X is defined, other stochastic variables, namely Y,
can be derived from it by a mapping, f. These new variables can also be functions
of time, ¢, and we can write

Yx(t) = f(X,1) 2.4

By replacing X by x, one possible value, we get Y, (f) = f(x,t), an ordinary
function called a realization of the process. Therefore, the stochastic process in phys-
ical sense is an ensemble of these realizations. By measuring the values, xo, ..., x,
at times 1y, ..., t, where 79 < t,, we can completely describe the process by the
joint probability density function £ (x,, t,; .. .; X0, to). In case of complete inde-
pendence, we can write

Pt -5 %0, 10) = [ [ P (i 1) 2.5)

This means that the values of X at time ¢ are independent of its values in the past or
future. Also note that the x; values could each be a vector, e.g. velocity components or
the whole phase space vector, i.e. all the velocity and position components in addition
to other scalars. We use bold symbols such as X or Z, and their corresponding values
x and z, to indicate that these stochastic variables are in fact vectors, which are also
functions of time, defining the whole phase space.
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2.2 Markov Process

The general process defined by!:
P (Xn, tn « - -5 X0, 10) (2.6)

is very difficult to handle since one needs the knowledge of all the previous points in
time to describe such a process. Accordingly, the problem is usually restricted to a
family of processes known as Markov processes where the knowledge of present state
of the system completely describes the whole process. In other words, the past history
of process has no effect on the future evolution of the process or mathematically

P Xps talXn—1, ta—1; .. .5 X0, 10) = P X, talXn—1, ta—1) 2.7

In Eq. 2.7), 22Xy, ty|Xu—1,1t,—1) is also called the transition probability.

This assumption is very powerful and means everything can be defined in terms

of a transition probability & (X, t,|X,—1, t,—1) and an initial probability & (x, ).
Thus, for example,

P (X2, 12 X1, 115 X0, o) = P (X2, ta]x1, 1) P (X1, 11 X0, 10) Z (X0, 1) (2.8)

Note that the process can be continuous or discontinuous, regardless of the nature

of the variable X. For example, the sample space of classical Brownian motion of a

particle immersed in a collection of light molecules, with assumption of hard sphere

collisions, by virtue of instant jumps, is not continuous in spite of the fact that the
range of velocities is continuous.

2.3 The Chapman-Kolmogorov Equation
For a general stochastic process, we can write:

P (X2, 12]X0, 10) =/@(XLt2|lell;XOJO)Q(XIJHXOJO)dXI (2.9)

Introducing the Markov property, i.e. Eq. (2.7) into Eq. (2.9), results in the cele-
brated Chapman—Kolmogorov (CK) equation:

P (xa, 12150, 10) = / Pxa, rlx1, )Pt %0 0)dx1 (2.10)

! In this chapter, we intend to use the tensor notation for all variables except when a variable is used
as an argument of a function, e.g. #?(x), and when used as an integration variable, where using the
tensor notation is confusing and leads to misinterpretation of the equation.
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Equation (2.10) simply states that the probability of a process ending in state
(x2, 12) given the initial state (Xq, #p) is equal to the sum of all possible paths from
(X0, f0) — (X2, 12). The CK equation is a complex nonlinear equation relating all
conditional probabilities to each other. Therefore, it is convenient to derive a dif-
ferential form of CK equation which is easier to handle and physically easier to
interpret. For example, the differential form can be derived based on a trajectory
point of view [2].

Now considering the time evolution of the expectation of a twice differentiable
function and using the CK equation, Eq. (2.10), the differential CK equation [2, 4,
5] can be derived as

w - —Z (4165, D25, 110, 1)
+Zl & (Bij (x, 1) P (x, t]X0, 0))
~ 28Xiaxj ij\X, s 0, 10

—I—/ (J(X|z, 1) P(z, t|xo, to) — J (2|, 1) P (X, t|Xo, to))dz.
(2.11)

In the differential CK equation, Eq. (2.11), the first and second terms define
the drift and diffusion processes, respectively, and the last integral defines a jump
process. Jump processes will be discussed thoroughly in Sect. 2.6 and a pure drift
process, which is also known as the deterministic process (or Liouville’s Equation)
and a diffusion process (or Fokker—Planck Equation), is discussed in Sect. 2.5. The
differential CK equation simply states that having the initial distribution of some
variable x at time fy, the final distribution at any time in the future can be found using
this equation.

We are sometimes interested in knowing the probability of a system at state x at
time f¢ to finish in a subset of states S. In this case, we want to know for every state
X at time ¢ < ffpa What is the probability of ending up in the subset S. In this case,
the differential CK equation can be restated as the backward CK equation:

8@(x0, to|x, 1)

ot _ZA (x, t)—(g(xo,tolx 1)

ZBU(X t)

+/ (J (zlx, 1) P (%0, 10]X, 1) — J (z|X, 1) P (X0, fo|z, 1)) dz.
(2.12)

(«@(Xo, folx, 1))
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Next, we will define the most basic stochastic process (Wiener process) and
discuss the solution of forward CK equations for this simple case, and in Sect. 2.7,
we provide a solution to the backward equation.

2.4 Wiener Process

The Wiener process is the most fundamental of continuous time stochastic processes
and is essentially a diffusion process with A; = 0, B;; = 1 and J = 0. A standard
Wiener process on the interval [0, T'] is a random variable W (¢) that depends con-
tinuously on ¢ € [0, T'] and satisfies the following conditions: (i) the increments of
the Wiener process are distributed according to a normal (Gaussian) distribution; (ii)
trajectories of W (¢) are continuous but cannot be differentiated; (iii) Increments of
W (t) are stationary and independent; and (iv) trajectories are of unbounded varia-
tion in finite time intervals. Numerical solution to the SDEs is out of the scope of
this book and can be found elsewhere [5]. However, simulating a Wiener process
is straightforward by using the property (i), and one only needs to sample from a
normal distribution and add this to the current state of the system using the relation
Wiy1 = W; + dW; and scale the results. The Wiener process physically translates
to a pure Brownian motion without any frictional coefficient defined by [6, 7]

dU, x

T = W]),X(t)a (2.13)
with initial condition:

Up,xlt:() = Up,xO, (2.14)

where W), \ is a random rapidly fluctuating force per unit mass exerted on the par-
ticle p, due to collisions with other smaller particles. This type of differential equa-
tion with a stochastic function on one side is known as the Langevin equation, c.f.
[1, 2]. The right-hand side of Eq. (2.13) and so the Langevin equation can include
other terms, such as a friction (uU) ) term [6].

Figure 2.1 shows a sample path of such motion simulated by integrating Eq. (2.13)
directly. The pure stochastic motion without any friction is shown with ¢ = 0 in
this figure. Evidently, the solution deviates from the initial conditions significantly.
However, setting the frictional coefficient to 4 = —1 acts as a restoring force, and
the solution only vibrates around the initial value which physically translates to a
random motion but with a bounded molecular velocity and is a better model for the
physical phenomenon.

The solution of the forward differential CK equation for the Wiener process
is given in Fig. 2.2. For the forward equation, the proper initial condition is
P (x, th]X0, 19) = 0(X — Xg), which simply means that we know the solution at
t = 0 with probability one. Figure 2.3 shows the effect of the restoring force, which
prevents the PDF from rapid evolution, and the value of the velocity remains around
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Fig. 2.1 1D Brownian motion—two sample path of the Brownian motion with and without friction
coefficient p. Friction force acts as a restoring force that keeps the velocity deviations bounded
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Fig. 2.2 Solution of the forward CK equation for a Wiener process—the initial condition is known
with probability one and thus is a scaled delta function at ¢ = 0, and the PDF then evolves and
becomes flatter in time, increasing the uncertainty in the solution

the initial conditions with probability one. This process with a linear drift added to the
Wiener process is also known as Ornstein—Uhlenbeck process. Figure 2.4 shows the
changes in the standard deviation, o, of the PDF in time: smaller standard deviation
corresponds to the smaller probability of occurrence of velocities far from the mean,
while large values show that the extreme velocities are more probable. This simple
example clarifies the connection between the trajectory and PDF point of view and
also shows why the trajectory point of view resolves more information than the PDF
point of view.
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Fig. 2.3 Solution of the forward CK equation for the Brownian motion—a Brownian motion with
1 = —1. Due to the certainty of the initial condition, it takes the form of the delta function. In this
case, restoring force keeps the solution around a mean and the PDF remains constant for ¢ > 2
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Fig. 2.4 Comparison between standard deviations—changes in standard deviation of the PDF of
the Wiener process and Brownian motion with u = —1 for ¢ € [0, 50]. It increases significantly for
the Wiener process, while it rapidly reaches a small constant value for the Brownian motion with
n=-1

2.5 Diffusion Process

A diffusion process is another subset of Markov process applicable to many physical
systems where the sample path is continuous. In this case, J should be zero in the
differential CK equation, Eq. (2.11), as this term represents discontinuities, thereby
reducing the complexity of the equation describing this process. Thus, the final form
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Fig. 2.5 Jump process—a 2.0
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of the equation, which is commonly referred to as the Fokker—Planck equation,
becomes

OA(x, t|Xo,
% - _Z Ai(x’ t)@(xv t|X01 tO))
1 2

0
2 350

(Bij(x, 1) (%, t|X0. 1o)). 2.15)

2.6 Jump Process

Consider the case where A; (x, t) = B;;(x, t) = 0, differential form of CK equation,
Eq. (2.11), reduces to

0L (X, t|xo, to)

B =/(J(x|z, 1P (z,tIXo, to) — J (z|x, 1) P (X, t|X0, 19))dz

(2.16)

Equation (2.16) is usually known as the master equation. It should be noted that
the master equation can also be interpreted as a simple gain—loss of probabilities such
that the first term in the integral is the gain due to transition from other states and the
second is the loss due to transition to other states. It can be said that every diffusion
process can be approximated by a jump process. This means that in the limit of
infinitely small jump sizes, the master equation becomes a Fokker—Planck equation.
Figure 2.5 shows the sample path of a jump process and this scaling assumption
(see also [2]).



2.6 Jump Process 17

The equivalence between the jump process and diffusion process can also be
demonstrated analytically by deriving the Fokker—Planck equation from the master
equation. To show this, without loss of generality, we assume a univariate stochastic
process. Furthermore, we need to define the increments of a stochastic process. The
increment defines the behaviour of the process over small time periods. The increment
A of a general stochastic process X (¢) in a positive time interval s is defined by

A X)) =Xt +s)—X@), for s >0, 2.17)
and
dX @) = !irrb[X(t +s5)—X(@)] = ]ir%[ASX(t)]. (2.18)

Here, s is positive; hence, the increment is considered to be forward in time. A
process can be considered to be the sum of increments.

N
X(in) = X (t0) + D Aggy X (1) (2.19)
k=1
The PDF of the increment A X () conditional on X () = x isdenoted as g(x; s, x, 1)
where X represents the phase space increment. If s is taken to be 7, — 1, then X (¢;)

can be expressed as
X(n) = X(n) — AsX(11), (2.20)

hence, we can rewrite
P(xa;i 01+ slx1, 1) = g(X5 5, X2 — X, 11). (2.21)
Now, the CK equation (2.10) is rewritten
Pt +sho) = [ gldisn - 2P0 - Hinlbo 0l @2
or

P(x; 11 + s|x0, 10) = /g(f?; §,x — X, 1) P (x — X; t1]x0, fp)dX. (2.23)

In the CK equation, both g and p on the right-hand side involve the argument
x — %. Using a Taylor series expansion,” we have

2 Taylor series expansion of f(x) about a point x — a is given by

f"(@)
2!

x—a)3+~-~+¥(x—a)"+~~.

3
fo)=f@+ fl@x-a)+ (x—a)2+¥(
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P(x; 11 + s|xo, to) = P (x1; t1x0, o)

o (&) 0" . .
+ Z P [g(Xs s, x1, 1) P (x5 11 |x0, 10) ] AX.
n=1 :

ox"
(2.24)
Rearranging and dividing through by s give
1
S PGt slxo, fo) — P (xis 11 |xo0, 10)]
L[ 00 A
= - / > — [8G: 5, x1. 1) P (x1: t1]x0, 10)] d, (2.25)
K — n! Ox,,

and taking the limit s — O term by term gives
1 0
lim — [Z(x; 11 + slxo, 10) — P (x1; tilxo, t0)] = = P (x; t|x0, f0),  (2.26)
s—0 s Ox

for the left-hand side and

n an
lim — /Z( i [g(x s, xl,tl)gz(xl,tﬂxo,to)]

s—=0 s
= Zﬂ " |:lim : [/xg(x s, xl,tl)dx] P(x1; t1|xo,lo)]
— n! Ox, [s—0s
o (— 1)n o
Z By Bl P i ilxo. )] (2.27)

for the right-hand side. Combining terms gives us the Kramers—Moyal equation

0 n" o
o2 o, 10) = Z(m) o B 0P inlxo )] (228)

n=1

At this stage, it is still assumed that the parameters B, exist for all n > 0. The
Kramers—Moyal equation is valid for general stochastic processes. If ¢ > 1, then we
have the initial condition

P(x; t|xg, tg) = §(x — xq), (2.29)

and for a diffusion process, we know that B, = 0 for n > 3. Given these conditions,
the Kramers—Moyal equation simplifies to give the Fokker—Planck equation
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) P 1 & R
S Pt 10) = =5 [t ) P 0. 10)] + 555 b, 022 1130, 10)].
(2.30)

The Fokker—Planck equation describes the evolution of the transitional PDF
P (x; t]xg, tp) for a stochastic diffusion process. To obtain the evolution equation
of the marginal PDF & (x; t), simply multiply by &?(xo; fo) and integrate over x
to give

0 0 1 9?
5l i) =—oo e, NP X D1+ 5o

2
= 5o [b(x,t) y(x,t)]. 2.31)

This equation is for the stochastic process X (¢) with drift and diffusion coefficients
a(x; t) and b(x; 1), respectively.

2.7 Stochastic Differential Equations

A stochastic differential equation (SDE) is a differential equation in which one or
more terms are stochastic processes resulting in a solution which itself is a stochastic
process. A simple SDE would be that of a Brownian motion introduced in Sect. 2.4.
Here, we restrict attention to the relations between SDEs and the Fokker—Planck
equation and will not discuss the SDE theory in detail.

A general stochastic differential equation also known as Langevin equation has
the form:

dZ;(t) = A;(Z(1), t)dt + B;; (Z(t), )dW; (1), (2.32)

where W are a set of independent Wiener processes. Itis important to notice that both
the drift vector A; and the diffusion matrix B;; are functions of state vector variables
Z;(t). To get from this equation to the corresponding Fokker—Planck equation, one
should consider the time development of an arbitrary f(Z(t)), and using the rules of
16 calculus, it is easy to show [2, 3] that the corresponding Fokker—Planck equation
in n-dimensional sample space is

0y 0 1 9%
=——I[Ai(z; ) P] +

- — Ty. (g
o = o 27 (BB @02 33

In the above equation, B7 is the transpose of B. If the diffusion matrix B;; = 0,
then the SDE reduces to the deterministic process:

dZ;(t) = A;(Z(t), t)dt (2.34)
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With corresponding Liouville equation,

0L 0
o = —8—Zi[A,-(z, H 2. (2.35)

This is a completely deterministic system, i.e. if z;(Xg, t) is the solution to
Eq. (2.34) with initial conditions z;(Xo, fo) = xi.0, then P (X, t|Xo, fo) = 6(x —
Z(Xp, 1)) is the solution to Eq. (2.35) with initial conditions Z(x, fy|Xg, tp) =
d(x — Xg). The proof is best obtained by direct substitution of

P(x, t|xo, o) = 6(x — Z(Xg, 1)), (2.36)

into the RHS of Eq. (2.35) (note that x; is the independent variables):

d o
_a_[A (X 1)6(x —z(xX, )] = —8—[A i(z; 1)0(x — z(Xo, 1)]

Xi

= —A;(z; t) [5(x —z(Xp, 1)]. (2.37)

The property of delta function is used in moving from first to second line and the
fact that A; is not a function of x anymore, to move from second to third line. Also
substituting Eq. (2.36) into the LHS of Eq. (2.35) and using the chain rule and again
using the properties of the delta function give

8 dz;
2 [6 (x = 2630, 0)] = =7 16 (x — 2630, 0)] 3. i (t) (2.38)

NowusingdZ;(t) = A;(Z(t), t)dt in Eq. (2.38) and changing to phase space notation
Eq. (2.37) are restored.

Using an approach based on the Fokker—Planck equation provides a unique
opportunity to add many physical phenomena to the model very conveniently, and
also, information about the model can be inferred at this stage. For example, it is
well known that inhomogeneous turbulence results in non-Gaussian PDFs [8] and
this behaviour can easily be included in the model using a nonlinear drift term.

Figure 2.6 shows the evolution of the PDF of a SDE derived by adding the non-
linear drift sin(X;) to a Wiener process. An appropriate final condition for the back-
ward CK equation can be the box function 1;_s 5. The solution shows that the
non-Gaussian behaviour is easily captured using this nonlinear drift term, and the
probability of a solution starting at any previous time ending up in state 1;_s 5 is
the solution to the backward equation.
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Fig. 2.6 Solution of the 35
backward CK equation—a
nonlinear drift term sin(X;)
produces a non-Gaussian
behaviour of the PDF showing
the benefits of modelling at a
mesoscopic level
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2.8 Fluid-Particle Systems

In this section, we show how the results of the probability theory and stochastic
calculus presented in the previous section can be used to derive the various equations
for modelling poly-dispersed particulate flows. Characterization of individual parti-
cles (solid or fluid) requires detailed knowledge of particle position, velocity, size,
shape, rotation and temperature at a specified time. The equations derived in this
manner are not ordinary PDEs, but are PDEs in a hyperspace of several dimensions,
and this makes the direct solution to these equations a formidable task [9]. Therefore,
it is necessary to reduce the dimensionality of the problem and make some simplify-
ing assumptions to reduce the solution cost and also the model development process.
We assume throughout the rest of this review that

e All particles are spherical, and hence, particles are only characterized by their
diameter.

e The state vector of particle i consists of its position, velocity and diameter
(X(i), U(i), @(i))_

e Particles are non-interacting and can be treated as point processes, which implies
a particle with no spatial extent. In Sect. 4.2, we discussed that here, we are inter-
ested in turbulence—particle interaction, and thus, particle—particle interactions are
discarded in the following discussion. However, it should be obvious at this point
that these forces can be included as a jump process in our general framework.
This can be done by defining W (x|z,t) = A(z, t)g(x|z, t) where \(z, ) is the
probability of occurrence of a jump at state z and g(X|z, ) is the probability of a
jump to have a specified amplitude in going from state z to state x. This is exactly
the process we used to produce Fig. 2.5; however, the problem is how to model g
and )\ based on the underlying physical phenomena [4]. Williams and Crane [10]
studied the particle collision rate in turbulent flows for both solid particles and
bubbles and could be a good starting point for such models. For a discussion of
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multiparticle statistics in the context of kinetic theory for dense particulate flows,
see [11-14].

e We deal only with Markov-type processes, which implies no dependence on past
events.

e The fluid particle may be considered to be a small element of fluid with charac-
teristic length scale smaller than the Kolmogorov length scale, n = (v /(e))!/4,
but much larger than the molecular free path.

2.8.1 Definition of Distribution Function

When seeking a statistical description of a turbulent particle-laden flow, the starting
point should be the nature of the phase space distribution function which describes the
state of an ensemble of particles. By analogy with the kinetic theory of gases [15], it
is possible to describe the ensemble by either a Klimontovich approach or a Liouville
approach [16].

The Liouville approach defines a fine-grained density function conditioned on
the total number of particles at a particular time N, (¢). Considering the particulate
phase only, where each particle is characterized by its position X®, velocity U®
and diameter @), then the Liouville distribution function is defined as

f/(ﬁbp,l’ Up 1, Xp 15, Qsp,k’ Up. ks Xp ks t|Np(t) =k)
k
=[] ol¢p, — 2P 0161w, — UL (0)161x, — XP (1)1, (2.39)
i=1

and the Liouville PDF is simply the ensemble of the fine-grained distribution function

9(¢p,1’ Up 1,Xp1s---s ¢p,k’ Up ks Xp ks t|Np(t) =k)
k
= <H Slgp — @5 (16w, — UL (1)10[x, — Xg)(z)]>. (2.40)
i=1

Upon closer examination of Eqs. 2.39 and 2.40, it can be seen that the Liouville
distribution is a multipoint distribution that characterizes all joint events in the ensem-
ble. The information contained in the Liouville distribution is vast and clearly not
suitable for a tractable description when deriving an engineering model. An alterna-
tive to this distribution is the Klimontovich distribution, which is defined as

Np
Fl(dpup, xp 1) = 25[ phi, — @V (016[u, — UL (010[x, — X ()], (2.41)

i=1
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and represents the number density of the particles in the phase space. The ensemble
averages of the Klimontovich distribution function produce a droplet distribution
function [16]

Np
P(Gpup.Xpit) = <Z Slpp — @ (1)16[u, — UL ()16[x, — x;;><z>1>,
i=1

(2.42)
which does not strictly represent a PDF because it does not integrate to unity over
the phase space. The Klimontovich distribution function clearly contains less
information (no multiparticle events) than the Liouville equation and serves as a
more feasible starting point for the statistical description. In kinetic theory, there
exists a simple relationship between the two descriptions (after a number of assump-
tions), which leads to the famous BBGKY hierarchy. However, as described by Sub-
ramaniam [16, 17], several key differences between the kinetic and particulate flows
complicate the issue here. For a detailed discussion of these differences and their
implications, the reader is referred to [16, 17]. For the purposes of the framework
developed in this chapter, a Klimontovich distribution will be used. The distribution
function will be of the form

Np ) ) )
PW W, Xp, W up, Xy 1) = <Z 3T, — P 016[up — UG 0161x, — XL (1))

i=1

Slapp — 'IISZ)(Z)](S[Uf - Uﬁf)(z)]é[xf — X(]D(t)]>’
(2.43)

where the phase space contains both the fluid and the particle. In the most general
sense, the fluid and particle positions do not have to coincide (Xg) #~ Xy)) in
Eq. 2.43 and the distribution function represents a two-point/two-particle (fluid and
solid) Lagrangian distribution. However, the ultimate aim of the following analysis is
to derive a single-point Eulerian model for both phases mapped onto a single spatial
point via a consistency relation. Therefore, it seems more appropriate to term the
following framework as a single-point, two-particle description. These descriptions
are further discussed in the following sections.

2.8.2 Eulerian and Lagrangian Two-Point, Two-Particle
Description

There are two possible viewpoints of the fluid—particle system. A Lagrangian point of
view describes the probability of finding two particles (fluid and discrete) at a given
state Zyp = Xy, Uy, ¥y, X,,U,, ¥,) where X, U and ¥ are position, velocity
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and an arbitrary property vectors, respectively.’ The Lagrangian PDF is defined by
@]L(p (Yr,ur, ¥, ¥p, up, ¥, 1), and the probability of finding a fluid/particle pair
in the range [ug, wy + dugl, [yi, Y& + dyxl, [¥k, ¥y + dap,] at time ¢ (where k = f
for fluid and k = p for particle) is simply given by

Py Ypoup, P, 0)dy pdupdep pdypdu,dep . (2.44)

which conforms to the usual normalization constraint, i.e. f P ;def,, = 1.
An Eulerian (field) point of view describes the probability of finding the fluid—particle
mixture in a given state zy, = (uy, ¥ s, u,, 1) at two fixed points (xs, x,) and
fixed time. Here, x, u and ) have the same meaning as in their Lagrangian counter-
parts, and distinction is made by using upper- and lower-case letters. Correspond-
ingly, the probability of finding the system (at time 7 and position X 7, X,) in the given
state in the range [uy, ug + dug], [Xk, Xk + dx¢ ], [¢Yy, Y + dipi] is

DL, up, W, Xy, Xy, duydep pdu,dep,. (2.45)

However, [ @fpdz fp < 1, because in the Lagrangian point of view, positions are
included in the state vector and we know that particle with the velocity u; and the
property 1, is in position x; with some probability; therefore, after the integration,
all particles are guaranteed to be counted. Whereas in the Eulerian point of view, we
are observing the system at two fixed points X, and X r; hence, the particle (or fluid)
position is not a property of the system. Consequently, it is possible that the point x ,,
where we are expecting a discrete particle in any state (u,, ), be actually occupied
by a fluid particle. Here, after the integration, some fluid or discrete particles may
not be counted and the integration result will be less than unity.

2.8.3 One-Point Description and Consistency Relations

The above description is referred to as a two-point, two-particle description where
the ‘two-particle’ term is added to emphasize that the two points kept in the
definition of the PDF correspond to one-fluid and one-discrete-particle location.
The PDF (Fokker—Planck) equation derived for this system s at least a 12-dimensional
system of equations, even if only positions and velocities considered. To reduce the
dimensionality, we define a one-point description with probability densities that for
Eulerian description become

PR bgixg0) = [ PE gty XX DO, (246

3 W can be a combination of different scalars; therefore, we use a vector notation for it. However,
here, we only consider the diameters, and consequently, this actually is only a scalar.
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ﬁf(up,wp;xp,t)z/ﬁ}fp(uf,wf,up,z/;p;xf,x,,,z)dxfdufdwf. (2.47)

This is a one-point, two-particle description, which means that we are considering
the probability of finding a fluid and a discrete particle separately at two different
fixed points at a fixed time, which obviously contains less information than the two-
point, two-particle description where we considered the joint probability of finding
a fluid and a discrete particle. This can also be mathematically justified by noting
that the marginal PDFs (one-point PDFs) can always be constructed from the joint
PDFs by integration, while the reverse operation is not always possible.

It should also be noted that in a conventional two-point description of a single
fluid, the two different stochastic particles represent two different realizations of the
flow. Thus, two fluid particles with different characteristics can exist in the same
position at the same time. In the present case, the stochastic particles are two real
particles (fluid and discrete) and for the Eulerian PDF, we have

Py, X =X, X =X,1) =0 (2.48)

Note that a similar constraint also applies to the corresponding Lagrangian PDF.
Using Eqgs. (2.46) and (2.47), Eq. (2.48) results in

/@f(uf,q,bf;xf,t)dufdwf+/9§(u,,,1,bp;x,,,t)du,,d¢p =1, (249

This constraint has a rather simple physical interpretation: it simply states that the
whole domain is filled with the volume of all fluid particles with any velocity u and
scalar property vector 9 ; plus the volume of the discrete particles with any velocity
u,, and scalar property vector ¢ ,. Equations (2.46) and (2.47) can be normalized by
defining normalization factors a: ¢ (X, ¢) and «, (X, t) for @f and ,@If , respectively,
which can be interpreted as phase volume fraction and should sum to unity.

2.8.4 Mass Density Function

Our ultimate goal is to derive the field (Eulerian) equations of moments of each
phase by writing the Fokker—Planck equation of Eulerian distribution functions and
taking the expectation (denoted by (-)) of a desired quantity. To do this, we need to
derive the relation between the Lagrangian and Eulerian MDFs. Using Lagrangian
marginal Qf(yf, uy, ;) and Wﬁ(yp, up, 9 ,; 1), we can define the MDF by

FR(ypoup.appit) = M) PF(ys.up, i), (2.50)

and
Flf‘(ypvupv,l;bpvt):Mp(t)yll;(ypaupv 11bpst) (251)
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In these equations, FkL, with k = f or p for fluid and particle, respectively,
can be interpreted as the probable mass of fluid or particle at the given state Zx =
(Yk, Wk, ¥y). My is the normalization constant for F; or the total mass of phase k
which physically can be calculated by fﬂi/f pr(Xr, 1)dxy, ¥r being the total fluid

volume, for the fluid phase, and Zlszl mp i, for the particle phase. Using these
relations, we can define a two-point Lagrangian MDF as

<grjl‘lp(yfﬂ Uf, /lljfﬂ y[?ﬂ u[ﬁ /libp’ t) = Mf‘(t)M[J(t)@}‘p(yf7 ufﬂ /d]f, y[h upa /lljpv t)
(2.52)

Corresponding marginals can easily be calculated as Ff = M, Ff and 7 =

MyF [f‘ by integrating Eq. (2.52). At this point, it is p0551ble to deﬁne the Eulerlan
fluid—particle mass density function by [4, 18]:

jpr(uf’ wf’ up, ’(/}p; Xf, Xp, t)
= ffp(Yf = Xf,llf, '(/)f,yp = Xp’up"lpp; t)

= /ﬁpr(Yf, ufa "bf, yp’ up’ "pp» t)(s(xf - yf)é(xp - Yp)dedyP, (253)

The marginal or one-point Eulerian MDFs are simply derived by integration of
either marginal Lagrangian MDF using delta functions or just by integrating the
Eulerian fluid—particle MDF over the fluid or particle phase space as follows:

FEup, i Xp, 1) =My(O)Ff (up, ¢ ri Xy, 1) (2.54)

and
F Wy, i Xp. 1) = Mp(OFF (W, b X, 1) (2.55)

The normalization constant for the two- p01nt Lagrangian MDF, Eq. (2.52), is
defined by M, M ;. Thus, upon integrating ﬁ , we get the mass of the fluid multi-
plied by the mass of the discrete phase. This i 1s done for mathematical convenience,
and as a consequence, mixed indices such as M, F L appear in the marginals of
both two-point Lagrangian MDFs and two-point Eulerian MDFs, which are merely
mathematical objects derived from Egs. (2.50) and (2.51). However, the importance
of these definitions should not be underestimated because physical quantities such
as expected densities and the probabilities of presence of phases, a s and «p, can
conveniently be derived from these quantities by simple integrations:

ar(X, ){pf)(x, 1) = (t)/Jﬁ,(uf,q/:f,up,sz;x, xp,t)dxpdufdwfdupmbp
(2.56)
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apX, D{pp)(X, 1) = M;l(t)/ﬂfp(uf, wf,up, 1!11,; X7, X, t)dxf-dufdefdupdwp

(2.57)

af(x,t) = M;l(t)/pj_clﬁﬁ,(uf,v,bf,up,Q/Jp;x, Xp, 1)dxpdudep pduydep ),

(2.58)

ap(x, 1) = M.f—-l(r)/p;‘«?f,,(uf,i/:f,up, Vi Xp, X, 1)dx pdupdep pdudip,

(2.59)

These can easily be expressed in terms of marginals of Z [, i.e. Ff and F,’, by

simple integration and using Eqgs. (2.54) and (2.55).
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