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Abstract

Materials respond to external load by deforming and straining, and by
developing stresses. The internal stresses corresponding to a given set of strains
depend on the constitution of the material itself. For this reason, the rules that
permit calculation of internal stresses from known strains, or vice versa, are
called constitutive laws or constitutive equations. There are two equivalent
ways to describe the mathematical relationships between stresses and strains for
viscoelastic materials. One form uses integrals to define the constitutive
relations, while the other relates stresses and strains by means of differential
equations. Starting from Boltzmann’s superposition principle, this chapter
develops the integral form of the one-dimensional constitutive equations for
linearly viscoelastic materials. This is followed by a discussion of the principle
of fading memory, which helps to define the acceptable analytical forms of the
material property functions. It is then shown that the closed-cycle condition
(i.e., that the steady-state response of a non-aging viscoelastic material to a
periodic excitation be periodic) requires that the material property functions
depend only on the difference of their arguments. The chapter also examines the
relationships between the relaxation modulus and creep compliance functions
in the physical time domain as well as in Laplace-transformed space. Various
alternative forms of the integral constitutive equations often encountered in
practice are discussed as well.
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2.1 Introduction

Materials respond to external stimuli by deforming and straining, that is by
changing their shape or size, and by developing stresses. The internal stresses
corresponding to a given set of strains depend on the constitution of the material
itself. For this reason, the rules that permit calculation of internal stresses from
known strains, or vice versa, are called constitutive laws, or, constitutive equa-
tions—when such relationships are known in analytical form. The terms stress–
strain or strain–stress relations or equations, are widely used to emphasize that the
first variable is expressed in terms of the second.

There are two equivalent ways to describe the mathematical relationships
between stress and strain for linear viscoelastic materials. One way uses integrals
to define these relations, while the other relates stresses and strains through linear
ordinary differential equations. In this chapter, we develop the integral form of
constitutive equations, leaving for Chap. 3 the discussion of their differential
counterparts. All the developments are presented in great mathematical detail but
to motivate the proofs, some physical insight is also provided. The level of
mathematical detail used to present the subject matter and the exercises in this
chapter is intended to give the reader the confidence necessary to engage in
independent research, irrespective of the field of interest.

For clarity of presentation, only non-aging materials under isothermal condi-
tions are treated in this and subsequent chapters, until Chap. 6, where the
dependence of material properties on temperature is examined. All material
functions referred to here are thus presumed independent of age and available at
the constant temperature implied in the discussions. The dependence of material
property functions on temperature will be omitted but assumed understood.1

This chapter starts from Boltzmann’s superposition principle and develops the
integral form of the one-dimensional constitutive equations for a linearly visco-
elastic substance. This is followed by a discussion of the principle of fading
memory, which helps to define the acceptable forms of relaxation and compliance
functions. It is then shown that the closed-cycle condition (that the steady-state
response of a non-aging viscoelastic material to a periodic excitation be periodic)
requires that the material property functions depend only on the difference of their
arguments, and all transients die out. The chapter also examines various relation-
ships between the relaxation modulus and creep compliance functions, both in the
time domain and in Laplace-transformed space. Alternative forms of constitutive
equations often encountered in practice are also discussed. We conclude the chapter
with a discussion of how to evaluate the work done by external agents acting on a
linear viscoelastic material. This topic of great practical use, since, as shown in
Chap. 1, viscoelastic materials dissipate as heat, some of the energy that is put into
them, and hence polymeric materials are often used in industry to dissipate energy.

1 On this assumption, for instance, M(t) and C(t) will be used for M(t,T) and C(t,T), respectively.
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2.2 Boltzmann’s Superposition Principle

By definition [c.f. Chap. 1], the tensile relaxation modulus, M(t,T), at any time t,
and fixed temperature T describes how the stress varies with time under a step-
strain load. To fix ideas, imagine a one-dimensional bar of a linearly viscoelastic
material after it is subjected to a strain of magnitude eo; suddenly applied at the
start of an experiment and held constant thereafter. As seen in (Fig. 2.1), in
accordance with Eq. (1.3), the stress response, r tð Þ; of the bar to the applied step
strain would be given by:

r tð Þ ¼ 0; for t\0
M tð Þeo; for t� 0

�
ðaÞ

By the definition of the Heaviside step function H, that: H(t) = 0, for negative
values of its argument, while H(t) = 1, whenever its argument is zero or positive,
one can rewrite (a) in the form [c.f. Appendix A]:

r tð Þ ¼ M tð Þ � H tð Þeo ðbÞ

Now assume that exactly the same experiment as that described by (a) or (b)
were to be carried out using the same material but applying the loading t1 units of
time after ‘‘starting the clock.’’ Also assume that all loading2 and environmental
conditions would be the same in both cases. If the material did not age, all its
relevant property functions would be exactly the same in both experiments.

t

t

Fig. 2.1 Stress response to a
step strain applied at the time
the test clock is started

2 The terms ‘‘load’’ and ‘‘loading’’ are used in their broader sense to include tractions, or stresses,
as well as displacements, or strains. The exact meaning should be clear from the context in which
the term is used.
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Consequently, exactly the same response would be observed in the second
experiment as in the first, but with a time delay t1, as indicated in Fig. 2.2.

Similarly to (a) and (b), the stress response could now be expressed, respec-
tively, as follows:

r tð Þ ¼ 0; for � t\t1
M t � t1ð Þeo; for � t� t1�

�
ðcÞ

r tð Þ ¼ M t � t1ð ÞHðt � t1Þeo ðdÞ

It is an easy matter to extend these results to arbitrary load cases. As suggested
in Fig. 2.3, any piecewise continuous function of time may be approximated by a
series of step functions; with each subsequent step adding an incremental amount
to the previous step. Using (c), then, the response to the kth incremental step strain,
Dek, which is taken to occur at time tk+1, would be:

Drk tð Þ ¼ M t � tkð ÞDek; t� tk ðeÞ

tt1

tt1

Fig. 2.2 Stress response to a
step strain applied t1 units of
time after the test clock is
started

Δεk

tk-1 tk t

ε

Fig. 2.3 Approximation of a
continuous function as a finite
series of incremental step
functions
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According to Boltzmann’s principle, the response to each incremental load is
independent of those due to the other incremental loads, and the response to the
complete load history, as idealized through the series of incremental step-loads,
equals the sum of the individual responses:

r tð Þ �
XN

k¼1
Drk tð Þ ¼

XN

k¼1
M t � tkð ÞDek; t� tk ðfÞ

Dividing and multiplying the right-hand side of (f) by the time interval,
Dtk = tk - tk-1, between successive steps, and using the properties of the Heav-
iside step function, yields:

rðtÞ �
XN

k¼1

DrkðtÞ ¼
XN

k¼1

Mðt � tkÞ
Dek

Dtk
Dtk; t� tk ðgÞ

Passing to the limit as N increases without bound and the size of successive
intervals is made vanishingly small:

rðtÞ ¼ lim
lim N!1

XN

k¼1

DrkðtÞ ¼ lim
N!1
tk!s

XN

k¼1

Mðt � tkÞ
Dek

Dtk
Dtk; t� tk ðhÞ

Since this process turns the discrete set tk into a continuous spectrum, we use
the letter s to denote it and arrive at3 (see, for instance, [1]):

rðtÞ ¼
Z t

0þ

drðtÞ ¼
Z t

0þ

Mðt � sÞ d

os
eðsÞds ðiÞ

To allow the strain to have a step discontinuity at time t = 0+, we add (a) and
(i) and write:

rðtÞ ¼ MðtÞeð0þÞ þ
Z t

0þ

Mðt � sÞ d

os
eðsÞds ð2:1aÞ

The term M(t) e(0+) may be taken inside the integral, using that e(0-) : 0,
because:

Z0þ

0�

Mðt � sÞ d

os
eðsÞds ¼ MðtÞ

Z0þ

0�

d

ds
eðsÞds � MðtÞeð0þÞ

3 The notation x+ is used to signify a value of x that is just larger than x. Similarly, x- means a
value of x just less than x.
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Hence, (2.1a) may be alternatively expressed as:

rðtÞ ¼
Z t

0�

Mðt � sÞ d

os
eðsÞds ð2:1bÞ

Had we chosen the applied action to be a stress instead of strain history, entirely
similar arguments would have led to the strain–stress forms:

eðtÞ ¼ CðtÞrð0þÞ þ
Z t

0þ

Cðt � sÞ d

ds
rðsÞds ð2:2aÞ

eðtÞ ¼
Z t

0�

Cðt � sÞ d

ds
rðsÞds ð2:2bÞ

Equations in (2.1a, b) and (2.2a, b) show that the response of a viscoelastic
substance at any point in time depends not only on the value of the action at that
instant, but also on the integrated effect, or complete history of all past actions. In
other words, the response at the present instant inherits the effects of all past
actions. For this reason, viscoelastic materials are also frequently called hereditary
materials; and viscoelasticity, hereditary elasticity.

Example 2.1 The (one-dimensional) viscoelastic response to a constant strain-rate
loading, e (t) = R�t, may be expressed in the elastic form: r(t) = Eeff(t)�e (t).
Derive an expression for Eeff(t), the constant-rate effective modulus, for a visco-
elastic substance.

Solution:

Assume the relaxation modulus of the viscoelastic material to be M(t) and
compute its stress response with (2.1a), using that de (s)/ds = d(Rs)/ds = R, and
introducing the change of variables t - s = u, to arrive at:

rðtÞ ¼ MðtÞeð0þÞ þ R

Z t

0þ

Mðt � sÞds ¼ R

Z t

0

MðuÞdu

Multiplying and dividing this expression by t, recalling that e(t) = R � t, and re-
ordering:
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rðtÞ ¼ Rt
1
t

Z t

0

MðuÞdu � 1
t

Z t

0

MðuÞdu

2
4

3
5eðtÞ � Eeff ðtÞeðtÞ

With the obvious definition of the constant-rate effective modulus, Eeff:

Eeff ðtÞ �
1
t

Z t

0

MðuÞdu ð2:3Þ

This expression can be used to evaluate the stress response of a viscoelastic
material to constant strain-rate loading, by means of the elastic-like expression:
r(t) = Eeff(t) � e (t).

Had the roles of strain and stress been reversed, we would have employed (2.2a)
to derive the following definition of the constant-rate effective compliance:

Deff ðtÞ �
1
t

Z t

0

CðuÞdu ð2:4Þ

As before, this can be used to determine the strain at any specified time, of a
viscoelastic material subjected to constant-rate stress, using the elastic-like form:
e (t) = Deff(t) � r (t).

Example 2.2 Obtain the instantaneous response of a viscoelastic material with
relaxation modulus, M(t), to a general strain history e(t).

Solution:

We evaluate the stress response using expression (2.1a) at t = 0, to get:

r tð Þ ¼ M 0ð Þeð0þÞ � Mgeð0þÞ ð2:5Þ

In similar fashion, (2.1b) would yield the instantaneous strain response to an
arbitrary stress history r(t), as:

e tð Þ ¼ C 0ð Þrð0þÞ � Cgrð0þÞ ð2:6Þ

This example indicates that the instantaneous, impact, or glassy response of a
non-aging viscoelastic material is elastic, with operating properties equal to its
glassy modulus, or its glassy compliance, depending on whether strain or stress,
respectively, is the controlled variable.

Example 2.3 Obtain the equilibrium response of a viscoelastic substance with
relaxation modulus, M(t), to a general strain history e(t).
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Solution:

We evaluate the stress response using expression (2.1a) as t ? ?:

rð1Þ ¼ lim
t!1

Z t

0�

Mðt � sÞ de
ds

ds ¼ lim
t!1

Z0þ

0�

Mðt � sÞ de
ds

dsþ
Z t

0þ

Mðt � sÞ de
ds

ds

2
4

3
5

Noting that e(t) : 0, t \ 0:

rð1Þ ¼ Mð1Þeð0þÞ þMð1Þ lim
t!1

Z t

0þ

de
ds

ds

Or, after canceling like terms, since the integral evaluates to: e(?) - e(0), and
M(?) is the equilibrium modulus Me:

rð1Þ ¼ Meeð1Þ ð2:7Þ

By the same procedure, starting with (2.2a), it is found that the long-term strain
response to an arbitrary stress history, r(t), is given as:

eð1Þ ¼ Cerð1Þ ð2:8Þ

This example indicates that the long-term response of a non-aging viscoelastic
material is elastic, with operating properties equal to either its long-term or
equilibrium modulus, or its long-term or equilibrium compliance, depending on
whether strain or stress is the controlled variable.

2.3 Principle of Fading Memory

Loosely speaking, we say that a material has fading memory if the influence of an
action on its response becomes less important as time goes by. Accordingly, the
mathematical implications of the fading memory hypothesis—often called prin-
ciple—can be established by loading and unloading a viscoelastic system, and
monitoring its response after the load is removed. Before establishing the conse-
quences of the principle of fading memory on a rigorous basis, we develop them by
examining the response of a viscoelastic material to the relaxation and creep
experiments; with which we are already familiar. The results of these experiments
are the relaxation modulus and the creep compliance. As discussed in Chap. 1, the
general shapes of these functions are as shown in Fig. 2.4.
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The functional forms shown in the figure indicate that the fading memory
hypothesis should require that the relaxation modulus be a monotonically
decreasing function of time, with monotonically decreasing slope. In similar
fashion, the creep compliance should be a monotonically increasing function of
time, with monotonically decreasing slope. We now proceed with the rigorous
proofs of these statements. To do that, we will take the applied action to be a step
strain of magnitude eo, applied to a one-dimensional viscoelastic system starting at
time t = 0 and ending at time t = t*: e(t) = eo[H(t) - H(t - t*)].

Expression (2.1a) will be used to establish the corresponding response. Before
we proceed, we put (2.1a) in a form more suitable to our purposes, integrating it by
parts and writing the resulting derivative of the modulus in terms of the time
difference, t - s; thus:

rðtÞ ¼ Mð0ÞeðtÞ þ
Z t

0

oMðt � sÞ
oðt � sÞ eðsÞds ð2:9Þ

Inserting the step-strain load into this expression leads to the response after the
load is removed (t [ t*):

rðtÞ ¼ Mð0Þeo½HðtÞ � Hðt � t�Þ� þ
Zt�

0

oMðt � sÞ
oðt � sÞ ½HðsÞ � Hðs� t�Þ�eods; t [ t�

ðjÞ

By the definition of the Heaviside unit step function, the term inside the first set
of brackets is zero. The other term in the expression may be evaluated using the
mean-value theorem of integral calculus4 [c.f. Appendix A]:

rðtÞ ¼ t� � foMðt � kt�Þ
oðt � kt�Þ g½Hðkt�Þ � Hðkt� � t�Þ�eo; t [ t�; 0\k\1 ðkÞ

Relaxation modulus

t

M(t) C(t)

t

Creep Compliance

Fig. 2.4 Functional forms of
the stress relaxation modulus
and creep compliance of a
viscoelastic material used to
explain the fading memory
hypothesis

4 The mean value theorem of integral calculus states that
R b

a f ðxÞdx ¼ ðb� aÞf ½aþ k
ðb� aÞ�; 0\k\1:
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Since kt* \ t*, the second Heaviside step function inside the brackets vanishes, so
that:

rðtÞ ¼ t� � foMðt � kt�Þ
oðt � kt�Þ geo; t [ t�; 0\k\1 ðlÞ

For the influence of an action removed at t = t* to eventually disappear, so that
r ? 0, it is necessary that:

lim
t!1
foMðt � kt�Þ

oðt � kt�Þ g ¼ 0; 8t�\1; 0\k\1 ðmÞ

Or, equivalently:

lim
t!1
fo
ot

MðtÞg ¼ 0 ð2:10Þ

Otherwise, the material would retain permanent memory of the effect of the
applied load, and the process would induce irreversible changes.

As may be seen from (2.9), the derivative, qM(s)/qs, of the relaxation function
with respect to its argument acts as a weighting factor on the applied action, e. For
the effect of the action to be less and less pronounced with the passage of time, it is
necessary that the weighting factor be a monotonically decreasing function of its
argument. That is,

o

ot
MðtÞ

����
����
t¼t2

	 o

ot
MðtÞ

����
����
t¼t1

; t2 [ t1 ð2:11Þ

Also, as experimental evidence shows [c.f. Chap. 1]:

MðtÞj jt2 	 MðtÞj jt1 ; t2 [ t1 ð2:12Þ

In similar fashion, repeating the previous arguments with a step stress applied at
t = 0 and removed at t = t*, leads to the following requirements for the creep
compliance function:

lim
t!1
f o
ot

CðtÞg ¼ 0 ð2:13Þ

o

ot
CðtÞ

����
����
t¼t2

	 o

ot
CðtÞ

����
����
t¼t1

; t2 [ t1 ð2:14Þ

CðtÞj jt¼t2
� CðtÞj jt¼t1

; t2 [ t1 ð2:15Þ
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Geometrically, then, the fading memory hypothesis simply requires that the
relaxation modulus and creep compliance be monotonically decreasing and
increasing functions of their arguments, respectively, and also that the absolute
values of their slopes decrease monotonically. In addition, as indicated in Chap. 1,
experimental observations indicate that:
• The relaxation modulus decreases with observation time and is bounded by the

glassy modulus for fast processes and by the equilibrium modulus for very slow
processes.

• The creep compliance increases with observation time and is bounded by the
glassy and equilibrium compliances for very fast and slow processes,
respectively.
The fading memory principle embodied in (2.10)–(2.15), together with the

experimental observations, requires that the general forms of the relaxation and
creep compliance functions be as shown in Fig. 2.4.

Example 2.4 As an application of the fading memory principle, we evaluate the
stress responses of a viscoelastic material to two arbitrary loading programs,
e1(t) and e2(t), which reach the same constant value, e*, at time t* and remain at that
level from that point on, as indicated in Fig. 2.5.

Solution:

Use (2.1a) to evaluate the response as t ? ?, splitting the integration interval
from 0+ to t*, and t* to ?; and note that the derivatives of the strain histories
e1(t) and e1(t) vanish after t = t* to write:

r1ð1Þ ¼ Mð1Þe1ð0þÞ þ lim
t!1

Zt�

0þ

Mðt � sÞ de1

ds
ds ¼ Mð1Þe�

r2ð1Þ ¼ Mð1Þe2ð0þÞ þ lim
t!1

Zt�

0þ

Mðt � sÞ de2

ds
ds ¼ Mð1Þe�

ε 1( t ) ε 2( t ) 

t

ε

t*

ε *

Fig. 2.5 Example 2.4: Two
arbitrary loading histories
which become identical and
constant after a finite time
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Since the integrals evaluate to M(?)[e1(t*) - e1(0+)] and M(?)[e2(t*) -

e2(0+)], and also, e1(t*) = e2(t*) = e*, it follows that: r1ð1Þ ¼ r2ð1Þ ¼ Mð1Þ �
e�: Or, using the alternate notations for the long-term or equilibrium modulus
M(?) : M? : Me:

r 1ð Þ ¼ M1e� � Mee
� ð2:16Þ

Proceeding in an entirely similar fashion, but using (2.2a), one would find that
the long-term, equilibrium strain response to an arbitrary stress history, r(t) would
be given by:

e 1ð Þ ¼ C1r� � Cer
� ð2:17Þ

These expressions clearly show that a viscoelastic material would ‘‘remember’’
only that the loading got to e*—or r*, for that matter—but not how it got there.
That is, after sufficiently long, a viscoelastic material will have effectively for-
gotten the details of the loading history; in agreement with the principle of fading
memory.

2.4 Closed-Cycle Condition

This section examines the mathematical consequences of the physical expectation
stated in Chap. 1, that the response of a linear viscoelastic material to harmonic
loading ought to be harmonic, of the same frequency as the excitation, but out of
phase with it. This so-called closed-cycle condition, that: ‘‘the steady-state
response to harmonic loading also be harmonic,’’ is satisfied by materials that do
not age. That is, by materials whose property functions depend only on one
timescale: the time measured from when the load was first applied, irrespective of
the time elapsed since their manufacturing.

As will be shown in what follows, the closed-cycle condition requires that the
kernels of the constitutive integrals, M and C, depend only on the difference of
their arguments, and also, that all transients die out. In other words, the closed-
cycle condition requires that M t; sð Þ ¼ Mðt � sÞ; and C t; sð Þ ¼ Cðt � sÞ; as has
been assumed without proof in our derivations, so far. A physical proof of this
implication of the closed-cycle condition can be constructed rewriting (2.1a), say,
using M(t, s), in place of M(t - s), in order to remove the assumption made so far
in our derivations that the kernel of the constitutive equation depends only on the
difference of its arguments:

rðtÞ ¼ Mð0ÞeðtÞ �
Z t

0

o

os
Mðt; sÞf geðsÞds ðaÞ
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The first term in this expression is simply the instantaneous value of the stress
response. The second term, the hereditary component, is calculated as follows. In
the time interval between s and s ? ds of the past, the strain was e(s). Since the
material is assumed to be linear, its memory of this past action should be
proportional to the product e(s) and the duration of the action; that is: e(s) ds;
producing the stress: o

os Mðt; sÞ � e sð Þds: If the material does not age, its properties
must be independent of the time when the experiment starts. For this to be the case,
the kernel Mðt; sÞ can only be a function of the difference t - s. Clearly, the same
is true of the creep compliance. In particular, and for this reason, such kernels are
called difference kernels.

Proceeding now with the mathematical proof, we evaluate the stress response to
a periodic strain of period p : eðt þ pÞ ¼ eðtÞ, using (a):

rðt þ pÞ ¼ Mð0Þeðt þ pÞ �
Ztþp

0

o

os
Mðt þ p; sÞeðsÞds ðbÞ

Next, introduce the change of variable s = s0 ? p and use the stated periodicity of
the applied strain, p : eðt þ pÞ ¼ eðtÞ, to write:

r t þ pð Þ ¼ M 0ð Þe tð Þ �
Z t

�p

o

os0
M t þ p; s0 þ pð Þe s0ð Þds0

Splitting the interval of integration from -p to 0, and from 0 to t; and afterward
replacing the new variable of integration, s0 with the original symbol s, for sim-
plicity, get:

rðt þ pÞ ¼ Mð0ÞeðtÞ �
Z0

�p

o

os
Mðt þ p; sþ pÞeðsÞds�

Z t

0

o

os
Mðt þ p; sþ pÞeðsÞds

ðcÞ

Now, use that: rðtÞ ¼ Mð0ÞeðtÞ �
Rt
0

o
os Mðt; sÞeðsÞds; to cast (c) in the form:

rðt þ pÞ ¼ rðtÞ þ
Z t

0

o

os
Mðt; sÞ � o

os
Mðt þ p; sþ pÞ

� �
eðsÞds

�
Z0

�p

o

os
Mðt þ p; sþ pÞeðsÞds ðdÞ
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It then follows that, for the response to be periodic, that is, for r(t ? p) = r(t):

Z t

0

o

os
Mðt; sÞ � o

os
Mðt þ p; sþ pÞ

� �
eðsÞds ¼ 0; 8eðtÞ ðeÞ

Together with:

Z0

�p

o

os
Mðt þ p; sþ pÞeðsÞds ¼ 0 ðfÞ

Condition (e) implies that:

Mðt; sÞ �Mðt þ p; sþ pÞ ¼ 0 ðgÞ

Differentiating this expression with respect to p, and setting p = 0, afterward,
leads to5:

� o

oðt þ pÞMðt þ p; sþ pÞ
����
p¼0

� o

oðsþ pÞMðt þ p; sþ pÞ
����
p¼0

¼ 0 ðhÞ

The general solution of this equation is an arbitrary function of t - s, as is easily
verified by direct substitution. Consequently:

Mðt; sÞ ¼ Mðt � sÞ ð2:18Þ

According to the fading memory principle, condition (e) is met for arbitrary
excitations only in the limit as t ? ?, if the kernel |qM/qt | of the integral is
bounded, as indicated by relation (2.10). This means, additionally, that the lower
limit in the integral in (b) must be taken as -?; and that the approximation:

Z t

0

o

os
Mðt þ p; sþ pÞeðsÞds �

Z t

�1

o

os
Mðt þ p; sþ pÞeðsÞds ð2:19Þ

holds only for sufficiently long times. Otherwise, the response to a periodic
excitation, even of a non-aging material, will be non-periodic.

5 Here, use is made of the total derivative: d
dp f x; yð Þ ¼ o

ox f x; yð Þ dx
dpþ o

oy f x; yð Þ dy
dp :
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Summarizing: for the response of a viscoelastic material to a cyclic excitation
to also be periodic, its material property functions must depend on the difference
between current time and loading time.6 That is, the closed-cycle condition (that
the response to periodic excitation be periodic) can only be satisfied by non-aging
materials.

2.5 Relationship Between Modulus and Compliance

Expressions (2.1a, b) and (2.2a, b) relate stresses to strains, through the corre-
sponding relaxation modulus and creep compliance. This suggests that the two
expressions may be combined in some form to obtain the relationship between the
two property functions. Before we go into the mathematical details of this, we use
what we have learned already about these two material functions and compare
their forms side-by-side in Fig. 2.6.

As suggested by the figure, it is reasonable to expect that the values of C and
M at t = 0, as well as at sufficiently long times, might be reciprocals of each other.
Although one could argue that C (t) �M(t) & 1 elsewhere, the figure shows that, in
general, the creep compliance and the relaxation modulus are not reciprocals of
each other. As will be shown subsequently, the values of the relaxation modulus
and its creep compliance, for the extreme cases of glassy and equilibrium response
are indeed reciprocals of each other, as they would be for elastic solids. However,
unlike for elastic materials, the relaxation modulus is not the reciprocal of the
creep compliance.

A relationship between relaxation modulus and creep compliance may be
derived using (2.1b) to evaluate the stress response to a step-strain history e(t) = eo

H(t), together with the fact that dH(t)/dt = d(t) [c.f. Appendix A]; thus:

rðtÞ ¼
Z t

0�

Mðt � sÞeodðsÞds � MðtÞeo ðaÞ

M(t)

M ( t ) or C( t )

t

C(t)

Fig. 2.6 Side-by-side
comparison of relaxation
modulus and creep
compliance

6 Material property functions which depend on the difference between current and loading time
are known as ‘‘difference’’ kernels.
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Putting this result into (2.2b), taking eo outside the integral, and using that e(t) = eo

H(t):

eðtÞ ¼
Z t

0�

Cðt � sÞ d

ds
MðsÞds

2
4

3
5eo ¼ eoHðtÞ ðbÞ

Canceling out eo produces the first form of the relationship between a relaxation
modulus and its corresponding creep compliance:

Z t

0�

Cðt � sÞ d

ds
MðsÞds ¼ HðtÞ ð2:20Þ

Proceeding in the reverse order, applying a step stress r(t) = ro H(t), and then
calculating the corresponding strain response, the result would be:

Z t

0�

Mðt � sÞ d

ds
CðsÞds ¼ HðtÞ ð2:21Þ

As stated earlier, (2.20) and (2.21) show that, in general, the relaxation modulus
and creep compliance are not reciprocals of each other. Additional, practical
information can be gained by examining the behavior of these expressions as time
approaches 0 and ?; as well as by invoking the consequences of the fading
memory principle.

Before proceeding, we note that the integrals in (2.20) and (2.21) correspond to
a special class of integrals known as Stieltjes convolutions. Convolution integrals
are presented in the next section in the context of viscoelasticity and are fully
discussed in Appendix A. As shown in the Appendix, by the commutative property
of convolution integrals, Eqs. (2.20) and (2.21) are mathematically equivalent and
either one could have been derived from the other.

2.5.1 Elastic Relationships

The relationships between a relaxation modulus and its creep compliance, corre-
sponding to short and long term are obtained by taking the limit of either (2.20) or
(2.21), as t ? 0+ and t ? ?, respectively. To do that, (2.20) is rewritten by
splitting its integration interval into two intervals going from 0- to 0+, and 0+ to t:

Z0þ

0�

Cðt � sÞ d

ds
MðsÞdsþ

Z t

0þ

Cðt � sÞ d

ds
MðsÞds ¼ HðtÞ ðcÞ
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The relationship between the short-term property functions is developed by
letting t ? 0; noting that the first integral evaluates to M(0+)C(0+) and that the
second integral vanishes. Proceeding thus, and using the notation M(0+) = Mg, and
C(0+) = Cg, to denote glassy quantities, leads to:

Mg ¼ 1�
Cg

ð2:22Þ

In similar fashion, taking the limit of either (2.20) or (2.21) as t ? ?, and using
the notation M(?) = Me, and C(?) = Ce, to denote equilibrium properties:

Me ¼ 1=Ce
ð2:23Þ

It is left as an exercise for the reader to derive (2.23).
The last two expressions show that, as pointed out at the beginning of the

section, in the extreme cases of short-term (or glassy) and long-term (or equilib-
rium) response, a relaxation function and its compliance counterpart are indeed
reciprocals of each other, just as for elastic materials.

The monotonic nature of the modulus and compliance functions, stated in
(2.12) and (2.15), can be used to establish a relationship between them which also
shows that modulus and compliance are not, in general, simple inverses of each
other [2].

Indeed, using (2.21), say, with the facts that M(t) is a monotonically decreasing
function of its argument, so that M(t - s) C M(t), for all s C 0; and
M(t) = C(t) : 0, for t \ 0, there results:

HðtÞ ¼
Z t

0�

Mðt � sÞ o

os
CðsÞds�MðtÞ

Z t

0�

o

os
CðsÞ ¼ MðtÞCðtÞ ðdÞ

That is:

MðtÞCðtÞ	 1 ð2:24Þ

Which, as stated before, shows that in general: M(t) = 1/C(t).

2.5.2 Convolution Integral Relationships

The mathematical relationships listed in (2.20) and (2.21) are known as Stieltjes
convolution integrals [c.f. Appendix A]. Formally, the Stieltjes integral of two
functions, / and w, is defined as [3]:
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uðt � sÞ � dwðsÞ �
Z t

�1

uðt � sÞ d

ds
wðsÞds � u � dw ðeÞ

In which u(t) is assumed continuous in [0,?); w(t), vanishes at -?; and the form
on the far right is used when the argument, t, is understood.

In line with the mathematical structure of relaxation and compliance functions,
the further assumption is made that u and w vanish for all negative arguments,
which allows splitting the interval of integration from -? to 0-, and from 0- to t,
to write, more simply:

uðt � sÞ � dwðsÞ �
Z t

0�

uðt � sÞ d

ds
wðsÞds ðfÞ

Alternatively, integrating by parts:

uðt � sÞ � dwðsÞ � uðtÞwð0þÞ þ
Z t

0þ

uðt � sÞ d

ds
wðsÞds ðgÞ

As shown in Appendix A, under the stated restrictions on the functions
involved, the convolution integral is commutative, associative and distributive.
Thus, for any three well-behaved functions, f, g, and h:

f � g ¼ g � f

f � g � hð Þ ¼ f � gð Þ � h ¼ f � h � h ðhÞ

f � gþ hð Þ ¼ f � gþ f � h

Based on their definition, the convolution integral allows writing viscoelastic
constitutive equations in elastic-like fashion. Corresponding to (2.1a, b) or (2.2a, b),
for instance, we write:

r tð Þ ¼ M t � sð Þ � de sð Þ � M � de ð2:25Þ

e tð Þ ¼ C t � sð Þ � dr sð Þ � C � dr ð2:26Þ

Additionally, corresponding to (2.20) and (2.21), above:

C t � sð Þ � dM sð Þ � C � dM ¼ HðtÞ ð2:27Þ

M t � sð Þ � dC sð Þ � M � dC ¼ HðtÞ ð2:28Þ
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These expressions clearly show that the relaxation modulus and creep compliance
are, in general, not mere inverses, but convolution inverses of each other. In
addition, the viscoelastic relations in (2.25) and (2.26) look exactly like elastic
constitutive equations, if the operation of multiplication is replaced by that of
convolution. Using this fact, it is straightforward to write down the viscoelastic
constitutive counterparts of any given elastic constitutive equations. This is done
by simply replacing the elastic property of interest (modulus or compliance) with
the corresponding viscoelastic property, and ordinary multiplication with the
convolution operation between the material property function and the applied
action (strain or stress).

Example 2.5 Write the viscoelastic version of the three-dimensional constitutive
equations of a linear isotropic elastic solid which has its stress–strain equations split
into a spherical and a deviatoric part as follows7: rS ¼ 3KeS; rDij ¼ 2GeDij;
i; j ¼ 1; 3

Solution:

Although three-dimensional constitutive equations will be discussed at length in
Chap. 8, this exercise is meant to get the reader comfortable with writing the vis-
coelastic counterparts of elastic constitutive equations. So, whatever the meaning of
the symbols involved, replace the elastic products with convolutions to write
the results directly: rSðtÞ ¼ 3Kðt � sÞ � deSðsÞ; rDijðtÞ ¼ 2Gðt � sÞ � deDijðsÞ;
i; j ¼ 1; 3:

2.5.3 Laplace-Transformed Relationships

Since linear viscoelastic constitutive equations correspond to convolution inte-
grals, one may apply the Laplace transform to convert them into algebraic equa-
tions. As explained in Appendix A, any piecewise continuous function, f(t), of
exponential order—that is, bounded by a finite exponential function—has a
Laplace transform, f ðsÞ; defined as:

Lff ðtÞg � f ðsÞ ¼
Z1

0

e�stf ðtÞdt ðiÞ

7 The 3 9 3 stress and strain matrices—indeed any square matrix of any order—may be split into
a spherical and a deviatoric part. The spherical part is a diagonal matrix with each of its three
non-zero entries equal to the average of the diagonal elements of the original matrix. Therefore,
any one of its non-zero entries may be used to represent it. The deviatoric part of the matrix is, by
definition, the matrix that is left over from such decomposition. This decomposition is discussed
fully in Appendix B.
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Some properties of the Laplace transform are presented in Appendix A. We list
the following two and use them to transform convolution integrals in the time
domain, t, into algebraic expressions in the transform variable, s.

Transform of first derivative: Lfd

dt
fg ¼ s�f ðsÞ � f ð0Þ ðjÞ

Transform of the convolution: Lff � gg ¼ �f ðsÞ�gðsÞ ðkÞ

Indeed, applying these expressions to the convolution forms (2.25) and (2.26),
respectively, results in the following algebraic form of the constitutive equations:

rðsÞ ¼ sMðsÞeðsÞ ð2:29Þ

eðsÞ ¼ sCðsÞrðsÞ ð2:30Þ

The same results would have been obtained if the Laplace transform had been
applied to the original stress–strain and strain–stress equations, (2.1a, b) and
(2.2a, b). For example, if the Laplace transform is applied to both sides of (2.1a),
the relationship in (2.29) would be obtained, after collecting terms as follows:

rðsÞ ¼ MðsÞeð0þÞ þMðsÞ � ½seðsÞ � eð0þÞ� ¼ sMðsÞ � eðsÞ ðlÞ

The advantage of taking the Laplace transform of viscoelastic constitutive equa-
tions is that the transformed expressions involve only products of the transform of
the material property function of interest (modulus or compliance) and the Laplace
transform of the input function—strain or stress, just like elastic constitutive
equations do. In other words, the Laplace transform converts a viscoelastic con-
stitutive equation into an elastic-like expression between transformed variables.
Conversely, if each material property in an elastic constitutive relation is replaced
by its Carson8 transform and each input variable in it is replaced by its Laplace
transform, the resulting expression must stand for the Laplace transform of the
corresponding viscoelastic constitutive equation. Thus, as in the case of the con-
volution notation, this equivalence between elastic constitutive relations and the
Laplace transform of viscoelastic equations allows one to write down the trans-
formed viscoelastic constitutive equations directly from the elastic ones. This
equivalence forms the basis of a so-called elastic–viscoelastic correspondence
principle, which is presented in Chap. 9.

Example 2.6 Use the elastic–viscoelastic correspondence to write down the vis-
coelastic version of the three-dimensional constitutive equations of the linear
isotropic elastic solid of Example 2.5.

8 The s-multiplied Laplace transform of a function is simply called the Carson transform of the
function.
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Solution:

Using the elastic–viscoelastic correspondence, write the Laplace transform of
the elastic expressions as: �rS ¼ 3s�K�eS; �rDij ¼ 2s�G�eDij; i; j ¼ 1; 3: The vis-
coelastic constitutive equations are obtained taking the inverse Laplace transform
of the forms given. Thus, rS ¼ 3K � deS; rDij ¼ 2G � deDij; i; j ¼ 1; 3:

The relationship between the relaxation modulus, M, and the creep compliance,
C, in the transformed plane, can be obtained either by applying the Laplace
transform to (2.27) or (2.28), or by combining the algebraic expressions (2.29) and
(2.30). In either case, there results:

MðsÞCðsÞ ¼ 1
s2

ð2:31Þ

Example 2.7 The relaxation modulus of a viscoelastic solid is given by M tð Þ ¼
Me þM1e�at: Use expression (2.31) and Laplace transform inversion to obtain its
creep compliance, assuming the latter is a function of the form:
C tð Þ ¼ Ce � C1e�bt:

Solution:

According to (2.31), the creep compliance function would be given by the
inverse Laplace transform of the function 1=s2 �MðsÞ: Hence, we first evaluate this
function, then invert it, and equate it to the Laplace transform �C sð Þ ¼ Ce=s�
C1=ðsþ bÞ; of the desired creep compliance. Proceeding thus, using the table of

transforms included in Appendix A, and simplifying, there results: s2 �M sð Þ ¼
sþ a

s½Meaþ ðMe þM1Þs�
: Expanding this rational function into its partial fractions, as

explained in Appendix A; using the notation Me ? M1 = Mg, simplifying and

equating the result to the Laplace transform of C(t), there results: Ce
s �

C1

ðsþ bÞ ¼

1=Me

s
þ ðMe �MgÞ=MeMg

ðsþ aMe=MgÞ
: Equating coefficients of the corresponding powers of

s yields: Ce = 1/Me, C1 = (Mg - Me)/(MeMg), b = Me a/Mg.
More general methods of approximate and exact inversion of material property

functions given as sums of exponential functions are presented in Chap. 7.

2.6 Alternate Integral Forms

Depending on preference, and the application at hand, the integral constitutive
equations for viscoelastic substances may be written in several different ways. The
mathematical operations that are used to transform one constitutive form into

2.5 Relationship Between Modulus and Compliance 43

http://dx.doi.org/10.1007/978-1-4614-8139-3_7


another—most typically, integration by parts—require that the material property
functions involved, and their time derivatives, be bounded. On occasion, the
transformations also assume that the material property functions vanish identically
for all negative time.

For ease of reference, we list Boltzmann’s equation (2.1b), where it was noted
that e (t) : 0, for t \ 0, allowed us to write [4]:

rðtÞ ¼
Z t

0�

Mðt � sÞ de
ds

ds ð2:32aÞ

On the physical expectation that M(t) be bounded for all values of time, and
requiring that e (t) ? 0, as t ? -?, which is satisfied, since both e (t) ? 0, and
de/dt : 0, for t \ 0, one may extend the lower limit of integration to -?, in
(2.32a), without altering its value. Thus,

rðtÞ ¼
Z t

�1

Mðt � sÞ de
ds

ds ð2:33aÞ

Another useful form is obtained integrating (2.32a) by parts and simplifying:

rðtÞ ¼ Mð0ÞeðtÞ �
Z t

0

o

os
Mðt � sÞeðsÞds ð2:34aÞ

Using the notation M (0) : Mg, and introducing the normalized function
m(t) : M(t)/Mg:

r tð Þ ¼ Mg e tð Þ �
Z t

0

o

os
m t � sð Þe sð Þds

8<
:

9=
; ð2:35aÞ

Using the notation rg (t) : Mg � e (t), and taking Mg inside the integral, produces
the form:

r tð Þ ¼ rgðtÞ �
Z t

0

o

os
m t � sð Þrg sð Þds ð2:36Þ

An important application of this is in the derivation of constitutive equations for
materials that are termed hyper-viscoelastic. Equations for hyper-viscoelastic
materials are derived from those of hyper-elastic materials. A material is termed
hyper-elastic, if there exists a potential function of the strains, say, W, such that
each individual stress component in such a material may be computed as the
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derivative of W with respect to the corresponding strain [5]. Since both the glassy
or short-term and the equilibrium or long-term responses of a viscoelastic solid are
elastic, either can be used to define the potential function. We proceed by using the
glassy response; thus

rg tð Þ ¼ o

oeðtÞWgðeðtÞÞ ð2:37Þ

The stress–strain law in (2.36) would then take the equivalent form:

r tð Þ ¼ o

oeðtÞWgðeðtÞÞ �
Z t

0

o

os
m t � sð Þ o

oeðsÞWgðeðsÞÞds ð2:38Þ

Another form, which allows a generalization to non-linear viscoelasticity, is
derived by introducing the strain relative to the configuration at time t :
erel t; sð Þ ¼ e tð Þ � eðsÞ: Using that erel t; 0ð Þ ¼ e tð Þ in (2.35a) yields:

r tð Þ ¼ Mg erel tð Þ þ
Z t

0

o

os
m t � sð Þerel sð Þds

8<
:

9=
; ð2:39Þ

Constitutive Eqs. (2.34a, b), (2.35a, b), (2.36) and (2.39) are also frequently
written in terms of integral operators, using convolution integral notation, but the
exact form of the kernel (i.e., the derivative of the relaxation function) is not
disclosed. With the obvious definitions, those equations would read:

r tð Þ ¼ Mg e tð Þ � C t� sð Þ � e sð Þf g ð2:40aÞ

r tð Þ ¼ Mg 1� C t� sð Þ�f geðtÞ ð2:40bÞ

r tð Þ ¼ rg tð Þ � C t� sð Þ � rg sð Þ ð2:41aÞ

r tð Þ ¼ 1� C t� sð Þ�f grgðtÞ ð2:41bÞ

r tð Þ ¼ Mgerelðt; 0Þ þMgC t� sð Þ � erelðt; sÞ ð2:42Þ

Example 2.8 Use (2.37) and (2.38) to develop the stress–strain law for a hyper-
viscoelastic material having normalized relaxation function, m = a ? (1 - a)e-t/g,
if it is known that its glassy response can be established from the potential function
of the strains Wg = �Ee2(t).

Solution:

The hyper-viscoelastic form is derived by putting the given functions into
(2.37) and (2.38) directly. Evaluating (2.37) first: rgðtÞ ¼ o

oe Wg eðtÞð Þ ¼ E � eðtÞ:
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Taking this result and m into (2.38) and re-arranging: rðtÞ ¼ E � eðtÞ �
Rt
0

o
os E aþ½f
�

ð1� aÞ�e�ðt�sÞ=gg � eðsÞ�ds:
Comparing this with (2.34a) shows that hyper-viscoelastic material in question

is linearly viscoelastic with relaxation modulus: M tð Þ ¼ E½aþ 1� að Þe�t=g�:
We end this section by presenting some of the constitutive equations in strain–

stress form which are the exact counterparts of the foregoing expressions. These
strain–stress forms are derived by reversing the roles of stress and strain in the
arguments that led to the previous forms. For instance, the strain–stress equations
analogous to (2.32a)–(2.35a) are:

eðtÞ ¼
Z t

0�

Cðt � sÞ dr
ds

ds ð2:32bÞ

eðtÞ ¼
Z t

�1

Cðt � sÞ dr
ds

ds ð2:33bÞ

eðtÞ ¼ Cð0ÞeðtÞ �
Z t

0

o

os
Cðt � sÞrðsÞds ð2:34bÞ

e tð Þ ¼ Cg r tð Þ �
Z t

0

o

os
c t � sð Þs sð Þds

8<
:

9=
; ð2:35bÞ

2.7 Work and Energy

Under the action of external agents, be these loads or displacements, a deformable
body will change its configuration and, if not properly restrained, undergo large-
scale motion. At any rate, as the points of application of the external agents move,
work—defined as the product of force and displacement—is performed on the
body. To develop an expression for the work performed on a body by the external
agents, we use a uniaxial specimen of constant cross-sectional area, A, initial
length, l, and volume, V, that is loaded at its ends by either a displacement u or a
force F. With this, the rate of work of the external forces—that is, force times
displacement rate—can then be expressed as:

dW

dt
� F

du

dt
ð2:43Þ
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Multiplying and dividing by the specimen’s volume V = A�l, and using that the
strain is given e = u/l, we cast the previous expression in the form:

dW

dt
� F

du

dt
¼ F

A
A � l � dðu=lÞ

dt
� V � r � de

dt
ð2:44Þ

The total work performed during a time interval (0, t) is given by the integral:

W jt0¼
Z t

0

dW

ds
ds �

Z t

0

FðsÞ du

ds
ds ð2:45Þ

Combining (2.44) and (2.45) and dividing the result by the specimen’s volume, V,
produces the work per unit volume, WV, that is input into the system:

WV jt0¼ ð1=VÞW jt0¼
Z t

0

r sð Þ deðsÞ
ds

ds ð2:46Þ

In practical applications, we insert an appropriate form or another of the consti-
tutive equation, such as (2.1b) and write (2.46) as:

WV jt0¼
Z t

s¼0

Zs

s¼0

Mðs� sÞ deðsÞ
ds

ds
deðsÞ

ds
ds ð2:47Þ

Suitable functions (bounded and piecewise continuous) allow interchanging the
order of integration. Before doing this, we note that the relaxation modulus, M(t),
is defined only for positive values of time. One can continue it to negative values
of its argument in an arbitrary manner. In particular, it is sometimes convenient to
assume M(t) either as an even or an odd function of time, that is,

M tð Þ ¼ M �tð Þ ð2:48Þ

2 

s

= s

1

= t

4

3 
s = t

Fig. 2.7 Region of
integration used for change of
variables in work expression
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M tð Þ ¼ �M �tð Þ ð2:49Þ

Here, we take M to be an even function of time. With this, the integral in (2.47) in
the s-s plane is taken over the area of a right triangle with base of length t, whose
hypotenuse is the ray s = s, as indicated in Fig. 2.7.

Using (2.48) and noting that the square 1234 in the figure is made up of two
triangles of equal area, and that on account of (2.48), the value of M is the same on
points that are symmetrically located about the diagonal of the square, there
results:

WV jt0¼
1
2

Z t

s¼0

Z t

s¼0

Mðs� sÞ deðsÞ
ds

ds

2
4

3
5 deðsÞ

ds
ds ð2:50Þ

The expressions derived here apply equally to any other one-dimensional pair
or work-conjugate quantities, such as shearing force and deflection, torque and
twist angle, or bending moment and rotation.

2.8 Problems

P.2.1 Determine the constant-rate effective modulus, Eeff ðtÞ; of a one-dimensional
solid made of a viscoelastic material whose relaxation modulus is:
MðtÞ ¼ Ee þ E1e�t=s1 :

Answer : Eeff ðtÞ ¼ Ee þ
E1

ð1=s1Þ
1� e�t=s1

h i

Hint: Use M(t) with the defining expression derived in Example 2.1 and carry out
the indicated integration.

P.2.2 Use convolution notation to derive the relationship between relaxation
modulus and creep compliance.

Answer : Mðt � sÞ � dCðsÞ ¼ HðtÞ

Hint: Combine (2.25) and (2.26) to get rðtÞ ¼ Mðt � sÞ � deðsÞ � Mðt � sÞ �
dfCðs� sÞ � drðsÞg; then, use that: r tð Þ ¼ roH tð Þ and thus dr tð Þ ¼ rod tð Þ to
evaluate the convolution integral inside the braces, and obtain: ro ¼ M t � sð Þ �
dCðsÞro; from which the desired result follows.

P.2.3 As presented in Chap. 7, a popular analytical form used to represent relaxation
functions consists of a finite sum of decaying exponentials, which in the literature is
usually referred to as a Dirichlet–Prony series or, more simply, Prony series:
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MðtÞ ¼ Me þ
XN

i¼1

Mie
�t=si ; Me� 0; and : Mi; si [ 0; 8i

In this expression, Me represents the equilibrium modulus, which is zero for a
viscoelastic liquid [c.f. Chap. 1]. Also, although the si’s represent relaxation times
of the material and are thus material properties, in practice, they, as well as Me and
the coefficients Mi, are all established by fitting the Prony series to experimental
data. Prove that such forms satisfy the requirements of fading memory.

Hint:

(a) Evaluate the derivative of the series as t ? ? to show it satisfies (2.10).

lim
t!1

o

ot
MðtÞ

� �
� lim

t!1
�
XN

1

Mi

si
e�t=si

( )
¼ 0

(b) Compare the values of the function at t2 [ t1, to prove that the Prony series is
a monotonically decreasing function, in accordance with (2.12).

Mðt2Þ ¼
XN

1

Mie
�t2=si 	

XN

1

Mie
�t1=si ¼ Mðt1Þ; 8 t2 [ t1

(c) Evaluate the derivative of the series at t2 [ t1 and prove that the absolute value
of its derivative is also monotonically decreasing, satisfying (2.11).

o

ot
MðtÞ

����
����
t¼t2

� �
XN

1

Mi

si
e�t2=si

�����
�����	 �

XN

1

Mi

si
e�t1=si

�����
����� �

o

ot
MðtÞ

����
����
t¼t1

; 8 t2 [ t1

P.2.4 As discussed in Chap. 7, the power-law form: M tð Þ ¼ Me þMtð1þ t
aÞ
�p is

also used to represent the relaxation function of viscoelastic solids. Show that this
form satisfies the requirements of fading memory. In this expression, Me, Mt, a and
p, are all positive.

Hint:
(a) Proceed as in P.2.3 and evaluate the derivative of the given power-law form as

t ? ? to show it satisfies (2.10).

lim
t!1

o

ot
M tð Þ

� �
� lim

t!1
� pMt

a
1

ð1þ t=aÞð1þpÞ

( )
¼ 0
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(b) Compare the values of the given function at t2 [ t1, to prove that this power-
law form is a monotonically decreasing function, in accordance with (2.12).

M t2ð Þ � Me þMtð1þ
t2

a
Þ�p	Me þMtð1þ

t1
a
Þ�p; t2 [ t1

(c) Evaluate the derivative of the function at t2 [ t1 and prove that the absolute
value of its derivative is also monotonically decreasing, satisfying (2.11).

o

ot
M tð Þ

����
����
t2

� � pMt

a
ð1þ t2

a
Þ�ð1þpÞ

����
����	 � pMt

a
ð1þ t1

a
Þ�ð1þpÞ

����
���� � o

ot
M tð Þ

����
����
t1

;

t2 [ t1

P.2.5 Compute the steady-state response of the one-dimensional solid of P.2.1 if it
is subjected to the cyclic strain history e(t) = eocos(xt).

Answer : r tð Þ ¼ Ee þ
E1ðxsÞ2

1þ ðxsÞ2

" #
eo cos xtð Þ � E1ðxsÞ

1þ ðxsÞ2
eocosðxtÞ

Hint: Take the strain history into (2.1b); use integration-by-parts twice; simplify,

and discard the transient term: E1eo
ðxsÞ

1þðxsÞ2 e�t=s to obtain the desired result.

P.2.6 Repeat problem P.2.5 if the cyclic strain history is e(t) = eosin(xt).

Answer : r tð Þ ¼ Ee þ
E1ðxsÞ2

1þ ðxsÞ2

" #
eo sin xtð Þ þ E1ðxsÞ

1þ ðxsÞ2
eocosðxtÞ

t* 2 t* t

ε

R R

Fig. 2.8 Problem 2.7
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Hint: Take the strain history into (2.1b); use integration-by-parts twice; simplify,

and discard the transient term E1eo
ðxsÞ

1þðxsÞ2 e�t=s to obtain the desired result.

P.2.7 A uniaxial bar of a viscoelastic solid with relaxation modulus M(t) is sub-
jected to a constant-rate load–unload strain history, as shown in Fig. 2.8. Prove
that a non-zero stress will exist in the bar at the time when the strain reaches zero
at the end of the load-unload cycle.

Hint:

Using that e tð Þ ¼ Rt; t	 t�

Rt� þ R t � t�ð Þ; t� t�

�
; evaluate (2.1b) at t = 2t*. Split

the integration interval into two parts: from 0 to t* and t* to 2t* and introduce a

change of variables to arrive at the result: r 2t�ð Þ ¼ �R
R t�

0 E sð Þdsþ R
R 2t�

t� E sð Þds:
Proceed as in Example 2.1 and multiply and divide this expression by t* to cast the

result into the form: r 2t�ð Þ ¼ Rt� � 1
t�
R t�

0 E sð Þdsþ 1
t�
R 2t�

t� E sð Þds
h i

: The quantities

inside the brackets are the average values of the relaxation function in the
respective intervals of integration. Because the relaxation modulus is a mono-
tonically decreasing function of time, the first integral inside the brackets is
numerically larger than the second. This proves that, while e 2t�ð Þ is zero, r 2t�ð Þ is
negative.

P.2.8 In Chap. 1, it was pointed out that in an elastic solid the stress corresponding
to a given strain will always be the same, irrespective of the time it takes to apply
the strain, and that contrary to this, the stress in a viscoelastic material will depend
on the rate of straining, and hence, on the time it takes the strain to reach a
specified value. Considering two constant strain-rate histories, e1(t) = R1�t and
e2(t) = R2�t, derive an expression for the duration, t2, at which a viscoelastic
material subjected to a strain history e2(t) = R2�t would develop the same stress
response as it would after t1 units of time under the strain history e1(t) = R1�t1.

Answer : t2 ¼
Eeff ðt1ÞR1

Eeff ðt2ÞR2
t1

Hint: Proceeding as in Example 2.1, evaluate (2.1b) for each constant strain-rate
load and arrive at r t1ð Þ ¼ Eeff t1ð ÞR1t1 and r t2ð Þ ¼ Eeff t2ð ÞR2t2; where the average
or effective modulus, Eeff tð Þ; is given by (2.3). The result follows from these
relations.

P.2.9 The work per unit volume, WV (t), performed by external agents acting for
t units of time on a uniaxial bar of a viscoelastic material is given by: WV tð Þ ¼R t

0 r sð ÞdeðsÞ: Evaluate the work per unit volume, done in a complete cycle, on a
bar of a viscoelastic materials with relaxation modulus M(t), if the applied exci-
tation is e(t) = eosin(xt).
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Answer : WV ¼ proeosind

Hint: Using that the response to a periodic excitation will be periodic and of the
same frequency as the excitation, but out of phase with it, let d be the phase angle,
and take the response to be r(t) = rosin(xt ? d). Insert the stress and strain into

the expression for the work per unit volume, and write: WV ¼
R tþp

t r0 sin

xsþ dð Þeox cos xsð Þds; where p = 2p/x is the period. Now use trigonometric
identities to expand the circular function sin xsþ dð Þ ¼ sinðxsÞ cos dð Þ þ
cosðxsÞ sin dð Þ; perform the integration, using the periodicity of the circular
functions, and simplify to arrive at the result. As will be explained in Chap. 4, the
phase angle, d, is a characteristic of the material’s relaxation modulus.
P.2.10 Repeat Problem P2.9 using the periodic strain history e(t) = eocos(xt).

Answer: The result is the same as for a sine function history: WV ¼ proeosind
Hint: Proceed as in Problem 2.9.
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