
Chapter 2

Visual Sensor Nodes

Abstract Recent developments in image and video technologies enabled easy

access to a new type of sensor-based networks, Visual Sensor Networks (VSN).

VSNs are gaining a lot of attention lately. They are used in several applications

including surveillance and telepresence. They consist of several low-cost, low-power

visual nodes with sensing, data processing, and communication capabilities. These

tiny nodes are able to collect large volumes of images, process them, and send

extracted data to each other and to the base station for further analysis. Unfortunately,

the huge amount of data captured and processed is faced with the limited resources

of such platforms. There are several challenges involved with the design and imple-

mentation of VSNs. This chapter presents an overview of visual nodes, architectures,

and challenges. It also reviews available VSN platforms and compares their processing

capabilities, highlighting the need for new lightweight but efficient image processing

algorithms and architectures.

2.1 Introduction

With the advances in wireless communications and low-power sensor nodes

designs, Wireless Sensor Networks (WSN) became a focal and active research

area worldwide. WSNs consist of spatially distributed sensors that collaborate to

monitor and capture data in a given environment [1]. The network has sensing, data

processing, and communication capabilities.

Developments in image technology lead to the emergence of a new class of

distributed sensor-based networks, Visual Sensor Networks (VSN). VSNs consist

of tiny, battery-operated, visual sensor nodes that integrate the image sensor,

embedded processor, and wireless transceiver. VSNs are able to capture, process,

and transmit visual data collectively over the network to a central station for

further processing as shown in Fig. 2.1 [2]. The difference between VSNs and

WSNs lies in the type of data collected and processed. Sensors in WSNs capture

scalar measurements such as temperature readings, sounds, vibration, or pressure;

M. Al Najjar et al., Video Surveillance for Sensor Platforms:
Algorithms and Architectures, Lecture Notes in Electrical Engineering 114,

DOI 10.1007/978-1-4614-1857-3_2, © Springer Science+Business Media, LLC 2014

17



all of which are somehow limited compared to VSN data [3]. Imaging sensors

in VSNs comprise a wide number of photosensitive cells that capture 2-D sets

of data points or images [2]. VSNs thus produce much richer description of a

situation of interest. Local processing extracts important information about the

scene so the node transmits only intelligent data to the central station.

These capturing, processing, and communication capabilities enable a wide range

of vision-based applications. VSNs are useful for surveillance, smart rooms, and

many others. Some of these applications are summarized below:

• Public and commercial surveillance: VSNs may be used for monitoring public

places such as parks, department stores, transport systems, and production sites

for infrastructure malfunctioning, accident detection, and crime prevention [4, 5].

• Environmental and building monitoring: VSNs are perfect solutions for early

detection of landslides, fires, or damages in mountain coasts, historical and

archaeological sites and hence preservation of these areas [6, 7].

• Military surveillance: Such networks can be employed in patrolling national

borders, measuring flow of refugees, and assisting battlefield command and

control [8, 9].

• Smart homes and meeting rooms: VSNs can provide continuous monitoring

of kindergarten, patients, or elderly requiring special care. This helps measure

the effectiveness of medical treatments as well as detect early alarms [10].

VSNs are also used for teleconferencing and remote meetings.

• Telepresence systems: In VSN-based telepresence systems, the user can view

any point from the remote location as if he or she was actually physically present

at that location [11].

It is important to note that larger amounts of data require more processing

and communications, increase analysis complexity, and exhaust more resources.

This is particularly challenging for constrained platforms like VSNs. VSNs are

faced with several challenges ranging from camera coverage to low-power data

processing, and reliable delay-aware communication protocols [3].

Fig. 2.1 Visual sensor network scenario
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This chapter reviews visual nodes architectures, VSN challenges, and current

platforms. The rest of the chapter is organized as follows. Section 2.2 introduces the

architecture design for visual sensor nodes. Section 2.3 discusses the challenges

faced in VSNs, mainly in terms of visual data processing, sensor control, and

communication protocols. Section 2.4 reviews and compares state of the art VSN

platforms with the main focus on processing capabilities. The section underlines

the need for a new class of image processing algorithms and architectures that suits

the limited resources of VSNs, which is the focus on the remaining chapters.

2.2 Visual Sensor Nodes Architecture

Visual sensor nodes are defined as small, battery-operated nodes with image sensor,

embedded processor, and wireless transceiver. This allows them to perform the

following operations: capture images or videos from the scene, process them locally

to extract relevant information, and transmit this data rather than raw images to a

base station for activity analysis.

The main blocks in a typical node are shown in Fig. 2.2. They include: a sensing

module, processing module, storage module, communication module, and power

or energy module. Underlying blocks and the way they are connected differs from

one platform to another. Some researchers use completely off-the-shelf components

to form a node [12]. Other developers integrate separately designed modules into

one node. For instance, the CITRIC node consists of an imager module with a

Tmote Sky wireless module [13]. Others implement all building components on one

single board [14]. This has the advantage of reducing energy dissipation due to

inter-chip communication. A description of each module is provided next. More

details about the specific components used in actual VSNs are provided in Sect. 2.4.

The sensing module consists of one or more imaging sensors to capture image

and video sequences. Most embedded platforms have an integrated Complementary

Metal–Oxide–Semiconductor (CMOS) imaging sensor. Although Charge-Coupled

Device (CCD) components were the premier image capture technology, by 2004,

CMOS sensors officially surpassed them as the overall image capture technology

of choice especially for constrained environments [15]. This is mainly due to

the low power consumption of CMOS (one tenth of CCD), low cost, and easy

integration of all camera functions on a single chip, significantly reducing chip

count and board space [15]. Moreover, CMOS sensors offer the same or better

sensitivity compared to CCDs. They are able to eliminate smearing and other

effects that can affect image quality and the integrity of the security system.

Some CMOS imagers also have dual mode night vision capability, near infrared

ones (NIR). This is essential for providing continuous 24-h surveillance. In fact, it is

preferable to have different sensing modalities to get a better view of the scene.

These include visible, thermal, infrared, and stereo.

Processing and storage modules are responsible for handling all visual data

operations including image processing tasks and buffering data during processing.
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Although VSNs are a class of sensor-based systems, the large volume of data

captured and processed requires considerably powerful processors and memory

resources. There are three directions followed for processor and memory selection.

Some nodes, like Panoptes [12] and Meerkats [16], are designed with relatively

powerful general purpose processors and large storage components (internal and

additional external memory cards) to achieve high performance. The drawback

is they result in high energy dissipation (several Watts). Others use lightweight

microprocessor or microcontroller (MCU) and specialized reconfigurable hardware

components to address critical parts. For example, background subtraction in

Cyclops is performed by a Complex Programmable Logic Device (CPLD) and all

other operations are performed by the lightweight processor [17]. MicrelEye uses a

Field Programmable Gate Array (FPGA) to implement computational tasks [18].

The last type of nodes uses a medium weight processor with moderate energy

dissipation (less than 1 W). VSNs in this category, such as FireFly Mosaic [19] and

Vision Mote [20], use 32-bit processors with relatively higher operating frequencies

and capabilities.

The communication module or wireless transceiver is responsible for communi-

cation with the central station and collaborating with others nodes in the network.

Different types of radio are found in current platforms: CC1000 [21], CC2420 [22],

Bluetooth [23], and IEEE 802.11 [24]. Chipcon CC1000 transceiver was designed

for very low power and very low voltage wireless application. It supports up to

38.4 Kbps raw channel rate [17]. CC2420 is another single-chip 2.4 GHz IEEE

802.15.4 compliant RF transceiver designed for low power and low voltage wireless

applications. It supports up to 250 Kbps data rate, which is still not enough to transmit

reasonable quality images in real-time [13, 14]. Bluetooth gets up to 230.4 Kbps

although the maximum is theoretically 704 Kbps [18]. IEEE 802.11 supports real-

time video streaming at the expense of more power dissipation [12, 16].

The energy module is responsible for powering the node. Visual nodes are usually

and mostly battery-operated. Renewable and solar energy was recently researched as

a potential alternative to prolong the lifetime of these networks [25]. The idea is to

use energy harvesting and convert different forms of ambient energy (e.g. solar

power, thermal energy, wind energy, salinity gradients, and kinetic energy) into

Fig. 2.2 Visual node block diagram
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electricity to power the nodes. However, harvesting solutions proposed so far can

produce limited amounts of energy and power nodes interruptedly [26]. Energy

saving approaches (in terms of sensing, communication, and data processing) are

mostly needed to reduce the nodes energy dissipation.

In terms of Operating Systems (OS), nodes may run a general purpose OS,

application specific OS, or no OS at all [27]. General purpose OS, like Linux,

provides flexibility to modify parts to fit the application need [12, 13, 16]. Program-

ming and prototyping are easy but incur more overhead and energy consumption

compared to application specific OS. OS specifically designed for sensor networks,

like TinyOS and Nano-RK, require minimal hardware [17, 18]. Alternatively, some

nodes including MeshEye do not have an OS; a finite state machine is responsible

for resource management instead [14, 18]. This is faster and more energy efficient

but requires longer time to program in hardware [27].

To sum up, this section described the generic model of visual nodes. Different

kinds of nodes exist based on the type of sensors, processing hardware, transmission

capabilities, level of integration, and OS [27]. These design choices actually

determine the capabilities of the nodes, performance, energy consumption, and

potential applications. The next section discusses the main challenges faced when

incorporating these nodes in VSNs.

2.3 VSN Challenges

VSNs are capable of collecting large volumes of data about monitored scenes

but are constrained with the available node resources and network bandwidth.

Designing and implementing VSNs is thus faced with several challenges.

First, robust visual data processing are needed on-board to produce useful data and

reduce the amount sent over the network but are typically restricted with the node

resources (memory and power). Second, camera locations and modes of operation

(active/sleep) should be carefully chosen to enforce continuous monitoring at

the least energy cost. Third, reliable and delay-aware communication protocols

are necessary to meet QoS requirements without exhausting the network. Other

challenges include security, authentication, and privacy issues. Data confidentiality

and authentication are raising great concerns. This is very critical in surveillance

applications where sensitive personal data collected may be misused or distributed.

The next subsections elaborate on some of these issues: visual data processing,

sensor management, and communication. Relevant work in each area is summarized.

2.3.1 Visual Data Processing

Object vision is one of the key features of VSNs marking it from other sensor-based

systems. Visual sensors are capable of capturing large amounts of images of the

monitored scene. Raw images are processed locally so only partial useful data is sent
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to the central station for further analysis or other nodes for collaborative processing.

Performing all this on-board is very challenging given the limited resources of

these nodes (power and memory). Conventional processing algorithms intended

for massive computers cannot be applied here. They must be modified and adapted

to fit on constrained-resource platforms. Efficient and lightweight image processing

algorithms and architectures need to be developed. This includes algorithms for

preprocessing the image, object processing, and preparing for transmission.

Image registration and fusion are used as preprocessing steps to enhance the

image quality by gathering information from multiple sources. Registration aligns

two or more images acquired from different viewpoints, times, and sensors. Image

fusion follows and combines complementary information from different sources of

optical sensors into one composite image. Despite the importance of these two

steps, there has not been any significant work concerning fusion and registration on

visual nodes. Image fusion and registration are especially needed in heterogeneous

VSNs or homogeneous ones with multimodal image sensors. In fact there are

two types of VSNs, homogeneous and heterogeneous [3]. All nodes in homo-

geneous networks contain the same type of camera sensors and perform the same

functionality. This reduces the complexity of the network, which makes it suitable

for large-scale VSNs with lots of self-organized nodes. Camera nodes in hetero-

geneous networks have different capabilities to provide better performance.

Heterogeneous VSNs consume overall less energy consumption than homogeneous

ones, but at the expense of added complexity. Heterogeneous networks are usually

divided into multiple stages or tiers. Different sensors and different functions, such

as object detection and tracking, are performed at different tiers. SensEye is a

heterogeneous multi-tier camera sensor network that follows this paradigm [28].

The first tier uses Mote nodes and CMUCam3 sensors to detect the location of

objects. Once objects are detected, web cams in the second tier are woken up

by to perform object recognition. Then, high-resolution pan-tilt-zoom cameras in

the last tier perform object tracking. This brings us to the next type of processing,

object processing.

Object detection and tracking identify interesting objects in the scene, their

distinguishing features, and trajectories. This data is then sent to the central station

for scene analysis. Considering detection, there are three main approaches: frame

differencing, background subtraction, and optical flow [29, 30]. The first type

consists of subtracting consecutive image followed by thresholding the difference.

Frame differencing is simple and suitable for VSNs, but is not very reliable, and

fails to detect all interior object pixels. Background subtraction schemes provide

better detection results but are sensitive to dynamic changes in the scene. The

current frame is compared to a background model or image rather than the previous

image. There are different background modeling techniques ranging from simple

ones to more complex and accurate ones that can handle variations in the scene.

Optical flow schemes rely on flow vectors of moving objects over time to identify

foreground in an image. They are computational and not suitable for VSNs.

Tracking on the other hand follows either a top-down approach known as filtering

and data association and bottom-up known as target representation and localization.
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The former requires lots of matrix manipulation and is usually avoided despite

its robustness to occlusions. Bottom-up approaches perform object detection

followed by some kind of similarity or correlation-based matching. In fact, frame

differencing was used in several platforms such as FireFly [19] and CITRIC [13].

Most platforms implemented some type of background subtraction. For example,

Cyclops used a running average filter to estimate the background [17]. MicrelEye

even used background subtraction assuming a fixed background [18]. To reduce the

computations, MeshEye performed background subtraction and stereo matching

on low resolution images (30 � 30) first. Once object are detected and matched,

high-resolution images are triggered to take snapshots of regions of interest. When

matching objects, simple features such as position, velocity, and bounding box were

extracted [13, 16]. Most of the schemes are chosen for their simplicity but cannot

reliably detect and track objects in complex cluttered outdoor scenes. This will be

further explained and addressed in the next chapters.

Pre-transmission steps include video coding and compression, which help

further reduce the size of data sent to the central station. There are two major

types of coding: intra-coding and inter-coding. The former, also known as trans-

form coding such as discrete cosine and wavelet transforms, is used in lossy

compression. The latter, also known as motion compensated prediction, achieves

higher compression rates for videos but requires more computations. Conventional

approaches, especially inter-coding, are not suitable for VSNs. They provide high-

resolution images at the cost of high complexity, memory resources, and power

consumption. Most existing VSN platforms, such as Cyclops [17], Mosaic [19],

Panoptes [12], use quality-scalable JPEG or platform-specific optimized JPEG

compression for intra-coding. Redondi et al. proposed a hybrid coding that

combines intra and inter-coding to exploit the benefits of both approaches [31].

CITRIC uses a different concept, Compressed Sensing (CS), which efficiently

senses image signals and compresses them on the fly [13]. The idea is to benefit

from the signal’s sparseness allowing the entire signal to be determined from

relatively few measurements [32, 33]. CS seems a promising alternative for coding

and compressing on VSNs that needs further research. Distributed Source Coding

(DSC) is a different approach based on Slepian-Wolf and Wyner-Ziv’s theorem

[34, 35]. Instead of the classical predictive encoding that jointly encodes and

decodes, DSC exploits separate encoding at each node and joint decoding at the

central station. This shifts the complexity to the decoder side, lowers power

consumption, reduces in transmission rate, and improves error resilience [27].

Di et al. proposed an improved DSC scheme that classifies video data into several

sub-sources to exploit additional video statistics and generate more reliable motion

vectors [36]. Although DSC has been widely studied, it has not been implemented

in real VSNs yet. According to [37], combining distributed source coding and

network coding can make significant progress toward performance and lower

energy consumption.

To sum up, current lightweight image processing schemes are not sufficient to

provide the accuracy needed in video surveillance. It is important to choose efficient

visual processing techniques on-board as their output is the basis for further analysis
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in the central station. On the other hand, accurate techniques require lots of

computations and storage, which exhausts the node quickly (if it can be implemented

on the node in the first place). Low-power image operations, collaborative visual

processing and coding are all active and promising research areas in VSNs. There is a

need to develop novel lightweight but reliable image processing algorithms and

architectures for VSNs. This will be addressed in the next chapters.

2.3.2 Sensor Coverage and Management

VSNs consist of several spatially distributed nodes to provide a wide and efficient

coverage of the monitored scene. Sensor management is important to maintain

the most coverage at the least energy cost even when certain visual sensors fail.

To meet these requirements, several design issues must be considered. First, the

location, orientation, and mode of operation of each camera node need to be

carefully chosen to ensure a well-covered scene. This is even more challenging

in the case of pan-tilt-zoom capabilities and multimodal lenses. Second, intelligent

but lightweight management schemes should ensure the system is fault tolerant

at the least energy dissipation. Redundant nodes are put to sleep to save energy

and extend the network lifetime and are waken up when needed (especially when

other nodes fail). To sum up, camera coverage and management involves selecting,

scheduling, and optimizing nodes’ activities to ensure the required coverage at

the minimum resource cost. Efficient optimization algorithms were extensively

developed for WSNs [38], but this task is more complicated and challenging for

VSNs. This is due to the wider 3-D camera coverage, more control parameters,

and energy constraints [3].

Huang et al. proposed a solution to the coverage problem by reducing 3-D space

to 2-D and then 1-D space [39]. It is possible to simplify the coverage problem

by assuming cameras have fixed focal length lens and are mounted on the

same plane [3]. For instance, several surveillance cameras are mounted on the

ceiling or top of a building facing downward. This results in rectangular fields of

view, in which case, it is possible to use WSN solutions. Soro and Heinzelman

implemented a WSN application-aware routing and coverage preservation protocol

on VSNs [40]. The purpose was to control which nodes are active and which

ones are sleeping to minimize energy dissipation. Unfortunately, the protocol

did not behave as expected. There is a need for specific routing and coverage

preservation protocols for VSNs [39]. Not much work is reported in this area.

Yoshida et al. used a cooperative control model in which pan-tilt-zoom cameras

dynamically adjust their coverage areas to maintain full coverage of the scene

without any central control [41]. Cameras adjust their field of view based on the

scene conditions and changes in the system structure by using a spatial pattern

generator. They can reduce blind spots in the surveyed area by adjusting their

field of view to overlap with that of neighboring nodes. Still, more research is

needed to optimize sensor management to meet VSN energy constraints.
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2.3.3 Communication Protocols

Supporting multimedia applications over wireless networks is challenging due

to the resource constraints and stringent Quality of Service (QoS) requirements.

These include the need for reliable data transmission and low data rate delays

without sacrificing energy efficiency.

VSNs rely heavily on processing and transmitting large amounts of data from

nodes to the central station as well as other nodes. Reliable data transmission is

a major issue that must be addressed in VSNs. WSNs use data retransmission

and link layer error correction to handle transmission problems [42]. However,

retransmitting visual data introduces intolerable delays in VSNs, degrades the

network quality, and reduces the available bandwidth [43]. Instead, image compres-

sion and data aggregation are used in single-path routing scenarios to meet QoS

requirements and prolong the network lifetime. Lecuire et al. proposed a wavelet-

based image transmission that decomposes an image into packets of different

priorities [44]. High-priority packets are sent first and subsequent packets are only

transmitted if the node battery level is above a given threshold. An alternative

approach considers low-power error correction encoders to ensure efficient data

transmission. For example, Reed Solomon encoder reduces the amount of data

transmitted while tolerating up to 16 errors in the transmitted codeword [45].

The (255,223) Reed Solomon encoder tolerates even more errors, requires less

retransmission and consequently lower power consumption than the original

Reed Solomon one [46]. Moreover, multi-path routing may be used instead of

single-path routing to reduce packet losses and balance energy consumption more

efficiently [47]. Another way is to repartition loads on multiple source-sink paths to

avoid network congestion [48]. This will in turn reduce losses in the network and

improve reliability. However, multi-hop latency becomes a main concern here

especially for video surveillance applications where real-time results are needed.

Several energy-efficient delay-aware Medium Access Control (MAC) protocols

were proposed to reduce multi-hop latency [49]. The idea is to adapt nodes operations

(sleep and active times) based on network traffic. For instance, Ye et al. developed

a MAC protocol that uses adaptive listening to control nodes operations [50].

Alternatively, unified cross-layer approaches were explored to minimize delays in

the network. In fact, delays may occur at different layers of the network protocol

stack due to channel contention, packet retransmission, long packet queues, node

failure, and network congestion [2]. Instead of designing each layer independently,

cross-layer design considers close interactions between different layers of the

protocol stack to optimize system performance as a whole. All layers are considered

dependent. Information from one layer is visible to other layers and may be used

to optimize at lower layers. Some cross-layer works are listed next. Andreopoulos

et al. proposed an optimization algorithm that finds the optimal routing path,

maximum number of retransmissions at the MAC layer, and best modulation

scheme at the physical layer [51]. The purpose is to maximize the network’s

capacity-distortion utility function, given the delay-constraints. Li and Der Schaar
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investigated several application layer and MAC strategies jointly to improve

multimedia quality [52]. Der Schaar and Turaga adaptively enhanced the robust-

ness and efficiency of scalable video transmission by optimizing MAC retransmis-

sion strategy, application layer forward error correction, bandwidth adaptive

compression, and adaptive packetization strategies [53].

It is important to note that most research focuses on delivery of visual data

over general wireless networks. Optimized VSN cross-layer solutions need to

be developed. Another area that needs further investigation is collaborative image

data routing [2]. Cross-layer optimization should include strategies for collabora-

tion among different cameras with overlapped field of view to minimize the amount

of data transmitted.

2.4 Current VSN Platforms

This section reviews ten currently available VSN platforms. As stated earlier, all

these platforms share the same generic blocks. They are battery-operated and

consist of some sort of imaging sensor, processor, memory, and communication

card. The choice of underlying components and the way they are integrated differs

from one platform to another to address different functionality and applications.

The next subsections summarize the hardware components and OS used in

each node, typical applications, and local image processing operations. Platforms

are presented starting with lightweight ones to intermediate, and then relatively

powerful ones capable of handling more local processing. Platforms covered are:

Cyclops [17], MeshEye [14], XYZ-Aloha [54], FireFly Mosaic [19], MicrelEye

[18], Vision Mote [20], CITRIC [13], WiCa [55], Panoptes [12], and Meerkats [16].

A summary table follows comparing the processing capabilities of different platforms

and focusing mainly on image processing tasks (which is the focus of this book). It

highlights the need for more accurate but lightweight image processing algorithms

and architectures for fusion, registration, detection, and tracking.

2.4.1 Cyclops

Cyclops is one of the lightest smart energy-efficient visual sensors [17]. It has a

multi-board level architecture that integrates the TinyOS-based Cyclops board with

the well-known IEEE 802.15.4/ZigBee-based Mica2 wireless sensor mote [56].

Cyclops board consists of the following components [17]: ultra-compact CIF

resolution ADCM-1700 CMOS imager, 8-bit ATMEL ATmega12 RISC MCU,

Xilinx XC2C256 CoolRunner CPLD, 64 KB external SRAM (TC55VCM208A

from TOSHIBA), and 512 KB external CMOS Flash programmable and erasable

read only memory (AT29BV040A from ATMEL). SRAM is used for image

buffering and during processing. Flash is used for permanent template storage.
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MCU is responsible for controlling Cyclops and communicating with Mica2.

Critical parts such as background subtraction and image capture are performed on

CPLD. Any idle block is put to sleep to save energy. The maximum power

consumption of Cyclops is about 110.1 mW.

Cyclops was used in object detection and hand posture recognition applications.

A simple and lightweight background subtraction is used for objects detection. This

involves running average filter for background modeling and single thresholding

for foreground detection. As for hand posture recognition, Cyclops extracts feature

vectors using an orientation histogram transformation, which is robust to illumina-

tion changes and translation invariant.

2.4.2 MeshEye

MeshEye is a single board that fully integrates imager, processor, memory, and

radio blocks [14]. Two types of imagers are used: two low resolution ADNS-3060

high optical mouse (30 � 30 pixels) and a VGA resolution ADCM-2700 landscape

CMOS camera. The rest of the components include an Atmel AT91SAM7 proces-

sor, 64 KB SRAM, 256 KB FLASH, 256 MBMMC/SD memory card, and CC2420

2.4 GHz IEEE 802.15.4/ZigBee-based radio module [14]. MeshEye does not have

an OS. It relies on finite state machines to handle resource management and

operation scheduling. The maximum power consumption is 175.9 mW.

MeshEye was intended for low-power distributed surveillance applications.

Typical vision tasks include object detection, stereomatching, and object recognition.

Background subtraction is applied on the low resolution images first. This involves

comparing current image to the background one, thresholding the difference, and

blob filtering. Correlation-based stereo matching follows at the low resolution. Once

an object is detected and matched, the high resolution camera is triggered to take

a better snapshot of this region for further processing.

2.4.3 XYZ-Aloha

XYZ-Aloha integrates two boards [54]: XYZ node and Aloha imager. XYZ node

includes a 32-bit OKI ML67Q500x ARM THUMB MCU, 32 KB internal RAM

and 256 KB FLASH, 2 MB external RAM, and a Chipcon CC2420 radio. Other

imagers were also tested with the XYZ node such as a VGA resolution OV 7649

camera module from OmniVision. XYZ uses a lightweight OS, called SOS that

follows event driven design. The overall maximum power consumption is about

238.6 mW.

XYZ was used in pattern recognition problems like letter recognition and hand

gesture recognition.
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2.4.4 Vision Mote

Vision Mote is a fully integrated board with the following components [20]: CMOS

imager, 32-bit Atmel 9261 ARM 9CPU, 128MB Flash (K9F1G08), 64MB SDRAM

(K4S561632), and CC2430 ZigBee-based module. Running on Linux OS, Vision

Mote can benefit from OpenCV libraries to implement image capture, image

compression, and other processing functions. The maximum power consumption

measured is 489.6 mW.

Vision Mote was used for water conservatory engineering applications. Several

motes aggregate into Vision Mesh, a network that collects and compresses images

before sending them to the central station in a multi-hop route.

2.4.5 MicrelEye

MicrelEye is a fully integrated board that includes the following blocks [18]: a QVGA

resolution OV7620 CMOS camera, a reconfigurable ATMEL FPSLIC SoC, 1 MB

SRAM for frame storage, and LMX9820A Bluetooth transceiver. The SoC contains

an 8-bit AT40K MCU, reconfigurable FPGA, and 36 KB onboard SRAM. Similar to

Cyclops, critical image processing tasks like background subtraction are performed

on FPGA and lightweight operations are performed on the MCU. Having both MCU

and FPGA on the same chip accelerates processing and eliminates energy dissipation

due to inter-chip connections (maximum 500 mW measured). MicrelEye has no

operating system.

MicrelEye node was used for detecting people. Object detection involves

pixel-based background subtraction assuming a fixed background frame. Detection

is performed on FPGA and the remaining classification on the MCU. Object

classification involves extracting the feature vector and feeding it to a State Vector

Machine-like (SVM) learning structure to establish if this is a human being or not.

2.4.6 FireFly Mosaic

Mosaic is the first VSN with multiple collaborative visual nodes [19]. FireFly Mosaic

platform consists of the FireFly WSN platform integrated with the CMUCam3

vision board [57]. The vision board consists of a CIF resolution OmniVision

OV6620 camera, an Averlogic AL440b FIFO for frame buffering, a low-cost

32-bit LPC2106 ARM7TDMI MCU running at 60 MHz, 64 KB on-chip RAM,

and 128 KB on-chip FLASH memory. The FireFly node contains a low-power 8-bit

Atmel Atmega1281 processor, 8 KB RAM, 128 KB FLASH memory, and a

Chipcon CC2420 802.15.4 radio. Each node runs on Nano-RK and includes an

AM receiver for external time synchronization. The maximum power consumption

measured is 572.3 mW.
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FireFly Mosaic was mainly used in assisted living applications for elderly.

It identifies regions with frequent particular activities The end result of the appli-

cation is a Markov model, which characterizes the transition probabilities of

activity regions. Several image processing functions are supported including JPEG

compression, frame differencing, color tracking, convolutions, histogramming, edge

detection, connected component analysis, and face detection.

2.4.7 CITRIC

CITRIC platform consists of two boards [13]: a CITRIC imaging board and Tmote

Sky wireless module. Tmote Sky runs TinyOS/NesC and contains a 16-bit MSP430

MCU, 10 KB RAM, 48 KB FLASH, a Chipcon CC2420 I.E. 802.15.4 radio, and

1 MB external FLASH [58]. The imaging board includes a 1.3 megapixel SXGA

resolution OV9655 CMOS imager, a frequency-scalable 32-bit PDA class CPU

(Intel XScale PXA270 with a wireless coprocessor to accelerate multimedia tasks

and 256 KB internal SRAM), 16 MB FLASH, 64 MB RAM, andWolfsonWM8950

mono audio ADC. Total power consumption is about 970 mW.

CITRIC was used for target tracking and camera localization. Single target

tracking proceeds by segmenting the image into background and foreground. To do

that, simple frame difference, single thresholding, and median filter are performed.

Bounding boxes are then computed for each detected object and sent to the central

station. Camera localization uses tracking results from multiple cameras to estimate

the position and orientation of the camera and its field of view [13].

2.4.8 WiCa

WiCa platform includes the following components [55]: VGA resolution OM6802

image sensor, Xetal-II Single Instruction Multiple Data (SIMD) processor with

320 processing elements, ATMEL 8051 processor, 10 MB SRAM, and Chipcon

CC2420 Zigbee-based radio module. High-level operations are performed on

the ATMEL CPU. Low-level image tasks suitable for parallel processing are

implemented and accelerated on the SIMD processor. The idea is to benefit from

regularity in image processing operations to parallelize the work and speed it

up. Moreover, both processors can access data from the RAM at the same time

which enables each one to operate on its own pace. Processing one image line in

WiCa takes a single clock cycle.

WiCa platform is used in several applications including distributed face detection,

Canny Edge detection, gesture recognition, and many others. WiCa is a promising
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VSN platform as it exploits parallelism using SIMD processor rather than FPGA.

However, energy dissipation is a main concern for such platforms.

2.4.9 Panoptes

Panoptes is one of the first reported powerful Linux-based VSNs capable of

processing VGA images. It is designed using several off-the-shelf components.

These include: an Intel StrongARM 206 MHz embedded platform, a Logitech 3000

USB-based video camera, 64 MB of on-board memory, and IEEE 802.11-based

networking card. The powerful processor allows relatively more computational

vision algorithms than other lighter weight node types at the expense of more

energy consumption (maximum of 5.3 W measured).

Panoptes was used for environmental observation and surveillance applications. It

offers several functionalities: video capture, spatial compression, filtering, buffering,

adaptation, streaming, storage and retrieval of video data from sensor.

2.4.10 Meerkats

Meerkats is a powerful node designed with several off-the-shelf components [16].

It is built on top of a Crossbow Stargate platform [56] and contains the following

parts: a USB-based VGA resolution Logitech QuickCam Pro 4000, XScale

PXA255 400MHz CPU, 32 MB FLASHmemory, 64 MB SDRAM, and an Orinoco

Gold IEEE 802.11 wireless card. Similar to the powerful Panoptes nodes, the

energy consumption of Meerkats is 1 order higher than others (maximum of 3.5W).

Meerkats was used for outdoor and indoor monitoring applications. The main

image processing steps performed onboard include object detection, object tracking,

followed by compression to reduce the amount of data sent to the central computer.

Objects are detected using a motion analysis scheme. It is assumed that objects are

constantly moving; objects that stop are no longer detected [16]. Once foreground

regions are detected, their positions and velocities are computed. Clustering is

used to identify multiple objects in the scene. This data is then JPEG compressed

and transmitted.

2.4.11 Observations

Table 2.1 compares the VSN platforms described above in terms of processing

capabilities, maximum power consumption, vision algorithms, and applications.

Lightweight platforms such as Cyclops, which is the only VSN with an 8-bit
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processor, can perform very limited image processing tasks on-board. These include

background subtraction using running average filter, frame differencing, and single

thresholding. Video surveillance typically requires more accurate schemes, which

need more powerful processors and larger memory. Intermediate 32-bit processors

provide a middle solution that trades off computations and energy. Examples include

FireFly Mosaic, CITRIC, MeshEye, VisionMote, and MicrelEye. Most of these

VSNs implement frame differencing or simple unimodal background subtraction.

MicrelEye uses a reconfigurable hardware (FPGA) to handle computational parts

such as background subtraction and image capture and MCU for the rest of the

operations. To reduce the computations, MeshEye performs background subtraction

and stereo matching on low resolution images (30 � 30) first. Once object are

detected and matched, high-resolution images are triggered to take snapshots of

regions of interest. Simple features are extracted for object matching such as position,

velocity, and bounding box. These schemes are chosen for their simplicity but cannot

reliably detect and track objects in complex outdoor scenes with clutter motion and

multiple occlusions. Relatively powerful nodes such as Meerkats and Panoptes can

Table 2.1 Comparison of current visual nodes in terms of processing capabilities

Reference Processor(s)

Energy

(mW)

Applications/image processing

capabilities

[17] 8-bit ATMEL ATmega12 MCU,

XC2C256 CoolRunner CPLD

110.1 Object detection: background

subtraction

Hand posture recognition: edge

detection

[14] 32-bit ATMEL AT91SAM7

processor

175.9 Distributed surveillance: background

subtraction, stereo matching

[54] 32-bit OKI ML67Q500x ARM

MCU

238.6 Pattern recognition: histogram

reconstruction, motion detection,

edge detection

[20] 32-bit Atmel 9261 ARM 9 CPU 489.6 Water conservation: JPEG compression

[18] 8-bit AT40K MCU and ATMEL

FPSLIC SoC

500 People detection: background

subtraction

[19] 32-bit LPC2106 ARM7TDMI

MCU and 8-bit Atmel

Atmega1281 processor

572.3 Assisted living: frame differencing,

color tracking, convolution, edge

detection

[13] 32-bit Intel XScale PXA270 CPU

and 16-bit MSP430 MCU

970 Single target tracking: background

subtraction

Camera localization using multi-target

tracking: frame differencing, object

extraction, data association

[55] Xetal-II SIMD – Face detection and gesture recognition:

Canny edge detection

[16] 32-bit Xscale PXA255 3500 Tracking moving bodies: background

subtraction, frame differencing

[12] 32-bit StrongARM 5.3 Video surveillance: motion detection
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support more operations. But even these did not investigate accurate implementations

for fusion, registration, detection and tracking in challenging outdoor scenes. This

includes outdoor surveillancewhere scenes undergo large changes, cluttermotion, and

objects occlusions. Another note here is regarding power consumption. The more

computations are, the more energy dissipation (about 5 W in Panoptes). This will

quickly exhaust the sensor nodes. Actually, VSN power consumption is dominated

by the large amount of data computations rather than communication [27].

WiCa is the first platform that relies on Xetal SIMD. It enables fast implementation

of edge detection and face recognitions schemes.WiCa seems very promising in terms

of processing capabilities However, there are no results regarding the overall energy

consumption, which is expected to be large on such platforms.

To sum up, one of the main challenges of VSNs is the tradeoff between the

algorithms accuracy, memory/processing capabilities, and power consumption of

the nodes. Investigating novel low-power but robust algorithms and architectures

for video sensor nodes is an active research topic. Accurate and lightweight

algorithms should be further investigated and fast hardware architectures should

be designed to accelerate critical tasks.
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