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Linear differential equations

Systems of linear differential equations form the focus of our first line of inves-

tigation. In particular, we will develop a theory of existence and uniqueness of

solutions of homogeneous initial-value problems of the form ẋ(t) = A(t)x(t),

x(τ) = ξ, under the assumption that A is piecewise continuous. The special

case of constant A forms an important sub-class for which, as we shall see,

the solution x of the initial-value problem is given in terms of the matrix ex-

ponential function by x(t) = exp(A(t − τ))ξ for all t ∈ R. Then, we extend

the existence and uniqueness theory to inhomogeneous initial-value problems

of the form ẋ(t) = A(t)x(t) + b(t), x(τ) = ξ, where b is a piecewise continuous

extraneous input or forcing function. In certain circumstances, the function b

is open to choice, and may be chosen so as to ensure that the unique solution

of the initial-value problem has some desirable properties: questions relating to

the extent to which solutions may be influenced through the choice of input

form the basis of linear control theory - fundamentals of which form the focus

of Chapter 3.

For a periodic function A (that is, a function A with the property that,

for some p > 0, A(t + p) = A(t) for all t ∈ R), it is intuitively reasonable to

surmise the existence of periodic solutions of the homogeneous differential equa-

tion ẋ(t) = A(t)x(t): we investigate this and related issues pertaining to such

periodic differential equations, within the framework of what is traditionally

referred to as Floquet theory1.

In this chapter, we make free use of the material presented in Appendices

1 Gaston Floquet (1847-1920), French.
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22 2. Linear differential equations

A.1-A.3, including generalized eigenspaces, matrix norms, the concepts of piece-

wise continuous and piecewise continuously differentiable functions, and the

triangle inequality for integrals.

2.1 Homogeneous linear systems

Whilst we are primarily interested in linear differential equations over the real

field R, the ensuing analysis applies equally to differential equations over the

complex field C. On occasions, it will prove notationally and analytically con-

venient to consider the complex case. For this reason, we develop the theory in

the context of a field F which is either R or C (precisely which of these being

largely immaterial).

Let J be an interval and let A : J → FN×N be a piecewise continuous

function (see Appendix A.3) from J to the space FN×N of N × N matrices

with entries in F and equipped with the norm induced by the 2-norm on FN :

‖L‖ := sup
z 6=0

‖Lz‖
‖z‖

(see Appendix A.2).

First, we will consider the issue of existence and uniqueness of solutions of

the linear homogeneous initial-value problem

ẋ(t) = A(t)x(t), x(τ) = ξ (2.1)

for initial data (τ, ξ) ∈ J × FN . Since A is not continuous, but only piecewise

continuous, it would be unreasonable to expect that there exists a continuously

differentiable function x : J → FN satisfying the initial-value problem (2.1).

Exercise 2.1

Let N = 1, J = [−1, 1] and τ = 0. Provide an example of a piecewise

continuous function A : J → R and ξ ∈ R with the property that there

does not exist a continuously differentiable function x : J → R such that

x(0) = ξ and ẋ(t) = A(t)x(t) for all t ∈ [−1, 1]

By a solution of (2.1) we mean a continuous function x : Jx → FN satisfying

x(t) = ξ +

∫ t

τ

A(σ)x(σ) dσ ∀ t ∈ Jx,

where Jx ⊂ J is an interval such that τ ∈ Jx. Note that, by Theorems A.30 and

A.31 (generalized fundamental theorems of calculus), x : Jx → FN is a solution
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of (2.1) if, and only if, x is piecewise continuously differentiable (Appendix

A.3), with x(τ) = ξ and

ẋ(t) = A(t)x(t) ∀ t ∈ Jx\E,

where E is the set of points in J at which A fails to be continuous. Since A is

piecewise continuous, the set E is “small” in the sense, that, for all t1, t2 ∈ J

with t1 < t2, the intersection E ∩ [t1, t2] has at most finitely many elements.

Note that not every point in E is necessarily a point of discontinuity of a

solution of (2.1) (for example, if ξ = 0, then the zero function is a solution).

Exercise 2.2

Provide an example of discontinuous A and ξ 6= 0 with the property that

there exists a solution x : J → FN of (2.1) and a point σ ∈ E such that

x is continuously differentiable in an open interval containing σ.

If A is continuous on J , then every solution x : Jx → FN is continuously

differentiable and (2.1) is satisfied for all t ∈ Jx.

In certain contexts, the initial condition in (2.1) is not relevant, in which

case we say that a continuous function x : Jx → FN , where Jx ⊂ J is an

interval, is a solution of the differential equation ẋ(t) = A(t)x(t) if there exists

τ ∈ Jx such that

x(t) = x(τ) +

∫ t

τ

A(σ)x(σ) dσ ∀ t ∈ Jx. (2.2)

Note that, by Theorems A.30 and A.31, x : Jx → FN is a solution of the

differential equation in this sense if, and only if, x is piecewise continuously

differentiable and the differential equation ẋ(t) = A(t)x(t) is satisfied for every

t ∈ Jx which is not a point of discontinuity of A. The next exercise asserts that,

if (2.2) holds for some τ ∈ Jx, then (2.2) holds for all τ ∈ Jx.

Exercise 2.3

Let x : Jx → FN be a solution of the differential equation ẋ(t) = A(t)x(t).

Show that

x(t2) − x(t1) =

∫ t2

t1

A(σ)x(σ) dσ ∀ t1, t2 ∈ Jx.

Our goals are to show that, for each (τ, ξ) ∈ J ×FN , (2.1) admits precisely one

solution defined on J and to characterize that solution explicitly in terms of A,

τ and ξ. In particular, we will establish the existence of a map Φ : J×J → FN×N

– referred to as the transition matrix function – such that J → FN , t 7→ Φ(t, τ)ξ

is the unique solution on J of (2.1).
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2.1.1 Transition matrix function

To make progress, a number of preliminary technicalities are required.

Lemma 2.1

Define the sequence (Mn) of continuous matrix-valued functions Mn : J × J →
FN×N by the recursion:

M1(t, s) := I, Mn+1(t, s) := I +

∫ t

s

A(σ)Mn(σ, s) dσ ∀(t, s) ∈ J×J, ∀n ∈ N.

For each closed and bounded interval [a, b] ⊂ J , the sequence (Mn) is uniformly

convergent on [a, b] × [a, b].

Proof

First note that

Mn+1(t, s)−Mn(t, s) =

∫ t

s

A(σ1)

∫ σ1

s

A(σ2) · · ·
∫ σn−1

s

A(σn) dσn · · · dσ2 dσ1

∀ (t, s) ∈ J × J, ∀n ∈ N (2.3)

and
∫ t

s

∫ σ1

s

· · ·
∫ σn−1

s

dσn · · · dσ2dσ1 =
(t − s)n

n!
∀ (t, s) ∈ J × J, ∀n ∈ N, (2.4)

as can be easily verified (see Exercise 2.4). Let a, b ∈ J , with a < b, be arbitrary

and write X := [a, b]×[a, b]. Since A is piecewise continuous, there exists K > 0

such that

‖A(t)‖ ≤ K ∀ t ∈ [a, b],

which, in conjunction with (2.3), (2.4) and the triangle inequality for integrals

(see Proposition A.28), yields

‖Mn+1(t, s) − Mn(t, s)‖ ≤ Kn

∣

∣

∣

∣

∫ t

s

∫ σ1

s

· · ·
∫ σn−1

s

dσn · · · dσ2dσ1

∣

∣

∣

∣

=
Kn|t − s|n

n!
≤ Kn(b − a)n

n!
∀ (t, s) ∈ X, ∀n ∈ N.

Define the real sequence (mn) by

m1 := 1, mn+1 :=
Kn(b − a)n

n!
∀n ∈ N,
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and note that the series
∑∞

n=1 mn is convergent, with limit exp(K(b− a)). Let

(fn) be the sequence of functions fn ∈ C(X, FN×N ) given by

f1(t, s) := M1(t, s) = I, ∀ (t, s) ∈ X

fn+1(t, s) := Mn+1(t, s) − Mn(t, s) ∀ (t, s) ∈ X, ∀n ∈ N.

Then,
‖fn(t, s)‖ ≤ mn ∀ (t, s) ∈ X, ∀n ∈ N.

convergent. Equivalently, the sequence (Sn) of its partial sums Sn :=
∑n

k=1 fk is

uniformly convergent on X. Noting that Sn(t, s) = Mn(t, s) for all (t, s) ∈ X,

we may conclude that the sequence
(

Mn

)

is uniformly convergent on X =

[a, b] × [a, b].

Exercise 2.4

Prove that (2.3) and (2.4) hold.

In view of Lemma 2.1 and since [a, b] ⊂ J is arbitrary, we may define a function

Φ : J × J → FN×N by setting

Φ(t, s) := lim
n→∞

Mn(t, s) ∀(t, s) ∈ J × J. (2.5)

Since each Mn is continuous and, by Lemma 2.1, the sequence (Mn) converges

uniformly on X = [a, b] × [a, b] for all a, b ∈ J with a < b, it follows that Φ is

continuous (see Proposition A.22). Moreover, for n ≥ 2,

Mn(t, s) = M1(t, s) +
n−1
∑

k=1

(

Mk+1(t, s) − Mk(t, s)
)

∀ (t, s) ∈ J × J,

and thus, invoking (2.3), we have

Φ(t, s) = I +

∫ t

s

A(σ1)dσ1 +

∫ t

s

A(σ1)

∫ σ1

s

A(σ2)dσ2 dσ1

+

∫ t

s

A(σ1)

∫ σ1

s

A(σ2)

∫ σ2

s

A(σ3)dσ3 dσ2 dσ1 + · · ·

∀ (t, s) ∈ J × J. (2.6)

Note that Φ(t, t) = I for all t ∈ J . The function Φ is referred to as the transition

matrix function; A is said to be its generator or, alternatively, we say that Φ

is generated by A. The series representation of Φ given in (2.6) is the Peano-

Baker3 series. It converges to Φ uniformly on [a, b] × [a, b] for every interval

[a, b] ⊂ J .

2 Karl Theodor Wilhelm Weierstrass (1815-1897), German.
3 Giuseppe Peano (1858-1932), Italian; Henry Frederick Baker (1866-1956), British.

By the Weierstrass2 criterion (Corollary A.23), the series
∑∞

n=1 fn is uniformly
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Example 2.2

Let F = R and let A : R → R2×2 be given by A(t) =

(

0 2t

0 0

)

.

Noting that A(t)A(s) = 0 for all t, s ∈ R, we see that the Peano-Baker series

terminates after two terms to give

Φ(t, s) = I +

∫ t

s

A(σ) dσ =

(

1 t2 − s2

0 1

)

∀ (t, s) ∈ R × R.

△

If J = R and A is constant, then the Peano-Baker series gives

Φ(t, τ) = I + (t − τ)A +
(t − τ)2A2

2!
+ · · · =

∞
∑

k=0

(t − τ)k

k!
Ak

= exp(A(t − τ)) ∀ t, τ ∈ R (2.7)

and so we identify Φ with the matrix exponential function: in particular,

Φ(t, 0) =

∞
∑

k=0

tkAk

k!
= exp(At) ∀ t ∈ R,

Φ(t, τ) = Φ(t − τ, 0) ∀ t, τ ∈ R.

For further details on the matrix exponential, see Proposition A.27.

Exercise 2.5

Assume that A : R → FN×N is such that, for all t, s ∈ R, the matrices

A(t) and A(s) commute. Show that the transition matrix function Φ is

given by

Φ(t, τ) = exp

(∫ t

τ

A(σ) dσ

)

.

We proceed to establish basic properties of the transition matrix function.

Corollary 2.3

The transition matrix function Φ satisfies

Φ(t, s) = I +

∫ t

s

A(σ)Φ(σ, s) dσ ∀ (t, s) ∈ J × J. (2.8)

Moreover, for each s ∈ J , the function t 7→ Φ(t, s) is piecewise continuously

differentiable with derivative

∂1Φ(t, s) = A(t)Φ(t, s) ∀ t ∈ J\E

where E ⊂ J is the set of points at which A fails to be continuous.
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Proof

The identity (2.8) follows from (2.5), the defining equation for Φ, in conjunction

with Lemma 2.1 and Theorem A.32. The remaining claims are an immediate

consequence of (2.8) and Theorem A.30.

The next result (the so-called Gronwall4 lemma) is a basic tool in differential

and integral equations. It will not only be used in this chapter, but it will also

be invoked, in Chapter 4, in the context of nonlinear differential equations.

Lemma 2.4 (Gronwall’s lemma)

Let I ⊂ R be an interval, let τ ∈ I, and let g, h : I → [0,∞) be continuous. If,

for some constant c ≥ 0,

g(t) ≤ c +

∣

∣

∣

∣

∫ t

τ

h(σ)g(σ) dσ

∣

∣

∣

∣

∀ t ∈ I , (2.9)

then

g(t) ≤ c exp

(∣

∣

∣

∣

∫ t

τ

h(σ) dσ

∣

∣

∣

∣

)

∀ t ∈ I . (2.10)

Note that whilst (2.9) (the hypothesis in Lemma 2.4) is an inequality in g (in-

volving c and h), the inequality (2.10) (the conclusion in Lemma 2.4) provides

a bound for g in terms of c and h.

Proof of Lemma 2.4

Define G,H : I → [0,∞) by setting

G(t) := c +

∣

∣

∣

∣

∫ t

τ

h(σ)g(σ) dσ

∣

∣

∣

∣

and H(t) =

∣

∣

∣

∣

∫ t

τ

h(σ) dσ

∣

∣

∣

∣

∀ t ∈ I .

By hypothesis, 0 ≤ g(t) ≤ G(t) for all t ∈ I. Let t ∈ I be arbitrary. We consider

two cases: t ≥ τ and t < τ .

Case 1. Assume that t ≥ τ . The inequality in (2.10) evidently holds for t = τ .

Hence, without loss of generality we may assume that t > τ . Then

G(s) = c +

∫ s

τ

h(σ)g(σ) dσ and H(s) =

∫ s

τ

h(σ) dσ ∀ s ∈ [τ, t] .

Differentiation yields

G′(s) = h(s)g(s) ≤ h(s)G(s) = H ′(s)G(s) ∀ s ∈ [τ, t] .

4 Thomas Hakon Grönwall (1877-1932), Swedish.
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Therefore,
(

G(s) exp
(

− H(s)
))′

= (G′(s) − H ′(s)G(s)) exp
(

− H(s)
)

≤ 0 ∀ s ∈ [τ, t]

which, on integration, gives

G(t) exp
(

− H(t)
)

≤ G(τ) = c.

Hence, we arrive at the requisite inequality

g(t) ≤ G(t) ≤ c exp
(

H(t)
)

= c exp

(∣

∣

∣

∣

∫ t

τ

h(s)ds

∣

∣

∣

∣

)

.

Case 2. Assume that t < τ . In this case,

G(s) = c +

∫ τ

s

h(σ)g(σ) dσ and H(s) =

∫ τ

s

h(σ) dσ ∀ s ∈ [t, τ ] ,

and differentiation yields

G′(s) = −h(s)g(s) ≥ −h(s)G(s) = H ′(s)G(s) ∀σ ∈ [t, τ ] .

An argument analogous to that used in Case 1 gives the desired inequality.

Exercise 2.6

In the above proof, complete Case 2 by providing an argument similar

to that of Case 1.

We are now in a position to state and prove the existence and uniqueness result

which asserts that the initial-value problem (2.1) has precisely one solution

defined on J .

Theorem 2.5

Let (τ, ξ) ∈ J × FN . The function

x : J → FN , t 7→ x(t) := Φ(t, τ)ξ. (2.11)

is a solution of the initial-value problem (2.1). Moreover, if y : Jy → FN is also

a solution of (2.1), then y(t) = x(t) for all t ∈ Jy.

Proof

Let (τ, ξ) ∈ J × FN be arbitrary. It is immediate that the function x given by

(2.11) is a solution of (2.1), since, by Corollary 2.3,

x(t) = Φ(t, τ)ξ = ξ +

∫ t

τ

A(σ)Φ(σ, τ)ξ dσ = ξ +

∫ t

τ

A(σ)x(σ) dσ ∀ t ∈ J.
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Let y : Jy → FN be another solution of (2.1). Then

e(t) := x(t) − y(t) =

∫ t

τ

A(σ)
(

x(σ) − y(σ)
)

dσ =

∫ t

τ

A(σ)e(σ) dσ ∀ t ∈ Jy.

Invoking the triangle inequality for integrals (Proposition A.28), we conclude

‖e(t)‖ ≤
∣

∣

∣

∣

∫ t

τ

‖A(σ)‖‖e(σ)‖dσ

∣

∣

∣

∣

∀ t ∈ Jy.

By Gronwall’s lemma (Lemma 2.4), it follows that e(t) = 0 for all t ∈ Jy,

showing that y(t) = x(t) for all t ∈ Jy.

Further properties of the transition matrix function readily follow.

Corollary 2.6

For all t, σ, τ ∈ J ,

Φ(τ, τ) = I, Φ(t, τ) = Φ(t, σ)Φ(σ, τ) and Φ−1(t, τ) = Φ(τ, t).

Proof

Let σ, τ ∈ J and ξ ∈ FN be arbitrary. The first identity follows immediately

from (2.5), the defining equation for Φ, and the definition of Mn (see Lemma

2.1). To prove the second identity, set ζ := Φ(σ, τ)ξ and define the functions

y, z : J → FN by y(t) := Φ(t, τ)ξ and z(t) = Φ(t, σ)ζ. By Theorem 2.5, y is the

unique solution of the initial-value problem ẋ(t) = A(t)x(t), x(τ) = ξ, and z is

the unique solution of the initial-value problem

ẋ(t) = A(t)x(t), x(σ) = ζ. (2.12)

Noting that y(σ) = Φ(σ, τ)ξ = ζ, we see that y also solves the initial-value

problem (2.12). Hence, by Theorem 2.5, y(t) = z(t) for all t ∈ J , and thus, in

particular,

Φ(t, σ)Φ(σ, τ)ξ = Φ(t, σ)ζ = z(t) = y(t) = Φ(t, τ)ξ

Since ξ ∈ FN is arbitrary, we have Φ(t, σ)Φ(σ, τ) = Φ(t, τ). Finally, as an

immediate consequence of this identity, we have

Φ(τ, t)Φ(t, τ) = Φ(τ, τ) = I,

and so Φ(t, τ) is invertible with inverse Φ−1(t, τ) = Φ(τ, t).
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Exercise 2.7

Let Φ be the transition matrix function generated by A : J → FN×N .

Define Ã by Ã(t) = −A∗(t) for all t ∈ J . Prove that the transition

matrix function Φ̃ generated by Ã is given by

Φ̃(t, s) = Φ∗(s, t) ∀ (t, s) ∈ J × J.

Here M∗ denotes the Hermitian transposition of a matrix M (see also

Appendix A.1). (Hint. Prove that, if x : J → FN is a solution of ẋ(t) =

A(t)x(t) and y : J → FN is a solution of ẏ(t) = −A∗(t)y(t), then, for

some scalar c, we have 〈x(t), y(t)〉 = c for all t ∈ J .)

2.1.2 Solution space

Let Shom denote the set of all solutions x : J → FN of the homogeneous differen-

tial equation ẋ(t) = A(t)x(t), that is, the set of functions x : J → FN that solve

the initial-value problem (2.1) for some (τ, ξ) ∈ J ×FN . It is easy to show that

the set Shom forms a vector space, a subspace of C(J, FN ), the so-called solu-

tion space of the homogeneous differential equation. If y1, . . . , yN ∈ Shom, then

w(t) := det(y1(t), . . . , yN (t)) is called the Wronskian5 associated with the solu-

tions y1, . . . , yN . Next, we establish some some properties of the solution space

and the Wronskian. Recall that the trace of a square matrix M = (mij) ∈ FN×N

is defined by trM :=
∑N

j=1 mjj , the sum if its diagonal elements.

Proposition 2.7

(1) Let b1, . . . , bN be a basis of FN and let τ ∈ J . Then the functions yj : J →
FN defined by yj(t) := Φ(t, τ)bj , j = 1, 2, . . . , N , form a basis of the solution

space Shom. In particular, Shom is N -dimensional and, for every solution x : J →
FN , there exist scalars γ1, . . . , γN such that x(t) =

∑N
j=1 γjyj(t) for all t ∈ J .

(2) Let y1, . . . , yN be in Shom and let w be the associated Wronskian. Then

w(t) = w(τ) det Φ(t, τ) ∀ (t, τ) ∈ J × J, (2.13)

and moreover, ẇ(t) = (tr A(t))w(t) for all t ∈ J which are not points of discon-

tinuity of A, and so

w(t) = w(τ) exp

(∫ t

τ

tr A(s) ds

)

∀ t ∈ J . (2.14)

5 Josef-Maria Hoëné de Wronski (1778-1853), Polish.
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In particular, if w(τ) = 0 for some τ ∈ J , then w(t) = 0 for all t ∈ J , or,

equivalently, if w(τ) 6= 0 for some τ ∈ J , then w(t) 6= 0 for all t ∈ J .

(3) Elements y1, . . . , yn of Shom, where n ≤ N , are linearly independent (as

elements in the vector space C(J, FN )) if, and only if, for every t ∈ J , the

vectors y1(t), . . . , yn(t) are linearly independent (as elements of FN ).

Proof

(1) Theorem 2.5 ensures that y1, . . . , yN are solutions and so are in Shom. More-

over, these solutions are linearly independent (in the vector space C(J, FN )).

Indeed, if, for α1, . . . , αN ∈ F, we have
∑N

j=1 αjyj(t) = 0 for all t ∈ J , then
∑N

j=1 αjyj(τ) =
∑N

j=1 αjbj = 0, and so, by linear independence of b1, . . . , bN

(in FN ), it follows that α1 = . . . = αN = 0. Next, we show that y1, . . . , yN

form a basis of Shom. Let x be an arbitrary element of Shom. Then, by The-

orem 2.5, x(t) = Φ(t, τ)x(τ) for all t ∈ J . Since b1, . . . , bN form a basis of

FN , there exist scalars γ1, . . . , γN such that x(τ) =
∑N

j=1 γjbj . Consequently,

x(t) =
∑N

j=1 γjΦ(t, τ)bj =
∑N

j=1 γjyj(t) for all t ∈ J , showing that y1, . . . , yN

span Shom.

(2) Let τ ∈ J be fixed, but arbitrary. Since yj ∈ Shom for j = 1, . . . , N , it follows

from Theorem 2.5 that yj(t) = Φ(t, τ)yj(τ) for all t ∈ J and all j = 1, . . . , N .

Hence, for all t ∈ J ,

w(t) = detΦ(t, τ) det(y1(τ), . . . , yN (τ)) = w(τ) det Φ(t, τ),

establishing (2.13). Moreover, writing Φ(t, τ) = (ϕ1(t, τ), . . . , ϕN (t, τ)), where

ϕj(t, τ) denotes the j-th column of Φ(t, τ), it follows, from the definition of the

determinant (see (A.8) in Appendix A.1) and the product rule for differentia-

tion, that, for all t ∈ J which are not points of discontinuity of A,

(

∂1 det Φ
)

(t, τ) =
N

∑

j=1

det
(

ϕ1(t, τ), . . . , ϕj−1(t, τ), ∂1ϕj(t, τ), . . . , ϕN (t, τ)
)

,

where ∂1 denotes the derivative with respect to the first argument. In the

following we assume that τ is not a point of discontinuity of A. Then, since

Φ(τ, τ) = I, the above identity yields for t = τ ,

(

∂1 det Φ
)

(τ, τ) =
N

∑

j=1

det
(

e1, . . . , ej−1, A(τ)ej , ej+1, . . . , eN

)

,

where e1, . . . , eN denotes the canonical basis of FN . Denoting the entries of
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A(t) by aij(t) it follows that

(

∂1 det Φ
)

(τ, τ) =
N

∑

j=1

ajj(τ) = trA(τ).

Therefore, differentiation of (2.13) with respect to t at t = τ yields

ẇ(τ) = w(τ)tr A(τ). (2.15)

The argument leading to (2.15) applies to any τ ∈ J which is not a point of

discontinuity of A and therefore ẇ(t) = (tr A(t))w(t) for every t ∈ J which is

not a point of discontinuity of A. Furthermore, (2.14) now follows from Exercise

2.5 and Theorem 2.5.

(3) Let y1, . . . , yn be in Shom and α1, . . . , αn ∈ F.

Sufficiency. Assume that y1(t), . . . , yn(t) are linearly independent vectors in

FN for all t ∈ J . It immediately follows that

α1y1 + · · · + αnyn = 0 =⇒ αk = 0, k = 1, . . . , n

and so y1, . . . , yn are linearly independent in Shom.

Necessity. Let y1, . . . , yn be linearly independent in Shom. Let τ ∈ J be arbi-

trary. Assume that α1y1(τ) + · · ·+ αnyn(τ) = 0. Then, y := α1y1 + · · ·+ αnyn

solves the initial-value problem ẋ(t) = A(t)x(t), x(τ) = 0, which we know

has unique solution 0. Therefore, y = 0 and so, by linear independence of the

functions y1, . . . , yn, we have αk = 0, k = 1, . . . , n. This establishes linear inde-

pendence of y1(τ), . . . , yn(τ) and, as τ ∈ J is arbitrary, the result follows.

Statement (3) of Proposition (2.7) says that linear independence of y1, . . . , yn ∈
Shom as functions is equivalent to linear independence of y1(t), . . . , yn(t) (as vec-

tors in FN ) for every t ∈ J . The following exercise shows that if y1, . . . , yn ∈
C(J, FN ) are not required to be solutions of ẋ(t) = A(t)x(t), then this equiva-

lence does not hold.

Exercise 2.8

Show, by counterexample, that linear independence of y1, . . . , yn ∈
C(J, FN ) does not imply linear independence of y1(t), . . . , yn(t) ∈ FN

for all t ∈ J .

A fundamental system for the homogeneous differential equation ẋ(t) = A(t)x(t)

is a set of N linearly independent solutions, or, equivalently, a basis of Shom.

If {ψ1, . . . , ψN} is a fundamental system, then the matrix-valued function

Ψ : J → FN×N defined by

Ψ(t) :=
(

ψ1(t), . . . , ψn(t)
)

∀ t ∈ J

is said to be a fundamental matrix for the differential equation ẋ(t) = A(t)x(t).



2.1 Homogeneous linear systems 33

Proposition 2.8

Let Ψ be a fundamental matrix. Then Ψ(t) is invertible for every t ∈ J and

Φ(t, τ) = Ψ(t)Ψ−1(τ) ∀ t, τ ∈ J.

Proof

By part (3) of Proposition 2.7 we may infer that Ψ(t) is invertible for all t ∈ J .

Let ξ ∈ FN be arbitrary and define x : J → FN by setting x(t) := Ψ(t)Ψ−1(τ)ξ.

Obviously, x is a linear combination of the columns of Ψ and consequently,

x is a solution. Moreover, x(τ) = ξ, so that x solves the initial-value problem

(2.1). By Theorem 2.5, the function t 7→ Φ(t, τ)ξ is the unique solution of (2.1).

Hence, x(t) = Φ(t, τ)ξ for all t ∈ J , showing that

Φ(t, τ)ξ = Ψ(t)Ψ−1(τ)ξ ∀ t ∈ J.

Since ξ was arbitrary, we obtain that Φ(t, τ) = Ψ(t)Ψ−1(τ) for all t ∈ J .

Exercise 2.9

Let F = R and let A : R → R2×2 be given by

A(t) :=

(

0 1

0 2t

)

.

Find two linearly independent solutions of ẋ(t) = A(t)x(t) and hence

determine the transition matrix function Φ.

2.1.3 Autonomous systems

Let us now turn attention to the case of constant A, that is, we consider the

autonomous homogeneous initial-value problem, with J = R,

ẋ(t) = Ax(t), x(τ) = ξ ∈ FN , where A ∈ FN×N . (2.16)

Recall that, for M ∈ FN×N , exp(M) :=
∑∞

k=0(1/k!)Mk and that, by (2.7),

Φ(t, τ) = exp(A(t − τ)) ∀ t, τ ∈ R.

In particular,

Φ(t, 0) = exp(At) ∀ t ∈ R and Φ(t, τ) = Φ(t − τ, 0) ∀ t, τ ∈ R. (2.17)

The following is an immediate corollary of Theorem 2.5.
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Corollary 2.9

The function R → FN , t 7→ exp(A(t − τ))ξ is the unique solution of the au-

tonomous homogeneous initial-value problem (2.16).

In view of (2.17), we see that the unique solution (on R) t 7→ Φ(t, τ)ξ =

Φ(t − τ, 0)ξ of the initial-value problem (2.16) is simply a translation of the

solution t 7→ Φ(t, 0)ξ (on R) of the initial-value problem ẋ(t) = Ax(t), x(0) = ξ.

Consequently, we may assume without loss of generality that τ = 0 in (2.16).

We briefly digress to record following some important properties of the

matrix exponential function.

Lemma 2.10

Let P,Q ∈ FN×N .

(1) If P is diagonal, that is, P = diag(p1, . . . , pn), then

exp(P ) = diag
(

exp(p1), . . . , exp(pN )
)

.

(2) exp(P ∗) = (exp(P ))∗.

(3) For all t ∈ R,

d

dt
exp(Pt) = P exp(Pt) = exp(Pt)P.

(4) If PQ = QP , then exp(P )Q = Q exp(P ) and

exp(P + Q) = exp(P ) exp(Q). (2.18)

(5) exp(−P ) exp(P ) = exp(P ) exp(−P ) = I, that is, exp(P ) is invertible with

inverse exp(−P ).

Proof

The proofs of parts (1)-(3) are straightforward (see Exercise 2.10). To prove

part (4), assume that P and Q commute, that is, PQ = QP . Then,

exp(P )Q =
∞
∑

k=0

1

k!
P kQ =

∞
∑

k=0

1

k!
QP k = Q

∞
∑

k=0

1

k!
P k = Q exp(P ).

Let z ∈ FN and define y : R → CN by setting y(t) = exp(Pt) exp(Qt)z. Using

part (3) and the product rule, differentiation of y leads to

ẏ(t) = P exp(Pt) exp(Qt)z + exp(Pt)Q exp(Qt)z = (P + Q)y(t) ∀ t ∈ R,
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where we have used the fact that exp(Pt)Q = Q exp(Pt). Moreover, y(0) = z.

The unique solution of the initial-value problem ẋ = (P +Q)x, x(0) = z, is the

function t 7→ exp((P + Q)t)z, and so

exp((P + Q)t)z = y(t) = exp(Pt) exp(Qt)z ∀ t ∈ R.

As z ∈ FN is arbitrary, we have exp((P +Q)t) = exp(Pt) exp(Qt) for all t ∈ R.

Finally, statement (5) is an immediate consequence of statement (4) (on

setting Q = −P ). This completes the proof.

Exercise 2.10

Prove assertions (1)-(3) of Lemma 2.10.

Exercise 2.11

Let P,Q ∈ FN×N . Show that, if P and Q do not commute, then (2.18)

does not hold in general.

In the following, we will show how, in principle, N linearly independent solu-

tions (or, equivalently, a fundamental matrix) of the autonomous differential

equation (2.16), over the complex field F = C, can be computed. In this con-

text, a pivotal role is played by the concepts of generalized eigenspaces and

algebraic/geometric multiplicities of eigenvalues, the definitions of which (to-

gether with key results) can be found in Appendix A.1. For A ∈ CN×N it is

convenient to define

σ(A) := {λ ∈ C : λ is an eigenvalue of A}.
The set σ(A) (the set of all eigenvalues of A) is called the spectrum of σ(A).

Theorem 2.11

Let A ∈ CN×N . For λ ∈ σ(A), let m(λ) denote the algebraic multiplicity of λ,

denote its associated generalized eigenspace by E(λ) := ker(A − λI)m(λ), and,

for z ∈ CN , define xz : R → CN by xz(t) := exp(At)z.

(1) For λ ∈ σ(A) and z ∈ E(λ),

xz(t) = eλt

m(λ)−1
∑

k=0

tk

k!
(A − λI)kz ∀ t ∈ R. (2.19)

(2) Let B(λ) be a basis of E(λ) and write

B := ∪λ∈σ(A)B(λ),

The set of functions {xz : z ∈ B} is a basis of the solution space of (2.16) (with

F = C).
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Proof

Let λ ∈ σ(A) and z ∈ E(λ). Then, (A − λI)kz = 0 for all k ≥ m(λ) and so

xz(t) = exp(At)z = eλt
(

exp(A − λI)t
)

z = eλt

m(λ)−1
∑

k=0

tk

k!
(A − λI)kz ∀ t ∈ R,

establishing statement (1).

By the generalized eigenspace decomposition theorem (see Theorem A.8),

B is a basis of CN and so, by Proposition 2.7, {xz : z ∈ B} is a basis of the

solution space of (2.16) (with F = C), proving statement (2).

Theorem 2.11 shows that, by computing the eigenvalues of A and computing

m(λ) linearly independent generalized eigenvectors associated with λ for each

λ ∈ σ(A), N linearly independent solutions of (2.16) (with F = C) can be

obtained by using formula (2.19).

The next result, a consequence of Theorem 2.11, says, roughly speaking,

that the growth of ‖ exp(At)‖ as t → ∞ is determined by the spectrum of A.

Theorem 2.12

Let A ∈ CN×N , set µA := max{Re λ : λ ∈ σ(A)} and

ΓA := {γ ∈ R : there exists Mγ ≥ 1 such that ‖ exp(At)‖ ≤ Mγeγt ∀ t ≥ 0}.

(1) (µA,∞) ⊂ ΓA and inf ΓA = µA.

(2) µA ∈ ΓA if, and only if, every λ ∈ σ(A) satisfying Reλ = µA is semisimple.

(3) Let γ ∈ R. If, for all ξ ∈ CN , limt→∞ exp((A − γI)t)ξ = 0, then µA < γ.

Before we prove Theorem 2.12, we state an immediate corollary.

Corollary 2.13

Let A ∈ CN×N and define µA as in Theorem 2.12.

(1) µA < 0 if, and only if, ‖ exp(At)‖ decays exponentially fast as t → ∞.

(2) µA < 0 if, and only if, limt→∞ exp(At)ξ = 0 for every ξ ∈ CN .

(3) If µA = 0, then supt≥0 ‖ exp(At)‖ < ∞ if, and only if, all purely imaginary

eigenvalues of A are semisimple.
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Proof of Theorem 2.12

Let λ ∈ σ(A) and let z ∈ CN be an associated generalized eigenvector. Then,

by statement (1) of Theorem 2.11,

exp(At)z = eλt

m(λ)−1
∑

k=0

tk

k!
(A − λI)kz ∀ t ∈ R, (2.20)

where m(λ) denotes the algebraic multiplicity of λ. Let z1, . . . , zN be a basis of

CN consisting of generalized eigenvectors of A (such a basis exists by Theorem

A.8) and define the invertible matrix Z := (z1, . . . , zn) ∈ CN×N .

(1) Let γ ∈ (µA,∞) be arbitrary. We will show that γ ∈ ΓA (and so (µA,∞) ⊂
ΓA). Noting that γ > Re λ for all λ ∈ σ(A) and invoking (2.20), we may infer

the existence of L ≥ 1 such that

‖ exp(At)zi‖ ≤ Leγt‖zi‖ ∀ t ≥ 0, i = 1, . . . , N. (2.21)

Let ξ ∈ CN be arbitrary and write η := Z−1ξ. Then ξ =
∑N

i=1 ηizi, where ηi,

i = 1, . . . , N , are the components of η and so

‖ exp(At)ξ‖ ≤
N

∑

i=1

|ηi|‖ exp(At)zi‖ ≤ ‖Z−1‖‖ξ‖
N

∑

i=1

‖ exp(At)zi‖,

which, in conjunction with (2.21) and writing Mγ := L‖Z−1‖∑N
i=1 ‖zi‖, gives

‖ exp(At)ξ‖ ≤ Mγeγt‖ξ‖ ∀ ξ ∈ CN , ∀ t ≥ 0.

Since ξ is arbitrary, it follows that ‖ exp(At)‖ ≤ Mγeγt for all t ≥ 0. Therefore,

γ ∈ ΓA, showing that (µA,∞) ⊂ ΓA. As an immediate consequence of the latter

inclusion, we obtain inf ΓA ≤ µA. On the other hand, by (2.20), inf ΓA ≥ µA.

Therefore, µA = inf ΓA, completing the proof of statement (1).

(2) We proceed to prove statement (2). We will use the fact that an eigenvalue

λ of A is semisimple if, and only if, the generalized eigenspace E(λ) coincides

with the eigenspace ker(A − λI) (see Proposition A.10 in Appendix A.1). If

all λ ∈ σ(A) satisfying Re λ = µA are semisimple, then, invoking (2.20), it is

clear that for every generalized eigenvector z of A, there exists Lz ≥ 1 such

that ‖ exp(At)z‖ ≤ Lze
µAt‖z‖ for all t ≥ 0. By an argument identical to that

used in the proof of the inclusion (µA,∞) ⊂ ΓA, it follows that there exists

M ≥ 1 such that ‖ exp(At)‖ ≤ MeµAt for all t ≥ 0, implying that µA ∈ ΓA.

Conversely, assume that µA ∈ ΓA. Let λ ∈ σ(A) be such that Reλ = µA and

let z ∈ E(λ). Then, by (2.20), for all t ∈ R,

∥

∥

m(λ)−1
∑

k=0

tk

k!
(A − λI)kz

∥

∥ = ‖e−λt exp(At)‖ = e−µAt‖ exp(At)‖
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By hypothesis, supt≥0 e−µAt‖ exp(At)‖ < ∞, and hence, (A − λI)z = 0. This

holds for every z ∈ E(λ) and consequently, λ is semisimple.

(3) Finally, to prove statement (3), let λ ∈ σ(A) and let v ∈ CN be an associated

eigenvector. By hypothesis,

e(λ−γ)tv = e−γt exp(At)v = exp((A − γI)t)v → 0 as t → ∞

and so Reλ < γ. Since λ ∈ σ(A) was arbitrary, we conclude that µA < γ.

Next, we turn attention to the special case of (2.16) over the real field F = R.

In particular, we consider the initial-value problem

ẋ(t) = Ax(t), x(0) = ξ ∈ RN , A ∈ RN×N (2.22)

and will show how to compute N linearly independent real solutions. As a

prelude, we set the following.

Exercise 2.12

Let V ⊂ CN be a subspace that is closed under complex conjugation

(that is, if v ∈ V , then v̄ ∈ V ). Show that V has a real basis.

If A is a real N × N matrix and λ ∈ σ(A) is a real eigenvalue of algebraic

multiplicity m(λ), then the associated generalized eigenspace ker(A − λI)m(λ)

is closed under complex conjugation and so, by Exercise 2.12, has a real basis.

This fact is used implicitly in the following theorem. Furthermore, for z ∈ CN ,

the real and imaginary parts of z, denoted by Re z and Im z, respectively, should

be interpreted in the natural componentwise manner.

Theorem 2.14

Let A ∈ RN×N . For λ ∈ σ(A), let m(λ) denote the algebraic multiplicity of λ,

denote its associated generalized eigenspace by E(λ) := ker(A − λI)m(λ), and

let B(λ) be a basis thereof, chosen to be a real basis whenever λ is real. For all

z ∈ CN , define real solutions xz, yz : R → RN of (2.22) by xz(t) := exp(At)Re z

and yz(t) := exp(At)Im z.

(1) Let B0 (respectively, B+) denote the union of all B(λ) with λ ∈ σ(A) and

Imλ = 0 (respectively, Im λ > 0). The set of functions R → RN given by

{xz : z ∈ B0 ∪ B+} ∪ {yz : z ∈ B+} ,

forms a basis of the solution space of (2.22).



2.1 Homogeneous linear systems 39

(2) If λ is a real eigenvalue of A, then, for every z ∈ E(λ), the function xz can

be expressed in the form

xz(t) = eλt

m(λ)−1
∑

k=0

tk

k!
(A − λI)kRe z . (2.23)

(3) If λ = α + iβ, with β 6= 0, is an eigenvalue of A, then, for every z ∈ E(λ),

the functions xz and yz can be expressed as follows

xz(t) = eαt

m(λ)−1
∑

k=0

tk

k!

[

cos(βt)Re
(

(A − λI)kz
)

− sin(βt)Im
(

(A − λI)kz
)]

.

(2.24)

and

yz(t) = eαt

m(λ)−1
∑

k=0

tk

k!

[

cos(βt)Re
(

(A − λI)kz
)

+ sin(βt)Im
(

(A − λI)kz
)]

.

(2.25)

Theorem 2.14 shows that, by computing the eigenvalues of A and computing

m(λ) linearly independent generalized eigenvectors associated with λ for each

λ ∈ σ(A), N linearly independent real solutions of (2.22) can be obtained by

using formulas (2.23)-(2.25).

Proof of Theorem 2.14

Let λ ∈ σ(A) and z ∈ E(λ). By Theorem 2.11,

exp(At)z = eλt
(

exp(A − λI)t
)

z = eλt

m(λ)−1
∑

k=0

tk

k!
(A − λI)kz ∀ t ∈ R.

Therefore, for all t ∈ R,

xz(t) := exp(At)Re z = Re
(

exp(At)z
)

= Re



eλt

m(λ)−1
∑

k=0

tk

k!
(A − λI)kz



 .

Statement (2) follows immediately.

Now assume λ = α + iβ, with β 6= 0. Then,

xz(t) = eαtRe



eiβt

m(λ)−1
∑

k=0

tk

k!
(A − λI)kz



 ∀ t ∈ R,
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from which (2.24) follows. Since yz(t) = exp(At)Im z = Im (exp(At)z) for all

t ∈ R, an analogous calculation yields (2.25). This establishes statement(3).

It remains to prove statement (1). To this end, observe that B0 is either

empty or is a set of real vectors in RN . Noting that complex eigenvalues of

A occur in conjugate pairs, it is readily seen that, if B(λ) = {v1, . . . , vp} is a

basis of E(λ), then {v̄1, . . . , v̄p} is a basis of E(λ̄). Writing B− := {v̄ : v ∈ B+},
it follows, by the generalized eigenspace decomposition theorem (see Theorem

A.8), that B0 ∪ B+ ∪ B− is a basis of CN . If B+ is non-empty, then writing

B+ = {v1, . . . , vq}, we have

span(B+ ∪ B−) = span{v1, . . . , vq, v̄1, . . . , v̄q} = span B1,

where

B1 := {Re v1, . . . ,Re vq, Im v1, . . . , Im vq}.

If B+ = ∅, then B1 := ∅. We may now conclude that B = B0 ∪ B1 is a real

basis of CN . Moreover,

B = {xz(0) : z ∈ B0 ∪ B+} ∪ {yz(0) : z ∈ B+}

showing that the N functions R → RN in the set {xz : z ∈ B0 ∪B+}∪{yz : z ∈
B+} are linearly independent solutions of (2.22). This completes the proof.

2.2 Inhomogeneous linear systems

In the following, let A : J → FN×N and b : J → FN be piecewise continuous

and let Φ be the transition matrix function generated by A. We will consider

the issue of existence and uniqueness of solutions of the linear inhomogeneous

initial-value problem

ẋ(t) = A(t)x(t) + b(t), x(τ) = ξ, (τ, ξ) ∈ J × FN . (2.26)

A solution of (2.26) is a continuous function x : Jx → FN satisfying

x(t) = ξ +

∫ t

τ

(

A(σ)x(σ) + b(σ)
)

dσ ∀ t ∈ Jx.

where Jx ⊂ J is an interval such that τ ∈ Jx. By Theorems A.30 and A.31,

x : Jx → RN is a solution of (2.26) if, and only if, x is piecewise continuously

differentiable, x(τ) = ξ and

ẋ(t) = A(t)x(t) + b(t) ∀ t ∈ Jx\E,
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where E is the set of points in J at which A or b fail to be continuous. Piecewise

continuity of A and b implies that the set E is “small” in the sense that, for all

t1, t2 ∈ J with t1 < t2, the intersection E ∩ [t1, t2] has at most finitely many

elements. If A and b are continuous on J , then x is continuously differentiable

and the differential equation in (2.26) holds for all t ∈ J .

Theorem 2.15

Let (τ, ξ) ∈ J × FN . The function

x : J → FN , t 7→ Φ(t, τ)ξ +

∫ t

τ

Φ(t, σ)b(σ) dσ. (2.27)

is a solution of the initial-value problem (2.26). Moreover, if y : Jy → FN is

another solution of (2.26), then y(t) = x(t) for all t ∈ Jy.

Proof

Let (τ, ξ) ∈ J × FN be arbitrary. We first show that x, given by (2.27), is a

solution. Invoking Corollary 2.3, we have

x(t) =

(

I +

∫ t

τ

A(σ)Φ(σ, τ)dσ

)

ξ

+

∫ t

τ

(

I +

∫ t

σ

A(η)Φ(η, σ)dη

)

b(σ) dσ ∀ t ∈ J.

Changing the order of integration and then relabelling the variables of integra-

tion, we find

∫ t

τ

∫ t

σ

A(η)Φ(η, σ)b(σ) dηdσ =

∫ t

τ

∫ η

τ

A(η)Φ(η, σ)b(σ) dσdη

=

∫ t

τ

A(σ)

∫ σ

τ

Φ(σ, η)b(η) dηdσ .

Therefore,

x(t) = ξ +

∫ t

τ

(

A(σ)

(

Φ(σ, τ)ξ +

∫ σ

τ

Φ(σ, η)b(η) dη

)

+ b(σ)

)

dσ

= ξ +

∫ t

τ

(

A(σ)x(σ) + b(σ)
)

dσ ∀ t ∈ J

and so x is a solution of (2.26).
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Finally, let y : Jy → RN be another solution of (2.26). Then

e(t) := x(t) − y(t) =

∫ t

τ

A(σ)
(

x(σ) − y(σ)
)

dσ =

∫ t

τ

A(σ)e(σ) dσ ∀ t ∈ Jy.

Therefore, e solves the initial-value problem ė(t) = A(t)e(t), e(τ) = 0, and

so, by Theorem 2.5, e must be the zero function. Hence, y(t) = x(t) for all

t ∈ Jy.

The formula (2.27) for the (unique) solution of the inhomogeneous initial-value

problem (2.26) is frequently referred to as the variation of parameters formula.

In certain contexts, the initial condition in (2.26) is not relevant, in which

case we say that a continuous function x : Jx → FN , where Jx ⊂ J is an

interval, is a solution of the differential equation ẋ(t) = A(t)x(t) + b(t) if there

exists τ ∈ Jx such that

x(t) = x(τ) +

∫ t

τ

(

A(σ)x(σ) + b(σ)
)

dσ ∀ t ∈ Jx. (2.28)

Note that, by Theorems A.30 and A.31, x : Jx → FN is a solution of the

differential equation in this sense if, and only if, x is piecewise continuously

differentiable and the differential equation ẋ(t) = A(t)x(t)+ b(t) is satisfied for

every t ∈ Jx which is not a point of discontinuity of A or b. The next exercise

asserts that, if (2.28) holds for some τ ∈ Jx, then (2.28) holds for all τ ∈ Jx.

Exercise 2.13

Let x : Jx → FN be a solution of the differential equation ẋ(t) =

A(t)x(t) + b(t). Show that

x(t2) − x(t1) =

∫ t2

t1

(

A(σ)x(σ) + b(σ)
)

dσ ∀ t1, t2 ∈ Jx.

Let Sih denote the set of all solutions x : J → FN of the inhomogeneous differ-

ential equation ẋ(t) = A(t)x(t)+b(t). The following result contains information

on the structure of Sih.

Corollary 2.16

Let y ∈ Sih. Then

Sih = y + Shom = {y + x : x ∈ Shom},

where Shom is the solution space of the homogeneous system ẋ(t) = A(t)x(t).
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Exercise 2.14

Prove Corollary 2.16.

Corollary 2.16 says that Sih is an affine linear space: the sum of an arbitrary

solution y of the inhomogeneous problem (sometimes also called a particular

solution) and the (linear) solution space of the associated homogeneous prob-

lem.

Finally, we consider the inhomogeneous initial-value problem with constant

A, namely

ẋ(t) = Ax(t) + b(t), x(τ) = ξ ∈ FN , (2.29)

where A ∈ FN×N , b : J → FN is piecewise continuous and τ ∈ J . By Theorem

2.15, we may immediately conclude the following.

Corollary 2.17

The function

x : J → FN , t 7→ exp(A(t − τ))ξ +

∫ t

τ

exp(A(t − σ))b(σ) dσ

is a solution of the inhomogeneous initial-value problem (2.29). Moreover, if

y : Jy → FN is also a solution of (2.29), then y(t) = x(t) for all t ∈ Jy.

2.3 Systems with periodic coefficients: Floquet

theory

Periodic phenomena feature prominently in the sciences and engineering: ro-

tation of the Earth around its axis, heart beat, alternating electric current,

to mention just a few examples. Correspondingly, the study of systems with

periodic coefficients is a classical theme in differential equations. Here, we turn

attention to linear homogeneous systems with J = R and a piecewise continu-

ous periodic function A : R → FN×N with period p > 0:

ẋ(t) = A(t)x(t), A(t + p) = A(t) ∀ t ∈ R. (2.30)

It is natural to ask if there exist periodic solutions of the homogeneous system

(2.30). By a periodic solution, we mean a solution x with the property that,

for some q > 0, x(t) = x(t + q) for all t ∈ R. Observe that a constant solution

qualifies as a periodic solution and, since x = 0 is a solution of (2.30), one

might argue that there always exists a periodic solution. Disregarding the zero
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or trivial solution, our primary concern is the existence or otherwise of non-zero

periodic solutions and, more generally, the qualitative behaviour of solutions

of (2.30).

The following example illustrates the fact that non-zero periodic solutions

of (2.30) need not necessarily exist.

Example 2.18

Consider the scalar initial-value problem with F = R

ẋ(t) = (1 + sin t)x(t), x(0) = ξ.

Here, A : t 7→ 1 + sin t is periodic with period p = 2π. The unique solution of

the initial-value problem is x : t 7→ ξe(1+t−cos t) which fails to be periodic for

all ξ 6= 0. △

We briefly digress to state a result - the spectral mapping theorem - which will

play a key role in our investigations.

Theorem 2.19 (Spectral mapping theorem)

Let an ∈ C, n ∈ N0 := N∪{0}, assume that the series
∑∞

n=0 anzn =: f(z) con-

verges for all z ∈ C and let M ∈ CN×N . Then the series f(M) :=
∑∞

n=0 anMn

converges in CN×N and f(M) has the following properties.

(1) σ(f(M)) =
{

f(λ) : λ ∈ σ(M)
}

.

(2) If f is injective on σ(M), then, for each λ ∈ σ(M), the algebraic multiplic-

ities of f(λ) ∈ σ(f(M)) and λ coincide.

(3) If f is injective on σ(M) and f ′(λ) 6= 0 whenever λ ∈ σ(M) is not semisim-

ple, then, for each λ ∈ σ(M), the f(λ)-eigenspace ker(f(M)− f(λ)I) coincides

with the λ-eigenspace ker(M −λI) (and so, a fortiori, the geometric multiplic-

ities of f(λ) and λ coincide).

In order to avoid disrupting the presentation of our main concern, namely, the

investigation of qualitative features of solutions of (2.30), we relegate the proof

of the spectral mapping theorem to the end of the current chapter (see Section

2.4) and embark on our first task of identifying conditions under which (2.30)

has a periodic solution.

Let Φ be the transition matrix function generated by A (a p-periodic func-

tion R → FN×N ). Let ξ ∈ FN , τ ∈ R and set y(t) := Φ(t + p, τ + p)ξ for all
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t ∈ R. Then, by Corollary 2.3,

y(t) − ξ =

∫ t+p

τ+p

A(σ)Φ(σ, τ + p)ξ dσ

whence

y(t) − ξ =

∫ t

τ

A(σ + p)Φ(σ + p, τ + p)ξ dσ =

∫ t

τ

A(σ)y(σ) dσ ∀ t ∈ R

and so y is the unique solution of the initial-value problem ẋ(t) = A(t)x(t),

x(τ) = ξ. Therefore, Φ(t + p, τ + p)ξ = Φ(t, τ)ξ for all t ∈ R. Since τ ∈ R and

ξ ∈ FN are arbitrary, we may deduce the following property of Φ:

Φ(t + p, τ + p) = Φ(t, τ) ∀ (t, τ) ∈ R × R. (2.31)

Therefore, for all (t, τ) ∈ R × R,

Φ(t + p, τ) = Φ(t + p, τ + p)Φ(τ + p, τ) = Φ(t, τ)Φ(τ, τ − p)

= Φ(t, τ)Φ(τ, 0)Φ(0, τ − p) = Φ(t, 0)Φ(p, τ)

= Φ(t, 0)Φ(p, 0)Φ(0, τ).

We may now infer by induction that, for all n ∈ N,

Φ(t + np, τ) = Φ(t, 0)Φn(p, 0)Φ(0, τ) ∀ (t, τ) ∈ R × R. (2.32)

Exercise 2.15

Prove, by induction, that (2.32) holds for all n ∈ N.

The following result gives a necessary and sufficient condition for the existence

of a non-zero periodic solution of period np, where n ∈ N.

Proposition 2.20

Let n ∈ N. System (2.30) has a non-zero periodic solution x of period np if,

and only if, Φ(p, 0) has an eigenvalue λ such that λn = 1.

Proof

To prove sufficiency, assume that λ is an eigenvalue of Φ(p, 0) and λn = 1. Let

v ∈ CN be an associated eigenvector. Then v 6= 0 and Φn(p, 0)v = λnv = v.

The unique solution x : R → FN of the initial-value problem

ẋ(t) = A(t)x(t), x(0) = v,
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is given by x(t) = Φ(t, 0)v. Invoking (2.32), with τ = 0, gives

x(t + np) = Φ(t + np, 0)v = Φ(t, 0)Φn(p, 0)v = Φ(t, 0)v = x(t) ∀ t ∈ R,

and so x is a non-zero periodic solution of period np.

We proceed to prove necessity. To this end, assume that x is a non-zero

periodic solution of (2.30), with period np. Then v := x(0) 6= 0 (because the

zero function is the unique solution of the initial-value problem ẏ(t) = A(t)y(t),

y(0) = 0). Invoking (2.32), with τ = 0, we have

Φ(t, 0)v = x(t) = x(t + np) = Φ(t + np, 0)v = Φ(t, 0)Φn(p, 0)v,

and thus, Φ(t, 0)
(

I − Φn(p, 0)
)

v = 0. Consequently
(

I − Φn(p, 0)
)

v = 0 and so

1 is an eigenvalue of Φn(p, 0). By Theorem 2.19 (with f(z) = zn),

σ(Φn(p, 0)) =
{

λn : λ ∈ σ(Φ(p, 0))
}

.

Therefore, Φ(p, 0) has an eigenvalue λ with the property that λn = 1.

Example 2.21

For F = R and N = 3, consider (2.30) with A : R → R3×3 (period p = 2π)

given by

A(t) :=





0 1 sin t

0 0 1

0 0 0



 .

In this case, the Peano-Baker series terminates and the state transition function

Φ is given by

Φ(t, τ) = I +

∫ t

τ

A(s1)ds1 +

∫ t

τ

A(s1)

∫ s1

τ

A(s2)ds2ds1

=





1 t − τ cos τ − cos t + (t − τ)2/2

0 1 t − τ

0 0 1



 .

Therefore,

Φ(p, 0) = Φ(2π, 0) =





1 2π 2π2

0 1 2π

0 0 1





which evidently has eigenvalue λ = 1. By Proposition 2.20, it follows that

(2.30) has a non-zero periodic solution of period 2π. Inspection of the form

of Φ reveals that (2.30) can have no non-constant periodic solutions. Indeed,

for every ξ = (ξ1, ξ2, ξ3)
∗ ∈ R3 and every τ ∈ R, the function x defined by

x(t) := Φ(t, τ)ξ is unbounded (and hence not periodic) if (ξ2, ξ3) 6= (0, 0) and

is constant if (ξ2, ξ3) = (0, 0). We therefore conclude that all non-zero periodic

solutions are constant and are of the form x(t) = (ξ1, 0, 0)∗ for all t ∈ R. △
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Exercise 2.16

Let n ∈ N. Assume that Φ(p, 0) has an eigenvalue λ such that λn = 1 and

that the function C → C, z 7→ zn is injective on σ(Φ(p, 0)) (the latter

condition holds trivially for n = 1).

(a) Show that x : R → FN is a np-periodic solution of (2.30) if, and only

if, x(0) ∈ ker(Φ(p, 0)−λI). (Hint. Inspect the proof of Proposition 2.20.

Make use of Theorem 2.19.)

(b) Let Snp denote the set of all np-periodic solutions of (2.30). Show

that Snp is a vector space and that dimSnp = dim ker(Φ(p, 0) − λI).

Exercise 2.17

Let n ∈ N and µ ∈ C. Show that system (2.30) has a non-zero solution

x : R → CN with the property

x(t + np) = µx(t) ∀ t ∈ R

if, and only if, Φ(p, 0) has an eigenvalue λ such that λn = µ.

(Hint. Note that the claim is a generalization of Proposition 2.20 (which

corresponds to the special case of µ = 1). Inspect the the proof of Propo-

sition 2.20 and modify it in a suitable way.)

Next we present a variant of Proposition 2.20 which provides sufficient condi-

tions for (2.30) to have a non-constant periodic solution.

Proposition 2.22

Let n ∈ N with n ≥ 2. If the function C → C, z 7→ zn is injective on σ(Φ(p, 0))

and if Φ(p, 0) has an eigenvalue λ such that λn = 1 and λk 6= 1, k = 1, . . . , n−1,

then, for each non-zero ξ ∈ ker(Φ(p, 0)−λI), the solution of (2.30), with initial

data x(0) = ξ, is non-constant and periodic.

Example 2.21 shows that the above proposition does not hold in the case of

n = 1.

Proof of Proposition 2.22

Assume that n ∈ N, n ≥ 2, λ is an eigenvalue of Φ(p, 0) with λn = 1 and λk 6= 1,

1 ≤ k ≤ n−1. By hypothesis, the function f : z 7→ zn is injective on σ(Φ(p, 0)).

Moreover, since Φ(p, 0) is invertible, 0 6∈ σ(Φ(p, 0)) and so f ′(λ) 6= 0 for all

λ ∈ σ(Φ(p, 0)). Therefore, by the spectral mapping theorem (Theorem 2.19),

ker(Φn(p, 0)− I) = ker(Φ(p, 0)− λI). Let ξ ∈ ker(Φn(p, 0)− I) = ker(Φ(p, 0)−
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λI). With initial data x(0) = ξ, (2.30) has unique solution x : R → FN given

by x(t) = Φ(t, 0)ξ. Invoking (2.32), we obtain

x(t+np)−x(t) =
(

Φ(t+np, 0)−Φ(t, 0)
)

ξ = Φ(t, 0)
(

Φn(p, 0)− I
)

ξ = 0 ∀ t ∈ R,

and so x is np-periodic. It remains to show that x is not constant if ξ 6= 0.

Seeking a contradiction, suppose that x(t) = Φ(t, 0)ξ is constant for some non-

zero ξ in ker(Φ(p, 0)−λI). Fixing k, 1 ≤ k ≤ n−1, we have Φk(p, 0)ξ = λkξ 6= ξ.

Since x is constant, x is kp-periodic, whence the contradiction

ξ = x(0) = x(kp) = Φ(kp, 0)ξ = Φk(p, 0)ξ = λkξ 6= ξ,

where we have used once again (2.32). Therefore, x is non-constant, completing

the proof.

The next exercise shows that, whilst Proposition 2.22 provides sufficient condi-

tions for the existence of a non-constant periodic solution of (2.30), this solution

may have a period smaller than p.

Exercise 2.18

Let F = R, N = 3, p = 2π and let A : R → R3×3 be the continuous,

p-periodic function given by

A(t) :=





0 1/2 0

−1/2 0 0

0 0 1 + sin t



 .

Show that the transition matrix function Φ generated by A is such that

Φ(t, 0) =





cos(t/2) sin(t/2) 0

− sin(t/2) cos(t/2) 0

0 0 exp(1 − cos t + t)



 .

Verify that σ(Φ(p, 0) = {−1, ep}, and so the hypotheses of Proposition

2.22 hold. Show that, for each non-zero ξ ∈ ker(Φ(p, 0)+ I), the solution

of (2.30), with initial data x(0) = ξ, is non-constant and periodic with

period π < 2π = p.

Proposition 2.20 (and its generalization in Exercise 2.17) and Proposition 2.22

serve to illustrate the fact that the eigenvalues of the matrix Φ(p, 0) play a

crucial role in the analysis of solutions of the system (2.30): these eigenvalues

are known as Floquet multipliers and are all non-zero, because Φ(p, 0) is non-

singular.

We now consider inhomogeneous systems with piecewise continuous periodic

A : R → FN×N and b : R → FN , each with period p > 0:

ẋ(t) = A(t)x(t) + b(t), A(t + p) = A(t), b(t + p) = b(t) ∀ t ∈ R. (2.33)
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Exercise 2.19

Set η :=
∫ p

0
Φ(p, s)b(s)ds. Show that (2.33) has a p-periodic solution if,

and only if, η ∈ im
(

I − Φ(p, 0)
)

.

We proceed to investigate further the existence of p-periodic solutions of (2.33).

In the following, let Sp denote the set of all p-periodic solutions of the homoge-

neous equation (2.30). It is easy to show that Sp is a vector space (a subspace

of Shom), see Exercise 2.16. The homogeneous equation

ẏ(t) = Ã(t)y(t), where Ã(t) := −A∗(t) for all t ∈ R, (2.34)

is said to be the adjoint equation of (2.30). The transition matrix Φ̃ generated

by Ã is given by Φ̃(t, s) = Φ∗(s, t) for all s, t ∈ R, see Exercise 2.7. The space

of all p-periodic solutions of the adjoint equation (2.34) is denoted by S̃p. For

later purposes, we state and prove the following result which shows that the

dimensions of Sp and S̃p coincide.

Lemma 2.23

dimSp = dim S̃p = dim ker(Φ(p, 0) − I).

Proof

Invoking Proposition 2.7, Exercise 2.16, and Proposition 2.20 shows that

dimSp = dim ker(Φ(p, 0) − I) and dim S̃p = dim ker(Φ̃(p, 0) − I).

Therefore, it only remains to prove that

dim ker(Φ(p, 0) − I) = dim ker(Φ̃(p, 0) − I). (2.35)

Since Φ̃(t, s) = Φ∗(s, t), it follows that

(Φ̃(p, 0) − I)∗ = Φ(0, p) − I = Φ(0, p)(I − Φ(p, 0)).

Consequently, since Φ(p, 0) is invertible,

rk (Φ̃(p, 0) − I) = rk (Φ̃(p, 0) − I)∗ = rk
(

Φ(0, p)(I − Φ(p, 0)
)

= rk (Φ(p, 0) − I).

Finally, by the dimension formula (see (A.5) in Appendix A.1),

rk (Φ(p, 0)−I)+dim ker(Φ(p, 0)−I) = N = rk (Φ̃(p, 0)−I)+dim ker(Φ̃(p, 0)−I),

and (2.35) follows.
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The following theorem provides a necessary and sufficient condition for the

existence of p-periodic solutions of the inhomogeneous equation (2.33).

Theorem 2.24

(1) There exists a p-periodic solution of the inhomogeneous equation (2.33) if,

and only if,
∫ p

0

〈y(s), b(s)〉ds = 0 ∀ y ∈ S̃p, (2.36)

where 〈 , 〉 denotes the standard inner product in FN (see Appendix A.1).

(2) If (2.36) does not hold, then every solution x : R → FN of (2.33) is un-

bounded (and, a fortiori, non-periodic).

Proof

Set η :=
∫ p

0
Φ(p, s)b(s)ds. By Exercise 2.19, (2.33) has a p-periodic solution if,

and only if, η ∈ im
(

I − Φ(p, 0)
)

. By Theorem A.1,

im(I − Φ(p, 0)) =
(

ker(I − Φ∗(p, 0))
)⊥

.

Moreover, since I − Φ∗(p, 0) = Φ∗(p, 0)
(

Φ∗(0, p) − I
)

and Φ(p, 0) is invertible,

we have ker
(

I − Φ∗(p, 0)
)

= ker
(

Φ∗(0, p) − I
)

. We may now infer that (2.33)

has a p-periodic solution if, and only if,

〈z, η〉 = 0 ∀ z ∈ ker
(

Φ∗(0, p) − I
)

. (2.37)

Therefore, to establish statement (1), it suffices to prove that (2.36) and (2.37)

are equivalent. With this in mind, observe that, by part (a) of Exercise 2.16

applied in the context of the adjoint equation (2.34),

S̃p =
{

Φ̃(·, 0)z : z ∈ ker
(

Φ̃(p, 0) − I
)}

=
{

Φ̃(·, 0)z : z ∈ ker
(

Φ∗(0, p) − I
)}

.

Therefore, (2.36) is equivalent to
∫ p

0

〈Φ̃(s, 0)z, b(s)〉ds = 0 ∀ z ∈ ker
(

Φ∗(0, p) − I
)

and, noting that
∫ p

0

〈Φ̃(s, 0)z, b(s)〉ds =

∫ p

0

〈Φ̃(s, p)Φ̃(p, 0)z, b(s)〉ds

=

∫ p

0

〈Φ∗(0, p)z, Φ(p, s)b(s)〉ds

= 〈Φ∗(0, p)z, η〉 = 〈z, η〉 ∀ z ∈ ker
(

Φ∗(0, p) − I
)

,
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we may conclude that (2.36) holds if, and only if, (2.37) holds, completing the

proof of statement (1).

To prove statement (2), let x : R → FN be an arbitrary solution of (2.33).

Let k ∈ N0 and define xk : R → FN by xk(t) := x(t + kp) for all t ∈ R. It is

straightforward to show that xk is a solution of (2.33). Therefore,

xk(t) = Φ(t, 0)xk(0) +

∫ t

0

Φ(t, s)b(s)ds ∀ t ∈ R.

Hence, xk(p) = Φ(p, 0)xk(0) + η, and thus,

x((k + 1)p) = Φ(p, 0)x(kp) + η ∀ k ∈ N0.

By induction on k, we obtain

x(kp) = Φk(p, 0)x(0) +

k−1
∑

j=0

Φj(p, 0)η ∀ k ∈ N. (2.38)

By hypothesis, (2.36) does not hold. Since (2.36) is equivalent to (2.37), it

follows that there exists ζ ∈ ker(Φ∗(0, p) − I) such that 〈ζ, η〉 6= 0. Now

Φ∗(0, p)ζ = ζ, whence ζ = Φ∗(p, 0)ζ and so 〈ζ, z〉 = 〈ζ, Φn(p, 0)z〉 for all z ∈ FN

and all n ∈ N. Invoking (2.38) leads to

〈ζ, x(kp)〉 = 〈ζ, x(0)〉 + k〈ζ, η〉 ∀ k ∈ N. (2.39)

Since 〈ζ, η〉 6= 0, the right-hand side of (2.39) is unbounded and, as a

consequence, the sequence (x(kp)) is unbounded. This shows that x is un-

bounded.

We record consequences of Theorem 2.24 in two corollaries, the first of which

is immediate and does not require a proof.

Corollary 2.25

The inhomogeneous equation (2.33) has a p-periodic solution if, and only if, it

has a bounded solution R → FN .

Corollary 2.26

There exists a p-periodic solution of the inhomogeneous equation (2.33) for

every piecewise continuous p-periodic forcing function b if, and only if, there

does not exist a non-zero p-periodic solution of the homogeneous equation (2.30)

(that is, 1 is not a Floquet multiplier).
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Proof

To prove sufficiency, assume that the homogeneous equation (2.30) does not

have a non-zero p-periodic solution. Then Sp = {0}, and thus, by Lemma 2.23,

S̃p = {0}. It now follows from Theorem 2.24 that the inhomogeneous equation

(2.33) has a p-periodic solution for every piecewise continuous p-periodic b.

Conversely, to prove necessity, assume that (2.33) has a p-periodic solution

for every piecewise continuous p-periodic b. Let y ∈ S̃p. It then follows that

(2.33) has a p-periodic solution for b = y. Consequently, by Theorem 2.24,
∫ p

0
‖y(s)‖2ds = 0, implying that y = 0. Since y ∈ S̃p was arbitrary, we conclude

that S̃p = {0}, and hence, by Lemma 2.23, Sp = {0}, completing the proof.

Example 2.27

Consider the harmonic oscillator with 2π-periodic forcing

ÿ(t) + ω2y(t) = cos t, ω ∈ R

which may be expressed in the form (2.33) with constant A and 2π-periodic b

given by

A =

(

0 1

−ω2 0

)

, b(t) =

(

0

cos t

)

.

By Corollary 2.26, we may conclude the existence of a 2π-periodic solution if,

and only if, ω2 6= 1. △

We proceed with a deeper investigation into connections between Floquet

multipliers and qualitative behaviour of solutions of the homogeneous equation

(2.30). In order to do so, we require the concept of matrix logarithm: for ma-

trices G and H in CN×N , we say that G is a logarithm of H if exp(G) = H. If

G is a logarithm of H, then, by Theorem 2.19,

σ(H) = {eλ : λ ∈ σ(G)}.

Thus, every eigenvalue of G is a logarithm of some eigenvalue of H and, con-

versely, every eigenvalue of H has a logarithm which is an eigenvalue of G. We

say that G is a principal logarithm of H if G is a logarithm of H and

σ(G) = {Log λ : λ ∈ σ(H)}, (2.40)

where Log : C\{0} → C denotes the (scalar) principal logarithm, that is, for

every nonzero z ∈ C, Log z is the unique complex number with the properties

that z = eLog z and Im (Log z) ∈ [0, 2π).
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Corollary 2.28

Let G ∈ CN×N be a principal logarithm of H ∈ CN×N . Then the algebraic and

geometric multiplicities of each λ ∈ σ(H) coincide with those of Logλ ∈ σ(G).

Proof

By hypothesis, H = exp(G) and (2.40) holds. Since, for all z1, z2 ∈ σ(G), we

have that z1 − z2 6= 2kπi for every k ∈ Z\{0}, it follows that the exponential

function exp is injective on σ(G). Furthermore, exp′(z) = exp(z) 6= 0 for all z ∈
σ(G). Consequently, the claim follows from Theorem 2.19 (with f = exp).

Exercise 2.20

Find a matrix H which has a logarithm G with the property that there

exists λ ∈ σ(G) such that the algebraic and geometric multiplicities of

λ do not coincide with those of eλ ∈ σ(H).

The question of existence of principal matrix logarithms is settled by the next

result.

Proposition 2.29

If H ∈ CN×N is invertible, then there exists a principal logarithm of H.

In order to avoid disrupting the investigation of qualitative features of solutions

of (2.30), we relegate the proof of Proposition 2.29 to the end of the current

chapter (see Section 2.4).

Returning to the context of system (2.30), we now establish the following

(Floquet) representation for Φ(·, 0).

Theorem 2.30

Let G ∈ CN×N be a logarithm of Φ(p, 0). There exists a piecewise continuously

differentiable p-periodic function Θ : R → CN×N , with Θ(0) = I and Θ(t)

non-singular for all t, such that

Φ(t, 0) = Θ(t) exp(tp−1G) ∀ t ∈ R.

Proof

Invoking (2.32) with n = 1 and τ = 0, we have

Φ(t + p, 0) = Φ(t, 0)Φ(p, 0). (2.41)
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Set F := p−1G and define the continuous function Θ : R → CN×N by

Θ(t) := Φ(t, 0) exp(−tF ).

Then Θ(0) = I, Θ(t) is nonsingular for all t, and Φ(t, 0) = Θ(t) exp(tF ) for all

t ∈ R. Since Φ( · , 0) is piecewise continuously differentiable, it follows that Θ

is also piecewise continuously differentiable. Moreover, for all t ∈ R,

Θ(t + p) = Φ(t + p, 0) exp(−(t + p)F ) = Φ(t + p, 0) exp(−G) exp(−tF ).

Since Φ(p, 0) = exp(G), we have Φ(0, p) = exp(−G) and so, for all t ∈ R,

Θ(t + p) = Φ(t + p, 0)Φ(0, p) exp(−tF ) = Φ(t, 0)Φ(p, 0)Φ(0, p) exp(−tF ),

where we have used (2.41) to obtain the second equation. Consequently, we have

Θ(t + p) = Φ(t, 0) exp(−tF ) = Θ(t) for all t ∈ R and so Θ is p-periodic.

Equipped with Theorem 2.30, we are now in a position to make further con-

nections between Floquet multipliers (eigenvalues of Φ(p, 0)) and qualitative

properties of solutions of (2.30). A Floquet multiplier is said to be semisim-

ple if its algebraic and geometric multiplicities (as an eigenvalue of Φ(p, 0))

coincide.

Theorem 2.31

(1) Every solution of (2.30) is bounded on R+ if, and only if, the modulus of

each Floquet multiplier is not greater than 1 and any Floquet multiplier with

modulus equal to 1 is semisimple.

(2) Every solution of (2.30) tends to zero at t → ∞ if, and only if, the modulus

of each Floquet multiplier is less than 1.

Proof

Let (τ, ξ) ∈ R × FN be arbitrary. The solution x : R → FN of the initial-value

problem

ẋ(t) = A(t)x(t), x(τ) = ξ,

is given by x(t) = Φ(t, τ)ξ = Φ(t, 0)Φ(0, τ)ξ = Φ(t, 0)ζ, where ζ := Φ(0, τ)ξ.

Proposition 2.29 guarantees the existence of a principal logarithm G of Φ(p, 0)

and, moreover, by Corollary 2.28, the algebraic and geometric multiplicities of

each λ ∈ σ(Φ(p, 0)) coincide with those of Logλ ∈ σ(G). Writing F := p−1G

and invoking Theorem 2.30, we have

x(t) = Θ(t) exp(tF )ζ ∀ t ∈ R,
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where Θ : R → CN×N is piecewise continuously differentiable (and hence con-

tinuous) and p-periodic, with Θ(0) = I and Θ(t) invertible for all t. Therefore,

we may infer the existence of M > 0 such that ‖Θ(t)‖ ≤ M and ‖Θ−1(t)‖ ≤ M

for all t ∈ R. Since pF = G, we have

σ(Φ(p, 0)) = {eµp : µ ∈ σ(F )}

and, moreover, the algebraic and geometric multiplicities of each µ ∈ σ(F ) co-

incide with those of eµp ∈ σ(Φ(p, 0)). We record three particular consequences.

(a) Every eigenvalue of F has non-positive real part if, and only if, every eigen-

value of Φ(p, 0) has modulus not greater than 1.

(b) Every eigenvalue of F with zero real part is semisimple if, and only if, every

eigenvalue of Φ(p, 0) with modulus equal to 1 is semisimple.

(c) Every eigenvalue of F has negative real part if, and only if, every eigenvalue

of Φ(p, 0) has modulus less than 1.

Now, define y : R → CN by y(t) := Θ−1(t)x(t). Then, ‖y(t)‖ ≤ M‖x(t)‖ ≤
M2‖y(t)‖ and, in particular, x is bounded on R+ if, and only if, y is bounded

on R+. Furthermore,

y(t) = exp(tF )ζ ∀ t ∈ R.

Thus, Θ determines a one-to-one correspondence between the solutions of the

nonautonomous system (2.30) and the solutions of the autonomous system

ẏ = Fy. (2.42)

Therefore, we may conclude the following.

(d) Every solution of (2.30) is bounded on R+ if, and only if, every solution of

(2.42) is bounded on R+.

(e) Every solution of (2.30) tends to zero as t → ∞ if, and only if, every solution

of (2.42) tends to zero as t → ∞.

The conjunction of Corollary 2.13 and equivalences (a), (b) and (d) above now

give statement (1). Similarly, the conjunction of Corollary 2.13 and equivalences

(c) and (e) yield statement (2).

Example 2.32

In this example, we consider Hill’s equation6

ÿ(t) + a(t)y(t) = 0, a(t + p) = a(t) ∀ t ∈ R, (2.43)

6 George William Hill (1838-1914), US American.
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where a is piecewise continuous and p > 0. Hill’s equation describes an un-

damped oscillation with restoring force at time t equal to −a(t)y(t). The two-

dimensional first-order system associated with (2.43) is given by

ẋ(t) = A(t)x(t), A(t) =

(

0 1

−a(t) 0

)

∀ t ∈ R. (2.44)

Let Φ be the transition matrix function generated by A. Our intention is to

apply Theorem 2.31 in the context of (2.44). To this end, we calculate the

Floquet multipliers. Now,

det(λI − Φ(p, 0)) = λ2 − λ tr Φ(p, 0) + detΦ(p, 0),

and, by statement (2) of Proposition 2.7,

det Φ(p, 0) = exp

(∫ p

0

trA(s)ds

)

= 1.

Moreover, noting that Φ(t, 0) is of the form

Φ(t, 0) =

(

ϕ1(t) ϕ2(t)

ϕ̇1(t) ϕ̇2(t)

)

∀ t ∈ R,

where ϕ1 and ϕ2 are the unique solutions of (2.43) satisfying ϕ1(0) = 1 = ϕ̇2(0)

and ϕ̇1(0) = 0 = ϕ2(0), respectively, it follows that

tr Φ(p, 0) = ϕ1(p) + ϕ̇2(p).

Consequently,

det(λI − Φ(p, 0)) = λ2 − 2γλ + 1, where γ := 1
2 (ϕ1(p) + ϕ̇2(p)), (2.45)

and the Floquet multipliers are given by

λ± = γ ±
√

γ2 − 1.

Invoking Theorem 2.31, we draw the following conclusions.

Case 1: |γ| > 1. Then λ+ > 1 (if γ > 1) or λ− < −1 (if γ < −1), and hence, at

least one solution of (2.44) is unbounded on R+.

Case 2: |γ| < 1. Then λ± = γ ± iδ with δ > 0. Since λ+λ− = 1, it follows that

|λ+| = |λ−| = 1. Moreover, λ+ and λ− are simple (and a fortiori semisimple)

and hence all solutions of (2.44) are bounded on R+.

Case 3: |γ| = 1. Then γ = ±1 and λ+ = λ− = γ. All solutions of (2.44) are

bounded on R+ if, and only if, γ is semisimple. Since the algebraic multiplicity

of γ is two, γ is semisimple if, and only if, ker(γI−Φ(p, 0)) = C2. Consequently,
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γ is semisimple if, and only if, Φ(p, 0) = γI, that is, ϕ1(p) = ϕ̇2(p) = γ and

ϕ̇1(p) = ϕ2(p) = 0.

Irrespective of semisimplicity of γ, by Proposition 2.20, there exists at least

one non-zero periodic solution of period p if γ = 1 and of period 2p if γ = −1.

Furthermore, we claim that, in the case of γ being semisimple, every solution

is p-periodic (if γ = 1) or 2p-periodic (if γ = −1). To see this, assume that γ is

semisimple. Then the matrix

G :=

(

log γ 0

0 log γ

)

.

is a logarithm of Φ(p, 0) = γI. By Theorem 2.30, there exists a piecewise

continuously differentiable p-periodic function Θ : R → C2×2 such that

Φ(t, 0) = Θ(t) exp(tp−1G) ∀ t ∈ R.

If γ = 1, then G = 0, and hence Φ(t, 0) = Θ(t) for all t ∈ R, showing that

Φ(t + p, 0) = Φ(t, 0) for all t ∈ R. Every solution x of (2.44) is of the form

x(t) = Φ(t, 0)x(0) and is therefore p-periodic. If γ = −1, then

G =

(

iπ 0

0 iπ

)

,

whence

Φ(t, 0) = Θ(t)

(

e(iπ/p)t 0

0 e(iπ/p)t

)

∀ t ∈ R.

Therefore, Φ(t + 2p, 0) = Φ(t, 0) for all t ∈ R, showing that every solution x of

(2.44) is 2p-periodic.

Finally, we analyse a specific example. Assume that the function a is given by

a(t) =

{

ω2, m ≤ t < m + τ

0, m + τ ≤ t < m + 1, where m ∈ Z.
(2.46)

Here ω > 0 and τ ∈ (0, 1), Obviously, a is a piecewise continuous periodic

function with period equal to 1. With this choice of a, Hill’s equation (2.43)

describes an undamped oscillator, the restoring force of which is switched off

on the intervals [m + τ,m + 1), m ∈ Z. Since a is piecewise constant, Φ(1, 0)

can easily be determined analytically. A routine calculation yields

Φ(1, 0) =

(

cos(ωτ) − ω(1 − τ) sin(ωτ) ω−1 sin(ωτ) + (1 − τ) cos(ωτ)

−ω sin(ωτ) cos ωτ

)

.

In particular,

γ =
1

2

(

2 cos(ωτ) − ω(1 − τ) sin(ωτ)
)
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We consider two “extreme” scenarios.

Scenario 1: τ is close to 1. In this scenario, the restoring force is switched on

“most” of the time and so one might expect the behaviour of the solutions to

be similar to those of the harmonic oscillator ÿ + ω2y = 0 (for which every

solution is periodic, of period 2π/ω, and so a fortiori is bounded). However, we

show that this is not the case. To this end, let ω = π/τ and note that

Φ(1, 0) =

(−1 τ − 1

0 −1

)

and γ = −1. Clearly, λ = −1 is an eigenvalue of Φ(1, 0) and so, by Proposition

2.20, there exists a non-zero periodic solution of period 2. Since the eigenvalue

λ = −1 is not semisimple, it follows from Case 3 above that there exists at

least one solution which is unbounded on R+. A more detailed analysis (see

Exercise 2.21) reveals that ϕ1 is periodic of period 2 and ϕ2 is unbounded on

R+. Consequently, denoting the components of ξ ∈ R2 by ξ1 and ξ2 and setting

x(t) := Φ(t, 0)ξ for all t ∈ R, the solution x is periodic of period 2 if, and only

if, ξ2 = 0 and, furthermore, x is unbounded on R+ if, and only if, ξ2 6= 0. These

observations are valid for all τ ∈ (0, 1): in particular, they hold when τ is close

to 1, in which case we have ω ≈ π and so the 2-periodic solutions do indeed

mimic the behaviour of the harmonic oscillator ÿ + ω2y = 0; however, all other

non-zero solutions are unbounded and so the behaviour of the system differs

markedly from that of the harmonic oscillator.

Scenario 2: τ is close to 0. In this scenario, the restoring force is switched off

“most” of the time and one might expect that the behaviour of the solutions

is similar to those of the “double integrator” ÿ = 0 (which has unbounded

solutions, for example, y(t) = t). However, this is not the case. For every ω > 0,

we have 0 < γ < 1 for all sufficiently small τ ∈ (0, 1). Consequently, by Case

2 above, for all τ > 0 sufficiently small, all solutions of (2.44) are bounded on

R+. This behaviour differs markedly from that of the double integrator. △

Exercise 2.21

Assume that, in Example 2.32, the periodic function a is given by (2.46)

with τ ∈ (0, 1) and ω = π/τ . Show that ϕ1 is periodic of period 2 and

ϕ2 is unbounded with ϕ2(n) = (−1)nn(1 − τ) for all n ∈ N.

Exercise 2.22

Assume that in Example 2.32 the periodic function a is even. Show that

in this case γ = ϕ1(p) = ϕ̇2(p).

The following corollary of Theorem 2.31 provides a criterion for the existence

of at least one solution of (2.30) which is unbounded on R+.
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Corollary 2.33

If
∫ p

0
tr A(s) ds has positive real part, then (2.30) has a solution x with

lim supt→∞ ‖x(t)‖ = ∞.

Proof

By statement (2) of Proposition 2.7, we have

det Φ(p, 0) = exp

(∫ p

0

trA(s) ds

)

.

Let λj , j = 1, . . . , d, be the distinct eigenvalues of Φ(p, 0), with algebraic mul-

tiplicities mj , j = 1, . . . , d. Then det
(

Φ(p, 0) − λI
)

=
∏d

j=1(λj − λ)mj , which,

upon evaluation at λ = 0, shows that detΦ(p, 0) =
∏d

j=1 λ
mj

j . Hence,

d
∏

j=1

λ
mj

j = exp

(∫ p

0

tr A(s) ds

)

.

Therefore, invoking the hypothesis,

d
∏

j=1

|λj |mj = exp

(

Re

∫ p

0

trA(s) ds

)

> 1.

Consequently, there exists j ∈ {1, . . . , d} such that |λj | > 1 and so, by Theorem

2.31, there must exist a solution x which is unbounded on R+.

Exercise 2.23

Consider (2.30) with N = 2, F = R and

A(t) =

(

1 + sin t a

b 1 − cos t

)

,

where a, b ∈ R are arbitrary constants. Show that there exists at least

one solution which is unbounded on R+.

The converse of Corollary 2.33 does not hold. Specifically, if
∫ p

0
tr A(s) ds has

negative real part, then we cannot conclude that every solution x of (2.30) is

bounded on R+, as the following exercise shows.

Exercise 2.24

Consider (2.30) with N = 2, F = R and

A(t) =
1

2

( −2 + 3 cos2 t 2 − 3 sin t cos t

−2 − 3 sin t cos t −2 + 3 sin2 t

)

.
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In this case, A is π-periodic and
∫ π

0
tr A(s) ds = −π/2 < 0. Show that

t 7→ x(t) := et/2

(− cos t

sin t

)

is a solution of (2.30), and is such that ‖x(t)‖ → ∞ as t → ∞.

2.4 Proof of Theorem 2.19 and Proposition 2.29

We conclude this chapter with proofs of Theorem 2.19 (the spectral mapping

theorem) and Proposition 2.29.

Proof of Theorem 2.19

Let M ∈ CN×N and let an ∈ C, with n ∈ N0, be such that the series f(z) =
∑∞

n=0 anzn converges for all z ∈ C. By Proposition A.27, f(M) :=
∑∞

n=0 anMn

is a well-defined element of CN×N . Let λj , j = 1, . . . , d, be the distinct eigen-

values of M with associated algebraic multiplicities mj , j = 1, . . . , d. Noting

that, if T is invertible, then

f(T−1MT ) =

∞
∑

n=0

an

(

T−1MT
)n

= T−1

(

∞
∑

n=0

Mn

)

T = T−1f(M)T

and so, without loss of generality, we may assume that M is in Jordan7 canon-

ical form (see Theorem A.9) which we express as M = diag
(

J1, . . . , Jℓ

)

. The

generic block J ∈ {J1, . . . , Jℓ} takes the form

J = λI + K for some λ ∈ {λ1, . . . , λd},
where, for some r ∈ N, I is the r× r identity matrix and K ∈ Rr×r is a matrix

with every superdiagonal entry equal to 1, all other entries being 0, that is,

K =















0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0















(if r = 1, then K = 0). Note that Kn = 0 for all n ≥ r,

Jn = (λI + K)n =

n
∑

k=0

(

n

k

)

λn−kKk ∀n ∈ N0.

7 Marie Ennemond Camille Jordan (1838-1922), French.
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Furthermore, term-by-term differentiation of the power series yields

f (k)(λ)

k!
=

∞
∑

n=k

an

(

n

k

)

λn−k ∀ k ∈ N0,

where f (k) denotes the k-th derivative of f (with f (0) := f). Therefore,

f(J) =

∞
∑

n=0

anJn =

r−1
∑

k=0

∞
∑

n=k

an

(

n

k

)

λn−kKk =

r−1
∑

k=0

f (k)(λ)

k!
Kk.

In particular, f(J) has the following upper triangular structure

f(J) =





















f(λ) f ′(λ) ∗ · · · ∗ ∗
0 f(λ) f ′(λ) · · · ∗ ∗
0 0 f(λ) · · · ∗ ∗
...

...
...

. . .
...

...

0 0 0 · · · f(λ) f ′(λ)

0 0 0 · · · 0 f(λ)





















(2.47)

and so σ(f(J)) = {f(λ)}. Of course, in the case of r = 1, (2.47) should be

interpreted as the scalar f(J) = f(λ). Since f(M) = diag
(

f(J1), . . . , f(Jℓ)
)

, it

now follows that
σ(f(M)) = {f(λ) : λ ∈ σ(M)},

completing the proof of statement (1).

We proceed to prove statement (2). To this end note that the above argu-

ment also shows that, for each λ ∈ σ(M) and every Jordan block J associated

with λ, the algebraic multiplicity of λ as an eigenvalue of J coincides with the

algebraic multiplicity of f(λ) as an eigenvalue of f(J). From this, we may infer

that the algebraic multiplicity of f(λ) as an eigenvalue of f(M) cannot be less

than the algebraic multiplicity of λ as an eigenvalue of M . Moreover, since f is

injective on σ(M), the number of distinct eigenvalues of f(M) coincides with

the number d of distinct eigenvalues of M . Since the algebraic multiplicities of

the eigenvalues sum to N in each case, it follows that the algebraic multiplicity

of each λ ∈ σ(M) coincides with that of f(λ) ∈ σ(f(M)).

To prove statement (3), let J be any Jordan block in M = diag
(

J1, . . . , Jℓ

)

associated with λ ∈ σ(M). If J is scalar, then trivially we have ker(f(J) −
f(λ)I) = ker(J − λI) = C. If J is not scalar, then λ is not a semisimple, and

so, by hypothesis, the additional property f ′(λ) 6= 0 holds. By (2.47), we then

have

ker
(

f(J) − f(λ)I
)

= span











1

0
...

0











= ker
(

J − λI
)

.
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Consequently, defining Λ := {k : Jk is associated with λ} ⊂ {1, . . . , ℓ}, it fol-

lows that

dim ker(f(Jk) − f(λ)I) = dim ker(Jk − λI) = 1 ∀ k ∈ Λ.

Moreover, by injectivity of f on σ(M), f(λ) 6∈ σ(f(Jk) for all k ∈ {1, . . . , ℓ}\Λ,

and thus

dim ker(f(Jk) − f(λ)I) = dim ker(Jk − λI) = 0 ∀ k ∈ {1, . . . , ℓ}\Λ.

Therefore, we may conclude that

dim ker(f(M) − f(λ)I) = dim ker(M − λI) = #Λ,

where #Λ denotes the number of elements of Λ. Finally, let v ∈ ker(M − λI).

Then Mnv = λnv for all n ∈ N0 and so f(M)v = f(λ)v. Therefore, ker(M −
λI) ⊂ ker(f(M) − f(λ)I) and since these subspaces have the same dimension,

they must coincide. This completes the proof.

Proof of Proposition 2.29

Let λj , j = 1, . . . , d, be the distinct eigenvalues of H with associated algebraic

multiplicities mj , j = 1, . . . , d. Note that, if G is a logarithm of H and T is

invertible, then exp(T−1GT ) = T−1 exp(G)T = T−1HT and so T−1GT is a

logarithm of T−1HT . Therefore, without loss of generality, we may assume that

H is in Jordan canonical form (see Theorem A.9) which can be expressed as

H = diag
(

J1, . . . , Jℓ

)

, where ℓ ≥ d.

The generic block J ∈ {J1, . . . , Jℓ} takes the form

J = λI + K for some λ ∈ {λ1, . . . , λd},
where, for some r ∈ N, I is the r× r identity matrix and K ∈ Rr×r is a matrix

with every superdiagonal entry equal to 1, all other entries being 0, that is,

K =















0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0















(of course, if r = 1, then K = 0). We record that σ(J) = {λ} and

ker(J − λI) = ker(K) = span











1

0
...

0











=: V. (2.48)
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Choose δ > 0 sufficiently small so that eδ − 1 < 3δ/2 < 1. Furthermore, choose

ε > 0 sufficiently small so that M := (ε/λ)K has norm ‖M‖ ≤ δ/2. Next,

we will invoke the contraction mapping theorem (Theorem A.25) to prove the

existence of a logarithm of I +M . To this end, set Ω := {X ∈ Cr×r : ‖X‖ ≤ δ}
and define F : Ω → Cr×r by

F (X) := X + I + M − exp(X) = M −
∞
∑

k=2

1

k!
Xk.

Then,

‖F (X)‖ ≤ ‖M‖ +

∞
∑

k=2

δk

k!
≤ δ

2
+ eδ − 1 − δ = eδ − 1 − δ

2
≤ δ ∀X ∈ Ω

and so F (Ω) ⊂ Ω. Observing that

Xk − Y k =
k

∑

j=1

Xk−j(X − Y )Y j−1 ∀X,Y ∈ Ω, ∀ k ∈ N (2.49)

(see Exercise 2.25 below for details), we obtain

‖F (X) − F (Y )‖ =

∥

∥

∥

∥

∥

∞
∑

k=2

1

k!

(

Y k − Xk
)

∥

∥

∥

∥

∥

≤
∞
∑

k=2

δk−1

(k − 1)!
‖X − Y ‖ =

(

eδ − 1
)

‖X − Y ‖ ∀X,Y ∈ Ω.

Recalling that eδ − 1 < 1, it follows that F is a contraction on Ω and so, by

the contraction mapping theorem (Theorem A.25), has a fixed point Z ∈ Ω.

Therefore, I + M = exp(Z), that is, Z is a logarithm of I + M .

Next, we will use Z to construct a principal logarithm of J . To this end,

define Q := diag
(

ε, ε2, . . . , εr
)

. Then Q−1KQ = εK and so

Q−1JQ = λI + εK = λ
(

I + M
)

= λ exp(Z).

Let ν ∈ C be a logarithm of λ, and so eν = λ (such a logarithm exists since

λ 6= 0 by invertibility of H). Therefore,

J = λQ exp(Z)Q−1 = λ exp(QZQ−1) = exp(νI + QZQ−1),

showing that P := νI + QZQ−1 is a logarithm of J . By Theorem 2.19, eµ = λ

for every µ ∈ σ(P ). Hence, for µ ∈ σ(P ) and v ∈ ker(P − µI),

(J − λI)v = (exp(P ) − λI)v = eµv − λv = 0,
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and thus, by (2.48), ker(P −µI) = V . Consequently, σ(P ) = {µ} is a singleton.

Setting L := P +(2kπi)I, where k ∈ Z is such that Log λ = µ+2kπi, we obtain

exp(L) = J and σ(L) = {Log λ},

that is, L is a principal logarithm of J .

We have now shown that, for each j = 1, . . . , ℓ, there exists a principle

logarithm Lj of Jj and so G := diag(L1, . . . , Lℓ) is a principal logarithm of

H = diag(J1, . . . , Jℓ), completing the proof.

Exercise 2.25

Prove (2.49) by induction on k.

(Hint. Note that Xk+1 − Y k+1 = (X + Y )(Xk − Y k) + XY k − Y Xk.)
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