
Chapter 2
Functions and Continuity

Abstract Calculus is the study of the rate of change and the total accumulation of
processes described by functions. In this chapter we review some familiar notions
of function and explore functions that are defined by sequences of functions.

2.1 The Notion of a Function

The idea of a function is the most important concept in mathematics. There are many
sources of functions, and they carry information of a special kind. Some are based
on observations, like the maximum daily temperature T in your town every day last
year:

temperature = T (day).

Some express a causal relation between two quantities, such as the force f exerted
by a spring as a function of the displacement:

force = f (displacement).

Research in science is motivated by finding functions to express such causal rela-
tions. A function might also express a purely arbitrary relationship like

F =
9
5

C+ 32,

relating the Fahrenheit temperature scale to the Celsius scale. Or it could express a
mathematical theorem:

r =−b
2
+

√
b2 − 4

2
,

where r is the larger root of the quadratic equation x2 + bx+ 1= 0.
Functions can be represented in different ways. Some of these ways are familiar

to you: graphs, tables, and equations. Other methods, such as representing a function
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52 2 Functions and Continuity

through a sequence of functions, or as a solution to a differential equation, are made
possible by calculus.

Rather than starting with a definition of function, we shall first give a number of
examples and then fit the definition to these.

Example 2.1. The vertical distance h (measured in kilometers) traveled by a
rocket depends on the time t (measured in seconds) that has elapsed since the
rocket was launched. Figure 2.1 graphically describes the relation between t
and h.
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Fig. 2.1 Vertical distance traveled by a rocket. The horizontal axis gives the time elapsed since
launch, in seconds. The vertical gives distance traveled, in kilometers

Example 2.2. The graph in Fig. 2.2 shows three related functions: U.S. consump-
tion of oil, the price of oil unadjusted for inflation (the composite price), and the
price of oil adjusted for inflation (in 2008 dollars).
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Fig. 2.2 Oil consumption, price, and inflation adjusted price

Example 2.3. The distance d traveled by a body falling freely from rest near the
surface of the Earth, measured in meters, and t the time of fall measured in sec-
onds.

d = 4.9t2.
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Example 2.4. The national debt D in billions of dollars in year y.

y 2004 2005 2006 2007 2008 2009 2010
D 7,354 7,905 8,451 8,951 9,654 10,413 13,954

In contrast, this is the table that appeared in the first edition of this book.

y 1955 1956 1957 1958 1959 1960 1961
D 76 82 85 90 98 103 105

Example 2.5. The volume V of a cube with edge length s is V = s3.

Adjusted gross income Tax rate (%)
0–8,375 10

8,375–34,000 15
34,000–82,400 25

82,400–171,850 28
171,850–373,650 33

373,650 and above 35

 0.35
 0.33

 0.28
 0.25

 0.15

 0.1

 373.65 171.85 82.4 34

tax rate

income (thousands)

Fig. 2.3 Left: a table of tax rates in Example 2.6. Right: a graph of the tax rate by income level

Example 2.6. The Internal Revenue Service’s 2010 tax rates for single-filing sta-
tus are given in the table in Fig. 2.3. The tax rates can be described as a function.
Let x be adjusted gross income in dollars, and f (x) the rate at which each dol-
lar within that income level is taxed. The function f can be described by the
following rule

f (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.10 for 0 ≤ x ≤ 8,375

0.15 for 8,375 < x ≤ 34,000

0.25 for 34,000 < x ≤ 82,400

0.28 for 82,400 < x ≤ 171,850

0.33 for 171,850 < x ≤ 373,650

0.35 for 373,650 < x.

The graph in Fig. 2.3 makes the jumps in tax rate and the levels of income subject
to those rates easier to see. (To compute the tax on 10,000 dollars, for example,
the first 8,375 is taxed at 10%, and the next 10,000− 8,375= 1,625 is taxed at
15%. So the tax is (0.15)(1,625)+ (0.10)(8,375)= 1,121.25.)
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f(x)x f

Fig. 2.4 A function can be thought of as a device in a box, with input and output

We can also think of a function as a box, as in Fig. 2.4. You drop in an input x,
and out comes f (x) as the output.

Definition 2.1. A function f is a rule that assigns to every number x in a col-
lection D, a number f (x). The set D is called the domain of the function, and
f (x) is called the value of the function at x. The set of all values of a function
is called its range. The set of ordered pairs (x, f (x)) is called the graph of f .

When we describe a function by a rule, we assume, unless told otherwise, that
the set of inputs is the largest set of numbers for which the rule makes sense. For
example, take

f (x) = x2 + 3, g(x) =
√

x− 1, h(x) =
1

x2 − 1
.

The domain of f is all numbers. The domain of g is x ≥ 1, and the domain of h is
any number other than 1 or −1.

2.1a Bounded Functions

Definition 2.2. We say that a function f is bounded if there is a positive number
m such that for all values of f , −m ≤ f (x) ≤ m. We say that a function g is
bounded away from 0 if there is a positive number p such that no value of g
falls in the interval from −p to p.

In Fig. 2.5, f is bounded because −m ≤ f (x) ≤ m for all x, and g is bounded away
from 0 because 0 < p ≤ g(x) for all x.
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Fig. 2.5 Left: f is a bounded function. Right: g is bounded away from 0
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A function that is not bounded, or is not bounded away from 0, may have one or
both of those properties on a subset of its domain.

Example 2.7. Let h(x) =
1

x2 − 1
. Then h is not bounded. It has arbitrarily large

values (both positive and negative) as x tends to 1 or −1. Furthermore, h is not
bounded away from 0, because h(x) tends to 0 as x becomes arbitrarily large
(positive or negative). However, if we restrict the domain of h to, say, the interval
[−0.8,0.8], then h is both bounded and bounded away from 0 on [−0.8,0.8]. See
Fig. 2.6 for the graph of h.
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x

1/(x2-1)

Fig. 2.6 The function h(x) = 1
x2−1

is neither bounded nor bounded away from 0

2.1b Arithmetic of Functions

Once you have functions, you can use them to make new functions. The sum of
functions f and g is denoted by f + g, and the difference by f − g:

( f + g)(x) = f (x)+ g(x), ( f − g)(x) = f (x)− g(x).

The product and quotient of functions f and g are denoted by f g and
f
g

:

( f g)(x) = f (x)g(x),
f
g
(x) =

f (x)
g(x)

when g(x) �= 0.

In applications, it makes sense to add or subtract two functions only if their values
are measured in the same units. In our example about oil consumption and price,
it makes sense to find the difference between the inflation-adjusted price and the
nonadjusted price of oil. However, it does not make sense to subtract the price of oil
from the number of barrels consumed.
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Polynomials. Starting with the simplest functions, the constant functions

c(x) = c

and the identity function

i(x) = x,

we can build more complicated functions by forming sums and products. All func-
tions that are obtained from constant and identity functions through repeated addi-
tions and multiplications are of the form

p(x) = anxn + an−1xn−1 + · · ·+ a0,

where the a’s are constants and n is a positive integer. Such a function is called a

polynomial. A quotient of two polynomials,
p(x)
q(x)

, is called a rational function.

Linear Functions. A simple but highly important class of functions is that of linear
functions. In Chap. 3, we show how to use linear functions to approximate other
functions. Every linear function � is of the form

�(x) = mx+ b,

where m and b are some given numbers. A linear function is certainly simple from
a computational point of view: to evaluate it, we need to perform one multiplication
and one addition. Linear functions have the property that

�(x+ h) = m(x+ h)+ b= �(x)+mh,

which means that when the input x in increased by h, the output changes by an
amount that does not depend on x. The change in the output of a linear function is
m times the change in the input (Fig. 2.7),

�(x+ h)− �(x) = mh.

Example 2.8. In changing temperature from Celsius to Fahrenheit, we use the
formula

F =
9
5

C+ 32.

A change in temperature in degrees Celsius produces a change in temperature in

degrees Fahrenheit that is always
9
5

as large, independent of the temperature.
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Fig. 2.7 The graph of a linear function �(x) = mx+ b. The change in the output is m times the
change in the input

You can completely determine a linear function if you know the function values
at two different points. Suppose

y1 = �(x1) = mx1 + b and y2 = �(x2) = mx2 + b.

By subtracting, we see that y2 − y1 = m(x2 − x1). Solving for m, we get

m =
y2 − y1

x2 − x1
.

The number m is called the slope of the line through the points (x1,y1) and (x2,y2).
Then b is also determined by the two points, because

b = y1 − y2 − y1

x2 − x1
x1 (x1 �= x2).

In addition to visualizing a linear function graphically, we can look at how numbers
in the domain are mapped to numbers in the range. In this representation, m can be
interpreted as a stretching factor.

Example 2.9. Figure 2.8 shows how the linear function �(x) = 3x− 1 maps the
interval [0,2] onto the interval [−1,5], which is three times as long.

10

20 1

3 4 5−1 2

 3x−1

x

Fig. 2.8 The linear function �(x) = 3x−1 as a mapping from [0,2] to [−1,5]

There are many more important examples of functions to explore. We invite you
to work on some in the Problems.
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Problems

2.1. For each of these functions, is f bounded? is f bounded away from zero?

(a) f (x) = x− 1
x
+ 25

(b) f (x) = x2 + 1

(c) f (x) =
1

x2 + 1
(d) f (x) = x2 − 1

2.2. Plot the national debt as given in Example 2.4 for the years 1955–1961. Is the
national debt a linear function of time? Explain.

2.3. Let

f (x) =
x3 − 9x
x2 + 3x

, g(x) =
x2 − 9
x+ 3

, and h(x) = x− 3.

(a) Show that

f (x) = g(x) = h(x) when x �= 0,−3.

(b) Find the domains of f , g, and h.
(c) Sketch the graphs of f , g, and h.

2.4. Let h(x) =
1

x2 − 1
with domain [−0.8, 0.8]. Find bounds p and q on the range

of h:

p ≤ 1
x2 − 1

≤ q.

2.5. Use the tax table or graph in Example 2.6 to find the total tax on an adjusted
gross income of $200,000.

2.6. The gravitational force between masses M and m with centers separated by
distance r is, according to Newton’s law,

f (r) =
GMm

r2 .

The value of G depends on the units in which we measure mass, distance, and force.
Take the domain to be r > 0. Is f rational? bounded? bounded away from 0?

2.7. Here is a less obvious example of a linear function. Imagine putting a rope
around the Earth. Make it nice and snug. Now add 20 m to the length of the rope
and arrange it concentrically around the Earth. Could you walk under it without
hitting your head?
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2.2 Continuity

In this section, we scrutinize the definition of function given in the previous section.
According to that definition, a function f assigns a value f (x) to each number x
in the domain of f . Clearly, in order to find the value of f (x), we have to know x.
But what does knowing x mean? According to Chap. 1, we know x if we are able to
produce as close an approximation to x as requested. This means that we never (or
hardly ever) know x exactly. How then can we hope to determine f (x)? A way out
of this dilemma is to remember that knowing f (x) means being able to give as close
an approximation to f (x) as requested. So we can determine f (x) if approximate
knowledge of x is sufficient for approximate determination of f (x). The notion of
continuity captures this property of a function.

Definition 2.3. We say that a function f is continuous at c when:
for any tolerance ε > 0, there is a precision δ > 0 such that f (x) differs from
f (c) by less than ε whenever x differs from c by less than δ (Fig. 2.9).

f(c)+ε

f(c)−ε

c

f(c)

c−δ c+δ

Fig. 2.9 Left: for any ε > 0, Right: we can find a δ > 0

As a practical matter, f is continuous at c if all the values of f at points near
c are very nearly f (c). This leads to a useful observation about continuity: If f is
continuous at c and f (c) < m, then it is also true that f (x) < m for every x in some
sufficiently small interval around c. To see this, take ε to be the distance between
f (c) and m, as in Fig. 2.10. Similarly, if f (c) > m, there is an entire interval of
numbers x around c where f (x) > m.

Driver: “But officer, I only hit 90 mph for one instant!”
Officer: “Then you went more than 89 for an entire interval of time!”

Example 2.10. A constant function f (x) = k is continuous at every point c in its
domain. Approximate knowledge of c is sufficient for approximate knowledge
of f (c) because all inputs have the same output, k. As you can see in Fig. 2.11,
for every x in the domain, f (x) falls within ε of f (c). No function can be more
continuous than that!
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c

x

f(x)

f(c) = m−
m

Fig. 2.10 If f is continuous, there will be an entire interval around c in which f is less than m

c

f(x) = k

k+

k−
k

x

Fig. 2.11 A constant function

Example 2.11. The identity function f (x) = x is continuous at every point c. Be-
cause f (c) = c, it is clear that approximate knowledge of c is sufficient to deter-
mine approximate knowledge of f (c)! Figure 2.12 shows that the definition for
continuity is satisfied by letting δ = ε .

x

f(x) = x

Fig. 2.12 For f (x) = x, δ = ε will do

A function can be continuous at some points in its domain but not at others.

Example 2.12. The graph of f in Fig. 2.3 shows the IRS 2010 tax rates for single
filers. The rate is constant near 82,000. Small changes in income do not change
the tax rate near 82,000. Thus f is continuous at 82,000. However, at 82,400, the
situation is very different. Knowing that one’s income is approximately 82,400
is not sufficient knowledge to determine the tax rate. Near 82,400, small changes
in income result in very different tax rates. This is exactly the kind of outcome
that continuity prohibits.
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Inequalities and absolute values can be used to rewrite the definition of continuity
at a point:

Restated definition. We say that a function f is continuous at c when:
for any tolerance ε > 0, there is a precision δ > 0 such that

| f (x)− f (c)| < ε

whenever
|x− c|< δ .

The precision δ depends on the tolerance ε .

2.2a Continuity at a Point Using Limits

The concept of the limit of a function gives another way to define continuity at a
point.

Definition 2.4. The limit of a function f (x) as x tends to c is L,

lim
x→c

f (x) = L,

when:
for any tolerance ε > 0, there is a precision δ > 0 such that f (x) differs from L
by less than ε whenever x differs from c by less than δ , x �= c.

By comparing the definitions of limit as x tends to c and continuity at c, we find
a new way to define continuity of f at c.

Alternative definition. We say that a function f is continuous at c when:

lim
x→c

f (x) = f (c).

If f is not continuous at c, we say that f is discontinuous at c.

The limit of f (x) as x tends to c can be completely described in terms of the
limits of sequences of numbers. In fact, in evaluating lim

x→c
f (x), we often take a se-

quence of numbers x1, x2, . . . , xn, . . . that tend to c and we see whether the sequence
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f (x1), f (x2), . . . , f (xn), . . . tends to some number L. In order for lim
x→c

f (x) to exist,

we need to know that all sequences {xi} that tend to c result in sequences { f (xi)}
that tend to L. In Problem 2.11, we ask you to explore the connection between the
limit of a function at a point and limits of sequences of numbers. It will help you
see why the next two theorems follow from the laws of arithmetic and the squeeze
theorem, Theorems 1.6 and 1.7, for convergent sequences.

Theorem 2.1. If lim
x→c

f (x) = L1, lim
x→c

g(x) = L2, and lim
x→c

h(x) = L3 �= 0, then

(a) lim
x→c

(
f (x)+ g(x)

)
= L1 +L2,

(b) lim
x→c

(
f (x)g(x)

)
= L1L2, and

(c) lim
x→c

f (x)
h(x)

=
L1

L3
.

Theorem 2.2. Squeeze theorem. If

f (x)≤ g(x)≤ h(x)

for all x in an open interval containing c, except possibly at x = c, and if
lim
x→c

f (x) = lim
x→c

h(x) = L, then lim
x→c

g(x) = L.

Combining Theorem 2.1 and the limit definition of continuity, one can prove the
next theorem, as we ask you to do in Problem 2.12.

Theorem 2.3. Suppose f , g, and h are continuous at c, and h(c) �= 0. Then

f + g, f g, and
f
h

are continuous at c.

We have noted before that any constant function, and the identity function, are
continuous at each point c. According to Theorem 2.3, products and sums built from
these functions are continuous at each c. Every polynomial

p(x) = anxn + an−1xn−1 + · · ·+ a0

can be constructed by taking sums and products of functions that are continuous
at c. This shows that polynomials are continuous at each c. It also follows from the

theorem that a rational function
p(x)
q(x)

is continuous at each number c for which

q(c) �= 0.
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Example 2.13. Examples 2.10 and 2.11 explain why the constant function 3 and
the function x are continuous. So according to Theorem 2.3, the rational function

f (x) = x2 − 1
x
− 3 =

x3 − 1− 3x
x

is continuous at every point except 0.

3

6

Fig. 2.13 The graph of f (x) = x2−9
x−3

Sometimes a function is undefined at a point c, but the limit of f (x) as x tends to
c exists. For example, let

f (x) =
x2 − 9
x− 3

.

Then f is not defined at 3. Notice, however, that

for x �= 3, f (x) =
x2 − 9
x− 3

= x+ 3.

The graph of f looks like a straight line with a small hole at the point x = 3. (See

Fig. 2.13.) The functions
x2 − 9
x− 3

and x+ 3 are quite different at x = 3, but they are

equal when x �= 3. This means that their limits are the same as x tends to 3:

lim
x→3

x2 − 9
x− 3

= lim
x→3

(x+ 3) = 6.

Example 2.14. Let d(x) be defined as follows:

d(x) =

{
x for x ≤ 1,

x− 2 for 1 < x.

Then d is not continuous at x = 1, because d(1) equals 1, yet for x greater than
1 and no matter how close to 1, d(x) is negative. A negative number is not close
to 1. See Fig. 2.14.

It is useful to have a way to describe the behavior of f (x) as x approaches c from
one side or the other. If f (x) tends to L as x approaches c from the right, c < x, we
say that the right-hand limit of f at c is L, and write

lim
x→c+

f (x) = L.
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PENCIL

1 20

Fig. 2.14 The function d(x) in Example 2.14 is not continuous at x = 1

If f (x) tends to L as x approaches c from the left, x < c, we say that the left-hand
limit of f at c is L, and write

lim
x→c− f (x) = L.

If f (x) becomes arbitrarily large and positive as x tends to c, we write

lim
x→c

f (x) = ∞,

and say that f (x) tends to infinity as x tends to c. If f (x) becomes arbitrarily large
and negative as x tends to c, we write

lim
x→c

f (x) =−∞,

and say that f (x) tends to minus infinity as x tends to c. Neither of these limits exists,
but we use the notation to describe the behavior of the function near c. We also use
the one-sided versions of these notations, as in Example 2.15.

Example 2.15. Let f (x)=
1
x

for x �=0. Then limx→0− f (x)=−∞, limx→0+ f (x)=∞.

It is also useful to have a way to describe one-sided continuity. If lim
x→c− f (x) = f (c),

we say that f is left continuous at c. If lim
x→c+

f (x) = f (c), we say that f is right

continuous at c.

Example 2.16. The function d in Example 2.14 (see Fig. 2.14) is left continuous
at 1, and not right continuous at 1:

lim
x→1−

d(x) = 1 = d(1), lim
x→1+

d(x) =−1 �= d(1).

Left and right continuity give us a way to describe continuity on an interval that
includes endpoints. For example, we say that f is continuous on [a,b] if f is con-
tinuous at each c in (a,b) as well as right continuous at a, and left continuous at b.

2.2b Continuity on an Interval

Now we return to the question we considered at the start of this section: Is approx-
imate knowledge of x sufficient for approximate knowledge of f (x)? We have seen



2.2 Continuity 65

that functions can be continuous at some points and not at others. The most inter-
esting functions are the ones that are continuous at every point on an interval where
they are defined.

Example 2.17. Let us analyze the continuity of the function f (x) = x2 on the
interval [2,4]. Let c be any point of this interval; how close must x be to c in
order for f (x) to differ from f (c) by less than ε? Recall the identity

x2 − c2 = (x+ c)(x− c).

On the left, we have the difference f (x)− f (c) of two values of f . Since both x
and c are between 2 and 4, we have (x+ c)≤ 8. It follows that

| f (x)− f (c)|= |x+ c||x− c| ≤ 8|x− c|.

If we want x2 to be within ε of c2, it suffices to take x within
ε
8

of c. That is, take

δ =
ε
8

or less. This proves the continuity of f on [2,4].

Example 2.18. In Chap. 1, we defined the number e through a sequence of
approximations. Our intuition and experience tell us that we should get as
good an approximation to e2 as we desire by squaring a number that is
close enough to e. But we do not need to rely on our intuition. Since e
is between 2 and 4, the previous example shows that f (x) = x2 is contin-

uous at e. This means that if we want x2 to be within ε =
1

104 of e2, it

should suffice to take x within δ =
ε
8
=

1
8(104)

of e; in particular, δ <
1

105

should suffice. The list below shows squares of successively better decimal
approximations to e. It confirms computationally what we proved theoretically.

(2.7)2 = 7.29
(2.71)2 = 7.3441
(2.718)2 = 7.387524

(2.7182)2 = 7.38861124
(2.71828)2 = 7.3890461584

(2.718281)2 = 7.389051594961

Uniform Continuity. In Example 2.17, we showed that the difference between the
squares of two numbers in [2,4] will be within ε as long as the two numbers are

within
ε
8

of each other, no matter which two numbers in [2,4] we are dealing with.

Here is the general notion.

Definition 2.5. A function f is called uniformly continuous on an interval I if
given any tolerance ε > 0, there is a precision δ > 0 such that if x and z are in
I and differ by less than δ , then f (x) and f (z) differ by less than ε .
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Clearly, a function that is uniformly continuous on an interval is continuous at
every point of that interval. It is a surprising mathematical fact that conversely, a
function that is continuous at every point of a closed interval is uniformly continuous
on that interval. We outline the proof of this theorem, Theorem 2.4, in Problem 2.21.

Uniform continuity is a basic notion of calculus.

Theorem 2.4. If a function f is continuous on [a,b], then f is uniformly con-
tinuous on [a,b].

On a practical level, uniform continuity is a very helpful property for a function
to have. When we evaluate a function with a calculator or computer, we round off
the inputs, and we obtain outputs that are approximate. If f is uniformly continuous
on [a,b], then once we set a tolerance for the output, we can find a single level of
precision for all the inputs in [a,b], and the approximate outputs will be within the
tolerance we have set.

2.2c Extreme and Intermediate Value Theorems

Next, we state and prove two key theorems about continuous functions on a closed
interval.

Theorem 2.5. The intermediate value theorem. If f is a continuous function
on a closed interval [a,b], then f takes on all values between f (a) and f (b).

The theorem says in a careful way that the graph of f does not skip values.

a c b

f(a)

m
f(b)

Fig. 2.15 The proof of the intermediate value theorem shows that there exists at least one number
c between a and b at which f (c) = m

Proof. Let us take the case f (a) > f (b); the opposite case can be treated analo-
gously. Let m be any number between f (a) and f (b), and denote by V the set of
those points x in the interval a < x < b where f (x) is greater than m. This set con-
tains the point a, so it is not empty, and it is contained in [a,b], so it is bounded.
Denote by c the least upper bound of the set V . We claim that f (c) = m (Fig. 2.15).
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Suppose f (c) < m. Since f is continuous at c, there is a short interval to the left
of c where f (x) < m as well. These points x do not belong to V . And since c is an
upper bound for V , no point to the right of c belongs to V . Therefore, every point of
this short interval is an upper bound for V , a contradiction to c being the least upper
bound.

On the other hand, suppose f (c)>m. Since f (b) is less than m, c cannot be equal
to b, and is strictly less than b. Since f is continuous at c, there is a short interval
to the right of c where f (x) > m. But such points belong to V , so c could not be an
upper bound for V .

Since according to the two arguments, f (c) can be neither less nor greater than
m, f (c) must be equal to m. This proves the intermediate value theorem. ��

Example 2.19. One use of the intermediate value theorem is in root-finding. Sup-
pose we want to locate a solution to the equation

x2 − 1
x
− 3 = 0.

Denote the left side by f (x). With some experimentation we find that f (1) is
negative and f (2) is positive. The function f is continuous on the interval [1,2].
By the intermediate value theorem, there is some number c between 1 and 2 such
that f (c) = 0. In other words, f has a root in [1,2].

Now let us bisect the interval into two subintervals, [1,1.5] and [1.5,2]. We
see that f (1.5) = −1.416 . . . is negative, so f has a root in [1.5,2]. Bisecting
again, we obtain f (1.75) = −0.508 . . ., which is again negative, so f has a root
in [1.75,2]. Continuing in this manner, we can trap the root in an arbitrarily small
interval.

Theorem 2.6. The extreme value theorem. If f is a continuous function on a
closed interval [a,b], then f takes on both a maximum value and a minimum
value at some points in [a,b].

One consequence of the extreme value theorem is that every function that is
continuous on a closed interval is bounded. Although the extreme value theorem
does not tell us how or where to find the bounds, it is still very useful.

Let us look at the graph of f and imagine a line parallel to the x-axis slid vertically
upward until it just touches the graph of f at some last point of intersection, which is
the maximum. Similarly, slide a line parallel to the x-axis vertically downward. The
last point of intersection with the graph of f is the minimum value of f (Fig. 2.16).

We supplant now this intuitive argument by a mathematical proof of the existence
of a maximum. The argument for a minimum is analogous.
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Proof. Divide the interval [a,b] into two closed subintervals of equal length. We
compare the values of f on these two subintervals. It could be the case that there is a
point on the first subinterval where the value of f is greater than at any point on the
second subinterval. If there is no such point, then it must be the case that for every
point x in the first subinterval there is a point z in the second subinterval where the
value of f is at least as large as the value of f at x.

ba

f

Fig. 2.16 A horizontal line moves down, seeking the minimum of a continuous function. The
extreme value theorem guarantees that there is a last value where you can stop the moving line,
keeping it in contact with the graph

In the first case, we choose the first subinterval, and in the second case, the second
subinterval, and denote the chosen subinterval by I1.

Key property of I1: for every point x in [a,b] but not in I1, there is a point in I1

where f is at least as large as f (x).
Then we repeat the process of subdividing I1 into two halves and choosing one of

the halves according to the principle described above. Call the choice I2. In this way,
we construct a sequence of closed intervals I1, I2, . . . , and so on. These intervals are
nested; that is, the nth interval In is contained in the interval In−1, and its length is
one-half of the length of In−1. Because of the way these intervals were chosen, for
every point x in [a,b] and every n, if x is not in In, then there is a point z in In where
the value of f is at least as large as f (x).

We appeal now to the nested interval Theorem 1.19, according to which the
subintervals In have exactly one point in common; call this point c. We claim that
the maximum value of the function f is f (c). For suppose, to the contrary, that there
is a point x in [a,b] where the value of f is greater than f (c). Since f is continuous
at c, there would be an entire interval [c− δ ,c+ δ ] of numbers around c where f is
less than f (x). Since the lengths of the intervals In tend to zero, it follows that for n
large enough, In would be contained in the interval [c− δ ,c+ δ ], so the value of f
at every point of In would be smaller than f (x). We can also take n sufficiently large
that x is not in In. But this contradicts the key property of the intervals In established
above. ��
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The extreme value theorem can be extended to open intervals in two special
cases.

Corollary 2.1. If f is continuous on an open interval (a,b) and f (x) tends to
infinity as x tends to each of the endpoints, then f has a minimum value at some
point in (a,b).

Similarly, if f (x) tends to minus infinity as x tends to each of the endpoints,
then f has a maximum value at some point in (a,b).

We invite you to prove this result in Problem 2.18.

Problems

2.8. Evaluate the following limits.

(a) lim
x→4

(
2x3 + 3x+ 5

)

(b) lim
x→0

x2 + 2
x3 − 7

(c) lim
x→5

x2 − 25
x− 5

2.9. Evaluate the following limits.

(a) lim
x→0

x3 − 9x
x2 + 3x

(b) lim
x→−3

x3 − 9x
x2 + 3x

(c) lim
x→1

x3 − 9x
x2 + 3x

2.10. Let f (x) =
|x|
x

when x �= 0, and f (0) = 1.

(a) Sketch the graph of f .
(b) Is f continuous on [0,1]?
(c) Is f continuous on [−1,0]?
(d) Is f continuous on [−1,1]?

2.11. The limit of a function can be completely described in terms of the limits of
sequences. To do this, show that these two statements are true:

(a) If lim
x→c

f (x) = L and xn is any sequence tending to c, then lim
n→∞

f (xn) = L.

(b) If lim
n→∞

f (xn) = L for every sequence xn tending to c, then lim
x→c

f (x) = L.

Conclude that in the discussion of continuity, lim
x→c

f (x) = f (c) is equivalent to

lim
n→∞

f (xn) = f (c) for every sequence xn tending to c.
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2.12. Suppose that functions f , g, and h are each defined on an interval containing

c, that they are continuous at c, and that h(c) �= 0. Show that f + g, f g, and
f
h

are

continuous at c.

2.13. Let f (x) =
x32 + x10 − 7

x2 + 2
on the interval [−20,120]. Is f bounded? Explain.

2.14. Show that the equation
x6 + x4 − 1

x2 + 1
= 2

has a solution on the interval [−2,2].

 0

0.2

0.4

0.6

0.8

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

x6

Fig. 2.17 Graphs are shown for x6, x6 + 1
20 , x6 − 1

20 , and for the constant functions ± 1
20 on

[−0.7,1]. See Problem 2.15

2.15. In Fig. 2.17, estimate the largest interval [a,b] such that x6 and 0 differ by less
than 1

20 on [a,b].

2.16. Let f (x) =
1
x

. Show that on the interval [3,5], f (x) and f (c) do not differ by

more than 1
9 |x− c|. Copy the definition of uniform continuity onto your paper, and

then explain why f is uniformly continuous on [3,5].

2.17. You plan to compute the squares of numbers between 9 and 10 by squaring
truncations of their decimal expansions. If you truncate after the eighth place, will
this ensure that the outputs are within 10−7 of the true value?

2.18. Prove the first statement in Corollary 2.1, that if f is continuous on (a,b) and
f (x) tends to infinity as x tends to each of a and b, then f has a minimum value at
some point in (a,b).

2.19. Explain why the function f (x) = x2 − 1
x
− 3 =

x3 − 1− 3x
x

is uniformly con-

tinuous on every interval [a,b] not containing 0.
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2.20. Let f (x) = 3x+ 5.

(a) Suppose each domain value x is rounded to xapprox and |x−xapprox|< 1
10m . How

close is f (xapprox) to f (x)?

(b) If we want | f (x)− f (xapprox)|< 1
107 , how close should xapprox be to x?

(c) On what interval can you use the level of precision you found in part (b)?

2.21. Explain the following steps to show that a function that is continuous at every
point of a closed interval is uniformly continuous on that interval. It will be a proof
by contradiction, so we assume that f is continuous, but not uniformly continuous,
on [a,b].

(a) There must be some ε > 0 and for each n = 1,2,3, . . ., two numbers xn, yn in

[a,b] for which |xn − yn|< 1
n

and | f (xn)− f (yn)| ≥ ε .

(b) Use Lemma 1.1 and monotone convergence to show that a subsequence of the
xn (that is, a sequence consisting of some of the xn) converges to some number
c in [a,b].

(c) To simplify notation, we can now take the symbols xn to mean the subsequence,

and yn corresponding. Use the fact that |xn −yn|< 1
n

to conclude that the yn also
converge to c.

(d) Use continuity of f and Problem 2.11 to show that lim
n→∞

f (xn) = f (c).

(e) Show that lim
n→∞

f (xn) = lim
n→∞

f (yn), and that this contradicts our assumption that

| f (xn)− f (yn)| ≥ ε .

2.3 Composition and Inverses of Functions

In Sect. 2.1, we showed how to build new functions out of two others by adding,
multiplying, and dividing them. In this section, we describe another way.

2.3a Composition

We start with a simple example:
A rocket is launched vertically from point L. The distance (in kilometers) of the

rocket from the launch point at time t is h(t). An observation post O is located
1 km from the launch site (Fig. 2.18). To determine the distance d of the rocket from
the observation post as a function of time, we can use the Pythagorean theorem to
express d as a function of h,

d(h) =
√

1+ h2.
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1

d

OL

R

h

Fig. 2.18 Tracking the rocket from the observation post

Therefore, the distance from R to O at time t is

d(h(t)) =
√

1+(h(t))2.

The process that builds a new function in this way is called composition; the result-
ing function is called the composition of the two functions.

Definition 2.6. Let f and g be two functions, and suppose that the range of g
is included in the domain of f . Then the composition of f with g, denoted by
f ◦ g, is defined by

( f ◦ g)(x) = f (g(x)).

We also say that we have composed the functions.

The construction is well described by Fig. 2.19.

fg g(x)x f(g(x))

Fig. 2.19 Composition of functions, using the box picture of Fig. 2.4

Example 2.20. Let g and f be the linear functions y = g(x) = 2x + 3, and
z = f (y) = 3y+ 1. The composition z = f (g(x)) = 3(2x+ 3)+ 1 = 6x+ 10 is
illustrated in Fig. 2.20.

We saw in Fig. 2.8 that the linear function mx+ b stretches every interval by a
factor of |m|. In Fig. 2.20, we see that when the linear functions are composed, these
stretching factors are multiplied.

Example 2.21. The effect of composing a function f with g(x) = x+ 1 depends
on the order of composition. For example f (g(x)) = f (x+ 1) shifts the graph of
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10 11 12 13 14 15 16

x

y

g(x) = 2x+3

f(y) = 3y+1

f(g(x)) = 6x+10

3 4 5

10

Fig. 2.20 A composition of two linear functions

f one unit to the left, since the output of f at x is the same as the output of f ◦ g
at x−1. On the other hand, g( f (x)) = f (x)+1 shifts the graph of f up one unit.
See Fig. 2.21.

f(x)

1

10

f(x+1)

f(x)+1

Fig. 2.21 Composition with the translation x+ 1, in Example 2.21. It makes a difference which
function is applied first

Example 2.22. Let h(x) = 3x. The graph of f (h(x)) looks as though the domain
of f has been compressed by a factor of 3. This is because the output of f at x is

the same as the output of f ◦h at
x
3

. If we compose f and h in the opposite order,

the graph of h( f (x)) = 3 f (x) is the graph of f stretched by a factor of three in
the vertical direction. See Fig. 2.22.

Example 2.23. Let h(x) = −x. The graph of h( f (x)) = − f (x) is the reflection
of the graph of f across the x-axis, while the graph of f (h(x)) = f (−x) is the
reflection of the graph of f across the y-axis.

Example 2.24. If f (x) =
1

x+ 1
and g(x) = x2, then

( f ◦ g)(x) =
1

x2 + 1
and (g ◦ f )(x) =

(
1

x+ 1

)2

=
1

x2 + 2x+ 1
.
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x

f(x)

3f(x)
f(3x)

Fig. 2.22 Composition with multiplication 3x results in stretching or compressing the graph. See
Example 2.22

Notice that f ◦ g and g ◦ f are quite different functions. Thus composition is not
a commutative operation. This is not surprising: using the output of g as input for f
is quite different from using the output of f as input for g.

Theorem 2.7. The composition of two continuous functions is continuous.

Proof. We give an intuitive proof of this result. We want to compare the values of
f (g(x)) with those of f (g(z)) as the numbers x and z vary. Since f is continuous,
these values will differ by very little when the numbers g(x) and g(z) are close. But
since g is also continuous, those values g(x) and g(z) will be close whenever x and
z are sufficiently close. ��

Here is a related theorem about limits, which we show you how to prove in
Problem 2.33.

Theorem 2.8. Suppose f ◦ g is defined on an interval containing c, that
lim
x→c

g(x) = L, and that f is continuous at L. Then lim
x→c

( f ◦g)(x) = f (L), that is,

lim
x→c

f
(
g(x)

)
= f
(

lim
x→c

g(x)
)
.

2.3b Inverse Functions

We look at some examples of compositions of functions that undo each other.

Example 2.25. For f (x) = 2x+ 3 and g(x) =
1
2

x− 3
2

, we see that

f (g(x)) = 2

(
1
2

x− 3
2

)

+ 3 = x and g( f (x)) =
1
2
(2x+ 3)− 3

2
= x.
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Example 2.26. Let f (x) =
1

x+ 1
when x �= −1, and g(x) =

1− x
x

when x �= 0.

Then if x �= 0, we have

f (g(x)) =
1

( 1−x
x

)
+ 1

=
1

1−x
x + x

x

= x.

You may also check that when x �=−1, we have g( f (x)) = x.

In both of the examples above, we see that f applied to the output of g returns
the input of g, and similarly, g applied to the output of f returns the input of f . We
may ask the following question about a function: if we know the output, can we
determine the input?

Definition 2.7. If a function g has the property that different inputs always
lead to different outputs, i.e., if x1 �= x2 implies g(x1) �= g(x2), then we can
determine its input from the output. Such a function g is called invertible;
its inverse f is defined in words: the domain of f is the range of g, and
f (y) is defined as the number x for which g(x) = y. We denote the inverse
of g by g−1.

By the way in which it is defined, we see that g−1 undoes, or reverses, g: it
works backward from the output of g to the input. If g is invertible, then g−1 is also
invertible, and its inverse is g. Furthermore, the composition of a function and its
inverse, in either order, is the identity function:

(g ◦ g−1)(y) = y and (g−1 ◦ g)(x) = x.

Here is another example:

Example 2.27. Let g(x) = x2, and restrict the domain of g to be x ≥ 0. Since
the squares of two different nonnegative numbers are different, g is invertible.
Its inverse is g−1(x) =

√
x. Note that if we had defined g(x) = x2 and taken its

domain to be all numbers, not just the nonnegative ones, then g would not have
been invertible, since (−x)2 = x2. Thus, invertibility depends crucially on what
we take to be the domain of the function (Fig. 2.23).

Monotonicity. The graph of a function can be very helpful in determining whether
the function is invertible. If lines parallel to the x-axis intersect the graph in at most
one point, then different domain values are assigned different range values, and the
function is invertible. Two kinds of functions that pass this “horizontal line test” are
the increasing functions and the decreasing functions.
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Fig. 2.23 Left: x2 is plotted with the domain all numbers. Right: the domain is the positive numbers.
Only one of these functions is invertible

Definition 2.8. An increasing function is one for which f (a)< f (b) whenever
a < b. A decreasing function is one for which f (a) > f (b) whenever a < b.
A nondecreasing function is one for which f (a) ≤ f (b) whenever a < b. A
nonincreasing function is one for which f (a)≥ f (b) whenever a < b.

Example 2.28. Suppose f is increasing and f (x1)> f (x2). Which of the follow-
ing is true?

(a) x1 = x2

(b) x1 > x2

(c) x1 < x2

Item (a) is certainly not true, because then we would have f (x1) = f (x2). Item
(b) is consistent with f increasing, but this does not resolve the question. If item
(c) were true, then f (x1)< f (x2), which is not possible. So it is (b) after all.

Fig. 2.24 Two graphs of monotonic functions. Left: increasing, Right: decreasing

Figure 2.24 shows the graphs of an increasing function and a decreasing function.
Both pass the horizontal line test and both are invertible.
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Definition 2.9. Functions that are either increasing or decreasing are called
strictly monotonic. Function that are either nonincreasing or nondecreasing are
called monotonic.

If f is strictly monotonic, then the graph of its inverse is simply the reflection of
the graph of f across the line y = x (Fig. 2.25).

y = f(x)

y

x

y = g(x)

y

x

y = f(x) and x = g(y)

Fig. 2.25 Left: graphs of an increasing function f and its inverse g. Right: if you write f (x) = y
and x = g(y), then the graph of f (x) = y is also the graph of g(y) = x

The Inversion Theorem. The graphs suggest the following theorem:

Theorem 2.9. Inversion theorem. Suppose that f is a continuous and strictly
monotonic function defined on an interval [a,b]. Then its inverse g is a continu-
ous strictly monotonic function defined on the closed interval between f (a) and
f (b).

Proof. A strictly monotonic function is invertible, because different inputs always
result in different outputs. The inverse is strictly monotonic, as we ask you to show
in Problem 2.30.

What remains to be shown is that the domain of the inverse function is precisely
the closed interval between f (a) and f (b), no more no less, and that f−1 is contin-
uous. According to the intermediate value theorem, for every m between f (a) and
f (b), there is a number c such that m = f (c). Thus every number between f (a)
and f (b) is in the domain of the inverse function. On the other hand, the value f (c)
of a strictly monotonic function at the point c between a and b must lie between
f (a) and f (b). This shows that the domain of f−1 is precisely the closed interval
between f (a) and f (b).

Next, we show that f−1 is continuous. Let ε be any tolerance. Divide the interval

[a,b] into n subintervals of length less than
ε
2

, with endpoints a= a0, a1, . . . , an = b.
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The values f (ai) divide the range of f into an equal number of subintervals. Denote
by δ the length of the smallest of these. See Fig. 2.26. Let y1 and y2 be numbers in
the range that are within δ of each other. Then y1 and y2 are in either the same or
adjacent subintervals of the range. Correspondingly, f−1(y1) and f−1(y2) lie in the
same or adjacent subintervals of [a,b]. Since the lengths of the subintervals of [a,b]

were made less than
ε
2

, we have

| f−1(y1)− f−1(y2)|< ε.

Thus we have shown that given any tolerance ε , there is a δ such that if y1 and y2

differ by less than δ , then f−1(y1) and f−1(y2) differ by less than ε . This shows that
f is uniformly continuous on [a,b], hence continuous. ��

1a a
2

a ...

f(a)
f(a )1

f(a )
2

b=a
n

f(a  ) = f(b)n

Fig. 2.26 The inverse of a continuous strictly monotonic function is continuous

As an application of the inversion theorem, take f (x) = xn, n any positive integer.
Then f is continuous and increasing on every interval [0,b], so it has an inverse g.
The value of g at a is the nth root of a and is written with a fractional exponent:

g(a) = a1/n.

By the inversion theorem, the nth-root function is continuous and strictly monotonic.
Then powers of such functions, such as x2/3 = (x1/3)2, are continuous and strictly
monotonic on [0,b]. Figure 2.27 shows some of these functions and their inverses.

We shall see later that many important functions can be defined as the inverse of a
strictly monotonic continuous function and that we can make important deductions
about a function f from properties of its inverse f−1.

Problems

2.22. Find the inverse function of f (x) = x5. Sketch the graphs of f and f−1.
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x2/3

x1/3

x1/8

Fig. 2.27 The power functions

2.23. The volume of water V in a bottle is a function of the height H of the water,
say V = f (H). See Fig. 2.28. Similarly, the height of the water is a function of the
volume of water in the bottle, say H = g(V ). Show that f and g are inverse functions.

0

H

Fig. 2.28 A bottle of water for Problem 2.23

2.24. Let f (x) = x, g(x) = x2, h(x) = x1/5, and k(x) = x2 + 5. Find formulas for the
compositions

(a) (h ◦ g)(x)
(b) (g ◦ h)(x)
(c) ( f ◦ g)(x)
(d) (k ◦ h)(x)
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(e) (h ◦ k)(x)
(f) (k ◦ g ◦ h)(x)

2.25. Is there a function f (x) = xa that is its own inverse function? Is there more
than one such function?

2.26. Show that the function f (x) = x− 1
x

, on domain x > 0, is increasing by ex-

plaining each of the following items.

(a) The sum of two increasing functions is increasing.

(b) The functions x and −1
x

are increasing.

2.27. Tell how to compose some of the functions defined in Problem 2.24 to produce
the functions

(a) (x2 + 5)2 + 5
(b) (x2 + 5)2

(c) x4 + 5

2.28. The graph of a function f on [0,a] is given in Fig. 2.29. Use the graph of f to
sketch the graphs of the following functions.

(a) f (x− a)
(b) f (x+ a)
(c) f (−x)
(d) − f (x)
(e) f (−(x− a))

0 a
x

Fig. 2.29 The graph of the function f in Problem 2.28

2.29. Use the intermediate value theorem to show that the equation

√
x2 + 1 =

3
√

x5 + 2

has a solution in [−1,0].

2.30. (a) Show that the inverse of an increasing function is increasing. (b) Then state
the analogous result for decreasing functions.
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2.31. (a) Suppose f is increasing. Is f ◦ f increasing? Give a proof or a counterex-
ample. (b) Suppose f is decreasing. Is f ◦ f decreasing? Give a proof or a coun-
terexample.

2.32. Assume that functions f and g are increasing. Is f g increasing? If so give a
proof, and if not, explain why not.

2.33. Prove Theorem 2.8 by explaining the following.

(a) Given any ε > 0, there is a δ > 0 such that if |z−L|< δ , then | f (z)− f (L)|< ε .
(b) For the δ in part (a), there is an η > 0 such that if |x−c|<η , then |g(x)−L|< δ .
(c) Given any ε > 0, there is an η > 0 such that if |x− c| < η , then | f (g(x))−

f (L)| < ε .
(d) lim

x→c
f (g(x)) = f (L).

2.4 Sine and Cosine

It is often asserted that the importance of trigonometry lies in its usefulness for
surveying and navigation. Since the proportion of our population engaged in these
pursuits is rather small, one wonders what kind of stranglehold surveyors and navi-
gators have over professional education to be able to enforce the universal teaching
of this abstruse subject. Or is it merely inertia? The answer, of course, is that the
importance of trigonometry lies elsewhere: in the description of rotation and vibra-
tion. It is an astonishing fact of mathematical physics that the vibration of as diverse
a collection of objects as:

springs
strings

airplane wings
steel beams

light beams
and water streams

building sways
ocean waves

and sound waves . . .

and many others are described in terms of trigonometric functions. That such diverse
phenomena can be treated with a common tool is one of the most striking successes
of calculus. Some simple and some not so simple examples will be discussed in the
next chapters.

One also learns from older texts that there are six trigonometric functions:

sine, cosine, tangent, cotangent
secant, and cosecant.

This turns out to be a slight exaggeration. There are only two basic functions,
sine and cosine; all the others can be defined in terms of them, when necessary.
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Furthermore, sine and cosine are so closely related that each can be expressed in
terms of the other; so one can say that there is really only one trigonometric function.

Geometric Definition. We shall describe the functions sine and cosine geometri-
cally, using the circle of radius 1 in the Cartesian (x,y)-plane centered at the origin,
which is called the unit circle (Fig. 2.30).

(0,0) (x,0)

(x,y)

1

s
1

0

P(s)

s1

P(0)=P0

Fig. 2.30 Left: the unit circle. Right: measuring along the circumference using the same scale as
on the axes is called radian measure

Let (x,y) be any point on the unit circle. The triangle with vertices (0,0), (x,0),
and (x,y) is a right triangle. By the Pythagorean theorem,

x2 + y2 = 1.

Let P0 be the point (1,0) on the unit circle. Let P(s) be that point on the unit circle
whose distance measured from P0 counterclockwise along the arc of the unit circle
is s.

You can imagine this distance along the arc with the aid of a very thin string of
length s. Fasten one of its ends to the point P0, and wrap the string counterclockwise
around the circle. The other end of the string is at the point P(s).

The two rays from the origin through the points P0 and P(s) form an angle. We
define the size of this angle to be s, the length of the arc connecting P0 and P(s).
Measuring along the circumference of the unit circle using the same scale as on the
axes is called radian measure (Fig. 2.30). An angle of length 1 therefore has measure

equal to one radian, and the radian measure of a right angle is
π
2

.

Definition 2.10. Denote the x- and y-coordinates of P(s) by x(s) and y(s). We
define

coss = x(s), sins = y(s).

One immediate consequence of the definition is that coss and sin s are continuous
functions: The length of the chord between P(s) and P(s+ ε) is less than ε . The
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differences Δx and Δy in the coordinates between P(s) and P(s+ ε) are each less
than the length of the chord. But these differences are also the changes in the cosine
and sine:

|Δx|= |cos(s+ ε)− coss|< ε, |Δy|= |sin(s+ ε)− sins|< ε.

See Fig. 2.31.

y

x
P(s)

P(s+  )ε

Fig. 2.31 A small arc of the unit circle with corresponding x and y increments. Observe that the x
and y increments are smaller than the arc increment

We list this fact of continuity together with some other properties:

(a) The cosine and sine functions are continuous.
(b) cos2 s+ sin2 s = 1. This is because the cosine and sine are the coordinates of a

point of the unit circle, where x2 + y2 = 1.
(c) Since the circumference of the whole unit circle is 2π , when a string of length

s+ 2π is wrapped around the unit circle in the manner described before, the
endpoint P(s+ 2π) coincides with the point P(s). Therefore,

cos(s+ 2π) = coss, sin(s+ 2π) = sins.

This property of the functions sine and cosine is called “periodicity,” with period
2π . See Fig. 2.32.

(d) cos0 = 1, and the value coss decreases to −1 as s increases to π . Then coss
increases again to 1 at s = 2π . sin0 = 0 and sins also varies from −1 to 1.

(e) P
(π

2

)
lies one quarter of the circle from P0. Therefore, P

(π
2

)
= (0,1), and

cos
(π

2

)
= 0, sin

(π
2

)
= 1.

(f) The point P
(π

4

)
is halfway along the arc between P0 and P

(π
2

)
. By sym-

metry, we see that x
( π

4

)
= y

(π
4

)
. By the Pythagorean theorem,

(
x
(π

4

))2
+

(
y
(π

4

))2
= 1. It follows that (cos π

4 )
2 = (sin π

4 )
2 = 1

2 , and so

cos
(π

4

)
=

√
1
2
, sin

(π
4

)
=

√
1
2
.



84 2 Functions and Continuity

(g) For angles s and t, there are addition formulas

cos(s+ t) = cosscost − sinssin t,
sin(s+ t) = sinscos t + cosssin t,

which will be discussed later.

-1

 1

-8 -6 -4 -2 2 4 6 8

cos x

Fig. 2.32 Part of the graph of the cosine

Problems

2.34. On a sketch of the unit circle, mark the circumference at six equally spaced
points. Are these subdivisions more, or less, than one radian each?

2.35. Which of the following pairs of numbers could be the cosine and sine of some
angle?

(a) (0.9,0.1)
(b) (

√
0.9,

√
0.1)

2.36. Sketch the unit circle, and on it, mark the approximate location of points hav-
ing angles of 1, 2, 6, 2π , and −0.6 from the horizontal axis.

2.37. The ancient Babylonians measured angles in degrees. They divided the full
circle into 360 angles of equal size, each called one degree. So the size of a right
angle in Babylonian units is 90 degrees. Since its size in modern units is π

2 radians, it

follows that one radian equals
90
π
2
= 57.295 . . . degrees. Let c(x) = cos

( x
57.295 . . .

)

which is the cosine of an angle of x degrees. Sketch the graph of c as nearly as you
can to scale, and explain how it differs from the graph of the cosine.
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2.38. Which of the following functions are bounded, and which are bounded away
from 0?

(a) f (x) = sinx
(b) f (x) = 5sinx

(c) f (x) =
1

sinx
for x �= nπ , n = 0,±1,±2, . . .

2.39. A weight attached to a Slinky (a weak spring toy) oscillates up and down. Its
position at time t is y = 1+0.2sin(3t) meters from the floor. What is the maximum
height reached, and how much time elapses between successive maxima?

2.40. Use the intermediate value theorem to prove that the equation

x = cosx

has a solution on the interval [0, π
2 ].

2.41. Show that sins is an increasing function on [− π
2 ,

π
2 ], and therefore has an

inverse. Its inverse is denoted by sin−1.

sin s

10 cos s

(1, tan s)

s

Fig. 2.33 The tangent of s. See Problems 2.42 and 2.43

2.42. Define the tangent function by tans =
sins
coss

whenever the denominator is not

0. Refer to Fig. 2.33 to show that tans is an increasing function on (− π
2 ,

π
2 ). Show

that tanx has a continuous inverse on (−∞,∞). Its inverse is denoted by tan−1.

2.43. Set z = tans and y = sins in Fig. 2.33.

(a) Show that sin(tan−1(z)) =
z√

1+ z2
.

(b) Express cos(sin−1(y)) without using any trigonometric functions.
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2.5 Exponential Function

We present two examples of naturally occurring functions f that arise in modeling
growth and decay and satisfy the relation

f (t + s) = f (t) f (s). (2.1)

We shall then show that all continuous functions satisfying this relation are expo-
nential functions. Further natural examples of exponential functions are given in
Chap. 10.

2.5a Radioactive Decay

Radioactive elements are not immutable. With the passage of time, they change into
other elements. It is important to know how much of a given amount is left after
time t has elapsed. To express this problem mathematically, we describe the decay
by the following function:

Let M(t) denote the fraction of material of a unit mass remaining after the elapse
of time t. Assume that M is a continuous function of time, M(0) = 1, and that
0 < M(t)< 1 for t > 0.

How much will be left of an initial supply of mass A after the elapse of time t?
The number of atoms present does not affect the likelihood of any individual atom
decaying. A solitary atom is as likely to decay as one buried among thousands of
other atoms. Since M(t) is the fraction of material left of a unit mass after time t,
AM(t) is the amount left after time t if we start with mass A:

(amount left at time t) = AM(t) (2.2)

How much will be left of a mass A of material after time s + t has elapsed? By
definition of the function M, the amount left is AM(s+ t). But there is another way
of answering this question. Observe that after time s has elapsed, the remaining
mass is AM(s), and then after an additional time t has elapsed, the amount left is(
AM(s)

)
M(t). These two answers must be the same, and therefore,

M(s+ t) = M(s)M(t). (2.3)

Since M(s) and M(t) are less than 1, M is decreasing, and M(t) tends to zero as
t tends to infinity. We assumed that M is a continuous function, and M(0) = 1.
According to the intermediate value theorem, there is a number h for which M(h) =
1/2. Since M is decreasing, there is only one such number. Setting s = h in relation
(2.3), we get that

M(h+ t) =
1
2

M(t).

In words: starting at any time t, let additional time h elapse, then the mass of the
material is halved. The number h is called the half-life of the radioactive material.
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For example, the half-life of radium-226 is about 1601 years, and the half-life of
carbon-14 is about 5730 years.

2.5b Bacterial Growth

We turn to another example, the growth of a colony of bacteria. We describe the
growth by the following function:

Let P(t) be the size of the bacterial population of initial unit size after it has
grown for time t. Assume that P is a continuous function of time, P(0) = 1, and that
P(t)> 1 for t > 0.

If we supply ample nutrients so that the bacteria do not have to compete with
each other, and if there is ample room for growth, then it is reasonable to conclude
that the size of the colony at any time t is proportional to its initial size A, whatever
that initial size is:

(size at time t) = AP(t), (2.4)

What will be the size of a colony, of initial size A, after it has grown for time
s+ t? According to Eq. (2.4), the size will be AP(s+ t). But there is another way of
calculating the size of the population. After time s has elapsed, the population size
has grown to AP(s). After an additional time t elapses, the size of the population
will, according to Eq. (2.4), grow to

(
AP(s)

)
P(t) = AP(s)P(t). The two answers

must be the same, and therefore,

P(s+ t) = P(s)P(t). (2.5)

Since P(t)> 1, P is an increasing function, and P(t) tends to infinity as t increases.
We assumed that P is continuous and P(0) = 1, so by the intermediate value theo-
rem, there is a value d for which P(d) = 2. Since P is an increasing function, there
is only one such value. Setting s = d in Eq. (2.5) gives

P(d + t) = 2P(t);

d is called the doubling time for the bacterial colony. Starting from any time t, the
colony doubles after additional time d elapses.

2.5c Algebraic Definition

Next we show that every continuous function f that satisfies

f (x+ y) = f (x) f (y) and a = f (1)> 0,

must be an exponential function f (x) = ax. For example, P(t) and M(t) in the last
section are such functions.
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The relation f (x+ y) = f (x) f (y) is called the functional equation of the expo-
nential function. If y = x, the equation gives

f (x+ x) = f (2x) = f (x) f (x) = ( f (x))2 = f (x)2,

where in the last form we have omitted unnecessary parentheses. When y = 2x,
we get

f (x+ 2x) = f (x) f (2x) = f (x) f (x)2 = f (x)3.

Continuing in this fashion, we get

f (nx) = f (x)n. (2.6)

Take x = 1. Then
f (n) = f (n1) = f (1)n = an.

This proves that f (x) = ax when x is any positive integer. Take x =
1
n

in Eq. (2.6).

We get f (1) = a= f
(1

n

)n. Take the nth root of both sides. We get f
(

1
n

)
= a1/n. This

proves that f (x) = ax when x is any positive integer reciprocal. Next take x =
1
p

in

Eq. (2.6); we get

f
( n

p

)
= f
( 1

p

)n
=
(
a1/p)n

= an/p.

So we have shown that for all positive rational numbers r =
n
p

,

f (r) = ar.

In Problem 2.52, we ask you to show that f (0) = 1 and that f (r) = ar for all negative
rational numbers r. Assume that f is continuous. Then it follows that f (x) = ax for
irrational x as well, since x can be approximated by rational numbers.

The algebraic properties of the exponential functions ax extend to all numbers x
as well, where a > 0:

• axay = ax+y

• (ax)n = anx

• a0 = 1

• a−x =
1
ax

• ax > 1 for x > 0 and a > 1
• ax < 1 for x > 0 and 0 < a < 1

We can use these properties to show that for a > 1, f (x) = ax is an increasing

function. Suppose y > x. Then y− x > 0, and ay−x > 1. Since ay−x =
ay

ax , it fol-

lows that ay > ax. By a similar argument when 0 < a < 1, we can show that ax is
decreasing.
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2.5d Exponential Growth

Though it has a precise mathematical meaning, the phrase “exponential growth” is
often used as a metaphor for any extremely rapid increase. Here is the mathematical
basis of this phrase:

Theorem 2.10. Exponential growth. For a > 1, the function ax grows faster
than xk as x tends to infinity, no matter how large the exponent k = 0,1,2,3 . . . .

In other words, the quotient
ax

xk
tends to infinity as x tends to infinity

(Fig. 2.34).

20100.01

x-2ex

Fig. 2.34 The function
ex

x2 plotted on [0.01,20]. The vertical scale is compressed by a factor of

100,000

Proof. We first consider the case k = 0: that ax tends to infinity for all a greater
than 1. This is certainly true for a= 10, because 102 = 100, 103 = 1000, etc., clearly
tend to infinity. It follows that ax tends to infinity for all a greater than 10.

Consider the set of all numbers a for which ax is bounded for all positive x. The

set is not empty, because, for example, a = 1, and a =
1
2

have this property. The set

has an upper bound, because every number larger than 10 is not in the set. So the set
of such a has a least upper bound. Denote the least upper bound by c. Since a = 1
lies in the set, c is not less than 1. We claim that c is 1. For suppose that c were
greater than 1. Then b, the square root of c, and d, the square of c, would satisfy the
inequalities

b < c < d.

Since d is greater than the least upper bound c, dx tends to infinity with x. Since by
definition, d is b4, b4x = dx tends to infinity with x. But since b is less than the least
upper bound c, its powers remain bounded. This is a contradiction, so c must be 1.
Therefore, ax tends to infinity for all a greater than 1.
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Next we consider the case k = 1:
ax

x
tends to infinity as x tends to infinity. Denote

the function
ax

x
by f (x). Then

f (x+ 1) =
ax+1

x+ 1
=

ax

x
a

1+ 1
x

= f (x)
a

1+ 1
x

. (2.7)

We claim that for large x, the factor
a

1+ 1
x

is larger than 1: we know that a > 1, so

in fact, a > 1+
1
m

for some integer m. Write b =
a

1+ 1
m

. Then for all x ≥ m,

a

1+ 1
x

≥ a

1+ 1
m

= b > 1,

as claimed. Then by Eq. (2.7),

f (x+ 1)≥ f (x)b,

f (x+ 2)≥ f (x)b2,

and continuing in this way, we see that

f (x+ n)≥ f (x)bn

for each positive integer n. Every large number X can be represented as some num-
ber x in [m,m+ 1] plus a large positive integer n. Denote by M the minimum value
of f in [m,m+ 1]. Then

f (X) = f (x+ n)≥ f (x)bn ≥ Mbn.

Since b > 1, this shows that f (X) tends to infinity as X does.
In the cases k > 1, we argue as follows. Using the rules for the exponential func-

tion, we see that
ax

xk =

(
sx

x

)k

, where sk = a. (2.8)

Since a is greater than 1, so is s. As we have already shown,
sx

x
tends to infinity as

x does. Then so does its kth power. ��
Later, in Sect. 4.1b, we shall give a much simpler proof of the theorem on exponen-
tial growth using calculus.
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2.5e Logarithm

For a greater than 1, ax is an increasing continuous function, and for 0 < a < 1,
ax is decreasing. Hence for a �= 1, ax has a continuous inverse function, called the
logarithm to the base a, which is defined by

loga y = x when y = ax.

If a > 1, loga is an increasing function. If 0 < a < 1, loga is a decreasing function.
In either case, the domain of loga is the range of ax, all positive numbers (Fig. 2.35).

The exponential function is characterized by

axay = ax+y.

Applying the function loga, we get

loga(a
xay) = x+ y.

Take any two positive numbers u and v and denote their logarithms by x and y:

x = loga u, ax = u, y = loga v, ay = v. (2.9)

We get
loga(uv) = loga u+ loga v. (2.10)

Calculations. The logarithm was invented by the Scottish scientist John Napier
and expounded in a work published in 1614. Napier’s logarithm was to the base e. In
English, this is called called the “natural logarithm,” a phrase that will be explained
in the next section.
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The base-10 logarithm, called the “common logarithm” in English, was intro-
duced by Henry Briggs in 1617, based on Napier’s logarithm. The significance of
base ten is this: every positive number a can be written as a = 10nx (recall scientific
notation a = x× 10n, where n is an integer and x is a number between 1 and 10).
Then log10 a = n+ log10 x. Therefore, the base-ten logarithms for numbers between
1 and 10 are sufficient to determine the base-ten logarithms for all positive numbers.

Table 2.1 is part of a traditional table of base-10 logarithms. It shows numbers
1.000 through 9.999, the last digit being read across the top row. We know that
log10(9.999) is nearly log10(10) = 1, and this tells us how to read the table: the
entry in the lower right-hand corner must mean that log10(9.999) = 0.99996.

We illustrate multiplication by an example:

Example 2.29. What is the product of a = 4279 and b = 78,520? Write a = 4.279×
103. According to Table 2.1,

log10(4.279) = 0.63134.

Therefore, log10 a = 3.63134. Similarly, b = 7.852× 104. According to the table,
then,

log10(7.852) = 0.89498,

and therefore, log10 b = 4.89498. To multiply a and b we use the fundamental prop-
erty (2.10) of logarithms to write

log10 ab = log10 a+ log10 b = 3.63164+ 4.89498= 8.52632.

By the table, the number whose base-10 logarithm is 0.52632 is, within a toler-
ance of 2× 10−4, equal to 3.360. This shows that the product ab is approximately
336,000,000, within a tolerance of 2× 104.

Using a calculator, we get ab= 335,987,080, which is quite close to our approx-
imate value calculated using base-10 logarithms.

No. 0 1 2 3 4 5 6 7 8 9
100 00000 00043 00087 00130 00173 00217 00260 00303 00346 00389
· · · – – – – – – – – – –
335 52504 52517 52530 52543 52556 52569 52582 52595 52608 52621
336 52634 52647 52660 52673 52686 52699 52711 52724 52737 52750
· · · – – – – – – – – – –
427 63043 63053 63063 63073 63083 63094 63104 63114 63124 63134
428 63144 63155 63165 63175 63185 63195 63205 63215 63225 63236
· · · – – – – – – – – – –
526 72099 72107 72115 72123 72132 72140 72148 72156 72165 72173
· · · – – – – – – – – – –
785 89487 89492 89498 89504 89509 89515 89520 89526 89531 89537
· · · – – – – – – – – – –
999 99957 99961 99965 99970 99974 99978 99981 99987 99991 99996
No. 0 1 2 3 4 5 6 7 8 9

Table 2.1 Excerpt from the log10 tables in Bowditch’s practical navigator, 1868. We read, for
example, log10(3.358) = 0.52608 from row no. 335, column 8
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Division is carried out the same way, except we subtract the logarithms instead
of adding them.

One cannot exaggerate the historical importance of being able to do arithmetic
with base-ten logarithms. Multiplication and division by hand is a time-consuming,
frustrating activity, prone to error.1 For 350 years, no scientist, no engineer, no
office, no laboratory was without a table of base-ten logarithms. Because of the
force of habit, most scientific calculators have the base-ten logarithm available, al-
though the main use of those logarithms is to perform multiplication and division.
Of course, these arithmetic operations are performed by a calculator by pressing a
button. The button labeled “log” often means log10. In the past, the symbol logx,
without any subscript, denoted the logarithm to base ten; the natural log of x was
denoted by lnx. Since in our time, multiplication and division are done by calcula-
tors, the base-ten logarithm is essentially dead, and rather naturally, logx has come
to denote the natural logarithm of x.

Why Is the Natural Logarithm Natural? The explanation you will find in the
usual calculus texts is that the inverse of the base-e logarithm, the base-e exponen-
tial function, is the most natural of all exponential functions because it has special
properties related to calculus. Since Napier did not know what the inverse of the nat-
ural logarithm was, nor did he know calculus (he died about 25 years before Newton
was born), his motivation must have been different. Here it is:

Suppose f and g are functions inverse to each other. That is, if f (x) = y, then
g(y) = x. Then if we have a list of values f (x j) = y j for the function f , it is also
a list of values x j = g(y j) for the function g. As an example, take the exponential
function f (x) = (10)x = y. Here is a list of its values for x = 0, 1, 2, . . . , 10:

x 0 1 2 . . . 9 10
y 1 10 100 . . . 1,000,000,000 10,000,000,000

The inverse of the function (10)x = y is the base-10 logarithm, log10 y = x. We
have listed above its values for y = 1, 10, 100, . . . , 10,000,000,000. The trouble
with this list is that the values y for which log10 y is listed are very far apart, so we
can get very little information about log10 y for values of y in between the listed
values.

Next we take the base-2 exponential function f (x) = 2x = y. Here is a list of its
values for x = 0, 1, 2, . . . , 10:

x 0 1 2 . . . 9 10
y 1 2 4 . . . 512 1024

The inverse of the function 2x = y is the base-2 logarithm, log2 y = x. Here the
values y for which the values of log2 y are listed are not so far apart, but they are still
quite far apart.

1 There is a record of an educational conference in the Middle Ages on the topic, “Can one teach
long division without flogging?”
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Clearly, to make the listed values of the exponential function lie close together,
we should choose the base small, but still greater than 1. So let us try the base
a = 1.01. Here is a list of the values of y = (1.01)x for x = 0, 1 . . . 100. Note that
the evaluation of this exponential function for integer values of x requires just one
multiplication for each value of x:

x 0 1 2 . . . 99 100
y 1 1.01 1.0201 . . . 2.6780 2.7048

The inverse of the function (1.01)x = y is the base-1.01 logarithm, log1.01 y = x. The
listed values y of the base-1.01 logarithm are close to each other, but the values of
the logarithms are rather large: log1.01 2.7048 = 100. There is an easy trick to fix
this. Instead of using 1.01 as the base, use a = (1.01)100. Then

(
(1.01)100)x

= (1.01)100x.

We list values of ax now for x = 0, 0.01, 0.02, . . . , 1.00, which gives a table almost
identical to the previous table:

x 0 0.01 0.02 . . . 0.99 1.00
y 1 1.01 1.0201 . . . 2.6780 2.7048

To further improve matters, we can take powers of numbers even closer to 1 as a
base: Take as base 1+ 1

n raised to the power n, where n is a large number. As n tends

to infinity,
(
1+

1
n

)n
tends to e, the base of the natural logarithm.

Problems

2.44. Use the property ex+y = exey to find the relation between ez and e−z.

2.45. Suppose f is a function that satisfies the functional equation f (x + y) =
f (x) f (y), and suppose c is any number. Define a function g(x) = f (cx). Explain
why g(x+ y) = g(x)g(y).

2.46. A bacteria population is given by p(t) = p(0)at , where t is in days since the
initial time. If the population was 1000 on day 3, and 200 on day 0, what was it on
day 1?

2.47. A population of bacteria is given by p(t) = 800(1.023)t, where t is in hours.
What is the initial population? What is the doubling time for this population? How
long will it take to quadruple?

2.48. Let P0 be the initial principal deposited in an account. Write an expression for
the account balance after 1 year in each of the following cases.

(a) 4 % simple interest,
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(b) 4 % compounded quarterly (4 periods per year),
(c) 4 % compounded daily (365 periods per year),
(d) 4 % compounded continuously (number of periods tends to infinity),
(e) x % compounded continuously.

2.49. Calculate the product ab by hand, where a and b are as in Example 2.29.

2.50. Solve e−x2
= 1

2 for x.

2.51. Suppose f (x) = max, and we know that

f
(
x+

1
2

)
= 3 f (x).

Find a.

2.52. Use the functional equation f (x+ y) = f (x) f (y) and f (1) = a �= 0 to show
that

(a) f (0) = 1,
(b) f (r) = ar for negative rational numbers r.

2.53. Suppose P satisfies the functional equation P(x+y) = P(x)P(y), and that N is
any positive integer. Prove that

P(0)+P(1)+P(2)+ · · ·+P(N)

is a finite geometric series.

2.54. If b is the arithmetic mean of a and c, prove that eb is the geometric mean of
ea and ec.

2.55. Knowing that e > 2, explain why

(a) e10 > 1000,
(b) log1000 < 10,
(c) log1,000,000< 20.

2.56. Let a denote a number greater than 1, a = 1+ p, where p is positive. Show
that for all positive integers n, an > 1+ pn.

2.57. We know that
ex

x2 tends to infinity as x does. In particular, it is eventually more

than 1. Substitute y = x2 and derive that

logy <
√

y

for large y.

2.58. Use the relation log(uv) = logu+ logv to show that log
(x

y

)
= logx− logy.
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2.6 Sequences of Functions and Their Limits

We saw in Chap. 1 that we can only rarely present numbers exactly. In general, we
describe them as limits of infinite sequences of numbers. What is true of numbers is
also true of functions; we can rarely describe them exactly. We often describe them
as limits of sequences of functions. It is not an exaggeration to say that almost all
interesting functions are defined as limits of sequences of simpler functions. Therein
lies the importance of the concept of a convergent sequence of functions.

Since most of the functions we shall study are continuous, we investigate next
what convergence means for sequences of continuous functions. It turns out that
with the right definition of convergence, continuity is preserved under the operation
of taking limits.

First we look at some simple examples.

2.6a Sequences of Functions

Example 2.30. Consider the functions

f0(x) = 1, f1(x) = x, f2(x) = x2, f3(x) = x3, . . . , fn(x) = xn, . . .

on [0,1]. For each x in [0,1], we get the following limits as n tends to infinity:

lim
n→∞

fn(x) =

{
0 0 ≤ x < 1,

1 x = 1.

Define f to be the function on [0,1] given by f (x) = limn→∞ fn(x). The sequence
of functions fn converges to f , a discontinuous function. See Fig. 2.36.

0

0.2

0.4

0.6

0.8

1 1

0 0.2 0.4 0.6 0.8 1 1

x

x3

x9

Fig. 2.36 Left: the functions fn(x) = xn for n = 1, 3, 5, 7, and 9 are graphed on the interval [0,1].
Right: the discontinuous limit f . See Example 2.30
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Example 2.30 shows that a sequence of continuous functions can converge to a
discontinuous function. This is an undesirable outcome that we would like to avoid.

Example 2.31. Consider the functions gn(x) = xn on [0, 1
2 ]. The functions gn are

continuous on [0, 1
2 ] and converge to the constant function g(x) = 0, a continuous

function.

These examples prompt us to make two definitions for sequence convergence.
For a sequence of continuous functions f1, f2, f3, . . . to converge to f , we certainly
should require that for each x in their common domain, lim

n→∞
fn(x) = f (x).

Definition 2.11. A sequence of functions simply means a list f1, f2, f3, . . . of
functions with a common domain D. The sequence is said to converge pointwise
to a function f on D if

lim
n→∞

fn(x) = f (x) for each x in D.

Uniform Convergence. We saw in Example 2.30 that a sequence of continuous
functions may converge pointwise to a limit that is not continuous. We define a
stronger form of convergence that avoids this trouble.

Definition 2.12. A sequence of functions f1, f2, f3, . . . defined on a common
domain D is said to converge uniformly on D to a limit function f if given any
tolerance ε > 0, no matter how small, there is a whole number N depending on
ε such that for all n > N, fn(x) differs from f (x) by less than ε for all x in D.

To illustrate some benefits of uniform convergence, consider the problem of eval-
uating f (x) = cosx. For instance, how would you compute cos(0.5) without using a
calculator? We will see in Chap. 4 that one of the important applications of calculus
is a method to generate a sequence of polynomial functions

pn(x) = 1− x2

2!
+

x4

4!
−·· ·+ kn

xn

n!
(kn = 0, n odd, and kn = (−1)n/2, n even)

that converges uniformly to cosx on every closed interval [−c,c]. This means that
once you set c and the tolerance ε , there is a polynomial pn such that

|cosx− pn(x)|< ε for all x in [−c,c].

In Chap. 4 we will see that we can get |cosx− pn(x)| < ε for all x in [−1,1] by

taking n such that n! >
1
ε

. For example, cos(0.3), cos(0.5), and cos(0.8) can each

be approximated using p4(x) = 1− x2

2!
+

x4

4!
, and since the convergence is uniform,
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the error in doing so will be less than
1

24
in all cases. Evaluating cosx at an irrational

number in [−1,1] introduces an interesting complication. For example, cos
( e

3

)
is

approximated by

p4
( e

3

)
= 1− 1

2

( e
3

)2
+

1
24

( e
3

)4
.

Now we need to approximate p4
( e

3

)
using some approximation to

e
3

, such as

0.9060939, which will introduce some error. Thinking ahead, there are many ir-
rational numbers in [−1,1] at which we would like to evaluate the cosine. Happily,
p4 is uniformly continuous on [−1,1]. We can find a single level of precision δ for
the inputs, so that if z is within δ of x, then p4(z) is within ε of p4(x).

Looking at the big picture, we conclude that for a given tolerance ε , we can find

n so large that |cosx− pn(x)|< ε
2

for all x in [−1,1]. Then we can find a precision

δ such that if x and z are in [−1,1] and differ by less than δ , then pn(x) and pn(z)

will differ by less than
ε
2

. Using the triangle inequality, we get

|cosx− pn(z)| ≤ |cosx− pn(x)|+ |pn(x)− pn(z)|< ε
2
+

ε
2
= ε.

Finding the right n and δ to meet a particular tolerance can be complicated, but we
know in theory that it can be done. In short, approximate knowledge of the inputs
and approximate knowledge of the function can be used to determine the function
values within any given tolerance.2 This is good news for computing.

Knowing that a sequence of continuous functions converges uniformly on [a,b]
guarantees that its limit function is continuous on [a,b].

Theorem 2.11. Let { fn} be a sequence of functions, each continuous on the
closed interval [a,b]. If the sequence converges uniformly to f , then f is con-
tinuous on [a,b].

Proof. If fn converges uniformly, then for n large enough,

| fn(x)− f (x)|< ε

for all x in [a,b]. Since fn is continuous on [a,b], fn is uniformly continuous on
[a,b] by Theorem 2.4. So for x1 and x2 close enough, say

|x1 − x2|< δ ,
2 There once was a function named g,

approximated closely by p.
When we put in x nearly,
we thought we’d pay dearly,

but g(x) was as close as can be. –Anon.

This limerick expresses that
∣
∣g(x)− p(xapprox)

∣
∣≤ |g(x)− p(x)|+ ∣∣p(x)− p(xapprox)

∣
∣.
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fn(x1) and fn(x2) will differ by less than ε . Next we see a nice use of the triangle in-
equality (Sect. 1.1b). The argument is that you can control the difference of function
values at two points x1 and x2 by writing

f (x1)− f (x2) = f (x1)− fn(x1)+ fn(x1)− fn(x2)+ fn(x2)− f (x2)

and grouping these terms cleverly. We have, then, by the triangle inequality that

| f (x1)− f (x2)| ≤ | f (x1)− fn(x1)|+ | fn(x1)− fn(x2)|+ | fn(x2)− f (x2)|

Each of these terms is less than ε if |x1−x2|< δ . This proves the uniform continuity
of f on [a,b]. ��

We now present examples of uniformly convergent sequences of continuous
functions.

Example 2.32. The sequence of functions fn(x) = xn on [−c,c], where c is a pos-
itive number less than 1, converges pointwise to the function f (x) = 0, because
for each x in [−c,c], xn tends to 0 as n tends to infinity. To see why the sequence
converges uniformly to f , look at the difference between fn(x) = xn and 0 on
[−c,c]. For any tolerance ε , we can find a whole number N such that cN < ε , and
hence cn < ε for every n > N as well. Let x be any number between −c and c.
Then

| fn(x)− 0|= |xn| ≤ cn < ε.

Therefore, the difference between xn and 0 is less than ε for all x in [−c,c]. That
is, the sequence of functions converges uniformly. Note that the limit function,
f (x) = 0, is continuous, as guaranteed by the theorem (Fig. 2.37).

-1e-05

-5e-06

 0

 5e-06

 1e-05

-0.1 -0.05  0  0.05  0.1x

Fig. 2.37 The functions fn(x) = xn for n = 5, 6, and 7 are graphed on the interval [−0.1,0.1]. Note
that the graph of f7 is indistinguishable from the x-axis
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Geometric Series. Consider the sequence of functions { fn} given by

fn(x) = 1+ x+ x2+ · · ·+ xn−1,

where x is in the interval [−c,c] and 0 < c < 1. The sum defining fn(x) is also given
by the formula

fn(x) =
1− xn

1− x
.

For each x in (−1,1), fn(x) tends to f (x) =
1

1− x
, so the sequence fn converges

pointwise to f . To see why the fn converge uniformly in [−c,c], form the difference
of fn(x) and f (x). We get

f (x)− fn(x) =
xn

1− x
.

For x in the interval [−c,c], |x| is not greater than c, and |xn| is not greater than cn.
It follows that

| f (x)− fn(x)|= |x|n
1− x

≤ cn

1− c
for all x in [−c,c].

Since cn tends to zero, we can choose N so large that for n greater than N,
cn

1− c
is

less than ε , and hence f (x) differs from fn(x) by less than ε for all x in [−c,c]. This

proves that fn tends to f uniformly on the interval [−c,c], c < 1. Note that
1

1− x
is

continuous on [−c,c], as guaranteed by the theorem (Fig. 2.38).

 8

 4

-4

 2 1 0-1

1/(1-x)

1/(1-x)

1+x

1+x+x 2 +x3

1+x+x 2 +x3 +x4 +x5

Fig. 2.38 The sequence of functions fn(x) = 1+x+ · · ·+xn converges uniformly to 1
1−x on [−c,c]

when c < 1
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Operations on Convergent Sequences of Functions. We can combine uniformly
convergent sequences of continuous functions.

Theorem 2.12. Suppose fn and gn are uniformly convergent sequences of con-
tinuous functions on [a,b], converging to f and g. Then

(a) fn + gn converges uniformly to f + g.
(b) fngn converges uniformly to f g.

(c) If f �= 0 on [a,b], then for n large enough, fn �= 0 and
1
fn

tends to
1
f

uni-

formly.
(d) If h is a continuous function with range contained in [a,b], then gn ◦ h con-

verges uniformly to g ◦ h.
(e) If k is a continuous function on a closed interval that contains the range of

each gn and g, then k ◦ gn converges uniformly to k ◦ g.

Proof. We give an outline of the proof of this theorem. For (a), use the triangle
inequality:

|( f (x)+ g(x))− ( fn(x)+ gn(x))| ≤ | f (x)− fn(x)|+ |g(x)− gn(x)|.

For all x in [a,b], the terms on the right are smaller than any given tolerance, pro-
vided that n is large enough. Figure 2.39 shows the idea. We guide you through the
details of proving part (a) in Problem 2.61.

f

g

f+g

a b

Fig. 2.39 Functions fn are within ε of f for n > N1, and the gn are within ε of g for n > N2. The
sums fn +gn are then within 2ε of f +g for n larger than both N1 and N2
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For (b), use

| f (x)g(x)− fn(x)gn(x)|= |( f (x)− fn(x))g(x)+ fn(x)(g(x)− gn(x))|

≤ | f (x)− fn(x)||g(x)|+ | fn(x)||g(x)− gn(x)|.
We can make the factors | f (x)− fn(x)| and |g(x)− gn(x)| small by taking n large.
We check the factor | fn(x)|. By the extreme value theorem (Theorem 2.6), | f | has a
maximum value M, so −M ≤ f (x)≤ M. Since the fn converge to f uniformly, they
are within distance 1 of f for large n, and −M− 1 ≤ fn(x) ≤ M + 1 for all x. Thus
we have

| f (x)g(x)− fn(x)gn(x)| ≤ | f (x)− fn(x)||g(x)|+(M+ 1)|g(x)− gn(x)|

for large n, and this can be made arbitrarily small by taking n sufficiently large.
For (c): If f is not zero on an interval, then it is either positive at every point or

negative at every point. For if it were positive at some point c and negative at another
point d, then according to Theorem 2.5, the intermediate value theorem, f (x) would
be zero at some point x between c and d, contrary to our assumption about f . Take
the case that f is positive. According to Theorem 2.6, the extreme value theorem,
f (x) takes on its minimum at some point of the closed interval [a,b]. This minimum
is a positive number m, and f (x) ≥ m for all x in the interval. Since fn(x) tends
uniformly to f (x) on the interval, it follows that for n greater than some number N,
fn(x) differs from f (x) by less than 1

2 m. Since f (x) ≥ m, fn(x)≥ 1
2 m. We use

1
fn(x)

− 1
f (x)

=
f (x)− fn(x)

fn(x) f (x)
.

The right-hand side is not more than
| f (x)− fn(x)|
( 1

2 m
)
m

in absolute value, from which

the result follows.
For (d) we use that g(y)−gn(y) is uniformly small for all y, and then take y= h(x)

to see that g(h(x))− gn(h(x)) is uniformly small for all x.
For (e) we use that g(x)−gn(x) is uniformly small for all x, and then use uniform

continuity of k to see that k(g(x))− k(gn(x)) is uniformly small for all x.
This completes the outline of the proof. ��
The beauty of Theorem 2.12 is that it allows us to construct a large variety of

uniformly convergent sequences of functions. Here are a few examples.

Example 2.33. Let gn(x) = 1+ x+ x2+ · · ·+ xn, and let h(u) = −u2, where u is
in [−c,c], and 0 < c < 1. Then

gn(h(u)) = 1− u2+ u4 − u6 + · · ·+(−u2)n

converges uniformly in [−c,c] to
1

1+ u2 .
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Example 2.34. Let r > 0, a any number, and set

kn(x) = 1+
x− a

r
+ · · ·+

(
x− a

r

)n

.

Then kn(x) = gn
(

x−a
r

)
, where gn is as in Example 2.33. The kn converge uni-

formly to
1

1− x−a
r

=
r

r− x+ a

on every closed interval contained in (a− r,a+ r). This is true by part (d) of
Theorem 2.12.

Example 2.35. Let h(t) =
1
2

cost, where gn(x) is as in Example 2.33. Then

gn(h(t)) = 1+
1
2

cost +

(
1
2

cost

)2

+ · · ·+
(

1
2

cost

)n

converges uniformly to
2

2− cost
for all t.

2.6b Series of Functions

Definition 2.13. The sequence of functions { fn} can be added to make a new
sequence {sn}, called the sequence of partial sums of { fn}:

sn = f0 + f1 + f2 + · · ·+ fn =
n

∑
j=0

f j .

The sequence of functions {sn} is called a series and is denoted by

∞

∑
j=0

f j .

If lim
n→∞

sn(x) exists, denote it by f (x), and we say that the series converges to

f (x) at x. We write
∞

∑
j=0

f j(x) = f (x).

If the sequence of partial sums converges uniformly on D, we say that the series
converges uniformly on D.
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We saw earlier that the sequence of partial sums of the geometric series

sn(x) = 1+ x+ x2+ · · ·+ xn =
1− xn+1

1− x

converges uniformly to
1

1− x
on every interval [−c,c], if 0 < c < 1. We often write

∞

∑
k=0

xk = 1+ x+ x2+ x3 + · · ·= 1
1− x

(|x|< 1).

This series is of a special kind, a power series.

Definition 2.14. A power series is a series of the form

∞

∑
k=0

ak(x− a)k.

The numbers an are called the coefficients. The number a is called the center of
the power series.

Consider the power series

∞

∑
n=1

xn

n
= x+

x2

2
+

x3

3
+ · · · .

For what values of x, if any, does the series converge? To find all values of x for
which the series converges, we use the ratio test, Theorem 1.18. We compute the
limit

lim
n→∞

∣
∣
∣
∣
∣

xn+1

n+1
xn+1

n+1

∣
∣
∣
∣
∣
= lim

n→∞
|x|n+ 1

n
= |x|.

According to the ratio test, if the limit is less than 1, then the series converges ab-

solutely. Therefore,
∞

∑
n=1

xn

n
converges for |x| < 1. Also, if the limit is greater than

1, then the series diverges, in this case for |x| > 1. The test gives no information
when the limit is 1, in our case |x| = 1. So our next task is to investigate the con-

vergence (or divergence) of
∞

∑
n=1

xn

n
when x = 1 and when x = −1. At x = 1, we get

∞

∑
n=1

1
n

, the well-known harmonic series. We saw in Example 1.21 that it diverges. At

x = −1 we get the series
∞

∑
n=1

(−1)n

n
. It converges by the alternating series theorem,

Theorem 1.17.
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Therefore,
∞

∑
n=1

xn

n
converges pointwise for all x in [−1,1). We have not shown that

the convergence is uniform, so we do not know whether the function f (x) =
∞

∑
n=1

xn

n
is continuous.

Sometimes a sequence of functions converges to a function that we know by
another rule. If so, we know a great deal about that limit function. But this is not
always the case. Some sequences of functions, including power series, converge
to functions that we know only through sequential approximation. The next two
theorems give us important information about the limit function of a power series.
The first tells us about its domain. The second tells us about its continuity.

Theorem 2.13. For a power series
∞

∑
n=0

cn(x− a)n, one of the following must

hold:

(a) The series converges absolutely for every x.
(b) The series converges only at x = a.
(c) There is a positive number R, called the radius of convergence, such that

the series converges absolutely for |x−a|< R and diverges for |x−a|> R.

In case (c), the series might or might not converge at x= a−R and at x = a+R.

Proof. Let us first point out that if the series converges at some x0 �= a, then it
converges absolutely for every x that is closer to a, that is, |x − a| < |x0 − a|.
Here is why: The convergence of

∞

∑
n=0

cn(x0 − a)n implies that the terms cn(x0 − a)n

tend to 0. In particular, there is an N such that |cn(x0 − a)n| < 1 for all n > N.

If 0 < |x− a|< |x0 − a|, set r =
|x0 − a|
|x− a| . Then r < 1, and we get

∞

∑
n=N+1

|cn(x− a)n|=
∞

∑
n=N+1

|cn(x− a)n|
∣
∣
∣
∣
(x0 − a)n

(x0 − a)n

∣
∣
∣
∣ (2.11)

=
∞

∑
n=N+1

|cn(x0 − a)n|
∣
∣
∣
∣
(x− a)n

(x0 − a)n

∣
∣
∣
∣≤

∞

∑
n=N+1

rn.

Therefore,
∞

∑
n=0

cn(x − a)n converges absolutely by comparison with a geometric

series.
Now consider the three possibilities we have listed in the theorem. It might hap-

pen that the series converges for every x. If so, it converges absolutely for every x
by what we have just shown. This covers the first case.
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The other possibility is that the series converges for some number x0, but not for
every number. If there is only one such x0, then it must be a, since the series

c0 + c1(a− a)+ c2(a− a)2 + · · ·= c0

certainly converges. This covers the second case.
Finally, there may be an x0 �= a for which the series converges, though the series

does not converge for every number. We will use the least upper bound principle,
Theorems 1.2 and 1.3, to describe R. Let S be the set of numbers x for which the
series converges. Then S is not empty, because a and x0 are in S, as well as every
number closer to a than x0. Also, S is bounded, because if there were arbitrarily
large (positive or negative) numbers in S, then all numbers closer to a would be in
S, i.e., S would be all the numbers. Therefore, S has a least upper bound M and a
greatest lower bound m, which means that if

m < x < M,

then the series converges at x. We ask you in Problem 2.65 to show that m and M
are the same distance from a:

m < a < M and a−m = M− a

and that the convergence is absolute in (m,M). Set R = M − a. This concludes the
proof. ��

Theorem 2.14. A power series
∞

∑
n=0

an(x− a)n converges uniformly to its limit

function on every closed interval |x− a| ≤ r, where r is less than the radius of
convergence R.

In particular, the limit function is continuous in (a−R,a+R).

Proof. If the radius of convergence of
∞

∑
n=0

an(x− a)n = f (x) is R = 0, the series

converges at only one point, x = a. The series is then just f (a) = a0+0+ · · · , which
converges uniformly on that domain.

Suppose R> 0 or R is infinite, and take any positive r < R. Then the number a+r

is in the interval of convergence, so according to Theorem 2.13,
∞

∑
n=0

anrn converges

absolutely. Then for every x with |x− a| ≤ r,
∣
∣
∣
∣
∣
f (x)−

k

∑
n=0

|an(x− a)n|
∣
∣
∣
∣
∣
≤

∞

∑
n=k+1

|an(x− a)n| ≤
∞

∑
n=k+1

|anrn|.
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The last expression is independent of x and tends to 0 as k tends to infinity. There-
fore, f is the uniform limit of its partial sums, which are continuous, on |x−a| ≤ r.
According to Theorem 2.11, f is continuous on [a− r,a+ r].

Since every point of (a−R,a+R) is contained in such a closed interval, f is
continuous on (a−R,a+R). ��

The radius of convergence, R, of a power series can often be found by the ratio
test. If that fails, there is another test, called the root test, which we describe in
Problem 2.67.

Example 2.36. To find the interval of convergence of
∞

∑
n=0

2n(x− 3)n, we use the

ratio test:

lim
n→∞

∣
∣
∣
∣
2n+1(x− 3)n+1

2n(x− 3)n

∣
∣
∣
∣= lim

n→∞
2|x− 3|= 2|x− 3|.

When 2|x−3|< 1, the series converges absolutely. When 2|x−3|> 1, the series
diverges. What happens when 2|x− 3|= 1?

(a) At x = 2.5, 2(x− 3) =−1, and
∞

∑
n=0

2n(x− 3)n =
∞

∑
n=0

(−1)n diverges.

(b) At x = 3.5, 2(x− 3) = 1, and
∞

∑
n=0

2n(x− 3)n =
∞

∑
n=0

1n diverges.

Conclusion: f (x) =
∞

∑
n=0

2n(x− 3)n converges for all x with 2|x− 3| < 1, i.e., in

(2.5,3.5). Also, according to Theorem 2.14, the series converges uniformly to f

on every closed interval |x− 3| ≤ r <
1
2

, and f is continuous on (2.5,3.5).

Example 2.37. To find the interval of convergence of
∞

∑
n=0

xn

n!
, we use the ratio test:

lim
n→∞

∣
∣
∣
∣
∣
∣

xn+1

(n+1)!
xn

n!

∣
∣
∣
∣
∣
∣
= lim

n→∞

|x|
n+ 1

= 0 < 1.

Since 0 < 1 for all x, the series converges for all x. It converges uniformly on

every closed interval |x− 0| ≤ r. So f (x) =
∞

∑
n=0

xn

n!
is continuous on (−∞,∞).

In Chap. 4, we will see that this power series converges to a function that we
know by another rule.

2.6c Approximating the Functions
√

x and ex

We close this section by looking at three examples of sequences of functions { fn}
that are not power series that converge uniformly to the important functions

√
x,

|x|, and ex. In the case of ex, we use the sequence of continuous functions en(x) =(
1+

x
n

)n
, and thus we prove that ex is a continuous function.
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Approximating
√

x. In Sect. 1.3a, we constructed a sequence of approximations
s1,s2,s3, . . . that converged to the square root of 2. There is nothing special about
the number 2. The same construction can be used to generate a sequence of numbers
that tends to the square root of any positive number x. Here is how:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2

x

s_0(x)

s_1(x)
s_4(x)

Fig. 2.40 The functions sn(x) converge to
√

x. The cases 0 ≤ n ≤ 4 are shown. Note that
√

x is not
plotted

Suppose s is an approximation to the square root of x. To find a better approxi-

mation, we note that the product of s and
x
s

is x. If s happens to be larger than
x
s

,

then s2 > s
x
s
= x >

(x
s

)2
, so s >

√
x >

x
s

, that is, the square root of x lies between

these two. A similar argument shows that
x
s
>

√
x > s if s happens to be less than

x
s

. So we take as the next approximation the arithmetic mean of the two:

new approximation =
1
2

(
s+

x
s

)
.

Rather than start with an arbitrary first approximation, we start with s0 = 1 and
construct a sequence of approximations s1, s2, . . . as follows:

sn+1 =
1
2

(

sn +
x
sn

)

.

The approximations sn depend on the number x whose square root we seek; in other
words, sn is a function of x. How much does sn+1 differ from

√
x?

sn+1 −
√

x =
1
2

(

sn +
x
sn

)

−√
x.
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We bring the fractions on the right to a common denominator:

sn+1 −
√

x =
1

2sn
(s2

n + x− 2sn
√

x). (2.12)

The expression in parentheses on the right is a perfect square, (sn −√
x)2. So we

can rewrite Eq. (2.12) as

sn+1 −
√

x =
1

2sn
(sn −

√
x)2, (n ≥ 0). (2.13)

This formula implies that sn+1 is greater than
√

x except when sn =
√

x.
Since the denominator sn on the right in Eq. (2.13) is greater than sn −√

x, we
deduce that

sn+1 −
√

x <
1
2
(sn −

√
x).

Applying this inequality n times, we get

sn+1 −
√

x <
1
2n (s1 −

√
x) =

(
1
2

)n(1+ x
2

−√
x

)

. (2.14)

Note that in Eq. (2.14), the factor
1+ x

2
−√

x is less than
1+ c

2
whenever x ≤ c.

Therefore, inequality (2.14) implies

sn+1(x)−
√

x ≤ 1+ c
2n .

It follows that the sequence of functions sn(x) converges uniformly to the function√
x over every finite interval [0,c] of the positive axis (Fig. 2.40). The rate of con-

vergence is even faster than what we have proved here, as we discuss in Sect. 5.3c.

Example 2.38. We show how to approximate f (x) = |x| by a sequence of rational
functions. Let fn(x) = sn(x2), where sn is the sequence of functions derived in
the preceding example that converge to

√
x. The sn(x) converge uniformly to

√
x,

and x2 is continuous on every closed interval. By Theorem 2.12, sn(x2) converges
uniformly to

√
x2 = |x|.

We indicate in Fig. 2.41 the graphs of s2(x2), s3(x2), and s5(x2), which are ratio-
nal approximations to |x|.
Approximating ex. Take the functions en(x) =

(
1+

x
n

)n
. We shall show, with your

help, that they converge uniformly to the function ex over every finite interval [−c,c]
(Fig. 2.42).
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 1

 1 0

Fig. 2.41 Rational approximations of |x| in Example 2.38

 0

 0.5

 1

 1.5

 2

 2.5

-1 -0.5  0  0.5  1

x

ex

e4(x)

e16 (x)

Fig. 2.42 The exponential function ex and the functions en(x) =
(
1+ x

n

)n
for n = 4 and n = 16 are

graphed on the interval [−1,1]

Let us return to Sect. 1.4. There, we showed that the sequence of numbers

en =

(

1+
1
n

)n

is increasing and bounded, and therefore, by the monotone con-

vergence theorem, it has a limit, a number that we have denoted by e.
We can show by similar arguments (see Problems 2.73 and 2.74) that for every

positive x, the sequence of numbers en(x) is increasing and bounded, whence by
the monotone convergence theorem, it converges pointwise to a number e(x) that
depends on x. Note that en(1) = en, so e(1) = e.

It remains to show that the limit function e(x) is the exponential function ex, and
that convergence is uniform over every finite interval. To do this, we first show that
e(x) = ex when x is rational. We do this by showing that

e(r+ s) = e(r)e(s)

for every pair of positive rational numbers r and s. We know from Sect. 2.5c that
this relation implies that e(x) is an exponential function for rational numbers.
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Let r and s be any positive rational numbers. We can find a common denominator
d such that

r =
p
d
, s =

q
d

and p, q, and d are positive whole numbers. By manipulating r+ s algebraically, we
obtain

e(r+ s) = e
( p

d
+

q
d

)
= e
(1

d
(p+ q)

)
.

We claim that

e(kx) =
(
e(x)

)k
(2.15)

for positive integers k. Here is a proof of the claim. Since
(

1+
x
n

)n
converges to

e(x), for every positive integer k,

(

1+
kx
n

)n

converges to e(kx). Set n = km; we get

that

(

1+
kx
km

)km

=
(

1+
x
m

)mk
tends to e(x)k. This proves Eq. (2.15).

Set x = 1/d and k = p+ q in Eq. (2.15). We get

e
(1

d
(p+ q)

)
=
(

e
(1

d

))p+q
=
(

e
(1

d

))p(
e
(1

d

))q
= e
( p

d

)
e
(q

d

)
= e(r)e(s).

This concludes the proof that e(x) is an exponential function ax for x rational. Since
e(1) = e, it follows that e(x) = ex.

We turn now to showing that en(x) converges uniformly to e(x) on every finite
interval [−c,c]. Our proof that the sequence en(x) converges for every x as n tends
to infinity used the monotone convergence theorem. Unfortunately, this gives no
information as to how fast these sequences converge, and therefore it is useless in
proving the uniformity of convergence. We will show that

if − c ≤ x ≤ c, then e(x)− en(x)<
k
n
,

for some constant k that depends on c. This is sufficient to prove the uniform con-
vergence.

We make use of the following inequality:

an − bn < (a− b)nan if 1 < b < a. (2.16)

First we prove the inequality: We start from the observation that for all a and b,

an − bn = (a− b)(an−1+ an−2b+ an−3b2 + · · ·+ bn−1),

which we see by carrying out the multiplication on the right-hand side. Then in
the case 0 < b < a, we have for each power that bk < ak, so in the factor (an−1 +
an−2b+an−3b2 + · · ·+bn−1), there are n terms each less than an−1. This proves that
an−bn < (a−b)nan−1. In the case 1 < a, we may append one more factor of a, and
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this proves the inequality. We will use this inequality twice in two different ways to
show uniform convergence.

Since en(x) is an increasing sequence,

e(x)≥
(

1+
x
n

)n
.

Take the nth root of this inequality and use Eq. (2.15) with k = n to express the nth
root of e(x). We get

e
( x

n

)
=
(
e(x)

) 1
n ≥ 1+

x
n
≥ 1.

The first use of inequality (2.16) will be to show that for n > x,

e
( x

n

)
<

1
1− x

n

. (2.17)

Set a = 1+
x
n

and b = 1 in Eq. (2.16). We get

an − bn = en(x)− 1 < (a− b)nan =
x
n

n
(

1+
x
n

)n
= xen(x).

Letting n tend to infinity, we get in the limit e(x)− 1 < xe(x), or (1− x)e(x) < 1.

Thus if x < 1, then 1− x is positive, and we get e(x) <
1

1− x
. But if n > x, then

x
n
< 1, whence e

( x
n

)
<

1
1− x

n

. This proves Eq. (2.17).

For the second use of inequality (2.16), set a = e
( x

n

)
and b = 1+

x
n

. We get

e(x)− en(x) =
(

e(
x
n
)
)n −

(
1+

x
n

)n
= an − bn ≤ (a− b)nan

=
(

e
( x

n

)
−
(

1+
x
n

))
n
(

e(
x
n
)
)n

=
(

e
( x

n

)
−
(

1+
x
n

))
ne(x). (2.18)

Combining the two results, set Eq. (2.17) into the right side of Eq. (2.18) to get

e(x)− en(x)<

(
1

1− x
n

−
(

1+
x
n

))

ne(x) =

(
x2

n2

1− x
n

)

ne(x). (2.19)

So for n greater than x,

e(x)− en(x)≤ 1
n

x2e(x)
1− x

n

. (2.20)

For n > 2x, the denominator on the right in Eq. (2.20) is greater than 1
2 , so

e(x)− en(x)<
1
n

2e(x)x2 <
2
n

e(c)c2
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for every x in [−c,c]. This shows that as n tends to infinity, en(x) tends to e(x)
uniformly on every finite x-interval. This concludes the proof. ��

Example 2.39. We know that gn(x) =
(

1+
x
n

)n
converges uniformly to ex for x

in any interval [a,b]. By Theorem 2.12, then,

(a)

(

1+
x2

n

)n

= gn(x
2) converges uniformly to ex2

;

(b)
(

1− x
n

)n
= gn(−x) converges uniformly to e−x;

(c) log(gn(x)) = n log
(

1+
x
n

)
converges uniformly to log(ex) = x.

Problems

2.59. Use the identity 1+ x+ x2 + x3 + x4 =
1− x5

1− x
to estimate the accuracy of the

approximation

1+ x+ x2+ x3 + x4 ≈ 1
1− x

on − 1
2 ≤ x ≤ 1

2 .

2.60. In this problem, we explore another geometric meaning for geometric series.
Refer to Fig. 2.43, where a line is drawn from the top point of the unit circle through
the point (x,y) in the first quadrant of the circle. The point z where the line hits the
axis is called the stereographic projection of the point (x,y). The shaded triangles
are all similar. Justify the following statements.

(a) z =
x

1− y
.

(b) The height of the nth triangle is y times the height of the (n− 1)st triangle.

(c) z is the sum of the series z = x+ xy+ xy2+ xy3 + · · ·= x
1− y

.

2.61. We gave an outline of the proof of part (a) of Theorem 2.12. Let us fill in the
details.

(a) Explain why
∣
∣ f (x)+ g(x)− ( fn(x)+ gn(x)

)∣
∣≤ | f (x)− fn(x)|+ |g(x)− gn(x)|

for all x.
(b) Explain why given any tolerance ε > 0, there is an N1 such that | f (x)− fn(x)|<

ε
2 for all x when n > N1, and why there is an N2 such that |g(x)−gn(x)|< ε

2 for
all x when n > N2.
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x

(0,1) (x,y) (x+xy,y  )

z

2

Fig. 2.43 Stereographic projection is the sum of a geometric series

(c) Explain why given any tolerance ε > 0, there is a number N such that

| f (x)− fn(x)|+ |g(x)− gn(x)|< ε

for all x whenever n > N.
(d) Explain why given any tolerance ε > 0, there is a number N such that

∣
∣ f (x)+ g(x)− ( fn(x)+ gn(x)

)∣
∣< ε

for all x whenever n > N.
(e) Explain why fn + gn converges uniformly to f + g.

2.62. Use Theorem 2.12 to find an interval a ≤ t ≤ b on which the convergence

1+ e−t + e−2t + e−3t + · · ·= 1
1− e−t

is uniform.

2.63. A power series f (x) =
∞

∑
n=0

an(x− 2)n is known to converge at x = 4. At what

other values of x must it converge? Find the largest open interval on which we can
be sure that f is continuous.

2.64. For each pair of series, which one has the larger radius of convergence? In two
cases, they have the same radius.

(a)
∞

∑
n=0

xn or
∞

∑
n=0

3nxn

(b)
∞

∑
n=0

xn or
∞

∑
n=0

xn

n!

(c)
∞

∑
n=0

n(x− 2)n or
∞

∑
n=0

(x− 3)n

(d) 1+ x+
x2

2!
+

x3

3!
+

x4

4!
+ · · · or

x3

3!
+

x4

4!
+

x5

5!
+ · · ·



2.6 Sequences of Functions and Their Limits 115

2.65. Fill in the missing step that we have indicated in the proof of Theorem 2.13.

2.66. Which of these series represent a continuous function on (at least) [−1,1]?

(a)
∞

∑
n=0

xn

(b)
∞

∑
n=0

(
1

10

)n

xn

(c)
∞

∑
n=0

(
1

10

)n

(x− 2)n

(d) 1+ x+
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

2.67. Consider a power series
∞

∑
n=0

anxn. Suppose the limit L = lim
n→∞

|an|1/n exists and

is positive. Justify the following steps, which prove that 1/L is the radius of conver-
gence of the series. This is the root test.

(a) Let
∞

∑
n=0

pn be a series of positive numbers for which lim
n→∞

p1/n
n = � exists and

� < 1. Show that there is a number r, 0 < � < r < 1, such that for N large

enough, pn < rn, n > N. Conclude that
∞

∑
n=0

pn converges.

(b) Let
∞

∑
n=0

pn be a series of positive numbers for which lim
n→∞

p1/n
n = � exists and

� > 1. Show that there is a number r, 1 < r < �, such that for N large enough,

pn > rn, n > N. Conclude that
∞

∑
n=0

pn diverges.

(c) Taking pn = |anxn| for different choices of x, show that 1/L is the radius of

convergence of
∞

∑
n=0

anxn.

2.68. Suppose {pn} is a positive sequence whose partial sums p1 + · · ·+ pn are less
than nL for some number L. Use the root test (Problem 2.67) to show that the series

∞

∑
n=1

(p1 p2 p3 · · · pn)x
n converges in |x|< 1/L.

2.69. Suppose the root test (Problem 2.67) indicates that a series
∞

∑
n=0

anxn has radius

of convergence R. Show that according to the root test,
∞

∑
n=0

nanxn also has radius of

convergence R. (See Problem 1.53.)

2.70. For each of the following series, determine (i) the values of x for which the
series converges; (ii) the largest open interval on which the sum is continuous.



116 2 Functions and Continuity

(a)
∞

∑
n=0

xn

2n

(b)
∞

∑
n=0

(x− 3)2n

(2n)!

(c)
∞

∑
n=0

√
nxn

(d)
∞

∑
n=0

(
xn

2n +
√

nxn
)

(e)
∞

∑
n=1

2n + 7n

3n + 5n xn

2.71. For some of the following series it is possible to give an algebraic formula for
the function to which the series converges. In those cases, give such a formula, and
state the domain of the function where possible.

(a) 1− t2+ t4 − t6 + · · ·
(b)

∞

∑
n=3

xn Note the 3.

(c)
∞

∑
n=0

√
nxn

(d)
∞

∑
n=0

(
tn

2n + 3nt2n
)

2.72. Our sequence of functions sn(x) approximating
√

x was defined recursively.
Write explicit expressions for s2(x) and s3(x), and verify that they are rational
functions.

2.73. Use the method explained in Sect. 1.4 to show that for each x> 0, the sequence

en(x) =
(

1+
x
n

)n
is increasing.

2.74. Show that for each x > 0, the sequence {en(x)} is bounded. Hint: For x < 2,

en(x)<

(

1+
2
n

)n

. Set n = 2m to conclude that em(x)< e2.

2.75. Find a sequence of functions that converges to e−x on every interval [a,b] by

composing the sequence en(x) =
(

1+
x
n

)n
with a continuous function.
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