Chapter 2

Artificial Neural Network Excellence
to Facilitate Lean Thinking Adoption
in Healthcare Contexts

Fatemeh Hoda Moghimi and Nilmini Wickramasinghe

Abstract Over the years, healthcare organisations have improved their processes,
services, and outcomes significantly. However, with the increasing importance
placed on value making, healthcare organisations too often are struggling to demon-
strate best performance and/or appropriate and sustained quality of care. Hence,
in this chapter we explore the benefits of using artificial neural network (ANN)
techniques to identify lost value for the healthcare organisations and to facilitate
Lean thinking adoption.
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2.1 Background

The key concept in Lean thinking is “value” (Joosten et al. 2009). Value has different
connotations in each organisational context. However, Womack and Jones (2003)
provide a comprehensive and general definition of value which is defined as “the
capability to deliver exactly the (customised) product or service a customer wants
with minimal time between the moment the customer asks for that product or service
and the actual delivery at an appropriate price” (Womack and Jones 2003, p. 23).
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Although quality and safety are significant values of healthcare delivery, there are
lots of hidden layers across them which should be discovered and developed to
improve efficiency of care.

On the other hand, widespread use of medical information systems and the
explosive growth of medical databases require traditional manual data analysis to be
coupled with methods for efficient computer-assisted analysis (Lavra¢ 1999).

Therefore, taking these two issues into consideration, artificial intelligence
techniques and intelligent systems have found many valuable applications to
assist in this regard (Teodorrescu et al. 1998). Specifically, neural networks have
been found to be very useful in many biomedical areas, to help with the diagnosis
of diseases and studying the pathological conditions, and also for monitoring the
progress of various treatment outcomes. Also, Shi et al. (2004) state that artificial
neural networks (ANNs) are powerful tools to model the non-linear cause-and-effect
relationships inherent in complex processes, usually for quality control
(Shi et al. 2004).

ANNSs are computational paradigms based on mathematical models that unlike
traditional computing have a structure and operation that resembles that of the
mammal brain (Margarita 2002). An artificial network performs in two different
modes, learning (or training) and testing. During learning, a set of examples is pre-
sented to the network. At the beginning of the training process, the network
“guesses” the output for each example. However, as training goes on, the network
modifies internally until it reaches a stable stage at which time the provided outputs
are satisfactory. Learning is simply an adaptive process during which the weights
associated to all the interconnected neurons change in order to provide the best pos-
sible response to all the observed stimuli. Neural networks can learn in two ways,
supervised or unsupervised (Beg et al. 2006):

* Supervised learning: The network is trained using a set of input—output pairs.
The goal is to “teach” the network to identify the given input with the desired
output. For each example in the training set, the network receives an input and
produces an actual output. After each trial, the network compares the actual with
the desired output and corrects any difference by slightly adjusting all the weights
in the network until the output produced is similar enough to the desired output,
or the network cannot improve its performance any further (Margarita 2002).

e Unsupervised learning: The network is trained using input signals only. In
response, the network organises internally to produce outputs that are consistent
with a particular stimulus or group of similar stimuli. Inputs form clusters in the
input space, where each cluster represents a set of elements of the real world with
some common features (Margarita 2002).

In both cases, once the network has reached the desired performance, the learn-
ing stage is over and the associated weights are frozen. The final state of the network
is preserved and it can be used to classify new, previously unseen inputs. At the
testing stage, the network receives an input signal and processes it to produce an
output. If the network has correctly learnt, it should be able to generalise, and the
actual output produced by the network should be almost as good as the ones pro-
duced in the learning stage for similar inputs.
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Fig. 2.1 A multilayered Input Layer Hidden Layer Output Layer
feedforward network.
Adapted from (Margarita
2002)
>

Flow of Information

Neural networks are typically arranged in layers. Each layer in a layered network
is an array of processing elements or neurons. A common example of such a net-
work is the multilayer perceptron (MLP) (Fig. 2.1). MLP networks normally have
three layers of processing elements with only one hidden layer, but there is no
restriction on the number of hidden layers (Margarita 2002).

2.2 Neural Networks in Healthcare Contexts

Neural networks have been applied within the medical domain for clinical diagnosis
(Baxt 1995), image analysis and interpretation (Miller et al. 1992; Miller, 1993),
signal analysis and interpretation, and drug development (Weinstein et al. 1992a, b).
The classification of the applications is presented below (Table 2.1).

2.3 The Case Study Analysis

This recent case presents an example of how ANNs can be applied in healthcare
contexts. This case is presented from the research study conducted by Takehira et al.
(2011). The aim of this study was to investigate the difference between the profes-
sional perspectives of pharmacists and nurses in Japan with regard to evaluation of
the quality of life (QOL) of cancer patients. It is therefore a suitable case from
which to develop an initial assessment of key concepts of ANNs and map them in
order to present how ANNSs can facilitate applying a Lean thinking approach to
increase quality of care. Thus, the assessment criteria are set up based on Lean
thinking key components.
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Project Title: Artificial Neural Network Modelling of Quality of Life of
Cancer Patients, Relationships Between Quality of Life Assessments, as
Evaluated by Patients, Pharmacists, and Nurses (Takehira et al. 2011)"

Methods: A group of cancer hospital inpatients (n=15) were asked to rate the
condition of their health and their QOL by filling in a questionnaire. On the
same day, a group of pharmacists (n=8) and nurses (n=18) also evaluated
patient QOL. Three-layered ANN architecture was used to model the rela-
tionship between the different QOL evaluations made by patients, pharma-
cists, and nurses.

Results: Although there was no statistical difference between the QOL
scores obtained from pharmacists and nurses, the correlation between these
scores was weak (0.1188). These results suggest that pharmacists and nurses
evaluate the QOL of their patients from different perspectives, based on their
respective profession. QOL parameters were modelled with an ANN using
the scores, given by patients in answer to questions regarding health-related
QOL as input variables. Both the predictive performance of the ANN and the
robustness of the optimised model were acceptable. The response surfaces
calculated by ANN modelling showed that pharmacists and nurses evaluate
patient’s QOL using different information and reasoning, which is likely
related to the nature of their contact with the patients.

Project Design and Outcomes

Patients: A group of cancer patients (n=18) hospitalised in Nippon Medical
University Hospital (Sendagi, Tokyo, Japan) were initially included in this
study. All patients took opioid analgesics for pain control, and a pain control
team, organised by physicians, pharmacists, and nurses, provided appropriate
inhospital care. Patients were excluded if they began chemotherapy during the
study period or if they did not complete the questionnaire, owing to the sever-
ity of their illness. Thus, 15 patients (eight females and seven males, age
64.7+7.2 years, mean +SD) were enrolled in the study and gave written con-
sent to answer the study questions. A questionnaire was designed to assess the
HRQOL of patients referring SF36, Functional Living Index Cancer (FLIC),
and Functional Assessment of Cancer Therapy, General (FACT-G); it con-
sisted of four important domains, EWB, FWB, SWB, and PWB. The number
of questions included was limited to 18 in order to avoid unnecessary burden
on the patients, in accordance with the suggestion of a local research commit-
tee. Patient health-related status and subjective QOL were collected by phar-
macists in the form of a bedside interview and data collection was conducted
four times every week, using a questionnaire. Time required to fill the ques-
tionnaire by interviewing was about 5—10 min.

!'This case study & its results is extracted exactly from (Takehira et al. 2011) research study
to present how exactly Artificial Neural Network can be apply in healthcare contexts.

(continued)
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(continued)

Pharmacists and nurses: Pharmacists (n=8) and nurses (n=18) provid-
ing patient care in a pain control team were involved in this study. Details
regarding the amount of professional experience are possessed by the par-
ticipating pharmacists and nurses. Pharmacists evaluated patient QOL when
interviewing patients using the questionnaire. Nurses evaluated patient QOL
on the same day as the patient answered the questionnaire. Patient QOL was
evaluated on a simple scale ranging from 1 (very bad) to 5 (very good),
rather than in a structured manner. The intended number of the answers in
the research was 60 (each of 15 patients would answer 4 times). However,
some patients, pharmacists, and nurses did not complete the questionnaires,
so a number of paired (patient, pharmacist, and nurse) forms (n=40) were
used in the analysis. Table 2.2 shows the items of the questionnaires which
were selected to be used for the SEM and mean values of their score, as well
as the mean QOL scores given by patients, pharmacists, and nurses. The
study design and questionnaires were reviewed by a local research commit-
tee. The background of the patients and details of the questionnaires they
were given are described in our previous study.

ANN
A three-layered ANN architecture was used and optimisation of the weights
between neurons to match the evaluated QOLs with those that were predicted
was carried out using a second-order, conjugate, gradient descent algorithm.
In this algorithm, a search is performed along conjugated directions, which
generally produce faster convergence compared with a backpropagation of
the error algorithm. Scores obtained from patients are shown in Table 2.2 and
were used for input data (independent parameters). These eight questions
were from the initial 18 questions and sufficed to perform exploratory factor
analysis. The subjective patient QOL scores and QOL evaluations made by
pharmacists and nurses were used for output data (dependent parameters).
The determination of the number of neurons in the hidden layer will be
described subsequently. The optimised ANN model had initial value depen-
dence, so at least ten runs were performed using reinitialised weights between
neurons, after which the model with the best fit between observations and
predictions from the training data was adopted as the optimised ANN model.
Statistica 06J, featuring a neural networks module, was used for ANN cal-
culation. A sigmoid function was adopted for activation function of the hid-
den layer. Robustness of optimised ANN was investigated with leave-one-out
cross-validation. The procedure is as follows: The data obtained from one
patient was removed from the data set and the data from the remaining patient
were used as the training data set. The ANN was optimised using the training
data set, and then the outcome of the excluded patient was predicted by the
optimised ANN model.

(continued)
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Table 2.2 Prediction performance of QOL by ANN modelling

QOL evaluated QOL by evaluated QOL evaluated
by patients pharmacists by nurses
QOL score Answered Predicted? Answered Predicted”? Answered Predicted®
5 0 0 1 1 2 1
4 5 5 15 15 11 11
3 13 13 9 9 20 19
2 19 19 15 15 4 4
1 3 3 0 0 3 3
Performance® 100.0 100.0 95.0

“Number of correct scores predicted
“Performance is the rate of correct scores predicted (%)

Table 2.3 Robustness of optimised ANN evaluated by leave-one-out cross-validation

QOL evaluated QOL evaluated QOL evaluated

by patients by pharmacists by nurses

Answered Predicted”? Answered Predicted”? Answered Predicted?
5 0 0 1 0 2 0
4 5 4 15 8 11 8
3 13 8 9 3 20 12
2 19 13 15 13 4 1
1 3 1 0 0 3 1
Performance® 65.0 60.0 55.0

“Number of correct scores predicted
Performance is the rate of correct scores predicted (%)

Results

QOL was evaluated by patients, pharmacists, and nurses. As shown in
Table 2.2, the subjective QOL scores given by patients were significantly
lower than those given by both pharmacists and nurses, and the latter did not
show statistical difference (p=0.7649 by Wilcoxon signed-rank test). At least
to compare among QOL scores given by patients, pharmacists, and nurses,
pharmacists and nurses may have a tendency to underestimate the condition
of the patients. Table 2.3 shows the Spearman’s correlation coefficient
between the QOL scores given by patients, pharmacists, and nurses. The cor-
relation between patient and pharmacist scores was moderate (r=0.4481),
and the correlation between the scores of patients and nurses was very weak
to negligible(r=0.1187). The correlation between those QOL scores given by
pharmacists and those given by nurses was also very weak to negligible
(r=0.1188). It has been suggested that doctors would underestimate the num-
ber of symptoms experienced by cancer patients. However, Sneeuw et al.

(continued)
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(continued)

reported that healthcare providers tend to assess patients as having more
symptoms than did the patients themselves. Some other studies have reported
that healthcare providers are likely to underestimate the physical symptoms of
patients. Their results show that pharmacists and nurses seem to have the
same tendency as doctors to underestimate the condition of health of patients.
Furthermore, although there were no statistically differences in QOL as eval-
uated by pharmacists and nurses (p=0.7649), the correlation between them
was very weak to negligible (r=0.1188). These results suggest that pharma-
cists and nurses evaluate the QOL of their patients from different perspec-
tives, based on their respective profession.

ANN model for QOL of patients. They had previously reported that the
QOL of cancer patients was modelled well with a score of eight answers
(Table 2.2) in the questionnaire, using SEM. As described, pharmacists and
nurses evaluate the QOL of their patients from different professional perspec-
tives. We used an ANN to investigate the difference in perspectives between
pharmacists and nurses with regard to evaluation of QOL using. As ANN
architecture, we used a three-layer perceptron, an input layer comprises eight
processing elements (the scores obtained from the answers to the questions),
a hidden layer comprises processing elements with a sigmoid function as an
activation function, and an output layer comprises the QOL scores obtained
from patients, pharmacists, and nurses. The network diagram that was used in
the present investigation is shown in Fig. 2.1. The neurons in the hidden and
output layers work to calculate the sum of products of values of previous lay-
ers and the weight between connections. The neurons then transfer a value to
neurons in the next layer according to an activation function. All weights
among neurons were optimised to minimise differences between observed
and modelled QOLs.

Figure 2.1 shows the effect on prediction performance of QOL of the num-
ber of neurons in the hidden layer, using the ANN model. The best fit was
obtained when more than 11 neurons were arranged in the hidden layer. In
order to avoid “over-fitting” a smaller number of neurons are preferable, so a
three-layered architecture with 11 neurons in the hidden layer was used for
modelling in this study.

Table 2.2 shows the prediction performance of QOL as evaluated by
patients, pharmacists, and nurses using the ANN model. In the final model,
subjective QOL, as assessed by patients, and the QOL scores given by phar-
macists were all successfully predicted, and only a few of the data obtained
from nurses were not predicted by the ANN model that was established.
These results suggest that the necessary information to predict how pharma-
cists would evaluate QOL is contained in the input data.

(continued)
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(continued)

The robustness of the ANN model was evaluated with the leave-one-out
cross-validation. Table 2.3 shows the prediction performance of QOL with
leave-one-out cross-validation. The rate of correct prediction was approxi-
mately 60 % for the QOL scores obtained from patients, pharmacists, and
nurses, which seems to indicate that the use of the ANN model to predict
QOL is not robust. However, only 2/40 patients, 5/40 pharmacists, and 6/40
nurses had differences between evaluated and predicted QOL that were
greater than 1 (results not shown). These results indicate that approximately
90 % of QOL data (from 107/120 individuals) could only be roughly, rather
than precisely, predicted by the ANN model. QOL is a broad concept, includ-
ing not only the condition of physical health, but also mental health, educa-
tion, and social belonging. The patients evaluated their QOL subjectively,
based not only on the condition of their own health, but also on their concept
of values. We argue that pharmacists and nurses scored patients QOL primar-
ily based on the condition of health of each patient, as assessed from their
professional perspective. Therefore, it would be very difficult to make a pre-
cise prediction of patient QOL score using data from health professionals.
Furthermore, each respective patient was not evaluated by a particular phar-
macist and nurse every time. This may have lead to individual differences in
the evaluation of QOL. If these were considered, a roughly predictive perfor-
mance of approximately 90 % by ANN would be acceptable.

The QOL of cancer patients was evaluated by the patients themselves and
by pharmacists and nurses on the same day. When QOL was self-evaluated by
the patients, the scores were different from the QOL scores obtained from
pharmacists and nurses. The correlation between QOL scores given by
patients and those given by pharmacists and nurses was low. Although the
QOL scores given by pharmacists and nurses were not different statistically,
the correlation coefficient between them was weak to negligible (r=0.1188).
These results suggest that pharmacists and nurses evaluate the QOL of their
patients from different perspectives, based on their respective profession. The
QOL scores were modelled using the scores regarding the HRQOL of patients
as input variables using an ANN with three-layer architecture. The predictive
performance given by ANN and the robustness of the model were acceptable.
Health professionals affect QOL scores as a result of the difference of the
profession-based perspectives they hold.

2.4 Discussion and Conclusions

Due to the complexity of processes and the importance of quality improvement in
the healthcare contexts, ANN techniques can play a significant role to discover
hidden knowledge and values through huge data sets. Indeed Lean thinking key



2 Artificial Neural Network Excellence to Facilitate Lean Thinking Adoption... 25

concepts and models can facilitate value making in the healthcare contexts;
however, ANN techniques can also be beneficial to facilitate value discovery.
Therefore, taking this into consideration, we propose that ANN techniques should
be incorporated to facilitate Lean thinking adoption especially for critical areas
within the healthcare domain.

For example, the optimised ANN model in the case study above showed the
“information flow” in the case of cancer patients by presenting the difference in
perspectives between the pharmacists and nurses in their evaluations of QOL.
“Flow” is a key concept in a Lean System (Black and Miller 2008) and “information
flow” is one of the seven essential improvement targets to the healthy operation of a
healthcare using Lean approach (Black and Miller 2008). Therefore, the presented
case study could clearly demonstrate how the ANNs can facilitate Lean thinking
adoption in healthcare contexts.

In conclusion, the power of ANNSs is considerable in care performance improve-
ment as well as Lean action plans. It is left to further studies to examine or even start
to prototype the other numerous benefits of ANNs, and thereby provide a more in-
depth analysis that will in turn serve to facilitate Lean thinking adoption in health-
care contexts.
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