
Chapter 2
A Generic Framework for Testing
the Web Services Transactions

Rubén Casado, Muhammad Younas and Javier Tuya

Abstract This chapter focuses on web services transactions which support creating
robust web services applications by guaranteeing that their execution is correct and
the data sources are consistent. More specifically, it investigates into the testing of
such transactions which has not received proper attention from the current research.
It presents a generic framework for testing different models and standards of web
services transactions. The framework is implemented as a prototype system using
the case study of Jboss Transactions and is applied to test the predominant web
services models and standards such as Web Services Business Activity (WS-BA).
The results show that the framework automatically generates test cases and detects
possible faults or failures during the processing of web services transactions running
under different model and standards.

2.1 Introduction

Web services provide a new computing paradigm in which functional and non-
functional requirements of specialised services are published over the Internet such
that they can be dynamically discovered and composed in order to create composite
services that provide integrated and enhanced functionality. Web services transac-
tions (or WS transactions) are used to ensure reliable execution of services and to
maintain the consistency of data. WS Transactions are defined as sequences of web
services operations or processes that are executed under certain criteria in order to

R. Casado (B) · J. Tuya
Department of Computing, University of Oviedo, Asturias, Spain
e-mail: rcasado@lsi.uniovi.es

J. Tuya
e-mail: tuya@uniovi.es

M. Younas
Department of Computing and Communication Technologies, Oxford Brookes University,
Oxford, UK
e-mail: m.younas@brookes.ac.uk

A. Bouguettaya et al. (eds.), Advanced Web Services, 29
DOI: 10.1007/978-1-4614-7535-4_2,
© Springer Science+Business Media New York 2014

30 R. Casado et al.

achieve mutually agreed outcome regardless of system failures or concurrent access
to data sources i.e., either all the web services operations succeed completely or
fail without leaving any incorrect or inconsistent outcomes. The classical and most
widely used criteria are the ACID (Atomicity, Consistency, Isolation, Durability)
which require that a transaction be treated as a single atomic unit of work in order to
maintain consistency and persistency of data. Consider, for example, an online ser-
vice provider (e.g., Amazon) that develops web services based solutions to automate
the order and delivery of online books as part of a WS transaction. Such transaction
can only be considered as successful once the books (purchased) are delivered to a
customer and the payment has received.

Numerous models and protocols have been developed for WS Transactions,
including, the OASIS Business Transaction Protocol (BTP) [24], Web Services Busi-
ness Activity (WS-BA) [29], Web Services Transaction Management (WS-TXM)
[25] and other models and frameworks [1, 20]. These aim to improve the quality
of WS transactions in terms of response time efficiency, failure recovery, flexibility
and support for long running and complex business applications. For example, [1]
present an optimistic concurrency control protocol in order to optimise the through-
put and response time of WS transactions. The authors in [20] propose an algorithm
for selecting QoS-aware transactional web services that meet user’s requirements.

This chapter focuses on another quality dimension which is the testing of WS
transactions. Though there exists research work on testing non-transactional web ser-
vices [4, 5], the area of WS transactions testing has not been properly researched yet.

Generally, the software testing aims to systematically explore the behaviour of
a system or a component in order to detect unexpected behaviours. In other words,
testing identifies whether the intended and actual behaviours of a system differ, or
(at gaining confidence) that they do not. In our case, the focus of testing is to detect
possible faults or failures in WS transactions running under different models or
standards (e.g., BTP, WS-BA). The objective is to identify the observable differences
between the behaviours of implementation and what is expected on the basis of
specification of WS transaction models and standards. Based on our previous work
[8, 9], this chapter presents a generic framework for testing WS transactions. The
framework is comprised of the following phases:

• To design a generic model that abstractly represents the commonly used WS trans-
action models and standards (e.g., BTP, WS-BA).

• To automatically generate test cases and map them to different WS transactions
models and standard.

• To perform testing and evaluation using the standard case study of Night Out,
which is provided by Jboss [19] in their implementation of the WS-BA standard.

• To automatically compare the expected and actual outcomes in order to identify
possible faults or failures in WS transactions.

The chapter is organized as follows. Section 2.2 gives an analysis of WS transaction
models and standards. Section 2.3 presents the proposed framework. It also presents
the generic transaction model and illustrates the process of representing some of
the WS Transactions standards using the proposed transaction model. Section 2.4

2 A Generic Framework for Testing the Web Services Transactions 31

presents the evaluation and results. Section 2.5 gives a critical analysis of the proposed
framework. Conclusions are presented in Sect. 2.6.

2.2 WS Transactions

WS transactions are defined as sequences of web services operations or processes
that are executed under certain criteria in order to achieve mutually agreed outcome
regardless of system failures or concurrent access to data sources. But WS trans-
actions have distinct characteristics than the classical database transactions. They
are based on various models ranging from classical ACID criteria to advanced or
extended transaction models. Two Phase Commit (2PC) protocol and its variants
[12] have commonly been used for maintaining ACID properties. ACID properties
are vital for WS transactions that need strict isolation and data consistency. How-
ever, they are not suitable for long running WS transactions as they result in resource
locking/blocking problems. Advanced transaction models have been developed to
address 2PC and ACID related issues. These includes, nested transaction model
[23], SAGA model [15], open-nested [33], Split-join [31], Contracts [32], Flex [35],
and WebTram [34]. The underlying strategy of these models is to relax the strict
ACID criteria and to allow for compensation of partially completed transactions in
order to maintain application correctness and data consistency.

The work in [11] proposes a theoretical approach in order to specify, analyze
and synthesize advanced transaction models. Transactional patterns that combine
workflow process adequacy and the transactional processing reliability are identified
in [2]. In [16], the authors present a high level UML-based language to design
transaction process with diverse transactional semantics. An XML representation
is proposed in [18]. In our previous work [7], a risk-based approach is used to define
general test scenarios for compensatable transactions. Further, in [6], we present test
criteria for transactional web services composition. The approach is based on the
dependencies which are defined between participants of a WS transaction. In [21],
authors have developed a model of communicating hierarchical timed automata in
order to describe long-running transactions. This approach verifies the properties of
transactions using model checking. The work presented in [13] translates programs
with compensations to tree automata in order to verify compensating transactions.
The authors in [22] proposes a formal model to verify the requirement of relaxed
atomicity with temporal constraints whilst [14] uses event calculus to validate the
transactional behaviour of WS compositions.

In addition to the above, several standards have been developed for WS transac-
tions. For instance, the OASIS Business Transaction Protocol (BTP) [24] coordinates
loosely web services. BTP was designed and developed by several major vendors
including BEA, Hewlett-Packard, Sun Microsystems, and Oracle. BTP adapts 2PC
for short lived transactions and nested transaction model for long-lived transactions.

Web Services Composite Application Framework (WS-CAF) [25] is a set of WS
specifications in order to support composite web services applications. Basically,
WS-CAF uses WS-Transaction Management (WT-TXM) to manage transactions

32 R. Casado et al.

Table 2.1 Test execution results

Standards Coordination Transaction model Relationship
Short Long

BTP ✓ ACID/2PC Nested ✗

TXACID ✓ ACID/2PC ✗ WS-TXM
TXLRA ✓ ✗ SAGA WS-TXM
TXBP ✓ ✗ Open-nested WS-TXM
WS-AT ✓ ACID/2PC ✗ WS-COOR
WS-BA ✓ ✗ SAGA WS-COOR

in composite services. WT-TXM is built around three models: ACID Transaction
(TXACID), Long Running Transaction (TXLRA) and Business Transaction Process
(TXBP). These models are defined in order to meet the different requirements of
web services. For example, if a web service is required to abide by strict isolation
and consistency policy then it adapts the TXACID model.

Web Services Atomic Transactions (WS-AT) [28] and Web Services Business
Activity (WS-BA) [29] are built on top of Web Services Coordination (WS-COOR)
[27]. WS-AT and WS-BA thus follow the coordination mechanism of WS-COOR.
WS-AT follows 2PC protocol while WS-BA uses the SAGA model.

The above standards and their underlying transaction models and protocols are
summarized in Table 2.1. ‘Coordination’ represents whether a particular standard
provides coordination facilities. ‘Transaction Model’ shows the underlying transac-
tion models and protocols on which the WS transaction standard is based on. ‘Short’
and ‘Long’ respectively represent short-lived and long-lived WS transactions. ‘Rela-
tionship’ represents the relationship between the WS transaction standards.

From Table 2.1, we make some useful observations that motivate the need for a
generic model for testing the WS transactions. Our first observation is that all the
standards separate the coordination and the management of transactions and also
distinguish between short-lived and long-lived transactions. Second, these standards
have proprietary definitions of their underlying transaction models despite the fact
that some of them are based on similar concepts. Third, the support for long-lived
transactions is based on different advanced transaction models. For instance, TXLRA
adapts SAGA while TXBP adapts open-nested transaction model. This reveals that
WS transactions do not have a homogeneous transaction models or protocols. Instead
they are characterized by a diversity of transaction models and protocols.

Given the diversity of WS transactions standards it is essential to develop a generic
model that has the capability to represent and test WS transactions running under
different standards. In the next section we define the proposed framework.

2 A Generic Framework for Testing the Web Services Transactions 33

2.3 The Generic Framework

This section presents the proposed framework for testing the WS transactions. It
first describes the transaction model and then illustrates the process of modelling the
current WS transaction standards.

2.3.1 The Transaction Model

This section presents the first phase of the proposed framework i.e., to design a
generic model that abstractly represents the commonly used WS transaction models
and standards. It provides the basic definitions and relationships of WS transactions
and also explains the different roles played by the participants (component systems)
in the execution of WS transactions.

WS Transaction: A WS Transaction, wT, is defined as a set S = s1, . . . , sn of
sub-transactions (or activities) which are executed in order to consistently and (semi)
atomically acquire web services. Each wT is associated with one Coordinator, k,
while each sub-transaction, si , is executed by an Executor, ei . Transaction context
is defined as a set of functional information and transaction configuration shared
by the sub-transactions. Each si can be represented as a single level sub-transaction
or as nested sub-transactions, which is denoted as wTc. wT, si , and wTc are related
in a parent:child relationship. The outcome of wT is called atomic if all its sub-
transactions complete their execution in an agreed manner. Alternatively, the outcome
is called mixed if subtransactions can have different final states or outcomes, i.e.,
some completed and others not.

In the proposed model, subtransactions have different types [3, 20]. A subtrans-
action, si , is lockable if the resources (or data) that it uses can be locked until the
completion of the parent transaction. A sub-transaction is compensatable if its effect
can be semantically undone through a compensating transaction. If a sub-transaction
is successfully completed and its effects cannot be semantically undone, then it is
called pivot. A sub-transaction is retriable if it guarantees a successful termination
after a finite number of invocations. A sub-transaction is replaceable if there is an
alternative sub-transaction that can perform a similar task. Note that the different
types of sub-transactions are defined as these are commonly used in WS transaction
models and standards.

The execution of a wT involves different participants, each of which plays a certain
role. We identify four different roles for the participants involved in processing the
wT and its sub-transactions:

• Executor: represents a participant which is responsible for executing and termi-
nating a sub-transaction.

• Coordinator: coordinates the overall execution of wT. For instance, it collects the
results (votes) from participants in order to consistently process wT.

• Initiator: represents a participant which starts wT. That is, it submits wT to the
coordinator and requests a transaction context.

34 R. Casado et al.

Fig. 2.1 Participant and roles in the proposed transaction model

• Terminator: represents a participant which decides when and how wT has to be
terminated. It also participates in the coordination tasks. In some situations, it can
play the role of a sub-coordinator.

The above roles are diagrammatically represented in Fig. 2.1 using UML state chart
notation. The purpose of defining the above roles is to automatically and uniformly
represent the different roles of participants in different WS transactions standards.
As shown in Fig. 2.1, each participant plays a certain role and makes transition from
one state to another during the processing of wT.

2.3.2 Representation of WS Transaction Models and Standards

This section describes the process of modelling WS transaction models and standards
using the proposed framework. As proof of concept we model the BTP and WS-BA

2 A Generic Framework for Testing the Web Services Transactions 35

standards as these are the commonly accepted standards in WS transactions. The
modelling process is composed of the following steps:

2.3.2.1 Role Identification and Modelling

This step identifies the roles of participants in a target WS transaction standard and
models it using the roles defined in the proposed framework.

The BTP implements the nested transaction model [23] and defines two main
roles; Superior and Inferior. In other words, it defines Superior:Inferior relationship
between a parent transaction, wT, and its sub-transactions, si . Figure 2.2a shows
the BTP representation of wT and its sub-transactions using the Superior:Inferior
relationship, and Fig. 2.2b represents the same wT using the proposed framework.
In BTP the superior makes the decision and the inferior abides such decision in
order to complete the transaction. The superior of BTP is modelled as Initiator in
the proposed framework. Also the superior can be modelled as Coordinator and
Terminator as it decides on the outcome of the subtransactions. Inferior of BTP
executes a subtransaction and is therefore modelled as Executor in the proposed
framework.

The WS-BA defines two outcomes of wT: (i) MixedOutcome allows that sub-
transactions may have distinct outcomes or final states, (ii) AtomicOutcome requires
all the subtransactions to complete their execution in an agreed manner. The main
roles are played by the: Executor and Coordinator. Figure 2.3 depicts the mod-
elling of WS-BA using the proposed framework. Figure 2.3a shows the AtomicOut-
come, whilst Fig. 2.3b shows the MixedOutcome scenario. In both scenarios the role
of Initiator is taken by the first participant who interacts with a Coordinator. In
AtomicOutcome the role of Terminator is taken by the Coordinator. This is due to
the fact that Coordinator can be the participant that knows all Executors’s output. It
also knows the final outcome: close or terminate wT if all executors have success-
fully executed their sub-transactions, or compensated otherwise. In MixedOutcome,

Fig. 2.2 Representation of BTP roles and relationships

36 R. Casado et al.

the Initiator is the Terminator since each Executor may have its specific or distinct
decision so the outcome depends on the business logic.

2.3.2.2 State Transitioning and Messages

This section describes the mapping of the state transitions and messages between a
target WS transaction standard and the proposed framework.

Figures 2.4 and 2.5 give more details on the state transitions and message
communication between Executor and Coordinator during the processing of wT.
Note that here we only model these two participants as they play a major role in
executing wT. The Inferior and Superior (in BTP) are respectively represented by
Executor and Coordinator. Similarly Executor and Coordinator are used to represent
WS-BA participants involved in wT.

BTP mapping: When a wT is started at the initiative of an Initiator a request is
sent to the Coordinator for creation of a context for the new transaction. The Coor-
dinator replies the Initiator and other Executors with the context information and
then moves from INITIAL state to ACTIVE state. Each Executor receives a context,
enrols with the Coordinator and then moves from READY to ACTIVE state. The
Executor moves to COMPLETED state after processing its sub-transaction. Coor-
dinator moves to PREPARE state awaiting decisions from Executors. The Executor
sends its outcome to the Coordinator and moves to DECISION state. The Coor-
dinator collects the outcomes from all Executors and takes the final decision by
moving from PREPARE state to DECISION state. The final decision is sent to each
Executor and the Coordinator then moves to CONFIRM state. Each Executor sends
acknowledgement and changes its state to END state through the transition (either
completed rollback or completed successfully). Once the Coordinator has received
all confirmations, it moves to END state. Note that an Executor can leave the wT
before confirming the completion of sub-transaction. So it can move from ACTIVE
state to CANCEL state.

Fig. 2.3 WS-BA relationships modeling

2 A Generic Framework for Testing the Web Services Transactions 37

Although BTP uses the 2PC protocol, Executors are not required to lock data on
becoming prepared (i.e., in prepared state). This can produce a contradictory decision
since the Coordinator could take a decision for all the Executors but some Executors
may take their own decisions. When the Coordinator detects any contradiction it
notifies the concerned Executor and moves to the END state. If the Coordinator
wants to cancel, the Executor uses completed pivot. In some cases, it uses completed
rollback. Further, BTP allows replaceable subtransactions. Thus if an Executor is not
able to start or carry on with its sub-transaction, it moves to FAILED state. A new
Executor is selected and the previous one moves to END state.

WS-BA mapping: The Initiator initiates wT and requests a context from Coor-
dinator. The Coordinator responds with a context. After wT initiation, Executors
join the current wT and move from READY to ACTIVE state, wherein they execute
their sub-transactions. After processing sub-transaction, each Executor moves from
ACTIVE to COMPLETED state. Coordinator moves from ACTIVE to PREPARE
state after receiving decision from all the Executors. In WS-BA, when the transaction
is of MixedOutcome, the decision for each sub-transaction is taken independently
by each Executor. In this case, the Coordinator moves from PREPARE to DECI-
SION state whenever it receives an Executor’s notification. The Coordinator decides
about its outcome and moves from DECISION to CONFIRM state. In the case of
AtomicOutcome type, the Coordinator moves from PREPARE to DECISION state
after receiving decisions from each Executor. The Coordinator then sends the global
decision to all Executors and moves from DECISION to CONFRIM state. Finally it
awaits the acknowledgements from Executors. Once these are received, the Coordi-
nator then moves to END state. When an Executor is not able to start executing its
sub-transaction it moves from READY to ABORTED state. If the sub-transaction
was cancelled while it was still under execution, the Executor moves from ACTIVE
to CANCELLED state. In case of failure it moves from ACTIVE to FAILED state.

Fig. 2.4 Executor: State transitions and message communication

38 R. Casado et al.

2.4 Implementation and Evaluation of the Proposed Framework

The process of testing aims at showing whether the intended and actual behaviours
of a system differ, or at gaining confidence that they do not. The main goal of
testing in our context is failure detection, i.e., the observable differences between the
behaviours of implementation and what is expected on the basis of the specification of
WS Transaction standards. We exploit a model-based testing approach that encodes
the intended behaviour of a system and the behaviour of its environment. Model-based
testing is capable of generating suitable test cases and it has also been successfully
used in others WS domains [10].

In order to validate and evaluate our framework we have designed a test process
which comprises test design, test implementation, test execution and outcome eval-
uation. In the following, we first explain the testing process. We then illustrate the
implementation of the proposed framework. Finally, we discuss the evaluation of the
framework.

Fig. 2.5 Coordinator: State transitions and message communication

2.4.1 Testing Process

The testing process includes selecting a test criterion, test design, test implementa-
tion, test execution and outcome evaluation. This section presents how the proposed
framework implements those phases using the generic transaction model.

2 A Generic Framework for Testing the Web Services Transactions 39

The first step to design the tests is to select a test criterion. Since the model is based
on states and transitions, we use the well known criterion of transition coverage [30].
By applying a test criterion over the generic transaction model, we obtain a set of
abstract test cases. Each abstract test case is mapped to a concrete test case which is
composed of the test scenario and the expected system outcome. The basic concepts
used in the test process are defined as follows.

• Test criterion: This defines a rule that imposes constraints (or requirements) on a
set of test cases.

• Transition coverage criterion: The set of test cases must include tests that cause
every transition between states in a state-based model (e.g., as in Figs. 2.4 and 2.5)

• Abstract Test case: This represents a sequence of states and transitions of a par-
ticipant using the generic transaction model. The notation Si → S′

i is used to
denote that the participant pi changes its current state S to S′ executing the tran-
sition labelled, t. If the participant is the Coordinator, it is denoted by k. We use
Sa

i → Sb
i · · · Sc

i → Sd
i to denote a sequence of state transitions.

• Test scenario: This represents a sequence of actions in a human-understandable
way to provide guidance to the tester to execute a test case.

• System outcome: The internal state of the process defined by a sequence of
exchanged messages between participants using a specific WS transaction stan-
dard. The notation i[m1] j is used to denote that the participant pi sends message
m1 to participant p j . We use i[m1] j − l[m2]o−· · ·−v[mn]z to denote a sequence
of messages.

The test phases included in the proposed framework are depicted in Fig. 2.6 and
are described as follow:

Test design: This phase defines the test requirements for an item and derives the
logical (abstract) test cases. At this stage the test cases do not have concrete values for
input and the expected results. The abstract test cases are automatically generated by
applying transition coverage criterion over the abstract model. It is obtained from a set
of different paths where each path defines an abstract test case. Thus the tests achieved
using this criterion are a set of paths that cover all states and transitions of a model.

Test implementation: The sequence of states and transitions specified by the
abstract test cases generated in the test design phase are mapped to a specific WS
transaction standard, for example, BTP or WS-BA (see Sect. 2.3). As discussed above
the proposed generic model has the ability to capture the behaviours of WS trans-
action standards as well as mapping the abstract cases to different WS transaction
standards. These features provide the capability of automatically obtaining the test
scenario and the expected system output.

Test execution and outcome evaluation: Once the test cases are implemented,
they are executed over the system under test (e.g., BTP or WS-BA) and the actual
outcome is obtained. Finally, for each test case, the expected outcome is compared
to the actual outcome to find differences in behaviour and to detect failures. Two
outcomes are considered: (i) user outcome: this refers to what the user perceives; for
instance, to reserve theatre tickets and to see whether the number of booked tickets
is correct. (ii) system outcome: this refers to the non-visible process that the system

40 R. Casado et al.

Fig. 2.6 Test process of the proposed framework

has carried out to achieve the requirements e.g., the correct exchange of messages
between the participants according to the given transaction standard.

Both outcomes are necessary for detecting the differences in the behaviour of WS
transactions. Consider a simple application that runs as a WS transaction in order to
book theatre tickets. Assume that there is a fault in creating messages and the format
of confirmation messages is incorrect. In a test scenario where the user confirms a
reservation, the systems outcome would be to inform the user that the booking was
successfully completed because the application has already sent the confirmation
message to the theatre service. Since the message was incorrectly created, the theatre
service would reject the reservation and, as a result, the tickets cannot be booked.
Thus, the tester needs not only the user outcome, but also the internal state of the
process to know whether a test case has detected a failure or not. In this work we
focus on Executors internal behaviours related to the WS transactions. Thus we only
need to evaluate the system outcome.

2.4.2 Prototype System

We have developed a prototype system that implements the main phases of the
proposed framework (Fig. 2.6).

• Modelling: The prototype system prompts the tester to provide information (e.g.
services, roles, transaction standard, etc) and to create the WS transaction.

• Abstract test case generation: the abstract test cases for all the participants (Coor-
dinator, Executor, etc) are automatically generated by the prototype system.

• Test case mapping: Abstract test cases are mapped to WS transaction standards
(e.g., BTP or WS-BA). That is, the prototype system automatically generates the

2 A Generic Framework for Testing the Web Services Transactions 41

concrete test cases (for each WS transaction standards) which are composed of
the test scenario and the expected system outcome. A test scenario is defined as a
sequence of actions in a human-readable way to provide guidance to the tester to
execute a test case.

• Outcomes comparison: test cases are executed in order to produce the actual sys-
tems outcome. The prototype system automatically compares the actual systems
outcome with the expected systems outcome in order to detect any fault or failure.

The prototype system is implemented in Java 1.5. It includes three components:
Model, Tests and Outcome. The Model implements the generic transaction model. It
also includes a graphic interface to allow the tester to enter all the necessary informa-
tion such about the system under test such as roles, URL, WS transaction standard,
etc. The Model component sends the information to the Tests component. The Tests
component implements two activities: first, it applies the transition coverage criterion
in order to generate the abstract test cases for all the participants. It then maps all
the abstract test cases into concrete test cases. That is, the Model component gener-
ates the test scenario (text file) and the expected systems outcome (as an XML file).
Finally, the Outcome component compares two XML files to identify any possible
faults. This component has a graphic interface that allows the tester to add an XML
file (the actual systems outcome obtained from the execution of test scenario) and to
select the test case for comparison purpose. The result of both outcomes is shown to
the tester.

2.4.3 Evaluation

In order to evaluate the proposed framework we utilise the Night Out case study
which is adopted from the Jbosss implementation of the WS-BA standard [29]. This
study concerns booking three independent services for night time leisure: Restaurant
service allows customers to reserve a table for a specified number of dinner guests.
Theatre service provides reservation of seats in a theatre and allows customers to
book a specified number of tickets for different categories such as seats in circle,
stalls, or balcony. Taxi service provides the facility to book a taxi. These services
are implemented as transactional web services. The client side of the application is
implemented as a servlet which allows users to select reservations and then book a
night out by invoking each of the services within the scope of a WS transaction. For
example, if seats are not available in a restaurant or a theatre, then taxi will not be
required. Each service, exposed as Java API for XML Web Services (JAX-WS) [17]
endpoint, has a GUI with state information and an event trace log.

In this chapter we described the process of modelling and testing the WS-BA stan-
dard using the prototype system. But the prototype system is capable of representing
different WS transaction models and standards.

42 R. Casado et al.

2.4.3.1 Modelling of WS-BA-Based Transactions

The transactional aspects of WS-BA included in the Night Out application has been
modelled according to the aforementioned procedure. As shown in Fig. 2.7, Night
Out (client side) takes the role of Initiator since it starts the transaction and asks
the other web services to participate in the transaction. Restaurant, Theatre and Taxi
services are modelled as Executors as they execute individual sub-transactions. Some
sub-transactions (e.g. Theatre) are independent of others (e.g. Restaurant). That is, if
one sub-transaction cannot complete its execution the others are allowed to commit.
The Taxi activity is dependent on some of the services. For instance, if a table is
not available in the restaurant, the customer still needs a taxi to go to the theatre.
The role of Coordinator is taken by an external service, WSCoor11, provided by
the server. It follows the WS-COOR [27] and WS-BA [29] standards to exchange
required messages.

2.4.3.2 Abstract Test Case Generation and Mapping

This phase generates various abstract cases for each Executor, i.e., Restaurant, The-
atre and Taxi. The abstract test cases are automatically generated and mapped to
specific standard in this case, the WS-BA standard. As explained above, these tests
cases define the test scenario and the expected system outcome. For example, in the
following we explain the process of mapping the abstract test cases to a specific
sequence of WS-BA messages. Consider the sequence shown in Fig. 2.8 of state
transitioning and messages wherein an Executor moves from Ready to End state (see
Fig. 2.4).

Applying the transition coverage criterion over the above, abstract test case is
mapped to a specific sequence of WS-BA message (see Fig. 2.9). From this sequence
of messages, our prototype system automatically generates the test scenario which
is shown in Fig. 2.10.

Based on the above, the prototype system can generate and map various test cases
for Restaurant, Theatre and Taxi services. Figure 2.11 contains eight test cases for
the Restaurant, Theatre and Taxi. Res_1, Thr_1, and Tax_1 respectively represent
test case 1 for Restaurant, Theatre and Taxi services. Res_2, Thr_2, and Tax_2 mean
test case 2 and so on. Note that these eight are example test cases. But the prototype
system is capable of generating other possible test cases.

2.4.3.3 Test Execution and Outcome Evaluation

The prototype system executes the generated test cases using the Night Out services.
The results of test execution are summarised in Table 2.2. ‘Pass’ means that a test
case is executed but has not detected any failure during the processing of a service
(e.g., booking a restaurant, theatre or taxi). ‘Fails’ means that the actual outcome
differs from the expected outcome (i.e. a fault has been detected). ‘Blocked’ means

2 A Generic Framework for Testing the Web Services Transactions 43

that a test case cannot be executed because the application does not have the interface
to perform the required actions.

Pass: Test cases 3, 6, and 7 are executed but the prototype system has detected no
failures. That is, Rest_3, 6, 7, Thr_3, 6, 7, and Tax_3, 6, 7 have passed the tests.

Fig. 2.7 Roles and representation of Night Out Services

Fig. 2.8 Executor abstract sequence

Blocked: Two of the test cases were blocked due to the following reasons. Test
case 1 requires cancelling the activity (Cancel message) once the Executor has started
but has not finished yet. But WS-BA standard does not allow cancelling a concrete
booking once the service has started executing its activity. Test case 8 defines a
scenario where the Executor is not able to complete its activity (CanNotComplete
message) but has retried executing its action. However, the WS-BA does not allow
the services to retry its activity without starting a new transaction.

Fail: During the execution of test cases 3 and 4 interface-related failures were
detected. The application, which allows changing manually the capacity of each

44 R. Casado et al.

Fig. 2.9 Sequence diagram of a test scenario for theatre service

resource (i.e. number of tables and number of seats in the theatre), either crashes or
does not update the capacity when the button is pressed.

Test case 5 detected an important transaction-related failure in the compensation
process under WS-BA specification. The goal of this test case is to successfully
confirm the booking of theatre tickets when the other service reservations (restaurant
and taxi) have been undone through compensating transactions (see Fig. 2.11).

After the execution of the test case, we obtain the expected systems outcome. By
comparing the expected systems outcome and the actual systems outcome, a failure
is detected by the prototype system. This is shown in the code snippet in Fig. 2.12.
The expected systems outcome requires receiving a CLOSE message once the The-
atre service has successfully completed its activity (see sequence diagram in Fig. 2.9).
However, the actual outcome has a COMPENSATED message since Restaurant ser-
vice was not able to commit. As a result, the Theatre reservations were automatically
undone. The fault which causes such failure is detected by the prototype system
as there is a difference (or discrepancy) in the ‘Register’ message the way Theatre
service is registered in the Night Out under the WS-BA specification. That is, it reg-
isters the Theatre service as an AtomicOutcome when a MixedOutcome was expected
(Fig. 2.13). In other words, if Taxi or Restaurant services are not able to make their
reservations, the Theatre service will automatically undo the reservation even if the
customer would wish to keep the theatre tickets.

The results obtained from the test comparison are also useful for a debugging
process. In the above tests, the faults mean that the transaction was not correctly con-
figured or coded. This can help in identifying the faults in the code. For example, the
above fault was found in BasicClient.java file, at line number 496 in the code shown
in Fig. 2.14. The configuration of the transaction is made using the class UserBusi-
nessActivityImple, through the factory pattern using UserBusinessActivityFactory

2 A Generic Framework for Testing the Web Services Transactions 45

class. By looking at the implementation of that class we found (in Fig. 2.15) that the
transaction is defined as an AtomicOutcome.

Fig. 2.10 Test scenario for theatre service

2.5 Discussion

This section gives a critical overview of the proposed framework and illustrates its
merits and demerits. The prototype system implements the main phases of the test-
ing process. But it still lacks full automation of the overall process. For instance, the
tester has to model the given WS standard under test according to the roles defined by
the framework such as Initiator, Coordinator, Executor and Terminator. Information
on each service such as its URL or the transaction standard used has to be pro-
vided by the tester. With such information, the framework automatically generates
the abstract test cases and maps them to WS transaction standards. Further, the tester
has to manually execute the test scenario in order to get the actual systems outcome.
The actual systems outcome is provided to the prototype system by the tester which
then automatically compares both outcomes in order to detect faults. Despite the
semi-automatic nature of the framework, it still helps the tester in two ways: (i) defin-
ing specific test cases for WS transactions and (ii) automating some of the most
tedious and error-prone phases of testing. Our future work includes the full automa-
tion of the overall testing process.

The framework relies on the capability of the proposed generic transaction model
in order to capture the behaviour of existing transaction standards. The generic model,

46 R. Casado et al.

Fig. 2.11 Test cases for the Night Out services

Table 2.2 Test execution results

Executor Generated test cases Pass Fail Blocked

Restaurant 8 3 3 2
Theatre 8 3 3 2
Taxi 8 3 3 2

presented in this chapter, has been designed after an in-depth study of the existing
solutions of WS transactions. Currently BTP, WS-BA and WS-TXM transaction
standards have been modelled using the generic transaction model. Our analysis
revealed that though these standards are incompatible between each other, they are
based on same theoretical concepts. Thus they can be modelled using the roles
specified in the generic transaction model. In future, we intend to study the capability
of the generic transaction model to model transaction-based applications running
under non-transaction standards such as [26].

In terms of the test case generation, the proposed framework applies transition test
criterion that ensures the coverage of all transitions and states specified in the generic
transaction model. The framework however does not guarantee the code coverage.
As a part of the future research work we plan to enhance the prototype system in
order to monitor the execution of the code.

2 A Generic Framework for Testing the Web Services Transactions 47

Fig. 2.12 Fault in message exchange

Fig. 2.13 Fault in registration process

Fig. 2.14 Fault identification: transaction setup

2.6 Conclusion

This chapter investigated into the issue of testing the WS Transactions. In it we
designed, developed and evaluated the generic framework which is capable of dynam-
ically modelling different WS transaction models and standards. The framework
exploits model-based testing technique in order to automatically generate test cases
for testing the WS transaction standards. The framework is implemented as a proto-
type system with which various test cases were automatically generated and mapped
to different WS transaction standards. The evaluation was performed using the case
study of Night Out, which is an open source application provided by Jboss [19].

48 R. Casado et al.

Fig. 2.15 Fault identification: protocol implementation

The experiments show that our framework can effectively be used to define different
test cases as well as test the different WS transactions models and standards.

References

1. Alrifai, M., Dolog, P., Balke, W.T., Nejdl, W.: Distributed management of concurrent web
service transactions. Services Computing, IEEE Transactions on 2(4), 289–302 (2009)

2. Bhiri, S., Godart, C., Perrin, O.: Transactional patterns for reliable web services compositions
(2006)

3. Bhiri, S., Perrin, O., Godart, C.: Ensuring required failure atomicity of composite web services
(2005)

4. Bozkurt, M., Harman, M., Hassoun, Y.: Testing web services: A survey. Tech. rep., Department
of ComputerScience, King’s College London (2010)

5. Canfora, G., Penta, M.: Service-Oriented Architectures Testing: A Survey, pp. 78–105.
Springer-Verlag (2009)

6. Casado, R., Tuya, J., Godart, C.: Dependency-based criteria for testing web services transac-
tional workflows. In: Next Generation on Web Services Practices, pp. 74–79. IEEE (2011)

7. Casado, R., Tuya, J., Younas, M.: Testing long-lived web services transactions using a risk-
based approach. In: 10th International Conference on Quality Software, pp. 337–340. IEEE
Computer Society, 1849260 (2010)

8. Casado, R., Tuya, J., Younas, M.: Evaluating the effectiveness of the abstract transaction model
in testing web services transactions. Concurrency and Computation: Practice and Experience
pp. n/a–n/a (2012)

9. Casado, R., Tuya, J., Younas, M.: Testing the reliability of web services transactions in coop-
erative applications (2012)

10. Cavalli, A., Cao, T.D., Mallouli, W., Martins, E., Sadovykh, A., Salva, S., Zadi, F.: Webmov:
A dedicated framework for the modelling and testing of web services composition. In: IEEE
International Conference on Web Services (2010)

11. Chrysanthis, P.K., Ramamritham, K.: Synthesis of extended transaction models using acta.
ACM Trans. Database Syst. 19(3), 450–491 (1994)

12. Elmagarmid, A.K.: Database transaction models for advanced applications. Morgan Kaufmann
Publishers (1992)

2 A Generic Framework for Testing the Web Services Transactions 49

13. Emmi, M., Majumdar, R.: Verifying compensating transactions. In: International Conference
Verification, Model Checking, and Abstract, Interpretation, pp. 29–43 (2007)

14. Gaaloul, W., Rouached, M., Godart, C., Hauswirth, M.: Verifying composite service transac-
tional behavior using event calculus (2007)

15. Garcia-Molina, H., Salem, K.: Sagas (1987)
16. Gioldasis, N., Christodoulakis, S.: Utml: Unified transaction modeling language. In: The Third

International Conference on Web Information Systems Engineering (2002)
17. GlassFish: Jax-ws (2005)
18. Hrastnik, P., Winiwarter, W.: Using advanced transaction meta-models for creating transaction-

aware web service environments. International Journal of Web Information Systems (2005)
19. Jboss: Jboss transactions (2006)
20. Joyce El, H.: Tqos: Transactional and qos-aware selection algorithm for automatic web service

composition. IEEE Transactions on Services Computing 3, 73–85 (2010)
21. Lanotte, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: Design and verification of long-

running transactions in a timed framework. Science of Computer Programming pp. 76–94
(2008)

22. Li, J., Zhu, H., He, J.: Specifying and verifying web transactions. In: International conference
on Formal Techniques for Networked and Distributed Systems, pp. 149–168 (2008)

23. Moss, E.: Nested transactions: An approach to reliable distributed computing. Massachusetts
Institute of Technology (1981)

24. OASIS: Business transaction protocol (2004)
25. OASIS: Web services composite application framework (2005)
26. OASIS: Web services business process execution language v2.0 (2007)
27. OASIS: Web services coordination, http://docs.oasis-open.org/ws-tx/wscoor/2006/06 (2007)
28. OASIS: Web services atomic transaction (2009)
29. OASIS: Web services business activity (2009)
30. Offutt, J., Liu, S., Abdurazik, A., Ammann, P.: Generating test data from state-based specifi-

cations. Journal of Software Testing, Verification and Reliability 13(13), 25–53 (2003)
31. Pu, C., Kaiser, G.E., Hutchinson, N.C.: Split-transactions for open-ended activities (1988)
32. Reuter: Contracts: A means for extending control beyond transaction boundaries. Proceedings

of the 3rd International Workshop on High Performance Transaction Systems (1989)
33. Weikum, G., Schek, H.J.: Concepts and applications of multilevel transactions and open nested

transactions. Database transaction models for advanced applications. Morgan Kaufmann Pub-
lishers Inc. (1992)

34. Younas, M., Eaglestone, B., Holton, R.: A formal treatment of a sacred protocol for multidata-
base web transactions. Database and Expert Systems Applications 1873, 899–908 (2000)

35. Zhang, A., Nodine, M., Bhargava, B., Bukhres, O.: Ensuring relaxed atomicity for flexible
transactions in multidatabase systems. ACM, SIGMOD Record (1994)

http://docs.oasis-open.org/ws-tx/wscoor/2006/06

http://www.springer.com/978-1-4614-7534-7

	2 A Generic Framework for Testing the Web Services Transactions
	2.1 Introduction
	2.2 WS Transactions
	2.3 The Generic Framework
	2.3.1 The Transaction Model
	2.3.2 Representation of WS Transaction Models and Standards

	2.4 Implementation and Evaluation of the Proposed Framework
	2.4.1 Testing Process
	2.4.2 Prototype System
	2.4.3 Evaluation

	2.5 Discussion
	2.6 Conclusion
	References

