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Linear differential equations

Systems of linear differential equations form the focus of our first line of inves-
tigation. In particular, we will develop a theory of existence and uniqueness of
solutions of homogeneous initial-value problems of the form &(t) = A(t)x(t),
x(r) = &, under the assumption that A is piecewise continuous. The special
case of constant A forms an important sub-class for which, as we shall see,
the solution = of the initial-value problem is given in terms of the matrix ex-
ponential function by z(t) = exp(A(t — 7))¢ for all ¢ € R. Then, we extend
the existence and uniqueness theory to inhomogeneous initial-value problems
of the form &(t) = A(t)z(t) + b(t), z(7) = £, where b is a piecewise continuous
extraneous input or forcing function. In certain circumstances, the function b
is open to choice, and may be chosen so as to ensure that the unique solution
of the initial-value problem has some desirable properties: questions relating to
the extent to which solutions may be influenced through the choice of input
form the basis of linear control theory - fundamentals of which form the focus
of Chapter 3.

For a periodic function A (that is, a function A with the property that,
for some p > 0, A(t + p) = A(t) for all t € R), it is intuitively reasonable to
surmise the existence of periodic solutions of the homogeneous differential equa-
tion @(t) = A(t)z(t): we investigate this and related issues pertaining to such
periodic differential equations, within the framework of what is traditionally
referred to as Floquet theory'.

In this chapter, we make free use of the material presented in Appendices

! Gaston Floquet (1847-1920), French.
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A.1-A.3, including generalized eigenspaces, matrix norms, the concepts of piece-
wise continuous and piecewise continuously differentiable functions, and the
triangle inequality for integrals.

2.1 Homogeneous linear systems

Whilst we are primarily interested in linear differential equations over the real
field R, the ensuing analysis applies equally to differential equations over the
complex field C. On occasions, it will prove notationally and analytically con-
venient to consider the complex case. For this reason, we develop the theory in
the context of a field F which is either R or C (precisely which of these being
largely immaterial).

Let J be an interval and let A: J — FN*X¥ be a piecewise continuous
function (see Appendix A.3) from J to the space FN*N of N x N matrices
with entries in F and equipped with the norm induced by the 2-norm on F:

L
2] = sup L2
P

(see Appendix A.2).
First, we will consider the issue of existence and uniqueness of solutions of
the linear homogeneous initial-value problem

i) = AWe(t), o(r)=¢ (2.1)

for initial data (7,¢) € J x FV. Since A is not continuous, but only piecewise
continuous, it would be unreasonable to expect that there exists a continuously
differentiable function x: J — F¥ satisfying the initial-value problem (2.1).

Exercise 2.1

Let N =1, J = [-1,1] and 7 = 0. Provide an example of a piecewise
continuous function A : J — R and £ € R with the property that there
does not exist a continuously differentiable function z : J — R such that

z(0) = & and #(t) = A(t)x(t) for all t € [-1,1]

By a solution of (2.1) we mean a continuous function x: J, — F satisfying
t
z(t) =¢ +/ A(o)x(o)do Vte J,,

where J,, C J is an interval such that 7 € J,. Note that, by Theorems A.30 and
A.31 (generalized fundamental theorems of calculus), x: J, — F¥ is a solution



2.1 Homogeneous linear systems 23

of (2.1) if, and only if,  is piecewise continuously differentiable (Appendix

A.3), with z(7) = £ and
() = A(t)z(t) Vie L\E,

where FE is the set of points in J at which A fails to be continuous. Since A is
piecewise continuous, the set F is “small” in the sense, that, for all t1,t; € J
with t; < t3, the intersection E N [t1,t2] has at most finitely many elements.
Note that not every point in F is necessarily a point of discontinuity of a
solution of (2.1) (for example, if £ = 0, then the zero function is a solution).

Exercise 2.2

Provide an example of discontinuous A and £ # 0 with the property that
there exists a solution z: J — FY of (2.1) and a point ¢ € F such that
x is continuously differentiable in an open interval containing o.

If A is continuous on J, then every solution z : J, — F¥ is continuously
differentiable and (2.1) is satisfied for all ¢ € J,.

In certain contexts, the initial condition in (2.1) is not relevant, in which
case we say that a continuous function z: J, — FY, where J, C J is an
interval, is a solution of the differential equation 4(t) = A(t)xz(t) if there exists
T € J, such that

x(t) = x(T) +/ A(o)x(o)do Vit e J,. (2.2)

Note that, by Theorems A.30 and A.31, z: J, — FV is a solution of the
differential equation in this sense if, and only if, z is piecewise continuously
differentiable and the differential equation @(t) = A(t)z(t) is satisfied for every
t € J, which is not a point of discontinuity of A. The next exercise asserts that,
if (2.2) holds for some 7 € J,, then (2.2) holds for all 7 € J,.

Exercise 2.3

Let z: J, — FY be a solution of the differential equation 4 (t) = A(t)z(t).
Show that
to
x(te) —x(t1) = A(o)x(o)do Vity,ta € Jy.

ty

Our goals are to show that, for each (7,&) € J x FY, (2.1) admits precisely one
solution defined on J and to characterize that solution explicitly in terms of A,
7 and &. In particular, we will establish the existence of a map &: JxJ — FNV*N
— referred to as the transition matriz function — such that J — FN | ¢ s &(t, 7)€
is the unique solution on J of (2.1).
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2.1.1 Transition matrix function
To make progress, a number of preliminary technicalities are required.

Lemma 2.1

Define the sequence (M,,) of continuous matrix-valued functions M,,: J x J —
FN*N by the recursion:

t
Mi(t,s) =1, Muyi(t,s):= I+/ A(o)M,(0,s)do Y(t,s) € JxJ, Vn eN.

For each closed and bounded interval [a, b] C J, the sequence (M,,) is uniformly
convergent on [a, ] X [a, b].

Proof

First note that

Miyir(t, 8)— Mo (t, 5) / 01)/ Alos) - /_1A(an)don---d02dol
V(t,s)eJxJ VneN (2.3)

t o1 On—1 _ n
/ / / do, -+ dodoy = & 's) V(t,s)eJxJ, YneN, (2.4)
S S S n:

as can be easily verified (see Exercise 2.4). Let a,b € J, with a < b, be arbitrary
and write X := [a, b] X [a, b]. Since A is piecewise continuous, there exists K > 0
such that

IA®)|| < K VtE€E [a,b],

which, in conjunction with (2.3), (2.4) and the triangle inequality for integrals

(see Proposition A.28), yields
/ / / . dO’2d0'1

K”t—s|” K"(b—a)"
n! n!

| Mo (t,8) = Ma(t, )| < K

V(t,s)e X, VneN.

Define the real sequence (m,,) by

K"(b—a)"

VneN,
n!

my =1, Mmpyy1 =



2.1 Homogeneous linear systems 25

and note that the series - | m,, is convergent, with limit exp(K (b— a)). Let
(f») be the sequence of functions f, € C(X,FN*V) given by

fl(tas) = Ml(tvs) = Ia V(t,s) €X
fn+1(t75) = Mn+1(ta 3) - Mn(tas) V(t,s) € X, Vn eN.
Then,
lfr(t, )| <mp V(ts)e X, VneN

By the Weierstrass® criterion (Corollary A.23), the series Y~ | f, is uniformly
convergent. Equivalently, the sequence (S,,) of its partial sums S,, := >, _; fi is
uniformly convergent on X. Noting that S, (t,s) = M, (¢, s) for all (¢,s) € X,
we may conclude that the sequence (Mn) is uniformly convergent on X =
[a,b] x [a,b]. O

Exercise 2.4

Prove that (2.3) and (2.4) hold.

In view of Lemma 2.1 and since [a, b] C J is arbitrary, we may define a function
&: J x J — FNXN by setting

&(t,s) := lim M,(t,s) V(t,s)eJxJ (2.5)

Since each M,, is continuous and, by Lemma 2.1, the sequence (M,,) converges
uniformly on X = [a,b] X [a,b] for all a,b € J with a < b, it follows that & is
continuous (see Proposition A.22). Moreover, for n > 2,

n—1

Mn(t7 5) = Ml(ta 5) + Z (Mk+1(tv 5) - Mk(tv 5)) v (ta 5) €Jx J,
k=1

and thus, invoking (2.3), we have
t t o1
&(t,s) = I+/ A(oq)doy +/ A(crl)/ A(oq)dos doy

t o1 o2
—|—/ A(Cfl)/ A(O’Q)/ A(Ug)d03d02d01+"'
Y (t,s) e JxJ (2.6)

Note that &(¢,t) = I for all ¢ € J. The function @ is referred to as the transition
matrix function; A is said to be its generator or, alternatively, we say that @
is generated by A. The series representation of @ given in (2.6) is the Peano-
Baker® series. It converges to @ uniformly on [a,b] x [a,b] for every interval

[a,b] C J.

2 Karl Theodor Wilhelm Weierstrass (1815-1897), German.
3 Giuseppe Peano (1858-1932), Ttalian; Henry Frederick Baker (1866-1956), British.
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Example 2.2

0 0
Noting that A(t)A(s) = 0 for all ¢,s € R, we see that the Peano-Baker series
terminates after two terms to give

Let F =R and let A: R — R?*2 be given by A(t) = (0 2t> )

@(t,s):l+/tA(J)da:<(1) t2132> V(t,s) € R x R.

S

A
If J =R and A is constant, then the Peano-Baker series gives
(t—1)2A2 > (t—71)
@(t,r):1+(t77)A+T+---:Z i AF
k=0
=exp(A(t—71)) Vt,7€R (2.7)
and so we identify ¢ with the matrix exponential function: in particular,
o th Ak
B(t,0)=> = exp(Al) ViER,
k=0

&(t,7) =P(t —7,0) Vi, 7T €R.
For further details on the matrix exponential, see Proposition A.27.
Exercise 2.5

Assume that A: R — FN*V ig such that, for all ¢,s € R, the matrices
A(t) and A(s) commute. Show that the transition matrix function @ is

B(t,7) = exp </:A(o)da> .

We proceed to establish basic properties of the transition matrix function.

given by

Corollary 2.3

The transition matrix function @ satisfies
t
&(t,s) = I+/ A(0)P(o,s)do V(t,s) € J x J. (2.8)

Moreover, for each s € J, the function t — @(¢, s) is piecewise continuously
differentiable with derivative

Ob(t,s) = A()D(t,s) Vte J\E

where £ C J is the set of points at which A fails to be continuous.
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Proof

The identity (2.8) follows from (2.5), the defining equation for @, in conjunction
with Lemma 2.1 and Theorem A.32. The remaining claims are an immediate
consequence of (2.8) and Theorem A.30. O

The next result (the so-called Gronwall* lemma) is a basic tool in differential
and integral equations. It will not only be used in this chapter, but it will also
be invoked, in Chapter 4, in the context of nonlinear differential equations.

Lemma 2.4 (Gronwall's lemma)

Let I C R be an interval, let 7 € I, and let g,h : I — [0,00) be continuous. If,
for some constant ¢ > 0,

g(t) <c+ viel, (2.9)

/Tt h(o)g(o)do

/T t h(o)do

Note that whilst (2.9) (the hypothesis in Lemma 2.4) is an inequality in ¢ (in-

then

g(t) < cexp < ) viel. (2.10)

volving ¢ and h), the inequality (2.10) (the conclusion in Lemma 2.4) provides
a bound for g in terms of ¢ and h.

Proof of Lemma 2.4

Define G, H: I — [0,00) by setting

t t
G(t) =c+ / h(o)g(c)do| and H(t) = / h(c)do| Vtel.
By hypothesis, 0 < ¢g(t) < G(¢) for all t € I. Let t € I be arbitrary. We consider
two cases: t > 7 and t < T.
Case 1. Assume that ¢ > 7. The inequality in (2.10) evidently holds for ¢t = 7.

Hence, without loss of generality we may assume that ¢ > 7. Then

G(s) = c+/ h(c)g(c)do and H(s) :/ h(c)do Vs € |[r,t].
Differentiation yields
G'(s) = h(s)g(s) < h(s)G(s) = H'(s)G(s) Vse[rt].
4 Thomas Hakon Gronwall (1877-1932), Swedish.
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Therefore,
(G(s) exp ( — H(s)))/ = (G'(s) — H'(s)G(s)) exp ( — H(S)) <0 Vse]|rnt
which, on integration, gives

G(t)exp (— H(t)) < G(1) =c.

/: h(s)ds ) .

G(s) = c+/T h(c)g(o)do and H(s) = /T h(c)do Vse [t 1],

Hence, we arrive at the requisite inequality

g(t) < G(t) < coxp (H(1)) = cexp (

Case 2. Assume that t < 7. In this case,

and differentiation yields
G'(s) = —h(s)g(s) > —h(s)G(s) = H'(s)G(s) Vo €[t,7].

An argument analogous to that used in Case 1 gives the desired inequality. [

Exercise 2.6

In the above proof, complete Case 2 by providing an argument similar
to that of Case 1.

We are now in a position to state and prove the existence and uniqueness result
which asserts that the initial-value problem (2.1) has precisely one solution
defined on J.

Theorem 2.5
Let (7,€) € J x FN. The function
z:J = FN s a(t) = d(t,7)E. (2.11)

is a solution of the initial-value problem (2.1). Moreover, if y: J, — FY is also
a solution of (2.1), then y(t) = x(¢t) for all ¢t € J,,.

Proof

Let (1,€) € J x FN be arbitrary. It is immediate that the function z given by
(2.11) is a solution of (2.1), since, by Corollary 2.3,

t

z(t) =0t 1)=&+ / A(0)®(0,7)6do =€ + / A(o)z(o)do Vie J.

T
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Let y: J, — FY be another solution of (2.1). Then

t t

A(o)(z(0) — y(0))do = / A(o)e(o)do Vit e J,.

e(t) = (t) — y(t) = /

Invoking the triangle inequality for integrals (Proposition A.28), we conclude

le®)]l < / [A(@)lle(o)] da| Vit € J,.

By Gronwall’s lemma (Lemma 2.4), it follows that e(t) = 0 for all t € Jy,
showing that y(t) = z(t) for all t € J,,. O

Further properties of the transition matrix function readily follow.

Corollary 2.6

For all t,0,7 € J,

o(r,7) =1, D(t,7) =®(t,0)P(0,7) and &' (t,7) = D(1,1).

Proof

Let o,7 € J and & € FN be arbitrary. The first identity follows immediately
from (2.5), the defining equation for @, and the definition of M,, (see Lemma
2.1). To prove the second identity, set ¢ := &(o,7)¢ and define the functions
y,z:J — FN by y(t) := &(¢,7)¢ and z(t) = &(t,0)¢. By Theorem 2.5, y is the
unique solution of the initial-value problem #(t) = A(¢)z(t), z(7) =&, and z is
the unique solution of the initial-value problem

#(t) = A(t)z(t), z(0) = C. (2.12)

Noting that y(o) = ®(0,7)€ = (, we see that y also solves the initial-value
problem (2.12). Hence, by Theorem 2.5, y(t) = z(¢) for all ¢ € J, and thus, in
particular,

P(t,0)P(0,7)§ = D(t,0)¢ = z(t) = y(t) = D(t,7)¢

Since ¢ € FV is arbitrary, we have ®(t,0)®(0,7) = &(t,7). Finally, as an
immediate consequence of this identity, we have

(1, t)P(t,7) = D(1,7) =1,

and so D(t, T) is invertible with inverse @~1(¢,7) = &(,1). O
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Exercise 2.7

Let @ be the transition matrix function generated by A: J — FN*N,

Define A by A(t) = —A*(t) for all t € J. Prove that the transition
matrix function @ generated by A is given by

(L, s) = D*(s,t) Y(t,s) e Jx.J

Here M* denotes the Hermitian transposition of a matrix M (see also
Appendix A.1). (Hint. Prove that, if z: J — F¥ is a solution of i (t) =
A(t)z(t) and y: J — FY is a solution of §(t) = —A*(t)y(t), then, for
some scalar ¢, we have (z(t),y(t)) = c for all t € J.)

2.1.2 Solution space

Let Shom denote the set of all solutions z: J — FY of the homogeneous differen-
tial equation i(t) = A(t)z(t), that is, the set of functions z: J — F¥ that solve
the initial-value problem (2.1) for some (7,¢) € J x FV. It is easy to show that
the set Shom forms a vector space, a subspace of C(J,FY), the so-called solu-
tion space of the homogeneous differential equation. If y1,...,yn € Shom, then
w(t) := det(y1(t),...,yn(t)) is called the Wronskian® associated with the solu-
tions y1,...,yn. Next, we establish some some properties of the solution space
and the Wronskian. Recall that the trace of a square matrix M = (m;;) € FV*N

is defined by tr M := Z;vzl mjj, the sum if its diagonal elements.

Proposition 2.7

(1) Let by,...,by be a basis of F¥ and let 7 € J. Then the functions y;: J —
FN defined by y;(t) := &(t,7)b;, j = 1,2,..., N, form a basis of the solution
space Shom- In particular, Spom is N-dimensional and, for every solution z: J —
FV | there exist scalars i, ...,y such that z(t) = Zjvzl ~;y;(t) for all t € J.

(2) Let y1,...,yn be in Shom and let w be the associated Wronskian. Then
w(t) = w(r)det P(t,7) V(t, 7)€ JxJ, (2.13)

and moreover, w(t) = (tr A(t))w(t) for all ¢ € J which are not points of discon-
tinuity of A, and so

w(t) = w(r) exp (/: tr A(s) ds) VieJ. (2.14)

® Josef-Maria Hoéné de Wronski (1778-1853), Polish.
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In particular, if w(7) = 0 for some 7 € J, then w(t) = 0 for all ¢t € J, or,
equivalently, if w(7) # 0 for some 7 € J, then w(t) # 0 for all ¢t € J.

(3) Elements y1,...,Yn of Shom, where n < N, are linearly independent (as
elements in the vector space C(J,FY)) if, and only if, for every ¢ € J, the
vectors ¥y (t),...,yn(t) are linearly independent (as elements of FV).

Proof

(1) Theorem 2.5 ensures that y1,. .., yn are solutions and so are in Shom. More-
over, these solutions are linearly independent (in the vector space C(J,FY)).
Indeed, if, for a1,...,ay € F, we have Z _1a;y;(t) = 0 for all ¢ € J, then
Z;Vzl a;y;(T) = Zj\[:l a;b; = 0, and so, by linear independence of by, ...,by
(in FY), it follows that a; = ... = ax = 0. Next, we show that yi,...,yn
form a basis of Spom. Let  be an arbitrary element of Spom. Then, by The-
orem 2.5, z(t) = ®(¢t,7)x(r) for all t € J. Since by,...,by form a basis of
FV, there exist scalars 71,...,yn such that z(7) = Z;VZI 7;bj. Consequently,
x(t) = Z;V=1 v;P(t, T)b; = Z;VZI ~;y;(t) for all t € J, showing that y1,...,yn
span Shom-

(2) Let 7 € J be fixed, but arbitrary. Since y; € Spom for j = 1,..., N, it follows
from Theorem 2.5 that y;(t) = @(¢,7)y;(7) forallt € Jand all j =1,...,N.
Hence, for all t € J,

w(t) = det @(t, 7)det(y1(7),...,yn(7)) = w(r) det B(¢, 1),
establishing (2.13). Moreover, writing @(¢,7) = (¢1(t,7),...,on(t, 7)), where
;(t, 7) denotes the j-th column of &(¢, 7), it follows, from the definition of the

determinant (see (A.8) in Appendix A.1) and the product rule for differentia-
tion, that, for all ¢ € J which are not points of discontinuity of A,

(O det ®) (¢ Zdet O1(t,7)s i1 (8,7), 010 (6, T), ... on (t,T)),

where 0; denotes the derivative with respect to the first argument. In the
following we assume that 7 is not a point of discontinuity of A. Then, since
&(r,7) = I, the above identity yields for ¢t = 7,

(81 det@ Zdet €1,... ,ej_l,A(T)ej,ej_,_l, ce 76]\]),

where ey,...,ey denotes the canonical basis of FV. Denoting the entries of
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A(t) by ai;(t) it follows that

(61 det @) (r,7) = Z a;; (1) = tr A(7).

=1
Therefore, differentiation of (2.13) with respect to ¢ at ¢t = 7 yields
w(T) = w(r)tr A(7). (2.15)

The argument leading to (2.15) applies to any 7 € J which is not a point of
discontinuity of A and therefore w(t) = (tr A(t))w(t) for every ¢ € J which is
not a point of discontinuity of A. Furthermore, (2.14) now follows from Exercise
2.5 and Theorem 2.5.

(3) Let y1,...,yn be in Shom and agq, ..., a, € F.
Sufficiency. Assume that yi1(t),...,yn(t) are linearly independent vectors in
FY for all t € J. It immediately follows that

alyl++anyn:0 — Oék:O, k=1,...,n

and so y1,...,y, are linearly independent in Spom.

Necessity. Let yi,...,y, be linearly independent in Spom. Let 7 € J be arbi-
trary. Assume that a1y (7) + - + @pyn(7) = 0. Then, y := aqy1 + - - + @ ¥yn
solves the initial-value problem @(t) = A(t)x(t), (r) = 0, which we know
has unique solution 0. Therefore, y = 0 and so, by linear independence of the
functions y1, ..., yn, we have a, = 0, k = 1,...,n. This establishes linear inde-
pendence of y1(7),...,y,(7) and, as 7 € J is arbitrary, the result follows. [

Statement (3) of Proposition (2.7) says that linear independence of y1,...,y, €
Shom as functions is equivalent to linear independence of y1 (¢), . . ., yn(¢) (as vec-
tors in FV) for every ¢ € J. The following exercise shows that if y1,...,y, €
C(J,FN) are not required to be solutions of (t) = A(t)x(t), then this equiva-
lence does not hold.

Exercise 2.8

Show, by counterexample, that linear independence of wi,...,y, €
C(J,FN) does not imply linear independence of yi(t),...,yn(t) € FN
forallt € J.

A fundamental system for the homogeneous differential equation & (t) = A(¢t)z(t)
is a set of N linearly independent solutions, or, equivalently, a basis of Spom-

If {¢1,...,¥n} is a fundamental system, then the matrix-valued function
W: J — FNXN defined by

W(t) := (Y1(t), ..., Yn(t)) Ve J

is said to be a fundamental matriz for the differential equation @(t) = A(t)x(t).
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Proposition 2.8

Let ¥ be a fundamental matrix. Then ¥(t) is invertible for every ¢ € J and

O(t,7)=0(t)W (1) Vi, T

Proof

By part (3) of Proposition 2.7 we may infer that ¥(t) is invertible for all ¢ € J.
Let ¢ € FN be arbitrary and define z: J — FY by setting z(t) := ¥ (¢)¥ ~}(7)¢.
Obviously, x is a linear combination of the columns of ¥ and consequently,
x is a solution. Moreover, z(7) = &, so that = solves the initial-value problem
(2.1). By Theorem 2.5, the function ¢ — &(t, 7)& is the unique solution of (2.1).
Hence, x(t) = ®(t, 7)¢ for all ¢t € J, showing that

O(t,T)E=W()W ()¢ Vie
Since ¢ was arbitrary, we obtain that @(t,7) = ¥(t)¥~1(7) for all t € J. O

Exercise 2.9

Let F =R and let A: R — R?*2 be given by

Al) = (8 zlt) '

Find two linearly independent solutions of @(t) = A(t)z(t) and hence
determine the transition matrix function @.

2.1.3 Autonomous systems

Let us now turn attention to the case of constant A, that is, we consider the
autonomous homogeneous initial-value problem, with J = R,

i(t) = Az(t), x(r)=¢€FY, where A € FNXN, (2.16)
Recall that, for M € FN*N exp(M) := > 7 ((1/k!)M* and that, by (2.7),
D(t,7) = exp(A(t — 7)) Vi, 7T €R.
In particular,
&(t,0) = exp(At) Vi€ R and &(t,7)=d(t —71,0) Vi, 7 € R. (2.17)

The following is an immediate corollary of Theorem 2.5.
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Corollary 2.9
The function R — FV, ¢ + exp(A(t — 7))¢ is the unique solution of the au-

tonomous homogeneous initial-value problem (2.16).

In view of (2.17), we see that the unique solution (on R) t +— P(t,7)6 =
&(t — 7,0)¢ of the initial-value problem (2.16) is simply a translation of the
solution ¢ — @(t,0)¢ (on R) of the initial-value problem () = Axz(t), x(0) = &.
Consequently, we may assume without loss of generality that 7 = 0 in (2.16).

We briefly digress to record following some important properties of the
matrix exponential function.

Lemma 2.10

Let P,Q € FN*N,
(1) If P is diagonal, that is, P = diag(p1,...,Pn), then

exp(P) = diag(exp(p1), ..., exp(pn))-
(2) exp(P") = (exp(P))".
(3) For all ¢ € R,
%exp(Pt) = Pexp(Pt) = exp(Pt)P.
(4) If PQ = QP, then exp(P)Q = Q exp(P) and
exp(P + Q) = exp(P) exp(Q). (2.18)
(5) exp(—P) exp(P) = exp(P) exp(—P) = I, that is, exp(P) is invertible with

inverse exp(—P).

Proof

The proofs of parts (1)-(3) are straightforward (see Exercise 2.10). To prove
part (4), assume that P and @ commute, that is, PQQ = QP. Then,

ep(P)Q =Y 1P =) 1P = QY L PF = Qexp(P).
k=0 " k=0 "

k!

Let z € FN and define y: R — CV by setting y(¢) = exp(Pt) exp(Qt)z. Using
part (3) and the product rule, differentiation of y leads to

y(t) = Pexp(Pt) exp(Qt)z + exp(Pt)Qexp(Qt)z = (P + Q)y(t) Vt e R,
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where we have used the fact that exp(Pt)Q = Q exp(Pt). Moreover, y(0) = z.
The unique solution of the initial-value problem & = (P + Q)z, x(0) = z, is the
function t — exp((P + Q)t)z, and so

exp((P 4+ Q)t)z = y(t) = exp(Pt) exp(Qt)z Vit eR.

As z € F¥ is arbitrary, we have exp((P + Q)t) = exp(Pt) exp(Qt) for all t € R.
Finally, statement (5) is an immediate consequence of statement (4) (on
setting @ = —P). This completes the proof. O

Exercise 2.10
Prove assertions (1)-(3) of Lemma 2.10.

Exercise 2.11

Let P,Q € FN*N_ Show that, if P and @ do not commute, then (2.18)
does not hold in general.

In the following, we will show how, in principle, N linearly independent solu-
tions (or, equivalently, a fundamental matrix) of the autonomous differential
equation (2.16), over the complex field F = C, can be computed. In this con-
text, a pivotal role is played by the concepts of generalized eigenspaces and
algebraic/geometric multiplicities of eigenvalues, the definitions of which (to-
gether with key results) can be found in Appendix A.1. For A € CV*¥ it is
convenient to define

o(A) :={\ € C: \is an eigenvalue of A}.
The set o(A) (the set of all eigenvalues of A) is called the spectrum of o(A).

Theorem 2.11

Let A € CN*N_ For A € o(A), let m()\) denote the algebraic multiplicity of \,
denote its associated generalized eigenspace by E()) := ker(A — XI)™™), and,
for 2 € CV, define z,: R — CV by z,(t) := exp(At)z.

(1) For A € 0(A) and z € E()\),

m(A)—-1 .
t

z(t) =M Y E(A—)\I)kz vVt eR. (2.19)
k=0 ’

(2) Let B()) be a basis of E(\) and write
B := Uxeo(a)B(A),

The set of functions {x,: z € B} is a basis of the solution space of (2.16) (with
F = C).
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Proof
Let A € 0(A) and z € E(A). Then, (A — AI)kz =0 for all k > m(\) and so

m(A)—1 p
t
z.(t) = exp(At)z = e (exp(A — A)t)z = e g E(A —A)kz YVt eR,
k=0

establishing statement (1).

By the generalized eigenspace decomposition theorem (see Theorem A.8),
B is a basis of CV and so, by Proposition 2.7, {z.: z € B} is a basis of the
solution space of (2.16) (with F = C), proving statement (2). O

Theorem 2.11 shows that, by computing the eigenvalues of A and computing
m(A) linearly independent generalized eigenvectors associated with A for each
A € o(A), N linearly independent solutions of (2.16) (with F = C) can be
obtained by using formula (2.19).

The next result, a consequence of Theorem 2.11, says, roughly speaking,
that the growth of || exp(At)|| as ¢t — oo is determined by the spectrum of A.

Theorem 2.12
Let A € CV*N set g :=max{Re\: \ € 0(A)} and

Iy :={v € R : there exists M, > 1 such that || exp(At)| < M,e’* Vt > 0}.

(1) (pa,00) C I'a and inf I'y = pa.
(2) pwa € I'y if, and only if, every \ € o(A) satisfying Re A = 4 is semisimple.
(3) Let v € R. If, for all £ € CV, lim;_ oo exp((A — yI)t)€ = 0, then pa < 7.

Before we prove Theorem 2.12, we state an immediate corollary.

Corollary 2.13

Let A € CN*N and define j4 as in Theorem 2.12.
(1) pa < 0if, and only if, || exp(At)| decays exponentially fast as t — oo.
(2) pa < 0 if, and only if, lim;_, . exp(At)¢ = 0 for every ¢ € CV.

(3) If pa = 0, then sup,> || exp(At)|| < oo if, and only if, all purely imaginary
eigenvalues of A are semisimple.
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Proof of Theorem 2.12

Let A € 0(A) and let z € CV be an associated generalized eigenvector. Then,
by statement (1) of Theorem 2.11,

m(A)—1

t X
exp(At)z = e > A= M)Fz YVteR, (2.20)
k=0
where m()\) denotes the algebraic multiplicity of . Let 21, ..., zny be a basis of

C¥ consisting of generalized eigenvectors of A (such a basis exists by Theorem
A.8) and define the invertible matrix Z := (z1,...,2,) € CV*V,

(1) Let v € (114, 00) be arbitrary. We will show that v € I'4 (and so (pa,00) C
I'4). Noting that v > Re A for all A € o(A) and invoking (2.20), we may infer
the existence of L > 1 such that

|l exp(At)z;|| < Le?||z|| Yt>0,i=1,...,N. (2.21)
Let ¢ € CV be arbitrary and write n := Z~'¢. Then & = Zf\il 1;2i, where n;,
i=1,...,N, are the components of  and so
N N
lexp(ADEN <> Imilll exp(At)zil| < [ Z7H1I€ND lexp(At)zi]),
i=1 i=1

which, in conjunction with (2.21) and writing M., := L||Z || Zfil IIz: 1], gives
| exp(Ab)e]| < M, el VE e T, Vi > 0.

Since ¢ is arbitrary, it follows that || exp(At)|| < M,e?* for all ¢ > 0. Therefore,
~ € I, showing that (pa,00) C I'a. As an immediate consequence of the latter
inclusion, we obtain inf I'4 < 4. On the other hand, by (2.20), inf I'y > pa.
Therefore, 4 = inf Iy, completing the proof of statement (1).

(2) We proceed to prove statement (2). We will use the fact that an eigenvalue
A of A is semisimple if, and only if, the generalized eigenspace E(X) coincides
with the eigenspace ker(A — AI) (see Proposition A.10 in Appendix A.1). If
all A € o(A) satisfying Re A = p4 are semisimple, then, invoking (2.20), it is
clear that for every generalized eigenvector z of A, there exists L, > 1 such
that || exp(At)z|| < L.e4t|z|| for all ¢ > 0. By an argument identical to that
used in the proof of the inclusion (pa,00) C I, it follows that there exists
M > 1 such that || exp(At)|| < Mer4! for all ¢ > 0, implying that pa € I'a.
Conversely, assume that pa € I'y. Let A € 0(A) be such that Re A = pu4 and
let z € E(\). Then, by (2.20), for all ¢t € R,

m(A)—1 ik

> E(A—M)’%H = [le™ exp(At)|| = e~ #4*|| exp(At)
k=0 ’
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By hypothesis, sup;>, e™#4*|| exp(At)|| < co, and hence, (A — AI)z = 0. This
holds for every z € E()) and consequently, A is semisimple.

(3) Finally, to prove statement (3), let A € o(A) and let v € CV be an associated
eigenvector. By hypothesis,

O Mty = e exp(At)v = exp((A — yI)t)v — 0 as t — oo
and so Re A < 7. Since A € o(A) was arbitrary, we conclude that pua <~. O

Next, we turn attention to the special case of (2.16) over the real field F = R.
In particular, we consider the initial-value problem

i(t) = Az(t), z(0)=¢eRY, AecRVN (2.22)

and will show how to compute N linearly independent real solutions. As a
prelude, we set the following.

Exercise 2.12

Let V C CV be a subspace that is closed under complex conjugation
(that is, if v € V, then © € V). Show that V has a real basis.

If Ais a real N x N matrix and A € 0(A4) is a real eigenvalue of algebraic
multiplicity m()), then the associated generalized eigenspace ker(A — AI)™M)
is closed under complex conjugation and so, by Exercise 2.12, has a real basis.
This fact is used implicitly in the following theorem. Furthermore, for z € CV,
the real and imaginary parts of z, denoted by Re z and Im z, respectively, should
be interpreted in the natural componentwise manner.

Theorem 2.14

Let A € RVXN_ For ) € o(A), let m()\) denote the algebraic multiplicity of \,
denote its associated generalized eigenspace by F()\) := ker(A — AXI)™™) | and
let B(\) be a basis thereof, chosen to be a real basis whenever A is real. For all
z € CN, define real solutions z,y,: R — RY of (2.22) by z,(t) := exp(At)Re z
and y.(t) := exp(At)Im z.

(1) Let Bg (respectively, By ) denote the union of all B(\) with A € o(A) and
Im A = 0 (respectively, Im A > 0). The set of functions R — R¥ given by

{z,: z€ ByUB+}U{y,: z€ B;},

forms a basis of the solution space of (2.22).
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(2) If X is a real eigenvalue of A, then, for every z € E(\), the function z, can
be expressed in the form

m(A)—1 .
t
x,(t) = e E E(A —A)*Rez. (2.23)
k=0

(3) If A =+ 18, with 8 # 0, is an eigenvalue of A, then, for every z € E()),
the functions z, and y, can be expressed as follows

m(A)—1
z,(t) = e Z % [cos(Bt)Re ((A — AI)*z) — sin(Bt)Im ((A — AI)Fz)].
= (2.24)
and
m(X)—1 e
y.(t) = e Z = [cos(Bt)Re ((A — AI)¥2) + sin(Bt)Im (A — M)*2)].
= (2.25)

Theorem 2.14 shows that, by computing the eigenvalues of A and computing
m(A) linearly independent generalized eigenvectors associated with A for each
A € 0(A), N linearly independent real solutions of (2.22) can be obtained by
using formulas (2.23)-(2.25).

Proof of Theorem 2.14
Let A € 0(A) and z € E(X). By Theorem 2.11,

m(A)—-1 .
t
exp(At)z = e (exp(A — A)t)z = e Z H(A —A)Fz VteR.
k=0
Therefore, for all ¢ € R,

m(X)—1 ik
() := exp(At)Rez = Re (exp(At)z) = Re | e Z E(A —A)kz

k=0

Statement (2) follows immediately.
Now assume A = a + i, with 8 # 0. Then,
m(A)—1 k

«a i t
z.(t) = e*Re [ P! Z H(A—)\I)kz VteR,
k=0
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from which (2.24) follows. Since y,(t) = exp(At)Im z = Im (exp(At)z) for all
t € R, an analogous calculation yields (2.25). This establishes statement(3).

It remains to prove statement (1). To this end, observe that By is either
empty or is a set of real vectors in RY. Noting that complex eigenvalues of
A occur in conjugate pairs, it is readily seen that, if B(A) = {v1,...,v,} is a

basis of E(X), then {#1,...,,} is a basis of E(X). Writing B_ := {0: v € B, },
it follows, by the generalized eigenspace decomposition theorem (see Theorem
A.8), that By U By U B_ is a basis of CV. If B, is non-empty, then writing
By ={v1,...,v4}, we have

span(B4 U B_) = span{v1, ..., Vg, U1,...,0q} = span By,

where

By :={Revq,...,Revg, Imwvq, ..., Imuv,}.

If B, = 0, then By := (. We may now conclude that B = By U B; is a real
basis of CV. Moreover,

B={x.(0): z€ BoUB;}U{y.(0): z € B;}

showing that the N functions R — R¥ in the set {z,: 2 € ByUB, }U{y.: z €
B } are linearly independent solutions of (2.22). This completes the proof. [

2.2 Inhomogeneous linear systems

In the following, let A: J — FN*N and b: J — FY be piecewise continuous
and let @ be the transition matrix function generated by A. We will consider
the issue of existence and uniqueness of solutions of the linear inhomogeneous
initial-value problem

B(t) = A@)z(t) + b(t), z(r)=¢, (r,€) e JxFV. (2.26)

A solution of (2.26) is a continuous function x: J, — FV satisfying

xz(t) =¢ +/ (A(o)z(0) +b(0))do Vi€ J,.

where J, C J is an interval such that 7 € J,. By Theorems A.30 and A.31,
x:J, — RV is a solution of (2.26) if, and only if, x is piecewise continuously
differentiable, z(7) = £ and

B(t) = A(t)x(t) + b(t) Vte Jo\E,
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where E is the set of points in J at which A or b fail to be continuous. Piecewise
continuity of A and b implies that the set F is “small” in the sense that, for all
t1,ta € J with t1 < to, the intersection E N [t1,%2] has at most finitely many
elements. If A and b are continuous on J, then z is continuously differentiable
and the differential equation in (2.26) holds for all t € J.

Theorem 2.15
Let (1,&) € J x FN. The function

z:J TNt (L, T)E+ /t @(t,0)b(0) do. (2.27)

is a solution of the initial-value problem (2.26). Moreover, if y: J, — FV is
another solution of (2.26), then y(t) = x(t) for all t € J,,.

Proof

Let (1,€) € J x FN be arbitrary. We first show that x, given by (2.27), is a
solution. Invoking Corollary 2.3, we have

w(t) = (1 + / tA(a)@(o, T)da> ¢

+/: <1+/TtA(n)¢(n,a)dn> b(o)do Vie J.

Changing the order of integration and then relabelling the variables of integra-
tion, we find

/ / rmete dr’d“/ / 0)b(o) dodn
:/T Alo) /T (o, 1)b(y) dndo .

Therefore,

a(t) =€+ / t (A(a) (915(0, e+ / " ®(o,mb(n) dn> + b(a)) do

=¢+ /t (A(o)z(0) + b(0))do Vte J

and so z is a solution of (2.26).
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Finally, let y: J, — RY be another solution of (2.26). Then

e(t) = a( /A(a (o) — ylo da—/A o)do VteJ,.

Therefore, e solves the initial-value problem é(t) = A(t)e(t), e(r) = 0, and
so, by Theorem 2.5, e must be the zero function. Hence, y(t) = z(¢) for all
teJy,. O

The formula (2.27) for the (unique) solution of the inhomogeneous initial-value
problem (2.26) is frequently referred to as the variation of parameters formula.

In certain contexts, the initial condition in (2.26) is not relevant, in which
case we say that a continuous function z: J, — FY, where J, C J is an
interval, is a solution of the differential equation @(t) = A(t)x(t) + b(¢) if there
exists 7 € J, such that

z(t) = z(1) +/ (A(o)z(0) + b(0))do Vit € J,. (2.28)

Note that, by Theorems A.30 and A.31, z: J, — FY is a solution of the
differential equation in this sense if, and only if, z is piecewise continuously
differentiable and the differential equation &(t) = A(t)x(t) + b(t) is satisfied for
every t € J, which is not a point of discontinuity of A or b. The next exercise
asserts that, if (2.28) holds for some 7 € J;, then (2.28) holds for all 7 € J,.

Exercise 2.13

Let z: J, — FN be a solution of the differential equation #(t) =
A(t)z(t) + b(t). Show that

x(tz) —x(t1) = / ’ (A(0)z(0) +b(0))do Viy,ta € J,.

t1

Let Si, denote the set of all solutions x : J — F of the inhomogeneous differ-
ential equation z(t) = A(¢)x(t)+b(¢). The following result contains information
on the structure of Sj,.

Corollary 2.16
Let Yy e Sin,. Then

Sih =Y+ Shom ={y+2:2 € Shom},

where Shom is the solution space of the homogeneous system #(t) = A(t)x(t).
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Exercise 2.14
Prove Corollary 2.16.

Corollary 2.16 says that Sj, is an affine linear space: the sum of an arbitrary
solution y of the inhomogeneous problem (sometimes also called a particular
solution) and the (linear) solution space of the associated homogeneous prob-
lem.
Finally, we consider the inhomogeneous initial-value problem with constant
A, namely
i(t) = Ax(t) + b(t), z(r) =& eFN, (2.29)

where A € FNXN b: J — F¥ is piecewise continuous and 7 € J. By Theorem
2.15, we may immediately conclude the following.

Corollary 2.17

The function

¢
x:J = TFN t s exp(A(t — 7)€ +/ exp(A(t — 0))b(o) do

is a solution of the inhomogeneous initial-value problem (2.29). Moreover, if

y: Jy, — FN is also a solution of (2.29), then y(t) = z(t) for all t € J,,.

2.3 Systems with periodic coefficients: Floquet
theory

Periodic phenomena feature prominently in the sciences and engineering: ro-
tation of the Earth around its axis, heart beat, alternating electric current,
to mention just a few examples. Correspondingly, the study of systems with
periodic coefficients is a classical theme in differential equations. Here, we turn
attention to linear homogeneous systems with J = R and a piecewise continu-
ous periodic function A: R — FN*Y with period p > 0:

#(t) = A(t)z(t), Alt+p)=A(t) VteR. (2.30)

It is natural to ask if there exist periodic solutions of the homogeneous system
(2.30). By a periodic solution, we mean a solution z with the property that,
for some ¢ > 0, z(t) = z(t + q) for all ¢ € R. Observe that a constant solution
qualifies as a periodic solution and, since = 0 is a solution of (2.30), one
might argue that there always exists a periodic solution. Disregarding the zero
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or trivial solution, our primary concern is the existence or otherwise of non-zero
periodic solutions and, more generally, the qualitative behaviour of solutions
of (2.30).

The following example illustrates the fact that non-zero periodic solutions
of (2.30) need not necessarily exist.

Example 2.18

Consider the scalar initial-value problem with F = R
2(t) = (1 +sint)z(t), x(0)=¢.

Here, A: t — 1+ sint is periodic with period p = 27. The unique solution of
the initial-value problem is z: ¢t — &e(1tt=c%51) which fails to be periodic for
all £ #£0. A

We briefly digress to state a result - the spectral mapping theorem - which will
play a key role in our investigations.

Theorem 2.19 (Spectral mapping theorem)

Let a, € C, n € Ny := NU{0}, assume that the series Y.~ ja,2" =: f(z) con-
verges for all z € C and let M € CV*¥ . Then the series f(M) := > " ja, M"
converges in CN*N and f(M) has the following properties.

(1) o(f(M)) ={f(\): Aea(M)}.
(2) If f is injective on o (M), then, for each A € o(M), the algebraic multiplic-
ities of f(\) € o(f(M)) and X coincide.

(3) If f is injective on o(M) and f'(X\) # 0 whenever A € o(M) is not semisim-
ple, then, for each A € o(M), the f(A)-eigenspace ker(f (M) — f(A)I) coincides
with the A-eigenspace ker(M — AI) (and so, a fortiori, the geometric multiplic-
ities of f(\) and A coincide).

In order to avoid disrupting the presentation of our main concern, namely, the
investigation of qualitative features of solutions of (2.30), we relegate the proof
of the spectral mapping theorem to the end of the current chapter (see Section
2.4) and embark on our first task of identifying conditions under which (2.30)
has a periodic solution.

Let @ be the transition matrix function generated by A (a p-periodic func-
tion R — FV*N) Let ¢ € FN, 7 € R and set y(t) :== &(t + p, 7 + p)¢ for all
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t € R. Then, by Corollary 2.3,
t+p
~¢= [ AT+ pdo
T+p
whence
t t
—¢= / Ao +p)®(o +p, 7+ p)édo = / A(o)y(o)do YVt eR

and so y is the unique solution of the initial-value problem z(t) = A(t)x(¢),
x(1) = &. Therefore, &(t + p, 7 + p)§ = P(t, 7)€ for all ¢t € R. Since 7 € R and
¢ € FN are arbitrary, we may deduce the following property of &:

D(t+p,7+p) =D, 7) V(t,7) € RxR. (2.31)
Therefore, for all (t,7) € R x R,
Ot +p,7) =2t +p,7+p)P(T +p,7) =D, T)P(T, T — p)

= &(t,7)P(r,0)D(0, T p) ®(t,0)P(p, 7)
= 2(t,0)2(p,0)2(0, 7).

We may now infer by induction that, for all n € N,
D(t +np,7) = D(t,0)2"(p,0)P(0,7) V(t,7) € RxR. (2.32)
Exercise 2.15
Prove, by induction, that (2.32) holds for all n € N.

The following result gives a necessary and sufficient condition for the existence
of a non-zero periodic solution of period np, where n € N.

Proposition 2.20

Let n € N. System (2.30) has a non-zero periodic solution x of period np if,
and only if, &(p,0) has an eigenvalue A such that A\ = 1.

Proof

To prove sufficiency, assume that A is an eigenvalue of @(p,0) and A" = 1. Let
v € CV be an associated eigenvector. Then v # 0 and @"(p,0)v = \"v = v.
The unique solution z: R — F of the initial-value problem
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is given by x(t) = ®(¢,0)v. Invoking (2.32), with 7 = 0, gives
z(t +np) = (t +np,0)v = Y(t,0)9" (p,0)v = &(t,0)v = z(t) Vt € R,

and so z is a non-zero periodic solution of period np.

We proceed to prove necessity. To this end, assume that x is a non-zero
periodic solution of (2.30), with period np. Then v := x(0) # 0 (because the
zero function is the unique solution of the initial-value problem (t) = A(t)y(t),
y(0) = 0). Invoking (2.32), with 7 = 0, we have

&(t,0)v = x(t) = z(t + np) = P(t + np, 0)v = &(¢,0)P" (p, 0)v,

and thus, ®(t,0)(I — &"(p,0))v = 0. Consequently (I —&"(p,0))v = 0 and so
1 is an eigenvalue of " (p,0). By Theorem 2.19 (with f(z) = z"),

(8" (p,0)) = {N": A € o (&(p,0))}.
Therefore, @(p,0) has an eigenvalue A with the property that A™ = 1. O

Example 2.21

For F = R and N = 3, consider (2.30) with A: R — R3*3 (period p = 2m)
given by

0 1 sint
A(t):==10 0 1
0 0 0

In this case, the Peano-Baker series terminates and the state transition function
& is given by

&(t, 1) =1+ /Tt A(s1)ds1 + /:A(sl) /TSl A(s2)dsadsy

1 t—7 cosT—cost+ (t—17)%/2
=10 1 t—7
0 0 1
Therefore,
1 2r 272
&(p,0) =d(2m,0)=(0 1 2«
0 0 1

which evidently has eigenvalue A\ = 1. By Proposition 2.20, it follows that
(2.30) has a non-zero periodic solution of period 2x. Inspection of the form
of @ reveals that (2.30) can have no non-constant periodic solutions. Indeed,
for every ¢ = (£1,£2,&3)* € R3 and every 7 € R, the function x defined by
x(t) := P(t,7)§ is unbounded (and hence not periodic) if (£2,&3) # (0,0) and
is constant if (£2,£&3) = (0,0). We therefore conclude that all non-zero periodic
solutions are constant and are of the form z(t) = (§1,0,0)* forallt € R. A
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Exercise 2.16

Let n € N. Assume that $(p,0) has an eigenvalue A such that A" = 1 and
that the function C — C,z — 2" is injective on o(@(p,0)) (the latter
condition holds trivially for n = 1).

(a) Show that = : R — F¥ is a np-periodic solution of (2.30) if, and only
if, (0) € ker(®(p,0) — AI). (Hint. Inspect the proof of Proposition 2.20.
Make use of Theorem 2.19.)

(b) Let Sy, denote the set of all np-periodic solutions of (2.30). Show
that S, is a vector space and that dim S,,, = dimker(®(p,0) — AI).

Exercise 2.17

Let n € N and p € C. Show that system (2.30) has a non-zero solution
z: R — CV with the property

z(t+np) = px(t) VteR
if, and only if, @(p,0) has an eigenvalue A such that A" = p.

(Hint. Note that the claim is a generalization of Proposition 2.20 (which
corresponds to the special case of 4 = 1). Inspect the the proof of Propo-
sition 2.20 and modify it in a suitable way.)

Next we present a variant of Proposition 2.20 which provides sufficient condi-
tions for (2.30) to have a non-constant periodic solution.

Proposition 2.22

Let n € N with n > 2. If the function C — C, z — 2" is injective on o(®(p,0))
and if @(p, 0) has an eigenvalue A such that \* = land \F # 1,k =1,...,n—1,
then, for each non-zero £ € ker(®(p,0) — AI), the solution of (2.30), with initial
data z(0) = ¢, is non-constant and periodic.

Example 2.21 shows that the above proposition does not hold in the case of
n=1.

Proof of Proposition 2.22

Assume that n € N, n > 2, ) is an eigenvalue of @(p, 0) with A" = 1 and \¥ # 1,
1 < k < n—1. By hypothesis, the function f: z — 2™ is injective on o(2(p,0)).
Moreover, since ®(p,0) is invertible, 0 & o(P(p,0)) and so f'(A\) # 0 for all
A € a(P(p,0)). Therefore, by the spectral mapping theorem (Theorem 2.19),
ker(@™(p,0) — I) = ker(P(p,0) — AI). Let & € ker(P™(p,0) — I) = ker(P(p,0) —
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AI). With initial data z(0) = &, (2.30) has unique solution x: R — FV given
by z(t) = &(t,0)&. Invoking (2.32), we obtain

z(t+np) —z(t) = (P(t+np,0) — &(t,0))¢ = &(¢,0) (2" (p,0) —I1){ =0V R,

and so z is np-periodic. It remains to show that x is not constant if £ # 0.
Seeking a contradiction, suppose that x(t) = &(¢,0)¢ is constant for some non-
zero € in ker(®(p,0)—\I). Fixing k, 1 < k < n—1, we have & (p,0)¢ = \F¢ #£ &.
Since x is constant, x is kp-periodic, whence the contradiction

€ = 2(0) = a(kp) = @(kp,0)¢ = " (p,0)6 = \*¢ £ &,

where we have used once again (2.32). Therefore, x is non-constant, completing
the proof. O

The next exercise shows that, whilst Proposition 2.22 provides sufficient condi-
tions for the existence of a non-constant periodic solution of (2.30), this solution
may have a period smaller than p.

Exercise 2.18

Let F =R, N =3, p =27 and let A: R — R3*3 be the continuous,
p-periodic function given by

0 1/2 0
Alty:==1-1/2 0 0
0 0 1+4sint

Show that the transition matrix function @ generated by A is such that

cos(t/2)  sin(t/2) 0
&(t,0) = | —sin(t/2) cos(t/2) 0
0 0 exp(l — cost +t)

Verify that o(®(p,0) = {—1,¢eP}, and so the hypotheses of Proposition
2.22 hold. Show that, for each non-zero £ € ker(®(p,0) + I), the solution
of (2.30), with initial data x(0) = &, is non-constant and periodic with
period 7 < 27w = p.

Proposition 2.20 (and its generalization in Exercise 2.17) and Proposition 2.22
serve to illustrate the fact that the eigenvalues of the matrix @(p,0) play a
crucial role in the analysis of solutions of the system (2.30): these eigenvalues
are known as Flogquet multipliers and are all non-zero, because @(p,0) is non-
singular.

We now consider inhomogeneous systems with piecewise continuous periodic
A:R—-TFN*N and b: R — FV, each with period p > 0:

#(t) = A()z(t) +b(t), A(t+p)=A(t), bt +p) =b(t) VteR. (2.33)



2.3 Systems with periodic coefficients: Floquet theory 49

Exercise 2.19

Set n := [ ®(p,s)b(s)ds. Show that (2.33) has a p-periodic solution if,
and only if, n € im (I — &(p, 0))

We proceed to investigate further the existence of p-periodic solutions of (2.33).
In the following, let S, denote the set of all p-periodic solutions of the homoge-
neous equation (2.30). It is easy to show that S, is a vector space (a subspace
of Shom ), see Exercise 2.16. The homogeneous equation

y(t) = A(t)y(t), where A(t) := —A*(t) for all t € R, (2.34)

is said to be the adjoint equation of (2.30). The transition matrix & generated
by A is given by &(t,s) = &*(s,t) for all s,t € R, see Exercise 2.7. The space
of all p-periodic solutions of the adjoint equation (2.34) is denoted by 5’,,. For
later purposes, we state and prove the following result which shows that the
dimensions of S, and Sp coincide.

Lemma 2.23
dim S, = dim S, = dimker(®(p, 0) — I).

Proof

Invoking Proposition 2.7, Exercise 2.16, and Proposition 2.20 shows that
dim S, = dimker(®(p,0) — I) and dimS, = dimker(®(p,0) — I).
Therefore, it only remains to prove that
dim ker(&(p, 0) — I) = dim ker(®(p, 0) — ). (2.35)
Since ®(t, s) = $*(s,t), it follows that
(@(p,0) = I)* = &(0,p) — I = &(0,p)(I — B(p,0)).
Consequently, since @(p,0) is invertible,
tk (8(p, 0) — 1) = 1k (@(p, 0) — I)* = 1k (2(0,p)(I — @(p,0)) = rk (2(p,0) — I).
Finally, by the dimension formula (see (A.5) in Appendix A.1),
rk (&(p, 0)—I)+dim ker(P(p,0)—1I) = N = rk (D(p, 0)—I)+dim ker(P(p, 0)—1),

and (2.35) follows. O
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The following theorem provides a necessary and sufficient condition for the
existence of p-periodic solutions of the inhomogeneous equation (2.33).

Theorem 2.24

(1) There exists a p-periodic solution of the inhomogeneous equation (2.33) if,
and only if,

/Op(y(s),b(s)> ds=0 Vye Sp, (2.36)

where (, ) denotes the standard inner product in FV (see Appendix A.1).

(2) If (2.36) does not hold, then every solution z : R — FY of (2.33) is un-
bounded (and, a fortiori, non-periodic).

Proof

Set n := f(f b(p, s)b(s)ds. By Exercise 2.19, (2.33) has a p-periodic solution if,
and only if, € im(] — P(p, 0)) By Theorem A.1,

im(I — &(p,0)) = (ker(I — &*(p,0))) "

Moreover, since I — ®*(p,0) = &*(p,0) (@*(O,p) - I) and &(p,0) is invertible,
we have ker (I — &*(p,0)) = ker (#*(0,p) — I). We may now infer that (2.33)
has a p-periodic solution if, and only if,

(z,m) =0 Yz €ker (2*(0,p) — I). (2.37)

Therefore, to establish statement (1), it suffices to prove that (2.36) and (2.37)
are equivalent. With this in mind, observe that, by part (a) of Exercise 2.16
applied in the context of the adjoint equation (2.34),

Sy ={P(-,0)z: z € ker (D(p,0) — I)} = {&(-,0)z: z € ker (&*(0,p) — I)}.
Therefore, (2.36) is equivalent to
/f(@(s, 0)z,b(s))ds =0 Vz € ker (2*(0,p) —I)
and, noting that
/p(dg(s,O)z, b(s))ds = /p(ds(s,p)qg(p, 0)z,b(s))ds
0 0

— ["@ 0.2 00510051
= (9*(0,p)z,n) = (z,m) Vz € ker (43*(0719) — I),



2.3 Systems with periodic coefficients: Floquet theory 51

we may conclude that (2.36) holds if, and only if, (2.37) holds, completing the
proof of statement (1).

To prove statement (2), let z : R — FY be an arbitrary solution of (2.33).
Let k € Ny and define z: R — FN by 2y (t) := x(t + kp) for all t € R. It is
straightforward to show that xy is a solution of (2.33). Therefore,

2 (t) = D(t,0),(0) + /Ot@(t, s)b(s)ds VteR.

Hence, zx(p) = @(p,0)z,(0) + n, and thus,
z((k+ 1)p) = &(p,0)x(kp) + n Vk € Np.

By induction on k, we obtain

k—1
z(kp) = ¥ (p,0)x(0) + > &’ (p,0)n Yk € N. (2.38)

§=0
By hypothesis, (2.36) does not hold. Since (2.36) is equivalent to (2.37), it
follows that there exists ¢ € ker(®*(0,p) — I) such that ((,n) # 0. Now
@*(0,p)¢ = ¢, whence ¢ = &*(p,0)¢ and so (¢, 2) = (¢, D" (p,0)z) for all z € FV
and all n € N. Invoking (2.38) leads to

(G (kp)) = (G, 2(0)) + k(C,m) VK €N, (2.39)

Since (¢,n) # 0, the right-hand side of (2.39) is unbounded and, as a
consequence, the sequence (z(kp)) is unbounded. This shows that z is un-
bounded. O

We record consequences of Theorem 2.24 in two corollaries, the first of which
is immediate and does not require a proof.

Corollary 2.25

The inhomogeneous equation (2.33) has a p-periodic solution if, and only if, it
has a bounded solution R — FV.

Corollary 2.26

There exists a p-periodic solution of the inhomogeneous equation (2.33) for
every piecewise continuous p-periodic forcing function b if, and only if, there
does not exist a non-zero p-periodic solution of the homogeneous equation (2.30)
(that is, 1 is not a Floquet multiplier).
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Proof

To prove sufficiency, assume that the homogeneous equation (2.30) does not
have a non-zero p-periodic solution. Then S, = {0}, and thus, by Lemma 2.23,
S’p = {0}. It now follows from Theorem 2.24 that the inhomogeneous equation
(2.33) has a p-periodic solution for every piecewise continuous p-periodic b.
Conversely, to prove necessity, assume that (2.33) has a p-periodic solution
for every piecewise continuous p-periodic b. Let y € 8};. It then follows that
(2.33) has a p-periodic solution for b = y. Consequently, by Theorem 2.24,
fop ||y£s)||2ds = 0, implying that y = 0. Since y € Sp was arbitrary, we conclude
that S, = {0}, and hence, by Lemma 2.23, S, = {0}, completing the proof. O

Example 2.27

Consider the harmonic oscillator with 27-periodic forcing
() + wy(t) = cost, weR

which may be expressed in the form (2.33) with constant A and 27-periodic b

given by
0 1 0
A= = .
(—w2 O) » b0 (cos t)

By Corollary 2.26, we may conclude the existence of a 2m-periodic solution if,
and only if, w? # 1. A

We proceed with a deeper investigation into connections between Floquet
multipliers and qualitative behaviour of solutions of the homogeneous equation
(2.30). In order to do so, we require the concept of matrix logarithm: for ma-
trices G and H in CV*V | we say that G is a logarithm of H if exp(G) = H. If
G is a logarithm of H, then, by Theorem 2.19,

o(H) = {e* : N e o(Q)}.

Thus, every eigenvalue of G is a logarithm of some eigenvalue of H and, con-
versely, every eigenvalue of H has a logarithm which is an eigenvalue of G. We
say that G is a principal logarithm of H if G is a logarithm of H and

o(G) ={LogA: A€ o(H)}, (2.40)

where Log : C\{0} — C denotes the (scalar) principal logarithm, that is, for
every nonzero z € C, Log z is the unique complex number with the properties
that z = e°¢* and Im (Log 2) € [0, 2).
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Corollary 2.28

Let G € CN*N e a principal logarithm of H € CN*N_ Then the algebraic and
geometric multiplicities of each A € o(H) coincide with those of Log A € o(G).

Proof

By hypothesis, H = exp(G) and (2.40) holds. Since, for all z1, 22 € o(G), we
have that z; — zo # 2kmi for every k € Z\{0}, it follows that the exponential
function exp is injective on o(G). Furthermore, exp’(z) = exp(z) # 0 for all z €
o(@G). Consequently, the claim follows from Theorem 2.19 (with f =exp). O

Exercise 2.20

Find a matrix H which has a logarithm G with the property that there
exists A € o(@) such that the algebraic and geometric multiplicities of
X do not coincide with those of e* € o(H).

The question of existence of principal matrix logarithms is settled by the next
result.

Proposition 2.29

If H € CV*Y is invertible, then there exists a principal logarithm of H.

In order to avoid disrupting the investigation of qualitative features of solutions
of (2.30), we relegate the proof of Proposition 2.29 to the end of the current
chapter (see Section 2.4).

Returning to the context of system (2.30), we now establish the following
(Floquet) representation for &(-,0).

Theorem 2.30

Let G € CNV*V be a logarithm of @(p, 0). There exists a piecewise continuously
differentiable p-periodic function ©: R — CN*N | with ©(0) = I and O(t)
non-singular for all ¢, such that

&(t,0) = O(t)exp(tp *G) VteR.

Proof
Invoking (2.32) with n = 1 and 7 = 0, we have
B(t + p,0) = (t,0)9(p, 0). (2.41)
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Set F := p~'G and define the continuous function ©: R — CN*N by
O(t) := &(t,0) exp(—tF).

Then ©(0) = I, O(t) is nonsingular for all ¢, and &(¢,0) = O(t) exp(tF) for all
t € R. Since @(-,0) is piecewise continuously differentiable, it follows that ©
is also piecewise continuously differentiable. Moreover, for all ¢t € R,

Ot +p) =P(t+p,0)exp(—(t +p)F) = D(t + p,0) exp(—G) exp(—tF).
Since &(p,0) = exp(G), we have $(0,p) = exp(—G) and so, for all t € R,
O(t+p) = P(t + p,0)P(0,p) exp(—tF) = &(t,0)P(p, 0)P(0, p) exp(—tF),

where we have used (2.41) to obtain the second equation. Consequently, we have
O(t +p) = P(t,0) exp(—tF) = O(t) for all t € R and so O is p-periodic. O

Equipped with Theorem 2.30, we are now in a position to make further con-
nections between Floquet multipliers (eigenvalues of @(p,0)) and qualitative
properties of solutions of (2.30). A Floquet multiplier is said to be semisim-
ple if its algebraic and geometric multiplicities (as an eigenvalue of @(p,0))
coincide.

Theorem 2.31

(1) Every solution of (2.30) is bounded on R, if, and only if, the modulus of
each Floquet multiplier is not greater than 1 and any Floquet multiplier with
modulus equal to 1 is semisimple.

(2) Every solution of (2.30) tends to zero at ¢ — oo if, and only if, the modulus
of each Floquet multiplier is less than 1.

Proof

Let (1,€) € R x FN be arbitrary. The solution x: R — F¥ of the initial-value
problem
L(t) = A(t)x(t), x(r) =¢,

is given by z(t) = &(t, 7)€ = P(¢,0)P(0, 7)€ = D(¢,0)¢, where ¢ := P(0,7)E.
Proposition 2.29 guarantees the existence of a principal logarithm G of &(p, 0)
and, moreover, by Corollary 2.28, the algebraic and geometric multiplicities of
each A € o(®P(p,0)) coincide with those of Log A € o(G). Writing F := p~'G
and invoking Theorem 2.30, we have

z(t) = O(t)exp(tF)¢ YVt eR,
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where ©: R — CN*N is piecewise continuously differentiable (and hence con-
tinuous) and p-periodic, with @(0) = I and O(t) invertible for all ¢. Therefore,
we may infer the existence of M > 0 such that [|©(t)|| < M and [|©71(t)|| < M
for all t € R. Since pF = G, we have

o(®(p,0)) = {e"”: peo(F)}
and, moreover, the algebraic and geometric multiplicities of each p € o(F) co-

incide with those of e*? € o(P(p,0)). We record three particular consequences.

(a) Every eigenvalue of F' has non-positive real part if, and only if, every eigen-
value of @(p,0) has modulus not greater than 1.

(b) Every eigenvalue of F with zero real part is semisimple if, and only if, every
eigenvalue of @(p,0) with modulus equal to 1 is semisimple.

(c) Every eigenvalue of F has negative real part if, and only if, every eigenvalue
of @(p,0) has modulus less than 1.

Now, define y: R — C¥ by y(t) := O~ 1(t)x(t). Then, ||y(t)| < M|z(t)] <
M?|ly(t)|| and, in particular,  is bounded on R if, and only if, y is bounded
on R, . Furthermore,

y(t) = exp(tF)( VteR.

Thus, © determines a one-to-one correspondence between the solutions of the
nonautonomous system (2.30) and the solutions of the autonomous system

y=Fy. (2.42)

Therefore, we may conclude the following.

(d) Every solution of (2.30) is bounded on Ry if, and only if, every solution of
(2.42) is bounded on R,..

(e) Every solution of (2.30) tends to zero as t — oo if, and only if, every solution
of (2.42) tends to zero as t — occ.

The conjunction of Corollary 2.13 and equivalences (a), (b) and (d) above now
give statement (1). Similarly, the conjunction of Corollary 2.13 and equivalences
(c) and (e) yield statement (2). O

Example 2.32
In this example, we consider Hill’s equation®
J(t) +at)y(t) =0, a(t+p)=alt) VteR, (2.43)

6 George William Hill (1838-1914), US American.



56 2. Linear differential equations

where a is piecewise continuous and p > 0. Hill’s equation describes an un-
damped oscillation with restoring force at time ¢ equal to —a(t)y(t). The two-
dimensional first-order system associated with (2.43) is given by

(1) = A (D), A(t)(f(t) (1)) VteR. (2.44)

Let @ be the transition matrix function generated by A. Our intention is to
apply Theorem 2.31 in the context of (2.44). To this end, we calculate the
Floquet multipliers. Now,

det(\ — ®(p,0)) = A2 — Atr &(p,0) + det D(p, 0),
and, by statement (2) of Proposition 2.7,
p
det @(p,0) = exp (/ tr A(s)ds) =1.
0
Moreover, noting that &(¢,0) is of the form

@(t,o)—(gigg iigg) VteR,

where 1 and @9 are the unique solutions of (2.43) satisfying ¢1(0) = 1 = ¢3(0)
and ¢1(0) = 0 = ¢2(0), respectively, it follows that

tr &(p,0) = ¢1(p) + P2(p).

Consequently,
det(A — &(p,0)) = A =29\ +1, where 7:=3(p1(p) + @2(p)), (245)

and the Floquet multipliers are given by

Ar=vEt+/2 -1
Invoking Theorem 2.31, we draw the following conclusions.

Case 1:|y] > 1. Then Ay > 1 (if v > 1) or A_ < —1 (if v < —1), and hence, at
least one solution of (2.44) is unbounded on R, .

Case 2: |y| < 1. Then Ay =~ £40 with § > 0. Since Ay _ = 1, it follows that
|A+| = |A=] = 1. Moreover, A+ and A_ are simple (and a fortiori semisimple)
and hence all solutions of (2.44) are bounded on R.

Case 3: |y| = 1. Then v = +1 and A = A_ = ~. All solutions of (2.44) are
bounded on R if, and only if, v is semisimple. Since the algebraic multiplicity
of 7 is two, ~ is semisimple if, and only if, ker(yI —@(p,0)) = C2. Consequently,
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~ is semisimple if, and only if, &(p,0) = ~I, that is, p1(p) = p2(p) = v and
¢1(p) = ¢2(p) = 0.

Irrespective of semisimplicity of v, by Proposition 2.20, there exists at least
one non-zero periodic solution of period p if v =1 and of period 2p if v = —1.
Furthermore, we claim that, in the case of 7 being semisimple, every solution
is p-periodic (if ¥ = 1) or 2p-periodic (if ¥ = —1). To see this, assume that - is
semisimple. Then the matrix

__ (logy 0
G’( 0 logv)'

is a logarithm of ®(p,0) = ~I. By Theorem 2.30, there exists a piecewise
continuously differentiable p-periodic function @ : R — C2*2 such that

®(t,0) = O(t)exp(tp *G) VteR.

If v = 1, then G = 0, and hence ¢(¢,0) = O(t) for all ¢ € R, showing that
&(t + p,0) = P(t,0) for all t € R. Every solution x of (2.44) is of the form
z(t) = &(¢,0)x(0) and is therefore p-periodic. If v = —1, then

im0
G_<O i7r>’

elim/p)t 0
&(t,0) = O(t) < 0 e(iﬂ/p)t> vteR.

Therefore, @(t + 2p,0) = &(t,0) for all ¢t € R, showing that every solution z of
(2.44) is 2p-periodic.

whence

Finally, we analyse a specific example. Assume that the function a is given by

a(t) =

2 <
{w, m<t<m+r (2.46)

0, m4+7<t<m+1, wherem €Z.

Here w > 0 and 7 € (0,1), Obviously, a is a piecewise continuous periodic
function with period equal to 1. With this choice of a, Hill’s equation (2.43)
describes an undamped oscillator, the restoring force of which is switched off
on the intervals [m + 7,m 4 1), m € Z. Since a is piecewise constant, ¢(1,0)
can easily be determined analytically. A routine calculation yields

cos(wt) — w(l — 7)sin(wr) wlsin(wr) + (1 —7) cos(wT))
—wsin(wr) CoswT '

®(1,0) = (

In particular,

= %(2 cos(wr) —w(1 — 7)sin(wr))
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We consider two “extreme” scenarios.

Scenario 1: T is close to 1. In this scenario, the restoring force is switched on
“most” of the time and so one might expect the behaviour of the solutions to
be similar to those of the harmonic oscillator §j + w?y = 0 (for which every
solution is periodic, of period 27 /w, and so a fortiori is bounded). However, we
show that this is not the case. To this end, let w = 7/7 and note that

-1 7-1

st0= (7 72)
and v = —1. Clearly, A = —1 is an eigenvalue of ¢(1,0) and so, by Proposition
2.20, there exists a non-zero periodic solution of period 2. Since the eigenvalue
A = —1 is not semisimple, it follows from Case 3 above that there exists at
least one solution which is unbounded on R;. A more detailed analysis (see
Exercise 2.21) reveals that ¢, is periodic of period 2 and s is unbounded on
R . Consequently, denoting the components of ¢ € R? by & and & and setting
x(t) := &(t,0)¢ for all t € R, the solution z is periodic of period 2 if, and only
if, & = 0 and, furthermore, = is unbounded on R, if, and only if, &5 # 0. These
observations are valid for all 7 € (0,1): in particular, they hold when 7 is close
to 1, in which case we have w ~ 7 and so the 2-periodic solutions do indeed
mimic the behaviour of the harmonic oscillator §j + w?y = 0; however, all other
non-zero solutions are unbounded and so the behaviour of the system differs
markedly from that of the harmonic oscillator.

Scenario 2: 7 is close to 0. In this scenario, the restoring force is switched off
“most” of the time and one might expect that the behaviour of the solutions
is similar to those of the “double integrator” § = 0 (which has unbounded
solutions, for example, y(¢) = t). However, this is not the case. For every w > 0,
we have 0 < v < 1 for all sufficiently small 7 € (0,1). Consequently, by Case
2 above, for all 7 > 0 sufficiently small, all solutions of (2.44) are bounded on
R.. This behaviour differs markedly from that of the double integrator. VAN

Exercise 2.21

Assume that, in Example 2.32, the periodic function a is given by (2.46)
with 7 € (0,1) and w = 7/7. Show that ¢; is periodic of period 2 and
2 is unbounded with ¢3(n) = (—=1)"n(1 — 7) for all n € N.

Exercise 2.22

Assume that in Example 2.32 the periodic function a is even. Show that
in this case v = p1(p) = p2(p).

The following corollary of Theorem 2.31 provides a criterion for the existence
of at least one solution of (2.30) which is unbounded on R.
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Corollary 2.33

If [7trA(s)ds has positive real part, then (2.30) has a solution z with
limsup;._.o ()] = oo.

Proof

By statement (2) of Proposition 2.7, we have

det ®(p,0) = exp </,, tr A(s) ds> .

0

Let Aj, j =1,...,d, be the distinct eigenvalues of ®(p,0), with algebraic mul-
tiplicities m;, j = 1,...,d. Then det (®(p,0) — AI) = H?Zl()\j — A\)™i, which,

upon evaluation at A = 0, shows that det &(p,0) = H?Zl /\?". Hence,

d p
H )\;ﬂj = exp (/ tr A(s) ds) )
j=1 0

Therefore, invoking the hypothesis,

d P
I X1 = exp (Re / tr A(s) ds> > 1.
j=1 0

Consequently, there exists j € {1,...,d} such that |A;| > 1 and so, by Theorem
2.31, there must exist a solution x which is unbounded on R . O
Exercise 2.23
Consider (2.30) with N =2, F =R and
1+sint a
At) =
®) ( b 1 — cos t) ’

where a,b € R are arbitrary constants. Show that there exists at least
one solution which is unbounded on R .

The converse of Corollary 2.33 does not hold. Specifically, if fop tr A(s)ds has
negative real part, then we cannot conclude that every solution = of (2.30) is
bounded on R, as the following exercise shows.

Exercise 2.24
Consider (2.30) with N =2, F =R and

A(t)—l —2+3cos?t 2 —3sintcost
T 2\—-2—3sintcost —2+3sin?t )’
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In this case, A is m-periodic and [ tr A(s) ds = —7/2 < 0. Show that
t i (t) == e/? <_ .COSt>
sint

is a solution of (2.30), and is such that ||z(¢)|| — oo as t — cc.

2.4 Proof of Theorem 2.19 and Proposition 2.29

We conclude this chapter with proofs of Theorem 2.19 (the spectral mapping
theorem) and Proposition 2.29.

Proof of Theorem 2.19

Let M € CVN*N and let a, € C, with n € Ny, be such that the series f(z) =
oo o anz™ converges for all z € C. By Proposition A.27, f(M) := Y07 ja, M™
is a well-defined element of CN*N. Let \;, j = 1,...,d, be the distinct eigen-
values of M with associated algebraic multiplicities m;, j = 1,...,d. Noting
that, if T is invertible, then

F@MT) =Y an (T MT)" =T (Z M") T=T"'f(M)T

n=0 n=0
and so, without loss of generality, we may assume that M is in Jordan” canon-
ical form (see Theorem A.9) which we express as M = diag(J1,...,J;). The

generic block J € {J1,...,Jo} takes the form
J=A+K forsome A€ {A,...,\q},

where, for some r € N, [ is the r x r identity matrix and K € R"™™" is a matrix
with every superdiagonal entry equal to 1, all other entries being 0, that is,

o010 --- 0
001 -0
K= :
0 00 1
0 00 0
(if r =1, then K = 0). Note that K™ =0 for all n > r,

n

Jh=(A+K)" =Y (’;) AEEE Y e Np.
k=0

" Marie Ennemond Camille Jordan (1838-1922), French.
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Furthermore, term-by-term differentiation of the power series yields

f(k)(A) — n n—k
o = an R Vk € Ny,
n==k

where f*) denotes the k-th derivative of f (with f(©) := f). Therefore,

00 r—1 oo r—1
FD = and" =" an (Z) ATERR = f(k];(A) K*.
n=0 ’

k=0n=~k k=0

In particular, f(J) has the following upper triangular structure

f) (N % %
0 f) fN) * *
0 0 fON) - o+ %
=] T @
0 0 0o - f)
0 0 0 - 0 fN)

and so o(f(J)) = {f(A)}. Of course, in the case of r = 1, (2.47) should be
interpreted as the scalar f(J) = f(\). Since f(M) = diag(f(J1), ..., f(Je)), it
now follows that

o(f(M)) ={f(N): Aea(M)},
completing the proof of statement (1).

We proceed to prove statement (2). To this end note that the above argu-
ment also shows that, for each \ € o(M) and every Jordan block J associated
with A, the algebraic multiplicity of A as an eigenvalue of J coincides with the
algebraic multiplicity of f(\) as an eigenvalue of f(J). From this, we may infer
that the algebraic multiplicity of f(A) as an eigenvalue of f(M) cannot be less
than the algebraic multiplicity of A as an eigenvalue of M. Moreover, since f is
injective on (M), the number of distinct eigenvalues of f(M) coincides with
the number d of distinct eigenvalues of M. Since the algebraic multiplicities of
the eigenvalues sum to IV in each case, it follows that the algebraic multiplicity
of each A € 0(M) coincides with that of f(A) € o(f(M)).

To prove statement (3), let J be any Jordan block in M = diag(Jy, ..., J¢)
associated with A € o(M). If J is scalar, then trivially we have ker(f(J) —
f)I) =ker(J — AI) = C. If J is not scalar, then A is not a semisimple, and
s0, by hypothesis, the additional property f’'(A) # 0 holds. By (2.47), we then

have
1

0
ker(f(J) — f(A)I) =span | . | =ker(J — XI).
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Consequently, defining A := {k: Jy is associated with A\} C {1,...,¢}, it fol-
lows that

dimker(f(Ji) — fF(A\)I) = dimker(J, — AXI) =1 Vk € A.

Moreover, by injectivity of f on o(M), f(A) € o(f(Jx) for all k € {1,...,¢}\4,
and thus

dimker(f(Jiz) — f(A)I) = dimker(J, — AXI) =0 Vk e {1,...,}\A.
Therefore, we may conclude that
dimker(f(M) — f(A)I) = dimker(M — XI) = #A,

where #/A denotes the number of elements of A. Finally, let v € ker(M — AI).
Then M™v = A" for all n € Ny and so f(M)v = f(A)v. Therefore, ker(M —
M) C ker(f(M) — f(A)I) and since these subspaces have the same dimension,
they must coincide. This completes the proof. O

Proof of Proposition 2.29

Let Aj, 7 =1,...,d, be the distinct eigenvalues of H with associated algebraic
multiplicities m;, 7 = 1,...,d. Note that, if G is a logarithm of H and T is
invertible, then exp(T~!GT) = T lexp(G)T = T'HT and so T'GT is a
logarithm of T~ HT. Therefore, without loss of generality, we may assume that
H is in Jordan canonical form (see Theorem A.9) which can be expressed as

H= diag(Jl, RN Jg), where ¢ > d.
The generic block J € {J1,...,Js} takes the form
J=A+K forsome € {A,...,\q},

where, for some r € N, [ is the r X r identity matrix and K € R"*" is a matrix
with every superdiagonal entry equal to 1, all other entries being 0, that is,

010 --- 0
o 01 --- 0
K = . . . . .
o 00 --- 1
0 00 0
(of course, if r = 1, then K = 0). We record that o(J) = {A} and
1
0
ker(J — AI) =ker(K) =span | . | = V. (2.48)
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Choose § > 0 sufficiently small so that e’ — 1 < 3§/2 < 1. Furthermore, choose
e > 0 sufficiently small so that M := (¢/A\)K has norm ||M] < §/2. Next,
we will invoke the contraction mapping theorem (Theorem A.25) to prove the
existence of a logarithm of I+ M. To this end, set 2 := {X € C™*": || X|| < ¢}
and define F': 2 — C™*" by

=1
F(X):=X+T+M—exp(X)=M-> EX’“.
Then,

1)
FX)| <|M — < —1—-60=e"—-1—=X< Xen
PO < | ||+Zk,_2+e b= 10 <h VX e

and so F'(£2) C (2. Observing that

k
XF—yF=3Y"XFIX-Y)Y™! VX, YeR VkeN (2.49)
j=1

(see Exercise 2.25 below for details), we obtain

|F(X)—F(Y)| = (Y*—x*)

!

>
U

M8
>, ?T‘M—

2
k—1

(k=1

WK

< HIX = V= (e —1)[|X Y| VX,V €

x
/|
N

Recalling that e — 1 < 1, it follows that F is a contraction on {2 and so, by
the contraction mapping theorem (Theorem A.25), has a fixed point Z € 2.
Therefore, I + M = exp(Z), that is, Z is a logarithm of I + M.

Next, we will use Z to construct a principal logarithm of J. To this end,
define Q := diag(e,e?,...,e"). Then Q7' KQ = K and so

Q7 'IQ =M +cK = AT+ M) = Aexp(2).

Let v € C be a logarithm of A, and so €¥ = A (such a logarithm exists since
A # 0 by invertibility of H). Therefore,

J=2Qexp(Z2)Q " = Nexp(QZQ™ ") = exp(v] + QZQ™),

showing that P := vI +QZQ ! is a logarithm of J. By Theorem 2.19, e* = X
for every p € o(P). Hence, for u € o(P) and v € ker(P — ul),

(J = A)v = (exp(P) — M )v =e"v — v =0,
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and thus, by (2.48), ker(P — uI) = V. Consequently, o(P) = {u} is a singleton.
Setting L := P+ (2kmi)I, where k € Z is such that Log A\ = pu+2kwi, we obtain

exp(L)=J and o(L)={Log\},

that is, L is a principal logarithm of J.

We have now shown that, for each j = 1,...,{, there exists a principle
logarithm L; of J; and so G := diag(L1, ..., L) is a principal logarithm of
H = diag(J, ..., J¢), completing the proof. O

Exercise 2.25
Prove (2.49) by induction on k.
(Hint. Note that X*+1 — YAl = (X + V)(X* - Y*) + XY+ - Y Xk
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